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Foci
- Optimal ocean science (Physics, Acoustics and/or Biology)

- Demonstration of adaptive sampling value, etc.

Objective 
Fields

i. Maintain synoptic accuracy (e.g. upwelling, BL or CUC/CCS coverage)

ii. Minimize uncertainties (e.g. uncertain ocean estimates), or 

iii. Maximize the sampling of expected events (e.g. start of upwelling/ relaxation, dynamics 
of upwelling filament, small scales/model errors) 

Multidisciplinary or not

Local, regional or global, etc.

Time and 
Space Scales

i. Tactical scales (e.g. minutes-to-hours adaptation by each glider)

ii. Strategic scales (e.g. hours-to-days adaptation for glider group/cluster)

iii. Experiment scales

Assumptions
- Fixed or variable environment (w.r.t. asset speeds)

- Objective field depends on the predicted data values or not, etc.

- Operational, time and cost constraints, or not, etc.

Methods Bayesian-based, Nonlinear programming, (Mixed)-integer programming, Simulated 
Annealing, Genetic algorithms, Neural networks, Fuzzy logics

Multiple Facets of Adaptive Sampling

For each of the 5 categories, there are multiple choices (only a few listed here)
Choices set the type of adaptive sampling research 



1. Adaptive sampling via ESSE

Metric or Cost function: e.g. Find future Hi and Ri such that 
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Dynamics: dx =M(x)dt+ dη η ~ N(0, Q)
Measurement: y = H(x) + ε ε ~ N(0, R)

Non-lin. Err. Cov.:

• Objective: Minimize predicted trace of full error covariance (T,S,U,V error std Dev). 
• Scales: Strategic/Experiment (not tactical yet). Day to week.
• Assumptions: Small number of pre-selected tracks/regions (based on quick look on error 

forecast and constrained by operation)
• Problem solved: e.g. Compute today, the tracks/regions to sample tomorrow, that will most 

reduce uncertainties the day after tomorrow.
- Objective field changes during computation and is affected by data to-be-collected
- Model errors Q can account for coverage term
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Which sampling on Aug 26 optimally reduces uncertainties on Aug 27?

4 candidate tracks, overlaid on surface T fct for Aug 26

ESSE fcts after DA 
of each track

Aug 24 Aug 26 Aug 27

2-day ESSE fct

ESSE for Track 4

ESSE for Track 3

ESSE for Track 2

ESSE for Track 1DA 1

DA 2

DA 3

DA 4

IC(nowcast) DA

Best predicted relative error reduction: track 1



- Objective: Minimize error standard deviation of temperature field
- Scales: Strategic/Tactical
- Assumptions

- Speed of platforms >> time-rate of change of environment
- Objective field fixed during the computation of the path and is not affected by new data
- Problem solved: assuming the error is like that now and will remain so for the next few 

hours, where do I send my gliders/AUVs?

- Methods (global optimization) vary with type of cost function/problem size:
- Combinatorial problems: 

- Objective function is linear or nonlinear, defined over large but finite set of possible 
solutions (networking, scheduling problems, etc). 

- If cost function piecewise linear, solved exactly by Mixed-Integer Programming (MIP)
- General unconstrained problems: 

- Nonlinear function over real numbers with no/simple bounds
- Partitioning strategies for exact solution, brute force for approx. (simul. annealing, etc)

- General constrained problems:
- Nonlinear function over real numbers with complex bounds/constraints

2. Optimal Paths Generation for a “fixed” objective field



- MIP method is often used to solve modified ``traveling salesman’’ problems. Here, 
towns to be visited are hot-spots in discretized fields and salesmen are the gliders

- Represent ESSE error stand. dev. field as a piecewise-linear cost function

- Possible paths defined on discrete grid: set of possible path is thus finite (but large)

- Constraints on displacements dx, dy, dz:

- No-Return constraints for single vehicle    e.g. ⇒

- No-Vicinity constraints for multiple vehicles

- Both can be set by dominant ocean length-scale

- Optimization carried-out by commercial optimization tool Xpress-MP from dash 
optimization

Generation of Paths that minimize ESSE uncertainties using 
MIP (Namik K. Yilmaz, P. Lermusiaux and N. Patrikalakis)



Example for Two and Three Vehicles, 2D objective field

Two Vehicles

Starting Coordinates: 
Vehicle#1:x=37;y=8 Range1: 19 km
Vehicle#2:x=20;y=10 Range2: 19 km

Total reward: 1185

Vicinity constraint such that two vehicles are 
away from each other by at least 7 units (11 km).

Three Vehicles
Starting Coordinates: 
Vehicle #1 : x=5, y=12        Range=17 km
Vehicle #2 : x=15, y=15      Range=19 km
Vehicle #3 : x=28, y=21      Range=17 km

Legend
Grey dots: starting points 
White dots: MIP optimal termination points



Example for Two Vehicles and 3D objective field

Starting 
Coordinates: 
x=12;y=21

Range: 10 km



Complete Formulation for 3D Case



3. Initiate Merging of ESSE/AREA, here for ocean science

All 8 sections 
of 

Aug 28 ESSE
realization # 1



Aug 28 ESSE
realizations 1-12 

of Section 5 
(Bear: 180 deg)



II. Progress towards Models 
of “Model errors”

• HOPS/ESSE stochastic forcings
-3D random noise 
-Amplitude(z) = ε O(Geos. Bal.)
-Exponentially decorrelated in time
-2 grid pts correlation in space

• Need to estimate parameters of 
stochastic model from data

• Here, look at near-inertial and 
tidal scales
- Compare model and data at M1/M2

- Initiate research towards:

- Stochastic models of these 
“smaller” scales

- Optimal gliders patterns for 
sampling/filtering missing scales
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III. Term by Term Balances and Flux Balances
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West side Surface

Heat 
Flux 
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4 fluxes 
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Mean Term-by-Term
Temp. balances

North 
Section

Mean Rate of change ≈ (Cross-shore +Alongshore +Vertical) Advection + Vertical. Diff (surf)

Poleward 
rim

current

Equatorward
plume

Offshore 
advection

Divergent 
vertical 

cells
Up/Down

Cooling/
Upwelling



Central 
Section
(Pt AN)

Mean Term-by-Term
Temp. balances

Mean Rate of change ≈ (Cross-shore +Alongshore +Vertical) Advection

Offshore

Onshore

Upwelling/
Cooling



Snapshot Term-by-Term 
Temp. balances

North 
Section

Mean Rate of change ≈ (Cross-shore +Alongshore +Vertical) Advection

Vert. diff. 
almost zero

except at base 
of thermo.



Central 
Section
(Pt AN)

Snapshot Term-by-Term 
Temp. balances



Multi-Scale Energy and Vorticity Analysis
MS-EVA is a new methodology utilizing 
multiple scale window decomposition
in space and time for the investigation 
of processes which are:
• multi-scale interactive
• nonlinear
• intermittent in space
• episodic in time

Through exploring:
• pattern generation and 
• energy and enstrophy

- transfers
- transports, and
- conversions

MS-EVA helps unravel the intricate relationships between events on different 
scales and locations in phase and physical space. Dr. X. San Liang



Multi-Scale Energy and Vorticity Analysis
Window-Window Interactions:

MS-EVA-based Localized Instability Theory
Perfect transfer:
A process that exchanges energy among distinct scale windows which does not 
create nor destroy energy as a whole.
In the MS-EVA framework, the perfect transfers are represented as field-like 
variables.  They are of particular use for real ocean processes which in nature are 
non-linear and intermittent in space and time.

Localized instability theory:
BC: Total perfect transfer of APE from large-scale window to meso-scale window.
BT: Total perfect transfer of KE from large-scale window to meso-scale window.
BT + BC > 0 => system locally unstable; otherwise stable
If BT + BC > 0, and
• BC ≤ 0 => barotropic instability;
• BT ≤ 0 => baroclinic instability;
• BT > 0 and BC > 0 => mixed instability



Multi-Scale Energy and Vorticity Analysis
AOSN-II

M1 Winds

Temperature at 10m

Temperature at 150m



Multi-Scale Energy and Vorticity Analysis
Multi-Scale Window Decomposition in AOSN-II Reanalysis

Time windows
Large scale: > 8 days
Meso-scale: 0.5-8 days
Sub-mesoscale: < 0.5 day

The reconstructed large-
scale and meso-scale 
fields are filtered in the 
horizontal with features 
< 5km removed.

Question: How does the large-scale flow lose 
stability to generate the meso-scale structures?



• Both APE and KE decrease during the relaxation period
• Transfer from large-scale window to mesoscale window occurs to account for 

decrease in large-scale energies (as confirmed by transfer and mesoscale terms)

Large-scale Available Potential Energy (APE)

Large-scale Kinetic Energy (KE)

Windows: Large-scale (>= 8days; > 30km), mesoscale (0.5-8 days), and sub-mesoscale (< 0.5 days)
Dr. X. San Liang

• Decomposition in space and time (wavelet-based) of energy/vorticity eqns.
Multi-Scale Energy and Vorticity Analysis



Multi-Scale Energy and Vorticity Analysis
MS-EVA Analysis: 11-27 August 2003

Transfer of APE from
large-scale to meso-scale

Transfer of KE from
large-scale to meso-scale



Multi-Scale Energy and Vorticity Analysis
Multi-Scale Dynamics

• Two distinct centers of instability: both of mixed type but different in cause.
• Center west of Pt. Sur: winds destabilize the ocean directly during 

upwelling.
• Center near the Bay: winds enter the balance on the large-scale window and 

release energy to the mesoscale window during relaxation.
• Monterey Bay is source region of perturbation and when the wind is relaxed, 

the generated mesoscale structures propagate northward along the coastline 
in a surface-intensified free mode of coastal trapped waves.

• Sub-mesoscale processes and their role in the overall large, mesoscale, sub-
mesoscale dynamics are under study.

Energy transfer from 
meso-scale window to 
sub-mesoscale window.



Where                                  is the observational data

Strategies For Multi-Model Adaptive Forecasting
Error Analyses and Optimal (Multi) Model Estimates

• Error Analyses: Learn individual model forecast errors in an on-line fashion 
from model-data misfits based on Maximum-Likelihood

• Model Fusion: Combine models via Maximum-Likelihood based on the 
current estimates of their forecast errors

3-steps strategy, using model-data misfits and error parameter estimation

1. Select forecast error covariance       and bias       parameterization 

2. Adaptively determine forecast error parameters from model-data misfits
based on the Maximum-Likelihood principle:

3. Combine model forecasts via Maximum-Likelihood based on the current 
estimates of error parameters                                   O. Logoutov



Forecast Error Parameterization

Limited validation data motivates use of few free parameters

• Approximate forecast error covariances and biases as some 
parametric family, e.g. homogeneous covariance model:

– Choice of covariance and bias models                  should be sensible and 
efficient in terms of                     and storage
∗ functional forms (positive semi-definite), e.g. isotropic

• facilitates use of Recursive Filters and Toeplitz inversion
∗ feature model based

• sensible with few parameters. Needs more research.
∗ based on dominant error subspaces

• needs ensemble suite, complex implementation-wise

Error Analyses and Optimal (Multi) Model Estimates



Error Parameter Tuning

Learn error parameters in an on-line fashion from model-data misfits 
based on Maximum-Likelihood

• We estimate error parameters via Maximum-Likelihood by solving 
the problem:

(1)

Where                                  is the observational data,                   are 
the forecast error covariance parameters of the M models

• (1) implies finding parameter values that maximize the probability 
of observing the data that was, in fact, observed

• By employing a randomized algorithm, we solve (1) relatively 
efficiently

Error Analyses and Optimal (Multi) Model Estimates



Error Analyses and Optimal (Multi) Model Estimates
Log-Likelihood functions for error parameters

Length
Scale

Variance

HOPS

HOPS

ROMS

ROMS



Error Analyses and Optimal (Multi) Model Estimates

Model Fusion

combine based on relative model uncertainties

• Model Fusion: once error parameters          are available, combine 
forecasts          based on their relative uncertainties as:



Error Analyses and Optimal (Multi) Model Estimates
Two-Model Forecasting Example

Combined SST 
forecast

Left – with a priori
error parameters
Right – with 
Maximum-
Likelihood error 
parameters

HOPS and ROMS 
SST forecast

Left – HOPS
(re-analysis)

Right – ROMS
(re-analysis)



CONCLUSIONS
• ESSE and MIP for fixed and fully variable 

adaptive sampling

• Error model parameter parameterization via Bayesian Maximum likelihood

•Volume Term-by-Term and Flux balances computed for upwelling and relaxation periods 
(averaged and snapshots/time evolution). Shows complexity of 3D upwelling regimes, with 
strong eddying and meandering of coastal current

Ms Eva: 
• Center west of Pt. Sur: winds destabilize the ocean directly 

during upwelling.
• Center near the Bay: winds enter the balance on the large-scale 

window and release energy to the mesoscale window during 
relaxation.

•Model-data comparisons at near inertial scales, 
for improved smaller scale deterministic/ 
stochastic models
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