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Basic Formulation

The basic formulation comes from Dukowicz & Smith (1994). The primitive equation
momentum equations and conservation of mass, in Cartesian form, are
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where (u,v,w) are the three components of velocity, p is the total pressure, py is a mean
density of seawater, p is the variable density of seawater, g is the acceleration due to gravity
and F' contains the sub-gridscale turbulent terms. D&S then decompose the total pressure
into a surface pressure, p,, evaluated at z = 0 and a hydrostatic pressure, py, evaluated
from equation (3)
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The internal components are evaluated as in the Bryan-Cox model. To solve the external

components, including the surface pressure, average equations (1) & (2) and integrate (4)
all in the vertical:
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where (U, V) are the components of the vertically averaged velocity, 75 is the kinematic
surface pressure, 7 is the surface elevation and G' now contains the advection and hydro-
static pressure terms in addition to the sub-gridscale representation. Using hydrostatics,
the surface pressures can be related to the surface elevation as
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Next, D&S introduce a particular time discretization, which is simplified here following
their stability conclusions
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where equation (10) has been used to replace n by 7, and the superscript a refers to the
semi-implicit time discretization

U* = U™ + (1 —-22)U™ +aU™ ! . (14)

The momentum equations (11) & (12) are recast in vector form, and rewritten to group
all the advanced-time terms on one side of the resulting equation:
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where I is the identity matrix, B is the coriolis matrix
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and F™m=1 collects all the explicitly known quantities. To decouple the solution for 77*!
from the solution for U™+, D&S split the operator in (15) by introducing the augmented

~

velocity, U,

—
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where we’ve introduced the notation
omg = it — =l (18)

Substituting (17) & (18) into (15) and regrouping yields

(I+20AtB) U + 20AtVat~! = Frm=l 4 4a?(At)*BVén, + O ((At)?)
= Frn=l 4 0 ((At)?) (19)
where the term on the right still containing 77! has been neglected for being of the same

order as the discretization error, assuming that dms is O(At) (a necessary assumption for
bounded first derivatives).



To generate an equation for d7, first average (13) with itself evaluated one time step
earlier:
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Substituting for Un*! from equation (17) and isolating the dms terms:
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The general solution procedure is then to

(1) solve (19) for U. This can be directly evaluated, based on the output of clinic.F,
at the velocity points i, € [2, (It —2)], jo € [2, (Jmt —2)]. However, for step (2),

U is needed for all active velocity points i, € [1, (It — 1)], J» € [1, (Jme — 1)]-
(2) solve (21) for ém,, with suitable Dirichlet boundary values.
(3) solve (18) for «»*1. This can be evaluated at all tracer points iy € [1, L),
Jjt € [1, Jmt]-
(4) solve (17) for U™+1. This can be evaluated at all active velocity points.

Some comments on the Elliptical problem

Equation (21), with Dirichlet boundary conditions, is solved using a pre-conditioned
conjugate gradient solver in the SPARSKIT package. The standard convergence test for
this package is a measure of the reduction in the norm of the residual over all points.
Specifically, let  be the residual of the current solver iteration and r¢ be the residual of
the initial guess. The iterative solution is considered converged when

I7[l < 7ellmoll + 7a

where 7, is the relative tolerence (107'?) and 7, is the absolute tolerence (1072%). One
issue that came up in nesting is that this condition is an integral measure over the entire
domain. For nested models the effectively translates into different convergence criteria for
different domains. To control this we’ve introduced a point-wise constraint in addition to
the residual constraint above. The constraint we chose (with a view to equation 17) is that
at every point
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where the superscript k refers to the iteration number and 77 is the relative tolerence for
the gradient test (10> or 1078).



Provided Boundary Conditions

To extend the range of U , a number of numerical conditions were applied to the
vertically averaged momentum forcing®. To extend this list, and provide guidance for 2—
way nesting, a set of robust provided BCs for the vertically averaged momentum forcing
were sought. Introducing the notation

5g — gn—H _ gn—l (23)

and using equation (14), the vertically averaged momentum equations (11-12) can be
rewritten as
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Equations (24-25) represent the particular form used in the HOPS PE model. To evaluate

the vertically averaged momentum forcing at the boundaries, we use the lefthand sides of

(24-25). In the course of experimenting with these BCs a couple of points were found to

improve stability:

(1) Only the quantities at time t,,,; should be obtained from boundary data?. The terms
at time t,,_; are available in PE balance and should be taken from memory.

(2) For the free surface case, equations (24-25) should be evaluated in “transport space”,

i.e.:
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where H = H + 7 includes the free surface elevation.

Nested Boundary Conditions

For nesting in the free surface, the transport in the large domain is interpolated to the
boundary of the small domain, and substituted into equations (26-27).

Provided-Orlanski Corrections

1 Actually the first step was recognizing that the boundary conditions belonged here
rather than on one of the other intermediate variables.

2 In the tidal, free surface case, boundary data is taken to mean the superposition of
the geostrophic data values and the instantaneous linear tidal values.
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Following the algorithm of Perkins et al. (1997), corrections to the provided values
are obtained by applying the Orlanski algorithm3to the difference between the PE model
values and the provided values.

For the barotropic velocity (transport), this is only done for the tangential component
to the boundary. The correction to the normal component is derived from the correction
to the surface pressure, Am, = gAn, and the barotropic continuity equation

%Jrv . (’}-{AU‘) =0 . (28)
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