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Abstract

Friction and mixing can be dynamically significant in straits, as in many oceanographic situations. For weak time-

dependent homogeneous flows, geostrophy, friction, and acceleration can all play roles in limiting the flow through a

strait, and the ratio of the geostrophic elevation difference across the strait to the frictional difference along the strait

may be of importance in more general situations. A specific question for quasi-steady exchange flows through straits

concerns the influences of friction and entrainment on hydraulic control. Within the context of layered models, these

effects tend to drive a flow towards hydraulic criticality in the downstream direction and to shift control points

downstream. However, friction and entrainment also induce vertical gradients in velocity and density, rendering layered

models dubious. In such situations, the conditions for hydraulic control have been uncertain; even for a homogeneous

fluid there is an apparent contradiction between control conditions based on a similarity assumption for the velocity

profile on the one hand and on the speed of long waves on the other. The resolution of this contradiction is discussed. It

seems that if the frictional forces only involve local flow properties, then inviscid long waves are arrested at the control

section (though this is shifted from its location for inviscid flow), but that if flow derivatives along the channel are

involved, the condition changes. For a homogeneous flow with shear, internal friction, and bottom friction, the control

section is shifted downstream partway to where it would be for a slab flow with bottom friction. While the

parameterization of bottom friction actually seems to be reasonably well established, the nature and quantification of

internal and lateral frictional processes are uncertain. In a rotating system, secondary cross-strait flows are expected to

be driven by the vertical gradient of the vertical Reynolds stress and can provide estimates of the magnitude of bottom

and internal friction.

r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Resolving all the scales of motion that occur in
the ocean is far beyond modern, or foreseeable,
computing capability, even for comparatively
simple situations. There thus seems to be a need
to continue basic studies of the unresolved
processes so that we can parameterize their effects
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in terms of those processes that are resolved in
numerical models. On the other hand, there are
situations where the behaviour of the ocean is
rather insensitive to the effects of small-scale
processes, and low-resolution models provide
reliable results independently of uncertainty about
the parameterization of unresolved processes. For
flow through straits, the effects of unresolved
processes, such as those giving rise to friction and
mixing, may indeed be of secondary importance in
some circumstances, though in others they may
d.
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exert a first-order influence on the flow. One
purpose of this paper will be to review studies that
help us decide on the importance of the small-scale
processes.

Even if a numerical model does capture all the
essential physics of some aspect of ocean circula-
tion, it is still important to develop an intuitive
understanding of the output, thus, for example,
thinking of the existence of the Gulf Stream in
terms of vorticity arguments for western intensifi-
cation rather than merely as a solution of the
Navier–Stokes equations. This philosophy seems
to be particularly appropriate for strait flows,
where concepts such as hydraulic control and
maximal exchange are powerful aids to under-
standing and, hence, prediction. It is thus particu-
larly important to understand the effects of
friction and mixing on these inviscid concepts.

In Section 2 of this paper I will briefly review
homogeneous strait flows in a limit with negligible
inertial effects, discussing the way in which both
geostrophy and friction can limit the flow. Section
3 addresses the general influence of friction on
steady layered flows through straits, starting with
one layer and then extending the discussion to two
layers. Brief mention will be made, in Section 4, of
the internal effects of rotation. In Section 5 I add
the effects of entrainment, focussing on a one-layer
reduced gravity flow. While most of the discussion
will be a review, recent results on the effect of
entrainment will be shown to point to a new
resolution of a long-standing puzzle concerning
flow fluctuations in the Strait of Gibraltar. To this
point the paper still will have retained the
approximation of representing a flow by separate
homogeneous layers. Many observations, how-
ever, clearly show that the effects of friction and
entrainment lead to gradual rather than abrupt
transitions between water masses. In Section 6 I
will discuss the extent to which the concept of
hydraulic control may be extended to allow for
frictionally induced shear, again with some new
results as well as review material.

The precise form for the parameterization of
unresolved frictional and mixing processes will be
discussed briefly in Section 7, along with an
account of some observations of Reynolds stres-
ses. It will be clear that there are significant gaps in
our ability to provide reliable parameterizations.
Some open questions will be summarised in
Section 8.
2. The effect of friction

A simple situation to consider is for the time-
dependent flow of homogeneous water through a
strait of uniform depth h and width W : The sea-
level slope along the strait is then related to a force
balance between the pressure gradient, bottom
friction, and acceleration. Only the time-depen-
dent term of the acceleration matters if the
advective terms are small. If the length of the
strait is L; the total sea-level drop is just ð�ioþ
l=hÞLu=g if bottom friction is linear with coeffi-
cient l and the variables are time-dependent and
proportional to expð�iotÞ: If the flow is super-
posed on a much stronger oscillatory tidal current
with peak speed uT; then a quadratic bottom
friction with drag coefficient Cd can indeed be
linearized, with l ¼ ð4=pÞCduT:

If the sea-level difference along a strait between
two basins is Re ½Dz expð�iotÞ�; then the total
volume flux Re ½Q expð�iotÞ� has

Q ¼
WhL�1gDz
�ioþ l=h

: ð1Þ

The relative importance of acceleration and
friction is given by the ratio oh=l of the spindown
time h=l to the timescale o�1; but this is not
specific to straits. What is relevant in the case of
strait flows is that there is also a geostrophic sea-
level difference across the strait of fWu=g: It seems
implausible that this should be greater than Dz:

Further analysis and discussion of this situation
(e.g., Toulany and Garrett, 1984) led to (1) being
replaced by

Q ¼
WhL�1gDz

�ioþ l=h þ fW=L
; ð2Þ

where f is the Coriolis frequency. The flux is still
given by (1) if f ¼ 0; but for steady flow and no
friction becomes Q ¼ ghDz=f ; as for the volume
flux in a Kelvin wave of amplitude Dz; indepen-
dently of the width W : This limit was termed
‘‘geostrophic control’’.
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Overall (2) thus seemed to present a nice
transition between plausible limits. Moreover it
was, shown to be correct for the diffraction of
frictionless tidal waves through a gap between two
semi-infinite basins, assuming linear theory (small
amplitude), with Dz described as the elevation
difference that would exist if the gap were closed
(Toulany and Garrett, 1984), and with L replaced
by an effective length related to the end correction
in diffraction problems.

On the other hand, Pratt (1991) pointed out that
this analysis no longer applies if advective terms
are significant, as is increasingly likely at low
frequency. In particular, a flow established from
rest in response to a sea-level difference between
basins will have a front that is eventually advected
out of the strait. In the absence of friction, a steady
flow through the strait can then develop with no
sea-level difference at all between the basins along
a streamline, though there will be a difference
across the strait and across boundary currents in
the basins. Care is clearly required in analysing
how a flow is established, but, in any event, it does
seem that one relevant factor in considering steady
homogeneous flow through straits is the ratio of
the sea-level difference across the strait to that
along the strait. With friction linearized about the
tides, as above, this ratio is pfWhð4CduTLÞ�1: For
small values of this parameter, a coastal Kelvin
wave would presumably not escape through a
strait it encountered on a side boundary, but
largely jump across it and continue along the main
coast. It is interesting that for typical values, say
f ¼ 10�4 s�1; W=L ¼ 0:1; h ¼ 100 m; Cd ¼ 0:002;
and uT ¼ 0:5 m s�1; the ratio is O(1).
h(x)

H(x)

u(x)

x

Fig. 1. Definition sketch for a single layer flow.
Apart from these general considerations for a
uniform strait, most of the dynamics of interest in
straits concerns the role of the advective terms
within the strait itself, particular in response to
varying topography and with the influence of
stratification. We thus turn now to consideration
of the influence of friction on hydraulics, with the
term ‘‘hydraulics’’ denoting situations in which the
flow speed is comparable with wave speeds.
3. The effect of friction on hydraulics

3.1. One layer

A simple problem to start with is that of steady
non-rotating homogeneous shallow water flow
down a channel of rectangular cross-section, with
width W ðxÞ and bottom height HðxÞ (Fig. 1). If the
layer thickness is hðxÞ and the current is uðxÞ; the
governing equation for momentum is

u
du

dx
þ g

d

dx
ðh þ HÞ ¼ �Cd

u2

h
ð3Þ

assuming quadratic bottom friction with drag
coefficient Cd: This may be combined with the
continuity equation

d

dx
ðuhW Þ ¼ 0; ð4Þ

which integrates to give uhW ¼ Q; the constant
volume flux.

A key parameter is the Froude number F ; where
F 2 ¼ u2=ðghÞ and (3) may be rearranged to give

db
dx

¼
2

3

b
W

dW

dx
�

gW 2

Q2

� �1=3
dH

dx
þ CdF2

� �
; ð5Þ

where b is the usual hydraulic function 1
2

F 4=3 þ
F�2=3: This has a minimum of 3

2
where F ¼ 1 and

db=dx ¼ 0; corresponding to a control point
where the flow can switch from subcritical with
Fo1 to supercritical with F > 1:

We see that the effect of friction is the same as
that of decreasing width or increasing bottom
height in pushing the flow towards criticality as
one proceeds downstream. Also, a control point is
shifted downstream of where it would be without
friction. In particular, the control point occurs
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Fig. 2. The scaled free surface for a single-layer frictional flow,

from left to right, through a uniform channel with exit control

at x0 ¼ 0:
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where the bottom slope dH=dx ¼ �Cd if the width
W is constant (Pratt, 1986) or at a location where
dW=dx ¼ CdðW=hÞ if the bottom is flat, as is
effectively the case for a reduced-gravity surface
flow.

These results come from (3) using the simple
identity ðgW 2=Q2Þ1=3 ¼ h�1F�2=3: In fact, for this
simple problem it is only necessary to follow one
dependent variable since h and u are connected by
volume flux conservation uhW ¼ Q and the
Froude number may be written as F ¼ ðh0=hÞ3=2;
where h0 ¼ ½Q2=ðgW 2

0 Þ�
1=3 is the layer depth at the

control section where W ¼ W0:
One interesting problem concerns flow through

a channel with a flat bottom and constant width.
The control will be at the exit where the channel
deepens or widens abruptly. Taking this to be at
x ¼ 0 and defining x ¼ ðh0=CdÞx0 and h0 ¼ h=h0;
the equation for the surface slope is

dh0=dx0 ¼ �ðh03 � 1Þ�1 ð6Þ

with the simple integral

x0 ¼ h0 � h04

4
� 3

4
ð7Þ

as illustrated in Fig. 2.
The surface is parabolic near the exit control at

x0 ¼ 0 and acquires an infinite negative slope near
there (thus violating the shallow water assump-
tion, a problem that would disappear with more
realistic topography), but the main point to make
is that the horizontal scale for significant changes
in layer depth is h0=Cd: This result is easily
established, of course, by scale analysis of the
inertial and friction terms in (3). It provides a
guide to the circumstances under which friction
will be important, namely, if the channel is long
compared with h0=Cd: For a reduced gravity flow
with h0 ¼ 100 m and an interfacial friction coeffi-
cient of, say, 5	 10�4 (one quarter of a drag
coefficient of 2	 10�3 using the velocity difference
to the centre of the interface between the active
and stagnant layers), this distance is 200 km: Pratt
(1986) tabulates an equivalent parameter for a
number of straits and suggests that the Strait of
Gibraltar is the only one on his list for which
frictional effects are small.

3.2. Two layers

The one-layer situation provides a good guide to
the effect of interfacial friction on a two-layer
exchange flow through a channel of finite length
but uniform cross-section, as discussed by Assaf
and Hecht (1974). For a small density difference
between the two layers, the condition for hydraulic
control now becomes F2

1 þ F 2
2 ¼ 1; where F2

i ¼
u2

i =g0hi; for i ¼ 1; 2 and ui; hi; the layer speed and
thickness, and g0 the reduced gravity based on the
density jump between the two layers.

The effect of interfacial friction is to cause each
layer to become thinner in the direction of its flow.
Moreover, we note that equal and opposite
volume fluxes imply that h1u1 ¼ h2u2; so that if
one layer is significantly thinner than the other, the
Froude number of the thicker layer is likely to be
very small and the active layer may be treated to a
reasonable approximation as a reduced gravity
flow, with applicability of the one-layer model. If
one layer is thinner throughout the strait it may be
controlled at its exit, but the control condition
cannot be satisfied at the other end of the strait.
Such a condition is termed ‘‘submaximal ex-
change’’, in that the flows are less than for
‘‘maximal exchange’’. This is the greatest that
can be achieved for a given density difference
between the two basins; it has exit controls at each
end and subcritical flow in between. If friction is
important, there will be a significant change in the
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Fig. 4. The secondary cross-channel flows induced by bottom

and interfacial friction in a two-layer exchange flow (Johnson

and Ohlsen, 1994). The Ekman layer flows (thick arrows) are

as for the Northern Hemisphere. The return flows in the layer

interiors are illustrated by the thin arrows.
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thickness of each layer along the channel so that at
each end the active layer will be much thinner than
the other layer and in the neighbourhood of the
exit controls the flow will thus again resemble that
of a reduced gravity flow. Submaximal exchange
can, of course, occur with the controlled layer not
thinner than the other layer throughout the strait.
It also needs to be remarked that if, as usually
occurs, there are internal sills and narrows within a
strait, control sections, if they exist, will tend to be
near these rather than at the exits from the strait
(e.g., Farmer and Armi, 1986; Bormans and
Garrett, 1989).

One assumption that might well be questioned
for both one- and two-layer flows is that of the
uniformity of flow in the layers; we would expect
bottom friction to induce a turbulent shear flow.
I will return to this issue of shear later, but turn
first to the role of rotation.
4. Rotation

The overall influence of rotation on hydraulic
flows is reviewed in this volume by Larry Pratt. I
will thus mention here only some simple con-
siderations of the interplay between friction and
rotation.

If the time taken for a single-layer flow through
a channel is longer than the inertial period, a
bottom Ekman layer will be established. The effect
of friction on the interior flow is due to the
Coriolis force acting on the secondary flow across
Fig. 3. Bottom friction in a rotating channel flow acts via a

bottom Ekman layer and a returning cross-channel flow in the

interior.
the channel driven by the returning Ekman flux
(Fig. 3), rather than by the vertical transfer of
frictional stresses by turbulence. It is thus possible
for the main flow, above the bottom Ekman layer,
to remain laminar and slab-like while experiencing
the effect of bottom friction. Stratification can
confine the effect of friction near the bottom
(Garrett and Petrie, 1981; Toulany et al., 1987).

The effect of friction in a two-layer exchange
flow has been examined in a laboratory experiment
by Johnson and Ohlsen (1994). Their schematic of
the flow (Fig. 4) shows the cross-channel inter-
facial tilt expected even for inviscid flows and also
shows the presence of bottom and interfacial
Ekman layers. The behaviour of the latter in the
laboratory experiment was rather more compli-
cated than expected, in that the interfacial Ekman
layer just below the interface did not extend all the
way to the side boundary, but seemed to meet an
outflow from converging bottom boundary layers.
Further investigation is warranted.

Most straits, of course, have sloping lateral
boundaries rather than the flat bottoms and
vertical sidewalls of the simplest models, and the
stratification is continuous rather than layer-like.
With sloping boundaries and in the presence of
stratification and rotation it is possible that the
bottom Ekman layer will be ‘‘arrested’’ as
discussed by MacCready and Rhines (1991)
and Trowbridge and Lentz (1991). In this situa-
tion, a near-bottom thermal wind brings the
velocity just above the sloping bottom to
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zero and the flow becomes essentially frictionless.
The time for arrest to occur is approximately
ðCdN=f Þ�1=2ðf =NÞ2s�2f �1 for upwelling-favour-
able flow (and longer for downwelling-favourable
flow), where N is the buoyancy frequency and s the
bottom slope (e.g., Garrett et al., 1993). This time
may be compared with the transit time for flow
through a strait. Using Cd ¼ 2	 10�3; N ¼
10�2 s�1; f ¼ 10�4 s�1; s ¼ 10�2 the arrest time is
only 6 h which is likely to be less than a transit
time, but is sensitive to the parameter values,
particularly the bottom slope. Jungclaus and
Vanicek (1999) found that the output of a
numerical model of flow through the Vema
Channel did indeed show the asymmetric bound-
ary layer behaviour expected, with some features
corresponding to observations.

It does seem that many existing dynamical ideas
are important, though one weakness of the simple
models is that they take a smooth bottom,
ignoring the complications that might be intro-
duced by the wide range of scales of bottom
topography.
5. Entrainment

Internal friction in stratified shear flows is most
likely to be accompanied by vertical mixing of
density. Within a framework that treats the flow in
terms of layers, this exchange of mass may be
represented as entrainment. In particular, Csanady
(1990) showed that, if the vertical mixing is
parameterized by an eddy coefficient KvðzÞ; then
the upward entrainment speed across the isopycnal
h(x)

H(x)

u(x)

x

ρ(x)

u  (x)e

ρ
0 v

Fig. 5. A single-layer reduced gravity with an entrainment rate

ue from an inactive layer of density r0 and speed v: (After

Gerdes et al., 2002.)
located at the density inflection point, where
d2r=dz2 ¼ 0; is given by dKv=dz evaluated at that
depth.

As for friction alone, considerable insight into
the effects of entrainment may be obtained from
consideration of the flow of a single active layer.
Gerdes et al. (2002) have discussed a reduced
gravity single-layer flow beneath (Fig. 5) or above
a deep inactive layer with constant speed v: For
simplicity, I will take v ¼ 0 in this review.

The volume conservation equation giving
changes in Q ¼ uhW is now dQ=dx ¼ ueW and
mass conservation requires dðrQÞ=dx ¼ r0ueW :
Together these imply that g0Q ¼ constant, where
g0 ¼ gðr� r0Þ=r0 is the reduced gravity. Consid-
eration of momentum conservation in a control
volume leads to relationships for the evolution of
flow properties. The governing equations are
simplified if one makes the Boussinesq approx-
imation of ignoring the difference between r and
r0 unless it is multiplied by g:

Unlike the non-entraining case in which it was
sufficient to have an evolution equation for just
one dependent variable, we now need two.
Choosing these to be the Froude number F ; where
F 2 ¼ u2=g0h; and the layer depth h; Gerdes et al.
(2002) show that

dF2

dx
¼

�3F 2

hð1� F 2Þ
ð2þ F2Þ

3

h

W

dW

dx

�

�
dH

dx
� F2Cd �

1

2
þ F2

� �
ue

u

�
: ð8Þ

It is clear that entrainment acts in qualitatively the
same way as friction in driving the flow towards
criticality. The equation for layer depth h is

dh

dx
¼

1

ð1� F2Þ
F2 h

W

dW

dx
�

dH

dx
� F2Cd

�

þ
1

2
� 2F 2

� �
ue

u

�
: ð9Þ

This is interesting because it shows that entrain-
ment may thicken a subcritical flow with Fo1

2
even

though the Froude number is increasing and
friction thins the layer.

Reduced gravity flow over a sill, through a
channel of constant width and with a stagnant
upper layer, will now have a control shifted
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downstream to a location where dH=dx ¼ �Cd �
3
2

ue=u: The second term may be comparable with
the first if, as Gerdes et al. (2002) discuss, ue=u ¼
0:002F2 from the entrainment law proposed by
Christodoulou (1986). Similarly, the entrainment
and friction terms may be of comparable impor-
tance in (8) and (9) at other locations. If ue is
increased by the action of things like breaking
solibores (e.g., Wesson and Gregg, 1994), entrain-
ment could dominate.

One final interesting consequence of adding
entrainment to a reduced gravity flow occurs for
the sea surface elevation z in a reduced gravity flow
at the surface (such as occurs, for example, with
the Atlantic water inflow into the Mediterranean
Sea at the eastern end of the Strait of Gibraltar
where the lower layer is deep, slow moving, and
thus effectively stagnant). It is simple to derive

dz
dx

¼
g0

g

dh

dx
�

ue

u

� �
ð10Þ

¼
g0

gð1� F 2Þ
F 2 h

W

dW

dx
� F 2Cd

�

�
1

2
þ F 2

� �
ue

u

�
; ð11Þ

where there is now no term in H; here or in (8) and
(9), since the lower layer is passive. Entrainment
may lead to a decrease in z for subcritical flow,
Fig. 6. The Strait
even when widening would cause an increase.
Moreover, the different coefficients in the ue=u

term in (9) and (11) show that entrainment can
cause the sea surface to slope down at the same
time as it is acting to increase the thickness of the
upper layer. This seems contrary to the expecta-
tion of opposing surface and interface slopes if the
lower layer is stagnant; it is a consequence of the
downstream increase in density of the upper layer
caused by entrainment.

5.1. Fluctuations in the Strait of Gibraltar

The result given by (11) may, in fact, help to
resolve a long-standing mystery in connection with
the nature of the exchange flow through the Strait
of Gibraltar (Fig. 6).

Many pieces of evidence pointed to a seasonal
switch between maximal exchange, with both
Atlantic inflow and Mediterranean outflow con-
trolled, and submaximal exchange with just the
outflow controlled, as discussed by Garrett et al.
(1990) (though see Ross et al., 2000, for a
discussion of major interannual changes). How-
ever, the ratio of the fluctuations of sea-level
differences across and along the eastern end of the
strait seemed to agree year round with the
expectations for maximal flow (Bormans and
Garrett, 1989). This is shown in Fig. 7.
of Gibraltar.
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Fig. 7. Fluctuations in sea-level drops along the strait from

Tarifa to Gibraltar (T-G) and across the strait from Ceuta to

Gibraltar (C-G). The theoretical curves (Bormans and Garrett,

1989) for maximal and submaximal exchange are for changes

induced by varying the barotropic flow with a range of 71

Sverdrup and, for the submaximal case, also varying the

interface depth at the eastern end of the strait. (The submaximal

predictions thus occupy a region.) Values of the interfacial drag

coefficient Ci and the bottom drag coefficient Cb used in the

model are shown. The data points, plotted here to be centred on

Q0 ¼ 0 for maximal exchange, are for low-passed data, with a

cut-off period between 39 and 28 h; from September 1981 to

September 1982. The Tarifa and Gibraltar data have been

adjusted for atmospheric pressure in order to give the subsur-

face pressure gradient; this was found to be unnecessary for C-

G. Both T-G and C-G have also been slightly corrected to

remove an apparent influence from direct forcing by local

winds, a factor omitted from the models (see Garrett et al., 1989

for details).
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The model curves show the expected fluctua-
tions in the sea-level differences associated with the
effect of the barotropic fluctuations (assumed to be
mainly driven by atmospheric pressure changes
over the Mediterranean) on a two-layer exchange
flow in which each layer is treated as a uniform
slab subject to bottom friction (acting on the
sloping sides of the upper layer as well as the
bottom beneath the lower layer) with coefficient
Cb here and interfacial friction with coefficient Ci:
The value of the latter was chosen to be
compatible with the dissipation data of Wesson
and Gregg (1994). The effects of entrainment were
not included. The curve for maximal exchange
ranges over barotropic fluctuations Q0 between
71 Sverdrup (106 m3 s�1), with the positive sign
being inflow from the Atlantic to the Mediterra-
nean.

The slope of the major axis of the cloud of data
points is positive and apparently compatible with
the theoretical expectation for maximal exchange,
so, in the absence of absolute levelling informa-
tion, the data points have been plotted with the
origin of the Tarifa to Gibraltar (T-G) and Ceuta
to Gibraltar (C-G) fluctuations at the point on the
maximal exchange curve for Q0 ¼ 0; i.e., the centre
of the cloud of data points has been placed on the
maximal exchange curve at the point where the
flow fluctuation Q0 is zero. The agreement appears
reasonable.

On the other hand, as discussed by Garrett et al.
(1989), the rms value of Q0 required to produce the
observed variances of C-G and T-G was about
60% greater than expected or observed. Moreover,
the sea-level difference from Atlantic to Mediter-
ranean strongly suggested that the exchange was
submaximal for the summer of 1982, this being the
latter part of the period considered in Fig. 7. Given
the lack of absolute levelling, we could in fact slide
the data points in Fig. 7 down and to the left to
straddle the theoretical curves for maximal and
submaximal exchange, but these curves still seem
too far apart for this to be very plausible, and the
slope for the submaximal solutions is wrong.

This slope was, in fact, mainly because of an
expectation of increasing sea-level along the east-
ern end of the strait for the subcritical flow there in
conditions of submaximal exchange. We see from
(11) that this slope is affected by friction, where Cd

in (11) lumps together the effect of both bottom
and interfacial friction in the model of Bormans
and Garrett (1989). Thus, as discussed by Garrett
et al. (1990), increasing the interfacial drag
coefficient in the model could swing the submax-
imal curve in Fig. 7 around to have a positive slope
and also move it and the maximal curve closer
together. An increase in internal friction would,
however, seem to be incompatible with the
dissipation data which, as mentioned above, led
to the value chosen. Also, a much larger friction
coefficient would move the control section down-
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stream from near Tarifa Narrows to the section at
Gibraltar, contrary to data indicating that the flow
can be significantly supercritical by this stage. We
seek another reason for the negative sea-level slope
at the eastern end of the strait even in conditions
of subcritical exchange and so decreasing Froude
number. We now see from (11) that entrainment
can have an effect on the sea-level slope, and, at
small Froude numbers, could easily be more
effective than the drag. We need an estimate of
ue=u:

This may be obtained from the study by Bray
et al. (1995), who clearly document the way in
which the Atlantic inflow to the Mediterranean
entrains significant amounts of Mediterranean
water that was otherwise heading out towards
the Atlantic. Bray et al. (1995) analysed the
situation by introducing an interface layer that
has an increasing transport as it flows into the
Mediterranean, having acquired it from the basic
layers above and below it. Their summary of the
along-strait and inter-layer transports is shown
here in Fig. 8.

The data suggest an upward entrainment from
the lower layer in the eastern part of the strait with
ue=uC10�3; taking u as the average inflow in the
Fig. 8. Transports at the eastern end of the Strait of Gibraltar. The do

basic layers of inflowing Atlantic water and outflowing Mediterranea
surface and intermediate layers. This entrainment
rate is perhaps larger than the Christodoulou
(1986) formula ue=u ¼ 0:002F 2 if one bases an
estimate of F 2 on a layer depth to the middle of the
interface layer, giving F 2C0:1: Enhanced entrain-
ment is, in fact, likely to be associated with the
mixing caused by the passage of internal solitary
waves, as shown by Wesson and Gregg (1994).

For these values, and treating the inflow as a
reduced gravity flow with ðh=W ÞdW=dxC0:002;
we see that, in comparison with the term in
dW=dx; the entrainment term in (11) can be
important for the along-strait sea-level gradient in
conditions of submaximal exchange, and exceed
the influence of the drag coefficient, while not
having a significant influence in (8) on the
evolution of the Froude number itself. Pursuing
this further is probably not warranted given the
limitations of the models, but we provisionally
conclude that what had appeared to be a puzzle
may not be so strange: entrainment may have a
substantial influence on the submaximal solution
shown in Fig. 7, rotating it around to have a
positive slope and moving the whole curve up
closer to the maximal solution. The cloud of data
points, which we have argued is too large to
tted lines show the interfaces between the interface layer and the

n water. (From Bray et al., 1995.)
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correspond just to fluctuations on a basically
maximal exchange state, can then encompass both
maximal and submaximal conditions.

One major weakness of this discussion is that,
although it allows for entrainment, it still treats the
flows as being slab-like in both density and
velocity, with no significant density gradient or
velocity shear in the layers. We turn to this next,
with particular attention to the role of shear in the
velocity profile.
6. Beyond layers

One does not have to look far in data or in the
output of numerical models to realise that the
assumption of discrete, slab-like, layers is dubious.
Vertical profiles of density and horizontal velocity
often, maybe usually, show significant gradients.
These gradients may, of course, be a consequence
of friction and entrainment.

We have already discussed the observed situa-
tion for the Atlantic inflow through the Strait of
Gibraltar, where there is clearly an interface layer
that really makes up part of the inflow. Another
example is in Bab el Mandab at the entrance to the
Red Sea. As discussed by Pratt et al. (2000), the
density and velocity profiles there are highly
sheared.

Interface layers were also generated in the
numerical simulation by Winters and Seim (2000)
of the exchange through a constriction of two
different water masses. Hogg et al. (2001a)
examined the problem further, finding that as the
vertical mixing of mass and momentum is in-
creased the exchange flow evolves from one
resembling two-layer hydraulic exchange to one
in which turbulence plays a dominant role. For a
contraction of length L and height H; with a
vertical eddy viscosity n; they find that the key
dimensionless parameter is GrTA2; where GrT is
the turbulent Grashof number, given by g0H3=n2;
with g0 based on the density difference between the
two reservoirs, and A ¼ H=L: The hydraulic limit
occurs for large values of this parameter. We note
that, taking U ¼ ðg0HÞ1=2 as a velocity scale,
ðGrTA2Þ�1=2 may be written as the ratio of viscous
forces of order nU=H2 to an inertial term of order
U2=L; in much the same way that this comparison
is represented by CdL=H for one-layer flow.

The overall physics found in observations and
numerical models is not surprising, with the main
challenge appearing to be the determination of
correct parameterizations of the vertical exchange
of mass and momentum. I will return to this later,
but first remark that another challenge is to
understand the criteria for hydraulic control in
models with continuous profiles of density and
velocity. In the inviscid case with no mixing,
Killworth (1992) found that long waves are
arrested at a control section. The situation with
internal friction and mixing is discussed by Hogg
et al. (2001b) who examined the propagation of
waves through a stratified shear flow established
by ‘‘lock exchange’’ through a constricted channel.
They found an extension of the usual concept of
control, in that the various waves that exist do not
seem to be able to carry information about the
interface depth upstream through the constriction,
but the situation is complicated.

I will next address the much simpler situation in
which there is no density stratification and one
seeks merely to extend the simple hydraulic theory,
for a homogeneous fluid with a free surface, to
allow for shear in the current. This will raise an
apparent paradox that has been discussed recently
by Garrett and Gerdes (2003).

6.1. Control conditions in a sheared flow

We assume that the horizontal scale is much
greater than the water depth so that the hydro-
static assumption still applies, but we have to
include in the momentum equation the advective
term involving the vertical shear. The momentum
equation is then

u
@u

@x
þ w

@u

@z
þ g

d

dx
ðh þ HÞ ¼

@t
@z
; ð12Þ

where t represents internal frictional forces. The
continuity equation is simply @u=@x þ @w=@z ¼ 0:

One situation that has been considered in the
literature (Chow, 1959; Henderson, 1966) is with
the assumption that the horizontal velocity com-
ponent u maintains a similar shape, with horizon-
tal variations only of the depth-averaged speed
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%uðxÞ: Thus

uðx; zÞ ¼ %uðxÞPðzÞ; where z ¼
z � H

h
ð13Þ

and PðzÞ; with
R 1

0 P dz ¼ 1; is just a function
describing the velocity profile.

Under these conditions the vertical integral of
(12) and the continuity equation is just

M2 %u
d %u

dx
þ g

d

dx
ðh þ HÞ ¼ �

tb
h
;

d

dx
ðh %uÞ ¼ 0; ð14Þ

where we have assumed a constant channel
width for simplicity, %uðxÞ is the depth-averaged
speed, M2 ¼

R 1

0 P2 dz and tb is the bottom drag.
These are very similar to the equations governing a
slab-like flow with bottom friction, but the
presence of the scale factor M2 means that control
is achieved when the Froude number %u=ðghÞ1=2;
based on the depth-averaged current, is M

�1=2
2 :

This is less than 1. If the bottom friction can be
represented in terms of the local depth-averaged
current as Cd %u

2; the control is shifted downstream
of a ridge crest to a location where dH=dx ¼
�M�1

2 Cd:
The control condition may be compared with

the expectation based on the speed of inviscid long
waves. To derive this we start with the linearized
momentum equation for a uniform channel of
constant mean depth h: This is

@u0

@t
þ u

@u0

@x
þ w0 du

dz
þ g

@z
@x

¼ 0; ð15Þ

where a perturbation velocity ðu0;w0Þ is super-
imposed on the basic sheared flow uðzÞ and the
surface elevation perturbation is z:

Seeking a wave-like solution with the perturba-
tion variables proportional to exp ½ikðx � ctÞ� and
using the continuity equation @u0=@x þ @w0=@z ¼ 0
leads to

ðc � uÞ
@w0

@z
þ w0 du

dz
þ gikz ¼ 0: ð16Þ

After dividing (16) by ðc � uÞ2; the left-hand
side may be written as a differential. Integrating
the resulting equation vertically and using
the free surface kinematic boundary condition
w0 ¼ @z=@t þ u @z=@x at z ¼ h we obtain

g

Z h

0

ðc � uÞ�2 dz ¼ 1: ð17Þ

This result is well established (e.g., Freeman and
Johnson, 1970) but has been derived here to
illustrate the simplicity of the derivation. It clearly
gives c2 ¼ gh if u ¼ 0; and ðc � %uÞ2 ¼ gh if u is
independent of depth. For a small departure from
depth-uniform flow, and taking %u ¼ 0 for conve-
nience, we take u ¼ ðghÞ1=2eðzÞ where

R h

0
e dz ¼ 0:

Expansion of the integrand in (17) then gives

c2 ¼ gh 1þ 3h�1

Z h

0

e2 dz

� �
ð18Þ

as effectively given by Baines (1995, p. 54) where it
is derived from the Taylor–Goldstein equation in
the limit of zero stratification. Thus the magnitude
of the speed of long waves is greater than ðghÞ1=2

and is clearly sufficient to carry information
upstream through an alleged control point at
which the mean flow is, as shown earlier, less
than ðghÞ1=2:

6.2. Resolving the paradox

Garrett and Gerdes (2003) resolved the apparent
paradox raised above by pointing out that the
presence of internal friction in (12), along with the
assumption of a constant shape of the velocity
profile, changes the speed of long waves from that
implied by the inviscid analysis. They show that
the form of internal friction required to preserve
the shape of the velocity profile is

@t
@z

¼ ðP2 � M2Þ %u
d %u

dx
�

tb
h
: ð19Þ

Using this on the right-hand side of (12) changes
the long-wave speed (for tb ¼ 0) to the value
M

�1=2
2 ðghÞ1=2; as derived above. The reason for this

change in long-wave speed from that for inviscid
waves is that the right-hand side of (15) acquires
an extra ‘‘frictional’’ term ðP2 � M2Þ %u d %u0=dx;
which depends on the flow derivative. It thus
alternates in sign, providing no net damping for
the wave but changing its propagation speed.
These conclusions would need to be adjusted if tb
depended on flow derivatives rather than just the
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local flow properties. In that case it, too, could be
moved to the left-hand side of the momentum
equation, with consequent changes in the long-
wave speed and control condition.

6.3. Control of inviscid shear flow

So far we have established that a shear flow with
a velocity profile of fixed shape is controlled when
the depth-averaged flow is less than ðghÞ1=2;
whereas inviscid long waves on a shear flow have
a speed, relative to the depth-averaged flow,
greater than ðghÞ1=2: Garrett and Gerdes (2003)
have shown that an invisicid shear flow is actually
controlled at this higher flow speed. The derivation
is interesting and will provide a lead into a more
general situation.

We start by noting that (12) with no friction,
combined with the continuity equation @u=@x þ
@w=@z ¼ 0 so that we may write u ¼ @c=@z and
w ¼ �@c=@x; may be integrated to

1
2

u2 þ gh ¼ g½aðcÞ � H�: ð20Þ

This is just Bernoulli’s equation for a vortical flow,
with a a function of the streamfunction c rather
than constant as for the unsheared flow.

The problem may then be cast in terms of a
functional connection between h and H by writing
the continuity equation as

h ¼
Z Hþh

H

dz ¼
Z Q

0

dc
u
; ð21Þ

since u ¼ @c=@z and Q is the volume flux. This
assumes a single-valued connection between c and
z; equivalent to assuming a unidirectional flow.
Combining (20) and (21) leads to

Jðh;HÞ ¼
Z Q

0

dc

ð2gÞ1=2½aðcÞ � ðH þ hÞ�1=2

� h ¼ 0: ð22Þ

This is of the form Jðh;HÞ ¼ constant required for
the applicability of Gill’s (1977) arguments based
on the existence of a functional relationship
between a single flow variable (h here) and external
factors (just H here).

Garrett and Gerdes (2003) investigated the form
of the functional Jðh;HÞ for sheared as well as
unsheared flows. For example, Fig. 9 shows a non-
dimensionalized Jðh;HÞ for aðcÞ ¼ amin þ Ac with
A ¼ 1:5: This form of a corresponds to a linear
shear with @u=@z ¼ A: Control occurs when the
two possible solutions of (20) coalesce, as happens
when a minimum of Jðh;HÞ as a function of h

occurs on the h axis. For the example of Fig. 9, this
is with b ¼ amin � H ¼ 0:993: If b is less than this
(as for the curve with b ¼ 0:8), i.e., if H is too big,
there are no solutions. We also note that for b ¼
1:2 in Fig. 9, there is only a solution for small h:
This corresponds to supercritical flow; a subcritical
solution with larger h is not possible because, at
the slow average speed required, the shear would
not be compatible with having a positive velocity
at the bottom, as assumed in the derivation.

In general the control condition, that a mini-
mum of Jðh;HÞ as a function of h occurs on the h

axis, becomes

Z Q

0

g dc
u3

¼ 1 ð23Þ

and this may be written as

Z Hþh

H

g dz

u2
¼ 1: ð24Þ

This is identical to (17) with c ¼ 0; implying that
long waves are indeed arrested at the control
section. Moreover, while (24) implies that the
depth-averaged current %uXðghÞ1=2; it also requires
that u ¼ ðghÞ1=2 at some point of the profile. This is
similar to Stern’s (1974) condition for rotating
hydraulics, with lateral shear but no vertical shear,
that the flow speed at the control section is equal
to ðghÞ1=2 at some position across the channel, a
result confirmed by Pratt and Armi (1987) from a
functional relationship similar to (22) here.
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The equivalence of (24) and (17) is, in fact,
inevitable once a functional form of the problem
has been reached in which a single flow variable (h
here) is connected to properties describing the
problem. (In this case the bottom height H is the
only such property, but the width would enter too
if we allowed for it.) Gill (1977) pointed out that if
the functional is stationary as a function of the
flow variable, then we also have a steady solution
for a slight perturbation of that variable, showing
that long waves are arrested. It is useful, however,
to have the direct proof in this case.

6.4. A general case

It seems that Gill’s (1977) functional approach
may be stretched to accommodate the case of a
sheared flow with a general form of internal
friction that does not necessarily maintain the
same shape of the velocity profile. We do this by
recognising that the Bernoulli constant a in (20) is
no longer a function just of the streamfunction c
but also of x; evolving downstream in response to
frictional loss of energy. The variation of a with x

is not given a priori, as it is for HðxÞ; but we
proceed as if it were. We have already shown that
when control occurs, the flow satisfies (24). The
location of the control section is given by the
condition (Gill, 1977) that J is stationary with
respect to changes in H and a with x: The reason
for this is that on proceeding downstream the
functional curves in a graph such as Fig. 9 must
again dip below the h-axis. Using (22), this
condition implies that

�
dH

dx
þ

Z Q

0

@a

@x
gu�3 dc ¼ 0: ð25Þ

Now the downstream change g @a=@x of the
Bernoulli function gaðx;cÞ is given simply by the
right-hand side @t=@z of (12). This may be kept in
terms of the vertical coordinate z; so that (25) may
be written

�
dH

dx
þ

Z Hþh

H

@t
@z

u�2 dz ¼ 0: ð26Þ

Integrating the second term by parts and assuming
no surface stress and a bottom stress Cdu2

0; where
u0 ¼ uðHÞ is the current speed at the bottom, (26)
now becomes

dH

dx
¼ �Cd þ

Z Hþh

H

2e=u3 dz: ð27Þ

recognising that the internal dissipation rate e is
given by tð@u=@zÞ; reducing to nð@u=@zÞ2 if the
stress t is represented as an eddy viscosity n times
the shear.

We see that in the case of no internal dissipa-
tion, (27) gives us Pratt’s (1986) result for the
downstream shift of a control section by bottom
friction. The third term in (27) is surprising in that
it suggests that internal friction acts in the opposite
way to bottom friction; one might have been less
surprised to find a factor �1 instead of þ2; so that
the second and third terms could be combined
inside an integral having an integrand ð�Cdu3 �
eÞ=u3: This would have paired bottom dissipation
with internal dissipation. The reason for the
different effects of bottom and internal friction
seems to be that the former removes momentum as
well as energy from the system, whereas the latter
just removes energy. In fact, internal friction
acting alone on a flat bottom, without bottom
friction, would act to reduce the velocity contribu-
tion to the vertically integrated momentum flux
1
2
rgh2 þ

R h

0 ru2 dz; requiring a compensating
downstream increase in layer thickness h: This
acts in the opposite sense to bottom friction which
requires a decrease in h:

In a sense, therefore, the presence of internal
friction opposes bottom friction and counteracts
the downstream shift of the control section. A
comparison of the magnitudes of the second and
third terms in (27) requires specification of the
eddy viscosity profile nðzÞ and solution of the
governing equations to give uðzÞ: The simplest case
is with the specification of a depth-independent
eddy viscosity n ¼ Au0h; where A is a dimension-
less coefficient, and with the assumption that the
inertial terms are locally small so that there is a
force balance between the internal friction and the
pressure gradient. A vertical integral of the
balance shows that the pressure gradient then
equals the bottom drag Cdu2

0: The velocity profile
is given by

u ¼ u0 1þ r z� 1
2 z

2
� �	 


; ð28Þ
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where r ¼ Cd=A and z ¼ ðz � HÞ=h: The ratio R of
the magnitude of the second term on the right-
hand side of (27) to the first term, Cd; is

R ¼
Z 1

0

2rð1� zÞ2 1þ r z� 1
2
z2

� �	 
�3
dz: ð29Þ

This can be expressed analytically as

RðrÞ ¼
1þ r

2þ r
�

2

r1=2ð2þ rÞ3=2
atanh

r

2þ r

� �1=2

ð30Þ

and is shown in Fig. 10.
For small values of Cd=A; the flow is very

viscous internally and so has a slab-like flow and a
small value of R: The control section then occurs
near where dH=dx ¼ �Cd; as in Pratt’s (1986)
analysis discussed earlier. For large values of
Cd=A; the flow is highly sheared, R tends to 1,
and the control section moves back to near the
crest of the ridge, as for inertial shear flow. One
formula for the internal eddy viscosity has n ¼
u�h=16; where u� ¼ C

1=2
d u0 is the friction velocity

(Csanady, 1982). Thus A ¼ C
1=2
d =16 and Cd=A ¼

16C
1=2
d : With CdC0:005; as is appropriate for a

bottom drag coefficient based on the near-bottom
velocity rather than the depth-averaged value, we
have Cd=AC1:1 and hence RC0:4; so that the
control section occurs where dH=dxC� 0:6Cd

C� 0:003: This value of dH=dx is actually close
to the result that one would get from Pratt’s (1986)
formula using a drag coefficient appropriate for
use with the depth-averaged, rather than near-
bottom, velocity!
Fig. 10. The function RðrÞ from (30), giving the ratio of the

magnitude of the second term on the right-hand side of (27) to

that of the first term.
This analysis assumes a flow that varies suffi-
ciently slowly that the inertial terms are dominated
locally by the pressure gradient and frictional
forces. If this is not the case, the flow will
correspond more closely to that for a purely
inertial shear flow, with the control occurring at
the crest of the ridge where dH=dx ¼ 0:

We also need to note, that, just as in earlier
discussion, this development assumes that the
internal friction depends only on local flow
properties. If the frictional terms depend on
downstream derivatives of the flow, their effect in
pushing the flow away from being possible is not
as simple as, for example, in (5). As we found
earlier in discussing the control of a flow with a
fixed shape of its velocity profile, frictional terms
involving downstream derivatives need to be taken
to the left-hand side of the equation of motion and
incorporated with the inertial term, changing
control conditions and also the long wave speed.

The new approach discussed here, in which the
Bernoulli constant is treated as slowly varying
under the influence of friction, may also be used in
Pratt and Armi’s (1987) functional representation
of flow, in a rotating channel of rectangular cross-
section, with lateral shear but no vertical shear.
The current u and layer thickness h are now
functions of the cross-channel coordinate y as well
as the downstream coordinate x; though the height
of the bottom HðxÞ is still a function of x alone. It
can be shown that, for a channel of constant width
W ; control is shifted downstream of a ridge crest
to a location where

dH

dx

Z W

0

u�2 dy ¼ �Cd

Z W

0

ðghÞ�1 dy: ð31Þ

This reduces simply to Pratt’s (1986) result
dH=dx ¼ �Cd if the channel is narrow or not
rotating, so that u and h are independent of y and
also u2 ¼ gh at the control section.
7. Parameterizations

This brief review has so far focussed on general
considerations of the effect of friction and
entrainment on hydraulic flows in straits. There
will certainly be situations, as with short or deep
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straits, where inertial effects are dominant, though
even then, as shown by Bray et al. (1995) for the
Strait of Gibraltar, significant interface thickening
can occur. In situations where unresolved small-
scale processes are important we need to learn how
to parameterize them. In this respect, the study of
straits raises much the same problems as in many
other branches of physical oceanography, and has
a particularly large overlap with investigations of
estuaries.

7.1. Bottom friction

The parameterization of bottom friction is
perhaps the best established with the formula
Cdu2 being generally accepted. The extensive
literature on appropriate values for Cd will not
be discussed here; Cd is generally larger if u is the
current speed above some bottom boundary layer,
smaller if u is the current speed averaged over the
layer depth. I have used 2	 10�3 as a representa-
tive value for the latter case.

7.2. Lateral friction

A topic which seems to have been somewhat
ignored is that of lateral mixing. For a homo-
geneous fluid the small slope of the bottom means
that the fluid interior is more likely to be affected
by turbulence originating at the sea floor beneath
it than farther away laterally. In the presence of
stratification, however, the vertical transfer of
stress may be greatly inhibited, allowing the
influence of lateral eddy momentum transfer from
side boundaries. This is likely to be particularly
important if the lateral boundary has significant
protuberances. In a recent investigation in Juan de
Fuca Strait, Colbo (2002) measured the lateral
eddy momentum flux within a few kilometres of
the coast, finding it equivalent to a lateral eddy
viscosity of O(10) m2 s�1; but no general formula
in terms of variables such as the tidal current
strength is available.

These considerations apply in a situation where
rotation is not important. In a rotating system, as
discussed earlier and illustrated in Fig. 3, bottom
friction can act via the secondary cross-channel
flow driven by the bottom Ekman layer. If the
channel depth varies laterally, the deceleration will
be more pronounced near the shore, giving lateral
gradients of the along-channel flow on which
lateral mixing can act. Lateral variations in
advection, whether low frequency or tidal, can
also cause differential density advection and hence
lateral density gradients which drive secondary
flows across a channel (e.g., Scott, 1994).

While discussing the role of lateral boundaries,
it should also be stressed that even channel
curvature can also lead to major secondary flows
and cause overturning with considerable mixing
(Seim and Gregg, 1997).

7.3. Internal friction

There are numerous parameterizations in the
literature of the vertical transfer of mass and
momentum in a stratified shear flow (e.g., Bowden,
1983). Most assume fluxes proportional to the
local gradients, with the eddy viscosity and eddy
diffusivity being described in terms of local
properties, such as the tidal current which is
assumed to be a source of turbulence. Recent
models (e.g., Masson and Cummins, 1999) tend to
rely on closure schemes such as those of Mellor
and Yamada (1982), with justification of the
closure relying to some extent on the circumstan-
tial evidence that model predictions of mean flows
agree adequately with observations.

Along-strait sea-level gradients can sometimes
provide clues to the average internal friction
required, at least in situations where the inertial
terms are not dominant. For example, in Juan de
Fuca Strait, Ott and Garrett (1998) used seasonal
differences in sea-level gradient (thus bypassing
the levelling problem, given the weak flow in
winter) to estimate an interfacial eddy viscosity of
up to 0:02 m2 s�1: This value is twice as large as
implied by the traditional formula of Bowden and
Hamilton (1975) which is based on the rms (mainly
tidal) current with a reduction related to the
stratification.

There is a dearth of direct observations of eddy
fluxes of mass and momentum. For mass, various
microstructure techniques (e.g., Wesson and
Gregg, 1994) have provided reasonably direct
estimates for the eddy diffusivity, but measure-
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ments of the eddy viscosity in a stratified shear
flow are rare.

Ideally, one would like direct measurements of
the vertical eddy momentum fluxes u0w0 and v0w0:
Acoustic Doppler current profilers (ADCPs) can
be used to good effect if the eddies are large
enough to be resolved by the bin size and if the
eddy statistics are spatially homogeneous so that
the beam variance technique can be used (e.g.,
Lohrmann et al., 1990; Lu and Lueck, 1999).
These papers describe Reynolds stress measure-
ment in homogeneous flows with the turbulence
generated at the sea floor, whereas we also need
data from the stratified shear flows of estuaries
and straits. Ott et al. (2002) have been able to
determine the Reynolds stresses in Juan de Fuca
Strait at various depths below the surface, in water
130 m deep, using a 300 kHz bottom-mounted
ADCP sampling with 2 m bins (Fig. 11). The
occurrence of significant Reynolds stresses at neap
tides coincided with an increase in the mean shear,
and decrease in gradient Richardson number,
associated with the relaxation of tidal mixing at
a constriction upstream of the Strait, thus releas-
ing brackish water from the Strait of Georgia.

Ott et al. (2002) found no simple relationship
between the Reynolds stress and the local mean
shear, but they did observe secondary flows across
the strait that were similar in some respects to
those shown in Fig. 4 and expected dynamically.
The simplest situation would be a steady response
with ageostrophic cross-strait flow va given by

va ¼ f �1 d

dz
ðu0w0Þ: ð32Þ

This balance was not well satisfied, possibly
because advective terms were important, but
Fig. 11. The daily-averaged Reynolds stress u0w0 at various

depths in the stratified shear flow in Juan de Fuca Strait in

1996. From Ott et al. (2002).
further efforts to determine the Reynolds stresses
and the associated ageostrophic secondary flows
would seem to be justified. Even without direct
Reynolds stress measurements, secondary flows
can provide a strong suggestion of internal
friction, as in the St. Lawrence estuary (Mertz
and Gratton, 1995) or the deep Faroe Channel
(Johnson and Sanford, 1992).
8. Conclusions

Much has been learnt about the effect of friction
on flows through straits, but the incorporation of
frictional effects is still incomplete. On the
theoretical side, a key issue is the nature and
diagnosis of hydraulic control for flows which
have continuous, rather than layered, vertical
profiles of density and velocity by virtue of the
action of mixing and friction. Although no general
results are available, the results discussed in this
paper suggest that if mixing and friction depend
only on local flow properties, then inviscid long
waves are arrested at a control section, though the
location of this is shifted. If, on the other hand,
mixing and friction depend on downstream
derivatives of the flow, as would be required to
maintain a fixed shape of the velocity profile in a
homogeneous flow, then the control conditions
change in line with the changing long-wave speed.

Hydraulic flows, in which flow speeds are
comparable with wave speeds, can be complicated,
so there is merit to the discussion of idealized
situations, where we regard these as valuable
building blocks to build intuition and help in the
interpretation of observations and the output of
complicated numerical models that include many
effects. This review has focussed on the role of
friction in simple situations, with a major limita-
tion being the assumption of very simple topo-
graphy such as a rectangular channel.
Understanding the effects of irregular topography,
even on simple homogeneous flows, is one topic
that requires further investigation.

On the observational side, we need more direct
measurements of vertical and lateral Reynolds
stresses for comparison with parameterization
formulae used, rather than arguing that the
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plausible output of a numerical model justifies the
choice of all its ingredients. Observational pro-
grams are complicated, of course, by the inhomo-
geneity on multiple scales of the topography of
most real straits, so that choosing ‘‘representative’’
locations for observational programs is a major
challenge.
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