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 Biology Motivation 
•  What are fundamental biological-physical dynamics in Straits? 
•  Understand biological responses to multiple physical forcing (from rapid 

tidal overflows to slow water-mass driven overflows)  
•  Are there resonances between physics and biology in Straits leading to 

key nonlinear balances? (resonant intrinsic time and space scales)  
•  Start by investigating 2D dynamics (along-strait and depth)  

 Physics Motivation 
•  Bathymetric features (straits/shelfbreaks) affecting flows in euphotic 

zone, hence biology 
•  Our complex regions of interest 

•  Philippine Archipelago Straits, Middle Atlantic Bight shelfbreak, Monterey 
Bay shelfbreak, Taiwan region shelfbreak 

•  These regions involve multiscale dynamics (steep bathymetries, strong 
tides and mesoscales, shallow and deep areas) 

 Multi-Scale Biological-Physical Dynamics  
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Numerical Modeling Goals and Challenges 
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 Modeling Motivation  
•  Accurate numerics for biogeochemical ocean dynamics essential  

– Coastal ecosystems, environment, management, energy, and climate 
•  Providing computational requirements for such often highly nonlinear and 

multiscale dynamics critical, but very little (almost nothing) done so far 
•  Goal: define benchmarks and rules-of-thumb by comprehensive numerical 

analyses, comparing low to high order schemes, both in time and space 

 Challenges 
•  Widely varying physics and biological scales 
•  Grid resolution has significant impact on simulated flows in these regions.  

–  Likely have significant (even more?) impact on biology?  
•  Complex processes with chaotic dynamics 
•  Non-linear biological balances sensitive to numerics 



Methodology 

•  High-Order Numerical Schemes – Why? 
•  Less numerically dissipative than lower-order schemes 
•  Levy et al. (2001): 5 different low-order finite volume advection 

schemes gave 30% difference in new production estimates for biology 

•  Various different possibilities:  
•  Spectral, WENO/ENO, Finite Elements (Discontinuous Galerkin) 

•  DG Advantages 
•  Localized memory access - parallelizable 
•  Higher order accuracy 
•  Well-suited to adaptive strategies 
•  Can be used for complex geometries 

•  DG Challenges 
•  How to create good mesh for HO? 
•  Is HO DG too expensive? 
•  Will numerical oscillations ruin accuracy? 
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•  Focus on Nutrient-Phytoplankton-Zooplankton (NPZ) dynamics under 
advection and diffusion in idealized two-dimensional ocean strait geometry 

•  Complete large number of dynamics sensitivity studies: 
•  Investigate 3 biological regimes, one stable and two unstable with limit cycles. 
•  Examine interactions that are dominated by the biology, by the advection, or that 

are balanced.  

•  Employ standard and Hybrid Discontinuous Galerkin FE Methods 
•  Study the sensitivity to multiple numerical parameters including:  

•  Quadrature-free and quadrature-based discretizations of the source terms. 
•  Order of the spatial discretizations. 
•  Order of the temporal discretization in explicit schemes. 
•  Resolution of the spatial mesh. 
•  The effect of using curved and straight elements. 

Ueckermann, M.P. 2009, MIT SM Thesis. 
Ueckermann, M.P. and P. F.J. Lermusiaux, 2010. Ocean Dynamics, (under review). 

Comprehensive Sensitivity Studies  
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•  Biological Dynamics in Straits 
•  (N)utrient – (P)hytoplankton – (Z)ooplankton (NPZ) model 
•  Various dynamical regimes: stable and unstable 

Idealized Setup 
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Stable 
Unstable for z* 

in [0.4 0.9] Unstable 



Biology Equations and Parameters 

•  Non-dimensionalized equations 
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Idealized Setup 

•  Idealized Potential Flowfield 
•  Strait width << Ro, Small Fr, Rigid lid, constant density 

•  Solved on straight and curved meshes with various order/
refinements 
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Triangular meshes 

•  g=1 (350 elements) for P=6 have 9,800 degrees of freedom (DOF) 

•  g=4 (22,400 elements) for P=1 have 67,200 DOF 

•  High order (g1,P6) less expensive than low order solution (g4,P1)  
•  Factor of 2-3 

•  Five spatial mesh resolutions, with straight and curved boundary 
elements 

Reference solution calculated on g=5, P=1 (89,600 elements, 268,800 DOF) 
     Using Distmesh [Persson & Strang 2004] 19 August, 2010 9 of 25 
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Flow field: Convergence and boundary treatment 

•  Hybrid Discontinuous Galerkin Method 
•  Gradient converges at O(P+1) 

•  Velocity Divergence 
•  Low order: smaller amplitude error 
•  High order: smaller L2 error 
•  Straight Mesh: O(1) error 

•  Curved boundary mesh is necessary for accurate advection using 
high-order schemes. 

P=1, g=4, straight P=6, g=1, curved P=6, g=1, straight 



Source Term Implementation QB vs QF 

•  Quadrature-based (QB) integration 
•  More accurate 
•  More expensive (4 x #Components x #quadpoints x #bases) [4NcNqNp] 

•  Quadrature-free (QF) integration 
•  Smaller cost (#bases x Cost to evaluate source terms) [CsNp] 

Approximate integral 
with quadrature rules 

Approximate source function 
as polynomial of order P 
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Source Term Implementation QB vs QF 
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QB/QF similar accuracy 
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•  Both quadrature-based and quadrature-free 
discretizations give accurate, convergent 
where well-resolved 



•  Low order time integration scheme loses accuracy much 
faster than higher-order scheme 

Bio Tests: HO vs LO in Time 

Low Order, explicit Euler 

Higher Order, explicit Runge Kutta 2nd order 
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High Order vs. Low Order in Space 
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•  Unstable biology throughout 
water column 

•  Qualitative comparison 
•  Low order (LO) scheme 

seems better for x* > 5 
•  High order (HO) and LO 

scheme similar for x*<5 
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Only  
~ 21 DOF 
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High Order vs. Low Order: Difference plots 
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HO, Smaller error 

Use High Order Use Low Order 

Difference to (g5, P1) reference solution 
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Smoothness Determines HO/LO 

•  Higher-order spatial discretizations more accurate for the smaller cost where 
the solution was “smooth”  
•  “Smooth” functions have exponentially decreasing polynomial expansion 

coefficients 

Log of Local Truncation Error Estimate 

(g
4,

P
1)

 
(g

1,
P

6)
 

S
m

oo
th

ne
ss

 
In

di
ca

to
r 

Leading order truncation 

Leading order truncation 

Approximate log  
(calculated on P=2 mesh) 

Approximate log  
(calculated on P=7 mesh) 

“Smoothness”: linear fit  
to log10 of aij coefficients 
[Mavriplis, 1989] 
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Advection on Periodic Domain 

1.   Constant tracer 

2.   Vertical jump 
•  initial condition oscillatory 

5.  Horizontal jump 
•  initial condition non-

oscillatory (jump is over 
elements) 
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•   Need to address numerical oscillations (Gibbs phenomena) issue 
•  Occur for both LO and HO scheme 
•  Can we damp oscillations and retain high-order accuracy? 
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Advection on Periodic Domain 

•  Error plots show solution outside 
total variation of solution 
•  Large oscillations can have 

significant effect on biological 
dynamics 
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Advection on Periodic Domain: Filtering 

•  Apply exponential filter 

•  “Diffusive effect, greater in 
center of element, less at 
edges” 

•  “If filter less-smooth than 
solution: convergence not 
negatively impacted” 

•  Using Filter: Interface very 
diffused (s=10) 

[Hesthaven and Kirby,  
Math. Comput. 2008] 

i – multi-index 
s – order of filter 
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Advection on Periodic Domain: Filtering 

•  Application of high, s=10, 
filter does not remove 
oscillations and diffuses 
solution everywhere. 

•  Also, with α, η definitions, 
highest modes are 
truncated. 

Improvements 
•  Don’t solve for truncated 

mode: 

•  Only filter when not 
“smooth”: “selective filter” 
•  Use “smoothness” criterion 
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Advection on Periodic Domain: Filtering 

•  More aggressive (s=5) 
“selective filter,” only filters 
when not smooth: 

•  Does smooth interface, but 
much sharper than before. 

•  Constant case also with 
less noise. 

•  Appears as though 
oscillations reduced, 
eliminated? 
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Advection on Periodic Domain: Filtering 

•  Smoother solution for case 2, 
oscillations not eliminated. 
•  Reasonable since initialized 

with oscillatory field. 

•  Oscillations eliminated for 
case 3 

•  Cost of filtering 
•  For modal basis: essentially 

free. 
•  For nodal basis: need to 

transform to modal set, filter, 
transform back ~ 2 matrix-vector 
multiplications. 
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Preliminary Slope Limiting vs. Filtering 

•  HO slope limiting on triangles open problem – generally 
limited to first-to-second order [Hoteit et. al. Int. J. Numer. Meth. Engng 2004] 

•  Solution should be Total Variation Diminishing 

Unfiltered 
(g3,P6) 

Filtered (s=3) 
(g3,P6) 

Slope Limited 
(g4,P1) 
[TVD] 

(g4,P1) 

Solution affected  
globally 

Solution affected only 
 on “non-smooth” regions 
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Summary and Conclusions 

•  By quantitatively evaluating truncation error and “smoothness” 
of solutions, found that higher-order spatial discretizations more 
accurate for the same cost where “smooth.” 

•  High resolution needed in biologically active regions. 
•  Smoothness criterion can be used to indicate adequacy of 

order/resolution for biology. 
•  Filtering is a viable solution to damp high-order oscillations 
•  Both quadrature-based and quadrature-free discretizations give 

accurate, convergent where well-resolved 
•  Quadrature-based scheme has  significantly smaller error where the 

solution is under-resolved.  

•  Curved boundary mesh is necessary for accurate advection 
using high-order schemes. 

•  Low-order temporal discretizations allow rapidly growing 
numerical errors. 
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Current and Future Work 

•  3D Hybrid Discontinuous Galerkin code 
•  Implement novel high-order-accurate formulation   
•  Demonstrate on idealized problems 

•  Additional (potential) directions on slope limiting/
filtering 
•  Develop filter tuning guidelines   
•  Explore limits of “smoothness” definition/indicator 
•  Combine filtering/slope-limiting approach 
•  Explore “directional filtering” 

•  http://mseas.mit.edu 
•  Thanks! 
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