Path Planning of Autonomous Underwater Vehicles for Adaptive Sampling

> *DEAS Group Meeting Presentation* **Namik KemalYilmazApril 6, 2006**

Ocean Forecasting

•Ocean forecasting is essential for effective and efficient operation s at sea. It is used for:

- •Milit ary o peration s
- Coastal zone management
- •Scientific research
- •State variables to be forecasted:
	- •Temperat ure
	- •Salinity
	- •Current velocity
	- •Plankton concentration
	- •Nutrient concentration
	- •Fish concentration
	- •Pollution
	- •Sound speed

Adaptive Sampling

There exists a routine component for observations which collects data from aparticular region.

0

 \bigcap

 Adaptive sampling is a method which aims to the improvement of the forecast res ults by deploying some additional assets to gather more accurate data in critical regions.

- \circ The trajectory of this additional component needs to be planned continuously. It needs to adapt to changing conditions, therefore
named "adaptive". named "adaptive".
- Ω o Forecasting systems such as "Error Subsp ace Statistical Estimation" (ESS Subspace Statistical Estimation" (ESSE) or
"Ensemble Transform Kalman Filter" (ETKF) technique s provide both estimates of the states and the uncertainty on the state estimate.
- \circ Uncertainty fields created b Uncertainty fields created by these
techniques can be used for the purpose of adaptive sampling.

Adaptive Sampling-Summary Maps

- \circ Summary maps represent the amount of total improvement on a given field as a
function of measurement location.
- \circ Path planning is done manually. Paths are either created manually or chosen from a aths.
- \bigcirc Use of pre-designe d p aths limit the q uality of adaptive path planning.
- \circ o The multi-vehicle case is han The multi-vehicle case is handled by "serial
targeting".
	- zFind the best path for first vehicle.
	- z *As similate the fictitious observations made by the first vehicle using ESSE or E TKF.*
	- z *U sing the updated s ummary map, fin d the path of the second vehicle.*
- \circ The technique does not deal with more complicated scen arios where inter-vehicle interactions and other mission constraints are involved.

Problem Statement

- \circ Given an uncertainty field, find the paths for the vehicles i n t he adaptive sampli n g fleet along which the path integral of uncertainty values will be maximized. Also constraints such as:
	- zVehicle range
	- zDesired motion shape
	- z• Inter-vehicle coordination
	- z• Collision avoidance
	- z• Communication needs

must be satisfied.

 \circ

- \circ Also there might be multiple days in succession involved in the adaptive sampling mission. The optimality must be sought over a time window. This is n a m ed t he "*time-progressive*" ^c ase.
- \circ Global optimality in the spatial and time sense must be satisfied.
	- z• The fields are neither concave nor convex.
	- zIncreases the challenge.

A Short Introduction to Optimization **Methods**

Mixed Integer Programming (MIP) Solution Methods

Comparison of some s olution methods

Network-Based Mixed Integer Programming (MIP) Formulation

 $max \sum_{p,i,t} c_{ii} \cdot f_{p,ii}$

subject to

 $\begin{array}{l} \sum f_{p,ij} - \sum f_{p,ji} = b_{p,i} \quad \forall (i,j) \in N \ \ and \ \ \forall p \in V, \ \text{where V is set of all vehicles} \quad \text{(or in a equal representation $Af_p = b_p$ where} \end{array}$ $b_{p,s} = 1$ $b_{p,t} = -1$ $b_{p,t} = 0$ $i \neq s,t$

 $\sum f_{p,i,j} \cdot d[i,j] \leq R \quad \forall (i,j) \in N \text{ and } \forall p \in V \text{ where } d[i,j] \text{ is a distance}$ modification matrix to take care of diagonal moves if they are allowed to and the curvilinear grid geometry in case it's used.

 $f_{p,ij} + f_{p,j,i} \leq 1 \quad \forall (i,j) \in N \text{ and } \forall p \in V \text{ (Opposite flows between two)}$ nodes are not allowed)

 $\sum_j f_{p,ij} + f_{p,ji} \leq (2 - b_{p,i})$ $\forall i \in \mathbb{N}$ and $\forall p \in V$ (To avoid visiting the same node twice)

 $\sum f_{p,i,j} \leq 1 \quad \forall f_{p,i,j} \in S1L_p \text{ and } \forall p \in V$ (To avoid size 1 loops)

 $\sum f_{p,ij} \leq 4 \quad \forall f_{p,ij} \in S2L_p$ and $\forall p \in V$ (To avoid size 2 loops)

 $\sum f_{p,i,j} \leq 6 \quad \forall f_{p,i,j} \in S3L_p$ and $\forall p \in V$ (To avoid size 3 loops)

 $f_{p,ij}=0 \quad \forall (i,j) \in (N-R_p) \;\; and \;\; \forall p \in V \qquad \text{where} \; R_p \; \text{stands for the set of nodes within the range of} \; p^{th}$ vehicle

 $\sum f_{p,ij} \leq 12(1-f_{q,kl}) \quad \forall f_{p,ij} \in VCR_p \text{ and } f_{q,ij} \in VCR_q \quad \forall p,q \vert p > q \in V$ (Vicinity constraints)

 $f_{p,ij} = 0, 1 \quad \forall (i, j) \in N \text{ and } \forall p \in V \quad \text{(Integrity constraint)}$

Network-Based MIP Formulation

•Needs processing of huge matrices before each run

• Complicated to include diagonal moves

•Costly to make modifications on the formulation and add new constraints

•Does not handle time-progressive case

New Mixed Integer Programming (MIP) Method

35

30

N: Number of path points P: Total number of vehicles *Variables:*

 x_{pi} and y_{pi} where i $\mathsf{e}\;\mathsf{[}\,1,...,\mathsf{N}\mathsf{]}$, and p є [1,…,P].

 $1 \leq x_{pi} \leq max_{x}$

1≤ γ_{pi} ≤max_γ

Decision Varia bles:

 b_{pi} , t1_{pij}, t2_{pij}, t3_{pij} where i є [1,…,N], and p є [1,…,P], and ${\rm j}\in[\![1,...,4]\!]$, bpij ,t1pij ,t2pij ,t3pij є {0,1}

Motion Constraints

N: Number of path points P: Total number of vehicles $\forall p \in [1,...,P], and \forall i \in [2,...,N]$: $x_{pi} = x_{p(i-1)} + b_{pi1} - b_{pi2}$ $b_{pi1} + b_{pi2} \le 1$ $y_{pi} = y_{p(i-1)} + b_{pi3} - b_{pi4}$ $b_{pi3} + b_{pi4} \le 1$ $\forall p \in [1,...,P], and \ \ \forall i \in [1,...,N]$: $b_{pi1} + b_{pi2} + b_{pi3} + b_{pi4} \ge 1$ $\forall p \in [1,...,P], \hspace{0.2cm} \forall i \in [1,...,N], and \hspace{0.2cm} \forall j \in [1,...,4]:$ $b_{pij} \in 0, 1$

Motion Constraints

Vicinity Constraints for Multi-Vehicle Case

 $\forall p \in [1, ..., P], and \forall q \in [1, ..., P]: \forall p, q | p > q \text{ and } \forall i, j \in$ $[1, ..., N]$ $\forall i \in [1, ..., N]$: $|x_{pi} - x_{qj}| \ge 2$ OR $|y_{pi} - y_{qj}| \ge 2$ ⇓ $\forall p \in [1, ..., P],$ and $\forall q \in [1, ..., P]: \forall p, q | p > q$ and $\forall i, j \in$ $[1, ..., N]$ $\forall i \in [1, ..., N]$: $x_{pi} - x_{qj} \ge 2 - M * v1_{pqi1}$ $x_{qi} - x_{pi} \geq 2 - M * v1_{pqi2}$ $y_{pi} - y_{qj} \geq 2 - M * v1_{pqi3}$ $y_{qj} - y_{pi} \geq 2 - M * v1_{pqi4}$ $v1_{pqi1} + v1_{pqi2} + v1_{pqi3} + v1_{pqi4} \leq 3$ $\forall p, q \in [1, ..., P], \forall i \in [1, ..., N], and \forall j \in [1, ..., 4].$ $v1_{pqij} \in 0,1$

Autonomous Ocean Sampling Network (AOSN) & Communication Constraints

Different Scenarios Based on Communication Needs:

- 1.Communication with a ship.
- 2. Communication with a shore station.
- 3. Communication with buoys.

Communication with a Ship

•If the vehicle needs to lie in a tighter vicinity of the ship at the terminal path point

 $\forall p \in [1, ..., P]$:

 $x_{pN_p} = ship_x_{pN_p} \leq \Delta x_{ship_vicinity_TP} + M * s1xTP_{pN_p1}$ $ship_x_{pN_p} - x_{pN_p} \leq \Delta x_{ship_vicinity_TP} + M * s1xTP_{pN_p2}$ and and $y_{pN_p} = ship_y_{pN_p} \le \Delta y_{ship_vicinity_TP} + M * s1yTP_{pN_p1}$ $ship_y_{pN_p} - y_{pN_p} \le \Delta y_{ship_vicinity_TP} + M * s1yTP_{pN_p2}$ and and $\sum_{m=1}^{2} s1xTP_{pNpw} = 1$ $and \quad \ \sum_{w=1}^{2} s1yTP_{pN_{p}w}=1$ $s1xTP_{pN_pw}, s1yTP_{pN_pw} \in 0, 1 \quad \forall w \in [1, ..., 2]$

- *2.Communication via radio link*
- •• AUV must come within a vicinity of the ship only at the end of the mission to transfer data.

Only the s e equations apply !

Communication with a Shore Station and AOSN

Ω **Communication with a shore station**

 $\forall p \in [1, ..., P]$: $x_{pN_p} - shore_x \leq \Delta x_{shore_vicinity} + M * s3x_{p1}$ and $shore_x - x_{nN_n} \leq \Delta x_{shore_vicinity} + M * s3x_{n2}$ $y_{pN_p} - shore_y \le \Delta y_{shore_vicinity} + M * s3y_{p1}$ and shore $y - y_{pN_p} \le \Delta y_{shore_vicinity} + M * s3y_{p2}$ and and $\sum_{w=1}^{2} s3x_{pw} \leq 1$ and $\sum_{m=1}^{2} s3y_{pw} \leq 1$ $s3x_{pw}, s3y_{pw} \in [0, 1 \quad \forall w \in [1, ..., 2]$

If the AUVs need to return to the shore station:

$$
\begin{aligned} x_{pN_p} &= shore_x & \forall p \in [1,...,P] \\ y_{pN_p} &= shore_y & \forall p \in [1,...,P] \end{aligned}
$$

\circ \circ Communication with an AOSN

•We have "M" buoys and only one AUV can dock at a given buoy.

$$
x_{pN_p} = \sum_{h=1}^{M} buoy_x_h * bv_{ph} \qquad \forall p \in [1, ..., P]:
$$

\n
$$
y_{pN_p} = \sum_{h=1}^{M} buoy_y_h * bv_{ph} \qquad \forall p \in [1, ..., P]:
$$

\n
$$
\sum_{h=1}^{M} bv_{ph} = 1 \qquad \forall p \in [1, ..., P]
$$

\n
$$
bv_{ph} \in 0, 1 \quad \forall h \in [1, ..., M]
$$

\n
$$
\sum_{p=1}^{N} bv_{ph} \le 1 \qquad \forall h \in [1, ..., M]
$$

\nAt most one AUV can dock at a given buoy

Results for a Single Vehicle

Starting Coordinates: x=7.5km; y=21km

Results for a Single Vehicle

0.5

 0.4

 -0.3

 10.2

0.1

Solution time as a function o f range on a Pentium 4- 2.8Ghz computer with 1GB RAM.

- •Exponential growth is observe d a s expected
- •The solution times are acceptable

Results for Two Vehicles

Number of path points: 10 *Range1: 16.5 km Range2: 18 km*

Solution time as a function o f path-points on a Pentium 4- 2.8 Ghz computer with 1 GB R A M

Results for Vehicle Number Sensitivity

numberon a Pentium 4- 2.8Ghzcomputer with 1GB RAM

Time Progressive Path Planning

• When path planning needs to be performed over multiple days, the formulation must be extended to combine information from all days under consideration.

Illustrative Results for Time-Progressive Path Planning

Number of Path Points= 8Solution Time: 179 sec

An Example Solved by the Dynamic Method

- •It is a 3 d ay long mission: August 26-28, 2003.
- •2 consecutive 2 day time-progressive and 1 singl e day problems are solved.
- •Measurements are assimilated using Harvard Ocean Prediction S ystem (HOPS).

Comparison of Results of the Dynamic Method with Results *without* Adaptive Sampling

Recommendations for Future Work

- \bigcirc Devise methods to automatically determine the optimal values of some of the problem parameters based on a given uncertainty field, e.g. i ntervehicle distance, starting p oint sep eration etc..
- Ω Approximate the uncertainty prediction/assimilation by a linear operator and embed this operator into the optimization code. It will help:
	- z To est ablish a link between the choice of measurement locations and its effect onthe following day's uncert ainty field.
	- zTo improve the q uality of p ath planning as a result.

Current Work:

- Working on two journal and one conference papers.
- Investigating the feasibility of implementing a (simplified) version of the MILP formulation on MATLAB.