MIT-MSEAS: Summary of Work

http://mseas.mit.edu/Research/S-DUCT/index.html

- Processed atmos. forcing flux analyses and forecasts from NCEP NAM 32km model
- Created web page for 2018: <u>http://mseas.mit.edu/Research/S-DUCT/2018/index.html</u>
 - Profiles collected, SST snapshots, buoy SST time-series, Jenifer Clark's Gulf Stream charts
- Set up possible ocean scenario simulations using our MIT-MSEAS modeling system
 - One initialized based on HYCOM simulation fields for that end of June 2009 week
 - Corrected HYCOM fields using the limited data we collected
 - Added tidal forcing (so as to generate internal tides)
- For scenario analyses, ran many 1km-resolution ocean simulations for period around June 30, 2009 (varied initial conditions, parameters, tides, atmos. frc., etc.)
- Analyzed results obtained so far:
 - Tides/internal tides needed for significant changes in sound speed near XBTs
 - Meanders, slope water eddies, and tidally-driven motions of shelfbreak front bring different sound speeds past deeper XBTs, and would lead to different TL performance
 - Atmos. forcing not a factor; no significant wind events during late June/early July 2009
 - Bottom Friction: decreasing bottom frictions permits slightly more movement of foot of front
 - Slightly colder water northeast of Hudson Canyon
 - Initialization time: Runs starting on June 26 or 28 qualitatively similar by June 30

Present MIT-MSEAS Modelling Set-Up

- Bathymetry: NOAA Coastal Relief, and Smith and Sandwell data
- Horizontal resolution: 1 km
 Vertical Discretization: 100 optimized vertical levels
- Tidal Forcing: high resolution TPXO8-Atlas from OSU
 - Reprocessed for higher res. bathy./coastline
 & quadratic bot. drag
- Atmos. Forcing: 32 km NCEP NAM (4 forecasts/day)
- 1/12° HYCOM Initial Conditions (corrected)
 - Vel. optimized for high-res. coasts/bathy. [Haley et al, 2015]
- Possible future upgrades:
 - Nesting/Tiling sub domains
 - ESSE for ensemble forecasting
 - Dynamically-Orthogonal PEs for surface ducts
 - GMM-DO filter and smoother for ocean-physicsacoustics inversion & tomography
 - Bayesian mutual information fields

Synoptic data collected for model input or validation:

June 22 – July 7, 2009

Data Type	Variables	Duration
GTSPP	T & S	2009/06/22 00:00Z – 2009/07/07 00:00Z
WOD XBT	т	2009/06/22 00:01Z – 2009/07/06 14:35Z
OASIS XBT	т	2009/06/30
NDBC Buoys	SST	2009/06/22 – 2009/07/07
Satellite- based SST	SST	2009/06/29 10:30Z – 2009/06/30 21:26Z

Lots of work into MIT-MSEAS data processing

Effects of tides on sound speed from MIT-MSEAS

Simulation spanning 00Z June 26 – 00Z July 05

4.42 Day Forecast : 10:00:00 30 Jun 2009

- Internal tides move colder water (lower sound speed) up into mid-level (30m)
- Internal tides also move shelfbreak front

30m Scaled Vorticity from MIT-MSEAS Simulation spanning 00Z June 26 – 00Z July 05

Effect of our MIT-MSEAS data correction on HYCOM

- MSEAS PE high resolution simulation initialized from data-corrected coarse HYCOM fields.
- Data corrections introduce colder deep water on shelf near XBT region and also sharper gradients, both near front and vertically. Sound speed gradients similarly enhanced.