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T-UGOm: the Toulouse Unstructured Grid Ocean model

T-UGOm: 2D version use in production, experimental 3D version (research tool).

T-UGOm team:

Florent Lyard (team leader),
Legos, CNRS, Toulouse;

Laurent Roblou, Legos,
CNRS, Toulouse ;

Yoann Le Bars, NRL, Stennis
Space Center (formerly
Legos);

David Greenberg, BIO,
Halifax, Nova Scottia;

Frédéric Dupont, BIO,
Halifax, Nova Scottia.

Finite element

Finite volume

Finite elements/volumes;

time-splitting;

2D elements: triangles;

3D elements: prisms;

spherical coordinates (horizontal),
generalised σ (vertical);

Boussinesq, hydrostatic;

multiple discretisations.
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Finite elements versus finites differences
Purpose:

...1 Deeper understanding of similarities and differences between finite differences, finite elements and
finite volumes;

...2 make a rigorous generalised formalism, that can be used either in continuous and discontinuous case.

Finite elements: explicit projection, derivation of interpolation functions (continuous interpolation);

finite differences: implicit projection, rate of increase (discontinuous interpolation).

Not so different:

.
Generalised formalism
..
.
. ..

.

.Finite elements “contain” finite differences

Le Bars & Lyard (NRL – USM – LEGOS) Discontinuous approximations IMUM 2010 3 / 24



Finite elements versus finites differences
Purpose:

...1 Deeper understanding of similarities and differences between finite differences, finite elements and
finite volumes;

...2 make a rigorous generalised formalism, that can be used either in continuous and discontinuous case.

Finite elements: explicit projection, derivation of interpolation functions (continuous interpolation);

finite differences: implicit projection, rate of increase (discontinuous interpolation).

Not so different:

.
Generalised formalism
..
.
. ..

.

.Finite elements “contain” finite differences

Le Bars & Lyard (NRL – USM – LEGOS) Discontinuous approximations IMUM 2010 3 / 24



Finite elements versus finites differences
Purpose:

...1 Deeper understanding of similarities and differences between finite differences, finite elements and
finite volumes;

...2 make a rigorous generalised formalism, that can be used either in continuous and discontinuous case.

Finite elements: explicit projection, derivation of interpolation functions (continuous interpolation);

finite differences: implicit projection, rate of increase (discontinuous interpolation).

Not so different:

.
Generalised formalism
..
.
. ..

.

.Finite elements “contain” finite differences

Le Bars & Lyard (NRL – USM – LEGOS) Discontinuous approximations IMUM 2010 3 / 24



Finite elements versus finites differences
Purpose:

...1 Deeper understanding of similarities and differences between finite differences, finite elements and
finite volumes;

...2 make a rigorous generalised formalism, that can be used either in continuous and discontinuous case.

Finite elements: explicit projection, derivation of interpolation functions (continuous interpolation);

finite differences: implicit projection, rate of increase (discontinuous interpolation).

Not so different:

.
Generalised formalism
..
.
. ..

.

.Finite elements “contain” finite differences

Le Bars & Lyard (NRL – USM – LEGOS) Discontinuous approximations IMUM 2010 3 / 24



Finite elements versus finites differences
Purpose:

...1 Deeper understanding of similarities and differences between finite differences, finite elements and
finite volumes;

...2 make a rigorous generalised formalism, that can be used either in continuous and discontinuous case.

Finite elements: explicit projection, derivation of interpolation functions (continuous interpolation);

finite differences: implicit projection, rate of increase (discontinuous interpolation).

Not so different:

.
Generalised formalism
..
.
. ..

.

.Finite elements “contain” finite differences

Le Bars & Lyard (NRL – USM – LEGOS) Discontinuous approximations IMUM 2010 3 / 24



Finite elements versus finites differences
Purpose:

...1 Deeper understanding of similarities and differences between finite differences, finite elements and
finite volumes;

...2 make a rigorous generalised formalism, that can be used either in continuous and discontinuous case.

Finite elements: explicit projection, derivation of interpolation functions (continuous interpolation);

finite differences: implicit projection, rate of increase (discontinuous interpolation).

Not so different:

.
Generalised formalism
..
.
. ..

.

.Finite elements “contain” finite differences

Le Bars & Lyard (NRL – USM – LEGOS) Discontinuous approximations IMUM 2010 3 / 24



Some difficulties

Shallow water and generalised wave equations: ∇ · u and ∇η
⇒ need to compute discrete divergences and gradients;

advection-diffusion equation: ∇ ·∇c (laplacian can be also use for
kinetic momentum equation)
⇒ need to compute laplacians of discontinuous functions
(non-measurable);

σ-layers modelling: discontinuous elevation
⇒ discontinuous σ-layer discretisation, commonly simply ignored
⇒ hydrostatic inconstancy.
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Outlook

.. .1 Divergence and gradient

.. .2 Looking for an optimal reformulation of laplacian in discontinuous case

.. .3 σ-layers modelling
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Definitions
Measures

.
Definition..
.
. ..

.

.∀E measurable space, ∀m ∈ N? and p ∈ [1; +∞[, Wm,p (E): Sobolev’s space.

.
Definition..
.
. ..

.

.dx: Lebesgue’s measure.

.
Definition..
.
. ..

.

.dσ(x): frontier measure (e.g. 2D: path length).
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Definitions
Notations

Let Ti and Tj be two neighbouring elements
and Γi,j their common edge. ..Ti .Tj

∀ψ ∈ Wm,p (E) and, ∀n ∈ N?, ∀f ∈ [Wm,p (E)]n, let:

ψ i,j =
1
2

(
ψ |Ti + ψ |Tj

)
, (1)

fi,j =
1
2

(
f|Ti + f|Tj

)
. (2)

∀β i,j ∈ [0; 1] such as β j,i = 1− β i,j, let:

ψ
i,j
= β i,j

(
ψ |Tj − ψ |Ti

)
, (3)

f
i,j
= β i,j

(
f|Tj − f|Ti

)
. (4)
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Proposed approximations
Basics

.
Analogy with Dirac’s measure
..

.

. ..

.

.

∫
Γi,j

∇ψdσ (x) ≈
∫
Γi,j

ψ
i,j
· ni,jdσ (x) , (5)∫

Γi,j
∇ · fdσ (x) ≈

∫
Γi,j

f
i,j
· ni,jdσ (x) , (6)

ni,j: the unit vector normal to Γi,j and orientated from Ti to Tj.
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Proposed approximations
Actual approximation

∫
Ωk

ψ∇·fdx =
Nk∑
i=1

∫
◦
Ti
ψ∇·fdx+

Nk∑
i=1

∑
j:Tj∈{neighbours of Ti}

∫
Γi,j

ψ∇·fdσ (x) , (7)

Ωk: discretised problem space,
Nk: number of elements,
◦
Ti: interior of Ti.
.
Analogy with finite differences
..

.

. ..

.

.

∫
Γi,j

ψ∇ · fdσ (x) ≈
∫
Γi,j

ψ i,jfi,j · ni,jdσ (x) . (8)
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Standard integration properties
.
Proposition (Leibniz’s formula)
..

.

. ..

.

.

∀E measurable space, either continuous or discrete, with the proposed
approximations, the following Leibniz’s formula is verified:∫

E
∇ · ψfdx =

∫
E
ψ∇ · fdx+

∫
E
∇ψ · fdx.

.
Proposition (Stokes’ formula)
..

.

. ..

.

.

Let ΓE be E fronter and nΓE (x) be the unit vector normal to ΓE on point x, directed to
the outside. Then, with the proposed approximations,
∀E measurable space, either continuous or discrete, Stokes’ formula is verified:∫

E
∇ · fdx =

∫
ΓE

f · nΓEdσ (x) .

(Le Bars 2010; Lyard and Le Bars in prep.)
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Outlook

.. .1 Divergence and gradient

.. .2 Looking for an optimal reformulation of laplacian in discontinuous case

.. .3 σ-layers modelling
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Objectives

...1 ∀ξ ∈ Wm,p (Ωk), to determine values of
∫
Ωk

∇ · ψ∇ξdx and
∫
Ωk

∇ψ ·∇ξdx:

two derivations, then one integration;
only one derivation in previous gradient and divergence definitions;

...2 to verify the following two Leibniz’s formulas:∫
Ωk

∇ ·∇ (ψξ) dx =

∫
Ωk

ψ∇ ·∇ξdx+ 2
∫
Ωk

∇ξ ·∇ψdx+

∫
Ωk

ξ∇ ·∇ψdx, (9)∫
Ωk

∇ · ξ∇ψdx =

∫
Ωk

ξ∇ ·∇ψdx+

∫
Ωk

∇ξ ·∇ψdx; (10)

...3 with Λ an arbitrary discontinuity repartition factor, to verify Stokes’ formula:

∫
Ωk

∇ ·∇ψ =

Nk∑
i=1

∑
j:Tj∈{neighbours of Ti}

(∫
Γi,j

ni,j ·∇ψdσ (x) +
∫
Γi,j
Λni,j ·∇ψ

i,j
dσ (x)

)
(11)
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Methodology

For now on, we see three possibilities:
...1 to define a bounded discontinuous gradient, then use previous

divergence definition;
...2 to determine continuous field approximation and then compute laplacian;
...3 use a filter to convolute the discontinuous field, then the gradient and so

the laplacian can be controlled with filter slope (not detailed here).
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Using previous developments
.
Bounded discontinuous gradient, then use previous divergence
definition
..

.

. ..

.

.

∫
Ωk

ξ∇ · ∇ψ dx =

Nk∑
i=1

[ ∫
◦
Ti
ξ∇ · ∇ψ dx+

∑
j:Tj∈{neighbours of Ti}

(∫
Γi,j

Λξ i,j∇ψ
i,j

· ni,jdσ (x)

−
∫
Γi,j

Λni,j · ψ
i,j
∇ξ i,jdσ (x) +

Le

Ae

∫
Γi,j

Λξ i,jψ
i,j
dσ (x)

−
Le

Ae

∫
Γi,j

Λ2ξ
i,j

× ψ
i,j
dσ (x)

)]
,

(12)

∫
Ωk

∇ · ξ∇ψ dx =

Nk∑
i=1

[∫
◦
Ti
∇ · ξ∇ψ dx +

∑
j:Tj∈{neighbours of Ti}

(∫
Γi,j

Λξ∇ψ
i,j

· ni,jdσ (x)

+
Le

Ae

∫
Γi,j

Λξ i,jψ
i,j
dσ (x)

)]
(13)

Le: edge measurement (e.g 2D: segment length),
Ae: element measurement (e.g. 2D: element area).

(Lyard and Le Bars in prep.)
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Continuous field approximation
∀i ∈ {1, 2, . . . , Nk} , ∇ψ |Ti = ∇ψ |◦

Ti
+

∑
j:Tj∈{neighbours of Ti}

ψ
i,j
δ i,jni,j

Analogy with least squares method: determine u constant on Ti such as∫
Ti

∥∥∥∇ψ − ∇ψ |◦
Ti
− u
∥∥∥2 dx =∑

j:Tj∈{neighbours of Ti}

∫
Γi,j

∥∥∥∥ψ i,j
δ i,jni,j − u

∥∥∥∥2 dσ (x)

.
Laplacian of the continuous approximation
..

.

. ..

.

.

∫
Ωk

∇ · ξ∇ψdx =

Nk∑
i=1

∫
◦
Ti

∇ · ξ∇ψdx+

Nk∑
i=1

∑
j:Tj∈{neighbours of Ti}

∫
Γi,j

ξ∇ψ
i,j
· ni,jdσ (x) (14)

According to Stokes’ formula:

∫
Ωk

ξ∇ ·∇ψdx =

Nk∑
i=1

[∫
◦
Ti

ξ∇ ·∇ψdx+
∑

j:Tj∈{neighbours of Ti}

(∫
Γi,j
Λξ i,j∇ψ

i,j
· ni,jdσ (x)

−
∫
Γi,j
Λni,j · ψ

i,j
∇ξ i,jdσ (x)−

1
Ae

∫
Γi,j
Λψ

i,j
dσ (x)

∫
Γi,j
Λξ

i,j
dσ (x)

)]
(15)
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Outlook

.. .1 Divergence and gradient

.. .2 Looking for an optimal reformulation of laplacian in discontinuous case

.. .3 σ-layers modelling
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3D σ-layers, finite volumes formulation

Finite differences equations (change of vertical coordinates) can be seen as layer-integrated equations, with
application of Leibniz’s formula

Volume conservation: 0 =

∫ s1

s0

∇ · uds =
∫ s1

s0

∇H · vdz + [w]s1s0

According to Leibniz’s formula:
∫ s1

s0

∇ · uds = ∇H ·
∫ s1

s0

vdz − [v ·∇Hs]

Then:
∫ s1

s0

∇ · uds = ∇H ·
∫ s1

s0

vdz + [ω]s1s0 +
[
∂s

∂t

]s1
s0

(16)

u: 3D velocity;
v: horizontal velocity;
w: vertical velocity;
ω: omega velocity.

In case of element-wise constant elevation/layer position:

spatial derivations require correction terms due to discontinuities;

Leibniz’s formula does not hold (i.e. requires additional correction terms) if layers are not face to face
from one column to another;

most known models do not care properly about those two issues, may it be because it would
significantly increase computation time?
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Leibniz’s formula holds in this case
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Leibniz’s formula does not hold in this case
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Some partial conclusions 1/2

Most of FD, FV and FE dynamical and tracers discrete equations are
identical if discontinuities are properly treated;
laplacian operator (for piece-wise constant fields) needs further
investigation:

simple extension from 1D to 2D does not work in general;
FD and FE may differ significantly;
explicit, well controlled smoothing (such as forward-backward projection on
a different discretisation) might be an way-through (there is already a lot of
hidden smoothing in most models);
two approaches to determine discrete laplacian, can we settle them
(measure)?

Le Bars & Lyard (NRL – USM – LEGOS) Discontinuous approximations IMUM 2010 21 / 24



Some partial conclusions 1/2

Most of FD, FV and FE dynamical and tracers discrete equations are
identical if discontinuities are properly treated;
laplacian operator (for piece-wise constant fields) needs further
investigation:

simple extension from 1D to 2D does not work in general;
FD and FE may differ significantly;
explicit, well controlled smoothing (such as forward-backward projection on
a different discretisation) might be an way-through (there is already a lot of
hidden smoothing in most models);
two approaches to determine discrete laplacian, can we settle them
(measure)?

Le Bars & Lyard (NRL – USM – LEGOS) Discontinuous approximations IMUM 2010 21 / 24



Some partial conclusions 1/2

Most of FD, FV and FE dynamical and tracers discrete equations are
identical if discontinuities are properly treated;
laplacian operator (for piece-wise constant fields) needs further
investigation:

simple extension from 1D to 2D does not work in general;
FD and FE may differ significantly;
explicit, well controlled smoothing (such as forward-backward projection on
a different discretisation) might be an way-through (there is already a lot of
hidden smoothing in most models);
two approaches to determine discrete laplacian, can we settle them
(measure)?

Le Bars & Lyard (NRL – USM – LEGOS) Discontinuous approximations IMUM 2010 21 / 24



Some partial conclusions 1/2

Most of FD, FV and FE dynamical and tracers discrete equations are
identical if discontinuities are properly treated;
laplacian operator (for piece-wise constant fields) needs further
investigation:

simple extension from 1D to 2D does not work in general;
FD and FE may differ significantly;
explicit, well controlled smoothing (such as forward-backward projection on
a different discretisation) might be an way-through (there is already a lot of
hidden smoothing in most models);
two approaches to determine discrete laplacian, can we settle them
(measure)?

Le Bars & Lyard (NRL – USM – LEGOS) Discontinuous approximations IMUM 2010 21 / 24



Some partial conclusions 1/2

Most of FD, FV and FE dynamical and tracers discrete equations are
identical if discontinuities are properly treated;
laplacian operator (for piece-wise constant fields) needs further
investigation:

simple extension from 1D to 2D does not work in general;
FD and FE may differ significantly;
explicit, well controlled smoothing (such as forward-backward projection on
a different discretisation) might be an way-through (there is already a lot of
hidden smoothing in most models);
two approaches to determine discrete laplacian, can we settle them
(measure)?

Le Bars & Lyard (NRL – USM – LEGOS) Discontinuous approximations IMUM 2010 21 / 24



Some partial conclusions 1/2

Most of FD, FV and FE dynamical and tracers discrete equations are
identical if discontinuities are properly treated;
laplacian operator (for piece-wise constant fields) needs further
investigation:

simple extension from 1D to 2D does not work in general;
FD and FE may differ significantly;
explicit, well controlled smoothing (such as forward-backward projection on
a different discretisation) might be an way-through (there is already a lot of
hidden smoothing in most models);
two approaches to determine discrete laplacian, can we settle them
(measure)?

Le Bars & Lyard (NRL – USM – LEGOS) Discontinuous approximations IMUM 2010 21 / 24



Some partial conclusions 2/2

Discontinuous elevation/layer positions are a real issue:
if treated properly, suppress computational interest of FV;
if not treated properly, lead to inconsistencies (such as the hydrostatic
one). In most FV formulation, elevation is piece-wise constant in mass
conservation computation, continuous in pressure gradient computation
(thus inconsistent);

structured and unstructured models suffer the same issue, except that
variable resolution can help in large bathymetry gradient regions (such as
the continental shelf slopes);

we have started to investigate a new 3D discretisation that allows to keep
FV schemes with continuous elevation/layers (to be continued).
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FV schemes with continuous elevation/layers (to be continued).
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