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The Operational Oceanography

approach

Multidisciplinary Numerical Data assimilation
Multi-platform e for optimal field

Observing hydrodynamics estimates =
system and ecosystem, and
(permanent coupled a/ uncertainty

and SEIOLELY estimates
relocatable) to atmospheri

forecast

Continuos production of nowcasts/forecasts of
relevant environmental state variables

The operational approach:
from large to coastal space scales (NESTING),
weekly to monthly time scales
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® TURBULENCE CLOSURE ® TURBULENCE AND LIGHT

SUBMODELS SUBMODELS

DATA ASSIMILATION DATA ASSIMILATION
®OPTIMAL INTERPOLATION ® KALMAN FILTERS
® 3-DVAR, KALMAN FILTER ® ADJOINT MODELS

BIOCHEMICAL MODELS BIOCHEMICAL MODELS
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ATMOSPHERIC FORCING
®OPERATIONAL ANALYSES AND ATMOSPHERIC FORCING
FORECASTS FROM LARGE ®OPERATIONAL ANALYSES AND

CALE MODELS FORECASTS FROM LIMITED
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Why nesting?

Increase the resolution where users need it
(especially coastal users)

Operational oceanography products give basic
first guess fields for high resolution coastal models

Nesting allows the introduction of new physics
(have resolution AND PROCESSES where and

when you need them, Robinson et al., 1998)

Practical and incremental way to implement new
technology in the operational framework



The European Operational .
Oceanography Service
6 European Seas + Global Ocean

= 1. Global |
= 2. Arctic ,‘_
= 3. Baltic
= 4. NWS

= 5. 1Bl

= 6. Med Sea

= 7.Black Sea

Every day the ocean weather with
uncertainty estimates
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m One single desk = Open Data Policy
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The operational forecasting models now

Primitive equations in spherical coordinates with full ocean
thermodynamics
Physics:

— Subgrid scale parametrizations for horizontal viscosity and diffusivity
(fourth and sixth order laplacians)

— High frequency atmospheric forcing and advanced air-sea interaction
— Turbulence closure sub-models for the vertical viscosity and diffusivity
— Bottom boundary layer parametrizations

— Tidal potential included

— Surface wave-current coupling

Data assimilation components: multivariate schemes
assimilating all available data in real time (satellite and in situ)
Simplified physics forecasting models:

— shallow water models for storm surge forecasting

— Wave models for surface wave forecasting



Operational oceanography: 10 years of quality increase
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Operational Oceanography: the
nesting deluge (all structured grids)

The Mediterranean Forecasting system disseminates daily forecasts to
13 nested national models every day
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Operational oceanography Nesting with unstructured
grids: SHYFEM 3-D
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Op.Oc. nesting issues with structured
and unstructured grids

* |nitialization problem: initializing all prognostic
state variables from the coarse to the high
resolution grid. VIFOP developed (Variational
Initialization and Forcing Platform, Auclair et al.,
1999, 2000, 2006) but more is needed (mass-
conserving interpolation tools)

* Vertical Boundary Condition problem: higher
resolution atmospheric forcing used in the nested
model, need for consistency (?)

* Lateral Boundary Condition problem: delicate
problem, we focused on that



The Lateral Boundary Condition
problem

Mainly solved in the 70’s for limited area models

Barotropic quasigeostropic equations are ill-posed (Bennett
and Kloeden, 1978) but for short time scales errors can be
kept below a threshold (Robinson and Haidvogel, 1978)

Primitive equations for atmosphere (Oliger and Sundstrom,
1978, Orlansky, 1976, Miyakoda and Rosati, 1977)

Primitive equations for the oceans (Flather, 1976), Spall and
Robinson (1989), etc.

More recently a very interesting revisit: Marchesiello et al.
(2001) and Blayo and Debreu (2005)

Interesting work by Teman and Tribbia (2003) showing that
non-hydrostatic open boundary condition is less ill-posed
than hydrostatic case



The Mediterranean nested models LBC
strategy (Pinardi et al., 2003)

* For tracers, T and S, and baroclinic velocities, collectively 0,

use:
00 COARSE d6 .

5 T UnormaL n =0

at outflow points (inflow can be prescribed from coarse rpodel)
L] L] 1
* For barotropic velocity normal components, U, = _[ Unormar 2

use instead 3 different forms: H+n 2,
H 8 F He o ¢
U§=—CU§iﬂ/—nF; Uy=—-Uy;
H g
Uy=—"Uy* |-— 1, -

 Why these different forms and what is the relationship to
Flather (1976)?



The Mediterranean nested models LBC
strategy (Pinardi et al., 2003)

* |In addition, all models, need to consider the
‘INTERPOLATION CONSTRAINT, i.e. the
conservation of transport across the open
boundary after interpolation

[2 TNc [2 N

| JuCdzai=| | wpmp dzdl

* This amounts to have a corrections done each
nesting time on the fine resolution velocity
barotropic field of the type:

AT
U' = Uinrere = TF(X,)’,Z)



The generalized Flather LBC
(Oddo and Pinardi, OM, 2008)

* Flather (1976): Ul =U¢ - \/%(77(; —1,)

e Where this formula comes from? Flather does
not explain it. Our derivation is:

V-u=0 %—?+V-[(H+n)l7]=

* Imposing an equality between the conservation
of mass in the coarse (c) and fine resolution (F)
domain:

N,
ot

N,
t +V- [(H +n,)U" ]

+V. [(H +n.)UC ]



The generalized Flather LBC, cont.

* From the equality before:

on on T F
atc tF+V-[(HF+nF)U ]

+V-[(H +1)UC |=

* Assuming that the free surface tendency can

be written as: %’ZJFV [CTI] 0

 We obtain the generalized Flather boundary
condition:

H + nC UC CN

UF
Y H.+mn, © H.+mn,

(nc"nF)




The generalized Flather LBC, cont.

 The generalized Flather boundary condition:

H_ .+ C
UJI\; e UC N (nc o 77F)
H,+n, Hp+np
* Becomes the Flather (1976) only if
H.~H,=H;

ne | < H; F_ c_ﬁ .
o [ j> Uy =Uy H(nc M)

* This is also why nesting and nested models
bathymetry should not be very different at the
open boundary if Flather (1976) is used



Scale selective LBC

Knowing the principles, now we can consider a scale
separation in the fine resolution field: suppose one part
spectrally overlap with the coarse field while the other is new.

Thus , ,
Ng =MNg +MN¢

UF — U/F + UIIF
After some algebra two new equations are formed for each
portion of the solution:

H.+1n. ¢ Cy
UN_H +1
F F

U],VF_ (77(:_771,:)

H,+n;

Ul = HFni - (c;-uy)



Scale selective versus non-scale selective
generalized Flather: idealized case
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Scale selective versus non-scale selective
generalized Flather: realistic case
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Scale selective versus non-scale selective
generalized Flather: realistic case
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The Coastal Rapid Environmental Assessment
(CREA) framework

 CREA is the evolution of MREA concepts (Robinson et
al., 2000) for the coastal area

 The aim is to use all information to reduce
uncertainties in the 5-7 days forecast of currents,
temperature and salinity near the coastal areas
 CREA is composed of:
— Basic operational oceanography analyses and forecasts
— A higher resolution nested model
— Observations from coastal systems

— A blending algorithm, multiscale optimal interpolation by
Mariano and Brown (1992)

— Initialization strategy
(This is a part of Simoncelli Ph.D. Thesis, 2010)



The CREA components

ULF OF TRIESTE

(1) The coastal
Networks

(Italian and Croatian
EPA network)

(3) The blending algorithm

Multi-input and multiscale Ol

Two input data sets: coarse model data
and local in situ data with different errors
Multiscale subdivision of the field

f T(x,y,z,t)=T,,(x,y,2,t)+ T, (x,y,2,t) + €




The Blending impact
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The CREA strategy

* Interpolate from the coarse grid to the finer resolution grid and
extrapolate if needed using climatology

* Blend the model information with the observations
e Spin-up the dynamics to have higher resolution scales in the IC
* Force with NWP analyses and forecasts

(DE,D) IAFS >
(BE,B) BA >

+“"s  SPIN UP

(SU)VIAFS === mmmmmmmm === o - -(BA) >
s._"
Fic. 4. CREA initialization and forecast procedure.
IAFS- Interpolation BA- Blending

Simoncelli et al., 2010



The improvement due to high resolution
(structured), observations and spin-up
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Conclusions

* Operational oceanography is providing basic analyses
for model validation and development in many parts
of the world ocean

* Baroclinic model nesting for the coastal areas working
at all scales (open ocean too, not shown) but need
for:

— Robust initialization methods

— Accurate or high resolution atmospheric forcing

— Lateral Boundary conditions: new generalized Flather
promising

e Possible test bed for unstructured grid validation:
CREA methods and databases. Data could be made
available to the community for Northern Adriatic Sea



