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Abstract

A new methodology, Multiscale Energy and Vorticity Analysis (MS-EVA), is developed to in-
vestigate sub-mesoscale, meso-scale, and large-scale dynamical interactions in geophysical fluid
flows which are intermittent in space and time. The development begins with the construction
of a wavelet-based functional analysis tool, the multiscale window transform (MWT), which
is local, orthonormal, self-similar, and windowed on scale. The MWT is first built over the
real line then modified onto a finite domain. Properties are explored, the most important one
being the property of marginalization which brings together a quadratic quantity in physical

space with its phase space representation.

Based on MWT the MS-EVA is developed. Energy and enstrophy equations for the large-,
meso-, and sub-meso-scale windows are derived and their terms interpreted. The processes
thus represented are classified into four categories: transport, transfer, conversion, and dissi-
pation/diffusion. The separation of transport from transfer is made possible with the intro-
duction of the concept of perfect transfer. By the property of marginalization, the classical

energetic analysis proves to be a particular case of the MS-EVA.

The MS-EVA developed is validated with classical instability problems. The validation
is carried out through two steps. First, it is established that the barotropic and baroclinic
instabilities are indicated by the spatial averages of certain transfer term interaction analyses.
Then calculations of these indicators are made with an Eady model and a Kuo model. The
results agree precisely with what is expected from their analytical solutions, and the energetics
reproduced reveal a consistent and important aspect of the unknown dynamic structures of

instability processes.

As an application, the MS-EVA is used to investigate the Iceland-Faeroe frontal (IFF) vari-
ability. A MS-EVA-ready dataset is first generated, through a forecasting study with the Har-



v

vard Ocean Prediction System using the data gathered during the 1993 NRV Alliance cruise.
The application starts with a determination of the scale window bounds, which characterize a
double-peak structure in either the time wavelet spectrum or the space wavelet spectrum. The
resulting energetics, when locally averaged, reveal that there is a clear baroclinic instability
happening around the cold tongue intrusion observed in the forecast. Moreover, an interac-
tion analysis shows that the energy released by the instability indeed goes to the meso-scale
window and fuel the growth of the intrusion. The sensitivity study shows that, in this case,
the key to a successful application is a correct decomposition of the large-scale window from

the meso-scale window.
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Chapter 1

Introduction

1.1 An example problem

We begin the introduction with the well-known stability problem for a zonal jet stream, whose
concepts have been widely applied in geophysical fluid flow studies. Let ¢ be the time, and
(2,9, z) denote the coordinates for a right-hand system, with z, y toward the east and north,
respectively. The stability for a quasi-geostrophic jet, u = u(y, z), which is confined within a
zonal channel €2, is governed by the following equation of evolution for the nondimensionalized
perturbation energy! <EM >Q, which measures the strength of the disturbances (the eddy
velocity (u’,v") and eddy density p'):
m\? _ _

A) ) - w0 "
where Ry is the Rossby number, and C' = C(y, z) a time invariant factor depending only on
the planetary rotation and the stratification of the background density field. The overbar is
an ensemble mean, whereas the angle bracket with the superscript € signifies a spatial average
over the whole domain €. The right hand side of this equation corresponds to two important
processes in geophysical fluid dynamics (GFD): the barotropic instability and the baroclinic
instability. It provides quantitative information about the energy source for the growth of

disturbances.

If examined carefully, Eq. (1.1) involves:

'Refer to §4.2 for details.
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(1) An ensemble mean, which in practice is usually replaced by a time or space average over

a scale order(s) of magnitude larger than the scale of the event of concern,

(2) An integration/average over the whole basin Q.

For convenience, we will temporarily refer to (1) and (2) respectively as a “bar average” and
a “bracket average”. KEq. (1.1) tells us, that the energetics provided by the theory are all
averaged over a region global in space and/or time. While these averaged quantities may be
appropriate for a spatially and temporally homogeneous process, it is hard to believe that they
can represent those episodic events with significant energy bursts. The local information tends
to be disguised or even obliterated if averaged with irrelevant events. Ironically, the original
purpose of GFD stability theory is to study those processes like weather in the atmosphere
or meso-scale eddies in the ocean, whose occurrence is accompanied with intermittence and is
hence in general not at all homogeneous in space, nor stationary in time. Apparently, there
exists a gap between the theory and the reality, and the usefulness of Eq. (1.1) is therefore

limited.

Historically, the difficulty in making applications of Eq. (1.1) has long been recognized, and
efforts have been made in an attempt to circumvent the problem. The process identification
by buoyancy conversion, for example, is just such an effort. By buoyancy conversion we mean
the rate of conversion from potential energy to kinetic energy due to the buoyancy force. For
a one-dimensional problem, say the oscillation of a pendulum, a positive conversion implies a
release of potential energy for motion, which corresponds to an instability (more specifically,
a baroclinic instability). Buoyancy conversion is a field function, defined completely in a
local fashion and easy to calculate. As a matter of fact, many past stability analyses with

observations use buoyancy conversion as an identifier (e.g., Willbrand and Meincke, 1980).

A more complicated (though not necessarily more sophisticated) effort is the parcel stability
analysis, which, by neglecting the pressure and dissipation effects, treats a fluid flow as a cluster
of individual parcels. The instability for each parcel is thus local, either in time or in space.
This approach has been used to study symmetric instability in the atmosphere (e.g., Holton,

1992).

Both the buoyancy conversion identification and the parcel stability analysis, however, can
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only be used with caution under certain circumstances, since neither of them contains the
complete physics for a real problem. As we know, geofluid flows are of infinite dimensional-
ity. A pendulum-like system is definitely too crude to model them. For the parcel stability
analysis, the pressure influence is dropped, totally excluding the possibility of planetary wave
propagation, which is of fundamental importance in atmospheric or oceanic dynamics. It is
hard to believe such a model can tell us much about the physics for a real flow. We have no

choice but to face Eq. (1.1).

In Eq. (1.1), it is those averages (the “bar average” and “bracket average” as we have called
them) that give rise to problems. But what is the reason to have them there? Wouldn’t
it be okay to replace the equation with a non-averaged or locally averaged one, so that the

energetics appear in their regional and/or instantaneous forms?

To answer the question, look at the bracket average first. Mathematically it is an inner
product defined as a measure of the system. (See §2.1 for the definition of inner product.)
But from a physical point of view what really matters is that a basin average/integration
helps remove the boundary fluxes, which bear no relevance to the scale-scale energy transfer.
If the transport processes can be reasonably separated from the transfer processes,? then a

replacement of the bracket with some localized average will be just fine.

For the bar average, things are far more complicated. In contrast to its bracket counterpart,
it is not just an “average” in the normal sense. In fact, it is the simplest form of an analytical
device (a transform or a synthesis, depending on the context) which is used to decompose a
field according to scales. The bars appearing in Eq. (1.1) result from the scale decomposition,
and hence cannot be removed or simply changed. In fact, as we will know soon, none of the
classical methods of decomposition will yield a multiscale energy which is local in nature. A
“localization” of Eq. (1.1) thus requires some analytical method conceptually different from
what we already have. This is why this example problem is so difficult and for so long a period

the theory-reality gap has not been filled.

%Loosely speaking, a transport is a process of energy or matter exchange related to advection, while a transfer
process regards the energy exchange across different scales. For a strict definition, refer to §3.6, particularly

§3.6.1.



CHAPTER 1. INTRODUCTION 4

1.2 Regional ocean modeling and energy and vorticity analysis

The example problem actually belongs to a much larger set of problems in geophysical fluid
dynamics. Classically, many theories are developed globally in the sense that the system of
concern is treated as a whole. The conservation of energy and enstrophy, the Fourier analysis-
based wave theories, as well as the above instability problem, are all contained in this category.
While the physical robustness of these theories is not in question, it is usually hard to reconcile
them with real regional datasets because of the reasons described above. This regional ocean
process interpretation problem used to receive little attention, however, as observations were
scarce and people usually focused more on homogeneous phenomena on larger scales. During
the 80’s, this problem began to surface, and has become more and more pressing, particularly

after the advent of regional ocean modeling.

Regional ocean modeling came into existence only about two decades ago. It flourished
in company with the development of the Harvard Ocean Prediction System (HOPS). Since
the birth of the HOPS, there has been an upsurge of interest in real-time forecasting (e.g.,
Robinson, 1992, 1998, 1999; Robinson et al., 1996, 1999, 2000), which is regional and synoptic
in nature.  Real-time forecasting differs from global ocean modeling in that it chooses a
local block of area so as to achieve as fine as possible a resolution for the processes, with
the connection to outside ocean parameterized as boundary conditions. Regionally modeled
results are rarely in statistical equilibrium. They are in general characterized by spatial
inhomogeneity and temporal nonstationarity. Interpretation of a dataset thus produced is
usually difficult in terms of the processes conceptualized with theories developed in a global
sense. Some new methodology is therefore needed, in order to bridge the gap between the

global theories on one side, and the highly localized events on the other.

Energy and Vorticity Analysis (EVA) is just such a methodology. It aims to understand the
physics of a given region of ocean (or atmosphere) in a uniform, generic, and most importantly,
local, approach. Specifically, the EVA probes oceanic processes with energy and vorticity
equations which are localized in nature, terms decomposed into dynamically meaningful units
(Pinardi and Robinson, 1986; Spall, 1989). Here “vorticity” is referred peculiarly to the curl of
horizontal velocity, i.e., the upward component of vorticity in the usual meaning. As for energy,

it comes in many forms. In the EVA we consider only mechanical energy, which includes the
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energy of motion (kinetic) and the energy of position (potential).?> For a geofluid, potential
energy is not a good measure of work capacity, as a predominant part of it cannot be released
for motion. A simple but typical estimation given by Lorenz (see Lorenz, 1967) shows that only
5% of the total is available. In this sense, the atmosphere or ocean is a rather inefficient heat
engine, and for this reason, geophysical dynamists usually adopt another measure, available
potential energy, to represent the energy storage. Available potential energy (APE) is also an
energy of position, but with a huge inert part removed. It constitutes, together with kinetic

energy (KE) and vorticity, the group of diagnostic fields for the EVA package.

The choice of energy and vorticity for the process diagnosis is natural. Energy is a first
integral for a frictionless dynamical system. It is the capacity to move fluid parcels to make a
flow. Vorticity derives itself from velocity. It is a measure of rotation, obviously important to
rotating flows. In oceanic or atmospheric dynamics, the importance of vorticity can never be
overemphasized. Virtually all the conservation laws peculiar to this field found thus far are
related to vorticity. These laws, with vorticity, velocity, and position denoted respectively by

¢, v, and x, include

e Conservation of (Ertel) potential vorticity for inviscid flows, (Pedlosky, 1979)

e Conservation of I, = [(¥(x)dx, (k =1,2,3,...) for 2-D inviscid flows, (Chorin, 1994)
o Conservation of helicity H = [ ( - vdx for ideal 3-D flows, (Chorin, 1994. P11)

o Conservation of impulse Z = [ x A {dx for any real 3-D flows, (Chorin, 1994. P12)

e Conservation of enstrophy (vorticity squared) for a 2-D quasi-geostrophic flow with van-

ishing boundary conditions, (Pedlosky, 1979)

e Conservation of [[ F(q(x,y,z,t))dzdy for a 3-D quasi-geostrophic flow rigidly bounded
to the north and south, and cyclic in the east-west direction. Here F'(q) is an arbitrary
function of the quasi-geostrophic potential vorticity ¢, (Salmon, 1998, P280; Majda and
DiBattista, 2000)

3For a hydrostatic atmosphere, the internal energy is proportional to the potential energy. In this case, the
thermal energy is actually also in consideration, as it can be combined with the potential energy into a single

term. The combined energy is called the total potential energy. See Holton (1992).
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where all the integrations are over the whole domain. Some of these laws, together with the
conservation of energy, have enabled reproduction of certain type of geophysical turbulence
with energy-carrying unit vortices as the building blocks. (e.g., Chorin, 1994; Salmon, 1998;
Majda and DiBattista, 2000). The success of this kind of energy-vorticity related model
corroborates, from another aspect, our choice of energy and vorticity for the dynamical process

interpretation.

Using energy and vorticity to analyze processes is a common practice in geophysical fluid
dynamics, but until Pinardi and Robinson (1984), the energetic studies before had always been
basin-integrated and/or time-averaged. As a result, they cannot be employed to handle the
inhomogeneous and nonstationary events with the HOPS outputs. In an attempt to overcome
this difficulty, Pinardi and Robinson introduced the concept of EVA, which aims at tackling
problems with local dynamics. EVA has been since developed with a quasi-geostrophic (QG)
model (Pinardi and Robinson, 1986) and a primitive equation (PE) model (Spall, 1989).
Applications have been successfully made to interpret the evolution of those fields in the
POLYMODE and OPTOMA regions (Pinardi and Robinson, 1986; 1987), the dynamics of
the California Current system (Robinson et al., 1986), the formation of rings in the Gulf
Stream region (Robinson et al., 1988), the jet formation and evolution with the POLYMODE
Mark IT data set (Spall, 1989), the dynamical structure of the Rhodes Gyre System (Millif
and Robinson, 1992), the merger of two idealized vortices (Masina et al., 1993), and the cold-
core intrusion in the QG model forecasting of Iceland-Faeroe Frontal variability with the 1992

dataset (Miller et al., 1995).

The classical EVA, however, does not provide information on how energy is redistributed
over the power spectrum. It lacks the multiscale representation in the earlier energetic studies.
This is unfortunate, as the importance of multiscaling has been well recognized for geofluid
flows, and problems such as the above mentioned barotropic and baroclinic instabilities are
directly formulated with a two-scale decomposition. A major task of this study, therefore, is to
re-formulate the EVA such that it is capable of multiscale energetic analyses. To distinguish
this re-formulated methodology from its classical counterpart, we will call it a Multiscale
Energy and Vorticity Analysis, or MS-EVA for short. = As the vorticity analysis has
been carefully investigated by Spall (1989), when we refer to the formulation of the MS-EVA,
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we actually mean the development of its multiscale energetics and multiscale enstrophy part.
For the same reason, sometimes the name MS-EVA may be used identically as the multiscale

energetic study without further clarification. (Enstrophy can be viewed as a kind of generalized
energy.)

What characterize the MS-EVA are the multiscale representation and the localization. As
mentioned in the opening section, it is a challenging business to decompose a field by scale
while keeping the decomposed energy localized. (We will see soon why it is so difficult) A
decomposition device which is conceptually different from the classical ones is needed to fulfill
this mission. In the following, we first look at what is characteristic of the multiscale GFD
processes, then give a brief review of the multiscale energetic approaches to these processes to

date, which eventually leads to the strategy to tackle our problem.

1.3 Multiscale phenomena in geofluid flows

In order to develop a tool for some process, one first needs to have a general knowledge of that
process. In this chapter, we give a brief overview of the multiscale phenomena in geophysical

fluid flows.

It has long been observed that oceanic or atmospheric flows are notoriously rich in scales.
In a seemingly quiescent ocean, for example, there could exist millions of events, if ordered
by size, from capillary waves to planetary waves. These events, large or small as they are,
could be directly driven by the external forcing, as is most understood, or could be from
interactions between the existing processes, or spawned by a parental system with another
scale. The meandering and filamenting of intense currents like Gulf Stream, the sheetification
of an otherwise circular vortex, the sudden event bursts in boundary layers, the absorption of

eddies back into the mean current system, to name but a few, are all good examples.

A major observation from multiscale phenomena is the self-similarity symmetry. By a
symmetry for a dynamical system we mean a transformation that, if applied, will not alter
the system itself. Loosely speaking, a symmetry is just a kind of invariance. A self-similarity
symmetry is a scale invariance against change. That is to say, some features of a process

repeat themselves upon rescaling. In physics, a symmetry of a system usually corresponds
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to some underlying laws, and in a Lagrangian formalism, these laws are expressed as first
integrals. In particular, the time symmetry implies the conservation of energy, the invariance
under translation gives the conservation of momentum, and the isotropicity is responsible for
the conservation of angular momentum. In geophysical fluid dynamics, the most important
conservation law, the conservation of Ertel potential vorticity, can also be related to a kind
of symmetry. It is an invariance under arbitrary particle-relabeling (Salmon, 1998; also seen
in Ripa, 1980). Another symmetry, which is fundamental in the study of wave-mean current
interaction, relates the conservation of wave action to the invariance under phase translation

(Salmon, 1998).

In distinction to the above known symmetries, the self-similarity symmetry has not received
much attention until recent decades. But its observation can be dated back to a long time ago
in a vast variety of fields. In the area of turbulence study, a widely cited sonnet by Richardson

in 1922 (see Khac, 1997) provides a testament of this long-existing account:

Large vortices beget small vortices
Which feed off their velocity
And the small vortices beget smaller vortices

And so on down to viscosity

though ingredients of it had appeared far before. Another excellent testament of the self-
similarity symmetry is Kolmogorov’s —% power law of energy spectrum (e.g., Chorin, 1994).
It states that energy for three-dimensional isotropic turbulence of universal equilibrium in
the inertial range (meso-scale eddies, for instance) is distributed over the wavenumber (k)

spectrum in a form
E(k) = Ce?/3k~5/3,

where € is the rate of energy dissipation with viscosity v and C' a dimensionless constant.
Thought not derived rigorously from a dynamical equation, this law has been well reproduced
either in physical and numerical experiments. A self-similarity symmetry, of course, need
not lead to a power law; a power law, however, does result in a self-similarity symmetry.

Kolmogorov’s —g law tells us that, if the dimension is re-scaled (here a scale is taken to be the
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reciprocal of k) by a factor r, then the spectrum will be still the same up to a multiplicative

factor r°/3.

Scale invariance or self-similarity symmetry does not necessarily mean a lack of character-
istic scales, in which case life would turn out to be boring. In a process-rich geophysical fluid
system, scale invariance usually has its limiting bounds. Beyond these bounds different laws
(power laws, for example) may apply. For an isotropic turbulence of universal equilibrium,
Kolmogorov’s —% law holds only in a meso-scale range called inertial range on the power
spectrum. This inertial range is bounded above and below respectively by the dissipation
range and the energy range, as schematized in Fig. 1.1 (McComb, 1991). In this case, the
energy range, inertial range, and dissipation range form a partition for the power spectrum.
In a more general case, a power spectrum (either over wavenumber or over frequency) can be
divided into three distinct regimes, i.e., large-scale, mesoscale, and sub-mesoscale regime in
succession. A regime does not correspond to a single scale, but a range or a window of scales.
This phenomenon is called scale windowing. The rigorous definition for a scale window is
postponed to the next chapter. The size of a window is dependent on many factors, and may
vary with the local dynamics. On a Kolmogorov spectrum, the inertial range could be large
when the Reynolds number Re is large, for the energy dissipation, which is proportional to
Re~! (k the typical wavenumber), comes to reign only when k is large enough to make the

product k2Re ! significant (see Chorin, 1994).

To summarize, multiscale phenomena are ubiquitous in geophysical fluid processes. The
self-similarity symmetry and scale windowing, among others, are two prominent observations
whose importance has been gradually recognized. A self-similarity symmetry is a scale in-
variance, while the scale windowing marks off the limits for the invariance. Just as other
symmetries do in physics, the self-similarity symmetry and its limit demarcating may offer a
clue to those complex phenomena such as turbulence, shedding light on the darkest corner of
geophysical fluid dynamics. A satisfactory multiscale energetic study tool, therefore, should

be able to represent faithfully these two characteristics in its formulation.
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Ek) |

| | I
Ky o kg Kk

Figure 1.1: A cartoon of the three regimes on a typical power spectrum of an energetic geofluid flow
system. Here the abscissa k could be either wavenumber or frequency. A similar paradigm is also seen
in the experiment output shown in McComb (1991) (Fig. 3.6).

1.4 Fourier- and Reynolds-type multiscale energetics

A new finding is based on the knowledge of the past. Historically there have been many kinds
of formulations for energetic studies. Different in form as they may be, these formulations
can be generally classified into two categories: the Fourier-type and the Reynolds-type. All
others may be viewed as varieties or derivatives of them. In this section, we give these two
categories a brief introduction with a simple model using the decomposition methods they
originally adopt. Here by a decomposition method we mean an approach to the scale analysis
or decomposition. (For a more strict definition, see Chapter 2.) The simple model is a two-

dimensional hyperbolic problem, together with an incompressibility assumption,

+v-Vv =0, (1.2)

<

ov
ot
V-v=0 (1.3)
where v = [u(t; z,y), v(t;x,y)] is the velocity. For convenience, the domain is assumed to be

periodic in z.

The simple model might be made even simpler by reducing the dimensionality by one.
In this case, however, the problem must be compressible, otherwise it admits only trivial

solutions. Considering incompressibility is generally presumed for geophysical fluid flows, we
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keep its present 2-D form. Define a dyad for vectors A and B, AB, such that
V-AB=(V-A)B+(A-V)B. (1.4)

Eq. (1.2) then can be written, with Eq. (1.3) substituted in, as

v

at-i-V-zz:O. (1.5)

1.4.1 Fourier-type formulation

The Fourier-type formulation tackles the energetics problem by transforming the model equa-
tion with an orthonormal basis (cf. Chapter 2) over the periodic direction z. Originally the

basis used is harmonic, and that is why the Fourier-type gains its name. Let

v(tiz,y) =Y Y, (ty)e™, (1.6)

where 1 = y/—1, and

Vi (ty) = Fn [¥ (82, 9)] - (1.7)

The model equation in the Fourier domain is then

.
S+ FulV v v] =0, (1.8)

Denote
1. .

K, is the kinetic energy for wavenumber m (cf. Chapter 2). Eq. (1.8) dotted with v_,,
followed by taking the real part gives

B — 4y FulV v v, (1.10)
This is the evolution equation of the kinetic energy for the wavenumber m. The dependencies
on y and t are kept intact. For a fixed y and ¢, the right hand side describes the transfer
of kinetic energy to wavenumber m from all other wavenumbers (see Chorin, 1994; Hansen,

1981).
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1.4.2 Reynolds-type formulation

Reynolds-type formulation originally approaches the problem statistically. An ensemble is
needed for each field variable in study. Consider again the toy model equation (1.5), and
suppose now we have at hand an ensemble of realizations for v. Let v be the mean of v over the
ensemble, and v’ the instantaneous deviation from it, v/ = v—v. With this decomposition, the
mean energy and eddy energy are defined as Kyean = %i v and Keqqy = %H, respectively
(cf. Chapter 2). It is easy to check that K = %ﬂ = Kmean + Keddy. The Reynolds equation
of (1.5) is

% V-vv=-V-T, (1.11)
where
uu! ul’
T = (1.12)
o vu! vy

is the 2-D Reynolds stress. The eddy field equation results from a subtraction of the Reynolds

equation from (1.5),

!/
%—Xt+v-(g v) =0. (1.13)

In order to get the equation for the mean energy Kpean, take a dot product of v with (1.11).
This gives

aK mean

VK — —
ot v

V-

+

|<i
<
=

(1.14)

The evolution law for Keqqy can be obtained similarly, this time by dotting v to (1.13)
followed by an application of the mean operator. After some manipulation, the resulting

equation becomes

O0Kcddy
4 v
ot T

1<

vl = —v/v': Vv, (1.15)
where the colon operator is defined, for two dyads AB and CD, such that

AB:CD=(B-C) (A-D). (1.16)

In either Eq. (1.14) or Eq. (1.15), the second term on the left hand side represents some

advection-related effect. The right hand side describes a different mechanism. One may call
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it the interaction between the mean flow and the Reynolds stress (see Goldstein, 1965; Monin
and Yaglom, 1971; Harrison and Robinson, 1978; McComb, 1991). But here the advection
effect has not been completely separated from the Reynolds stress term. As we have mentioned

before, a unique separation is one of the difficulties for a localized energetic formulation.

It should be pointed out that, the statistical ensemble needed for this Reynolds formalism is
usually not available. A common practice is to sample v in time or space and convert (1.14) or
(1.15) into a time meaned or space averaged energy equation. (Harrison and Robinson, 1978;
Hansen, 1981). When there is a sizable gap on the power spectrum such that the meso scale is
order(s) smaller in magnitude than the large scale, either the time mean or space average can
preserve the eddy energy equation from deviating from its original Reynolds form by a simple
argument based on the multiple scale perturbation analysis. In general, however, spectra are
continuous, and in performing the time or space sampling, two energy equations different
from (1.14) and (1.15) result. If sampled spatially in one direction (say, z), the derivative
terms involved in that direction will be gone, and hence terms like those with Reynolds stress
will no longer be retained. In this case, the resulting energetics are essentially as those of a
special Fourier formalism, with harmonics with |m| > 0 all assembled together to form an
eddy energy equation. If sampled in time, for the same reason, the time derivatives have to
be changed (Harrison and Robinson, 1978). This change, however, affects only the left hand
sides of Egs. (1.14) and (1.15). The rest of the terms are all kept in their original forms.
Therefore, in the light of practicality, only time direction sampling keeps the essence of this
type of energetic study. We henceforth refer to as Reynolds-type only those time-sampled
formulations, to which the statistical notion is no longer attached. (Other formulations from
transforms in time are also classified into this category, since they can be reduced to a form

similar to the time-sampled ones.)

Historically Fourier-type and Reynolds-type energetic studies have been developed in par-
allel. In their original formulation, the Fourier-type disguises information of spatial localities
because of the employment of trigonometric functions, while the Reynolds-type loses temporal
localization after applying the time averaging. In other words, from whichever direction the
multiscaling is gained, the localization is lost in that direction. This is the reason why none of

the classical multiscale energetic studies are capable of the EVA mission, and it is understand-
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able that the previous EVA (Pinardi and Robinson, 1986; Spall, 1989) keeps both time and
space from being sampled to gain the localization at the loss of the multiscaling. The dilemma
between the multiscaling and localization is just where the difficulty of the MS-EVA lies. In

principle, none of the classical analytical tools can make the two achieved simultaneously.

1.5 A comparison of the available multiscale energetic formu-

lations

The purpose of this thesis is getting clearer now. But before proceeding, it is instructive
to make a comparison between the available multiscale formulations. These formulations of

course are all within the above two categories, except for different decomposition methods.

An ideal MS-EVA formulation should be able to reflect the two essential features from
multiscale observations, as well as to meet the EVA needs. EVA requires localization, both
in time and in space, while multiscaling expects a faithful representation of the self-similarity
and scale windowing. These requirements form the basis for us to evaluate the energetic

formulations available so far.

The Fourier transform is undoubtedly one of the most commonly used approaches to scale
decomposition. Its global nature in amplitude and wavenumber (frequency), and hence energy,
however, basically excludes it from the candidate list for our MS-EVA purposes. In fact, for
a nonstationary and nonlinear process, any similar transforms with global orthonormal bases
(cf. Chapter 2) turn out to be hopeless. When applied in one direction, localities of events
are lost in that direction. A particular tool which has been widely used in atmospheric and
oceanic sciences is the principal component analysis (PCA, see Appendix A5.1), or empirical
orthogonal function (EOF) analysis as preferred by oceanographers. It is global in nature in
either time or space, depending on which direction it is applied, and as a result, the energy

represented with it is not appropriate for our purposes.

The time average is another widely adopted approach for the multiscale energetic problem.
As already mentioned above, the Reynolds-type formulation thus obtained doesn’t preserve

information of time localities. Improvement of this approach leads to the running time average,
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which has been proposed in Harrison and Robinson (1978) and many others. While preserving
the simplicity of ensemble averages, the running average introduces localized information in
time direction. Of course, such a time localization is usually too crude. Partitioning the time
span into more sub-intervals to increase the resolution may be partially a solution, but this
can give only too small an ensemble for each sub-interval, and hence the adequacy of the

decomposition is questionable.

Implementation of running-averages leads to filters. A low-pass filter is actually a weighted
running average. Localization is hence there. However, we haven’t seen any energetic for-
mulation with filters so far. As will be established in the next chapter, not all filters can be
employed for energetic studies. The widely-used objective analysis (OA) (see Appendix A5.2
of for definition), for example, turns out to be NOT energy conservative (cf. p. 40), and its

eligibility is thus negated.

Nonetheless, another analysis tool, which is closely related to filters (or filter banks, to be

precise), has received much attention during the recent years. This is the wavelet analysis.

Wayvelet analysis is a newly invented technique which has been broadly applied in virtually
all the fields where previously the Fourier analysis is used. There is no exception in the field of
energetic studies. The localized nature of wavelets provides an excellent choice of basis (refer
to §2.1.5 for definition) for the nonstationary field decomposition, and multiscale energetic
studies with wavelet bases indeed meet the localization requirement imposed by the MS-EVA
(e.g., Farge, 1992; Iima and Toh, 1995; Khac, 1997; Fournier, 1999). Usually in these studies
the formulations are of Fourier-type, but there is no difficulty to extend them to Reynolds-
type. The problem is, as shown schematically in Fig. 1.2, the resolution for large scales is
too low, and the lower the scale level, the lower the resolution (refer to §2.2.5). At scale
level 0, only one energy value (or two, depending on the extension scheme; see next chapter)

is available. From an MS-EVA point of view, this is obviously not tolerable.

We have examined the localization aspect for formulations with Fourier analysis, principal
component analysis, time average, running time average, and wavelet transform. The other
two factors are the scale invariance and the scale windowing. For the scale invariance, the
Fourier analysis and wavelet analysis have built-in self-similarity structures, but the others

generally don’t. For the scale windowing, it is well represented only in average-based formula-
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Figure 1.2: Schematic of the time-frequency plane decomposition using a global (Fourier) basis (a) and
a local (wavelet) basis (b). For a Fourier case, the transform is a function of frequency only. There is no
variation in the time direction. For the wavelet case, information is retained in the transform either in
time or in frequency, but the time resolution varies with frequency. The lower the frequency, the coarser
the resolution. (Adapted from Kumar and Foufoula-Georgiou, 1997, and Strang and Nguyen, 1997).

tions. The others lack this representation. They treat scales individually. This is unfortunate,
as a scale window does not need to be just an accumulation of individual scales. In language
of modern dynamics, the complexity of a system of units does not need to be the sum of the
complexities of those individual units. In the presence of nonlinearity, it could be simpler,
or could be more complex. This is the so-called problem of emergence (see Bar-Yam, 1997).
Nonetheless, one may achieve the windowing by a summation of energy over the scale indices
within the window of concern (cf. Chapter 2), except with the wavelet-based formulations.
In that case, no cross-scale summation is permissible. The reason is best seen with the aid of
Fig. 1.2b. On a wavelet spectrum, energy is defined discretely on different points (because of
the different resolution) for different scale levels. They cannot be summed together to get the

energy for a designated location.

To close this section, we tabulate and comment briefly in Table 1.1 all the aforementioned
formulations. In the column of examples, it is not purported that an exhaustive list of literature

is provided. Only typical ones are shown. In the Reynolds category, most of the formulations
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tabulated actually have not been seen as yet. We put them in there just for comparison.
Other analysis approaches may offer new formulations. For example, the Hilbert transform
has been evidenced to produce better localized nonstationary power spectra than wavelets do
(Huang et al., 1999). But the results thus produced are correct only approximately if the data
has a broad spectrum of frequency (Long et al., 1993). Actually, to my knowledge, so far no

energetic studies have been conducted with the Hilbert transform.

1.6 Strategy of the MS-EVA development and an outline of
this thesis

Look back to the example problem. We need to develop a localized multiscale energetic
analysis, with the transport and transfer processes distinctly separated, and a localized average
which is independent of the study domain. The latter is for the instability study only and we
will introduce it where needed. The heart of the problem is the former. It is purposed in this
thesis that this localized analysis be formulated, validated, and applied with a typical ocean
dataset. To start, we first need to choose from the two available types of formulation, the

Fourier and the Reynolds, one type that serves our purposes best.

The formalism choosen is based entirely on the MS-EVA problem itself. We first expect
the new formulation to take keeps a form similar to that of the classical EVA. In the Fourier-
type formalism, the transport mechanism is converted into interactions between particle-like
entities, a form completely different from what we already have in the EVA. But this is still not
much of a problem. A major difficulty with the Fourier-type formalism is regarding the field
scaling, which is merely the scale window definition in this context. There is no reason to adopt
the same spatial scaling for different fields.* For example, the usual combination of prognostic
variables for a primitive equation model includes zonal velocity u and density anomaly p. If
only horizontal scales are considered, by the thermal wind relation, v should bear the same
scale as that of g—’y’, instead of p. As we know, a field and the gradient of that field may have
completely different multiscale structures, even in the same process. Barotropic turbulence is

an excellent example. While on a streamfunction (V) map energy gets transferred to larger

4Nadia Pinardi, private communication.
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Table 1.1: A comparison of the available multiscale energetic formulations. Some non-studied formu-
lations are also listed for comparison.

Forumulation |  Decom- Time Space Scde Sdlf-
type position localization | localization | windowing | similarity Examples
symmetry
Fourier Yes No No Yes Sdltzman (1957),
transform Hansen (1981),
Maltrud and Vallis (1991)
PCA Yes No Maybe Generaly | Aubry et a (1988),
Fourier no Wilson and Wyngaard
(1996)
Wavelet Yes Yes, but w/ No Yes lima and Toh (1995),
transform resolution Khac (1997),
problem Fournier (1999)
Time No Yes Yes No Holland and Lin (1975),
average Harrison and Robinson
(1978)
PCA No Yes Maybe Generally
no
Reynolds
Running Yes but Yes Yes No
time poor
average
Wavelet | Yes, but w/ Yes No Yes
transform | resolution
problem
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and larger scales, the opposite happens on the map of vorticity, which is the Laplacian of
U (e.g., Shepherd, 1990; Salmon, 1998; Chorin, 1994). It is thus very hard to obtain for
each variable a consistent scaling, and hence a consistent scale windowing, if a Fourier-type

formulation is adopted.

We therefore have to make the other choice, the Reynolds-type formalism. In a Reynolds-
type MS-EVA, decomposition is performed in the time direction. Application of spatial gra-
dients therefore won’t alter the multiscale structures thus defined. The relative simplicity of a
1-D transform over a 2-D or 3-D transform, which correspond respectively to these two types

of formalism, also favors our choice.

A Reynolds-type MS-EVA bases its formulation on the time scale analysis or time trans-
form. From the preceding section, none of the existing approaches is appropriate for this
purpose. A central issue to this thesis is, therefore, to find a transform with respect to time
to meet the requirements of time localization (space localization is not a problem here) with
a natural structure of self-similarity and scale windowing. This is the theme of the next chap-
ter, and the resulting transform will be called a multiscale window transform. We shall
first introduce the concepts and begin the construction with a multi-resolution analysis, the
starting point from which a large family of wavelets are built. The MS-EVA is formulated in
Chapter 3. Equations of multiscale energy and enstrophy are derived, and the processes the
energetic terms represent are classified with clear interpretations. The physically reasonable
separation of the transport process from the transfer process provides the basis for a successful
solution of the example problem presented in the beginning of this thesis, and the success in
handling this problem (with two idealized models) in turn serves to validate our methodology
(Chapter 4). In that chapter, we will also show how the MS-EVA can be applied in process
identification, and how the two classical instability processes, barotropic and baroclinic insta-
bilities, are structured in terms of the MS-EVA analysis. This validated MS-EVA, together
with the collected dynamical signatures for the two instabilities, is then taken to tackle a real
problem: the study of the Iceland-Faeroe Frontal variability (IFF). We first launch a real-time
forecasting, with the hydrographic data acquired during the 1993 R/V Alliance cruise near
the IFF region (Chapter 5). The forecast output is then re-arranged into a MS-EVA-ready

format, and the MS-EVA is performed with it as an input. The diagnostic results are pre-
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sented in Chapter 6. From the maps shown, the energetics are characterized and the governing
mechanisms of the frontal variability are investigated. In the last chapter, we summarize all
the work that has been done, including the design of the mathematical tool, the development
of the multiscale energetic analysis, the validation of the MS-EVA, the forecasting of the IFF
variability, and the MS-EVA application to the frontal study. Following this summary is a

brief discussion of further research directions, which marks the coda of the whole thesis.
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Chapter 2

Multiscale window analysis

In multiscale energetic studies, energy is a concept defined with respect to some orthonormal
analysis. The objective of this chapter is to design such an analytical tool, called the multiscale
window transform (MWT) or multiscale window analysis." It is localized, self-similar, and

windowed on scales, as required by MS-EVA problems.

The layout of this chapter is as follows. We first develop the MWT with a one-dimensional
(1-D) field (§2.1-§2.6), then have it extended to a multi-dimensional, particularly two-dimensional
(2-D) case (§2.7). The first section is an overview of some facts from functional analysis. It
is followed by an introduction to the concept of multi-resolution analysis, based on which
we define and construct the scale window, multiscale window analysis, and energy on scale
windows. Originally all these definitions are made in some space over R, the whole of the
real line. In practice, however, only signals of finite length are available. Extensions have to
be performed to fit them into the theory, and the original definition and construction must
be modified accordingly. Section 2.3 is on how this modification is made. With the two ex-
tension schemes that we will use throughout the thesis, the extensions by periodization and
reflection, a system of finite domain multiscale window analysis is established and its prop-

erties investigated. Among these properties are marginalization and energy representation,

!The MWT to be built has nothing to do with the “windowed” or Gabor transform (e.g., Gabor, 1946;
Bastiaans, 1980; Hallastchek and Zilber, 1998). In a Gabor transform, a “window” is a localized function of
the physical space independent variable, while an MWT regards “windows” with respect to scales, as will be

defined soon.

25



CHAPTER 2. MULTISCALE WINDOW ANALYSIS 26

which will play important roles in the later MS-EVA formulation. Note in this analysis, all
the functions are assumed to belong to some proper subspace of a space of square integrable
functions defined on a circle. This assumption is justified with real problems in §2.4. The
theoretical development stops here and in §2.5 and §2.6 the task is to find a proper scaling
basis, realize the transform on computers, and validate it with testing examples. Once this
is done, the 1-D MW'T development is completed. Note §2.5 may be skipped over if read for
the first time. One needs only to assume that he already has at hand an adequate scaling
function, and then the reading wouldn’t be interrupted. In §2.7, we extend the development
to a multi-dimensional case, particularly a 2-D case, to build a 2-D MWT. The whole chapter

is summarized in §2.8.

It should be pointed out that the word analysis is used differently in different settings. In
the terms multiscale analysis (§2.2.2), multiscale window analysis (§2.2.5), and multi-resolution
analysis (§2.2.1), it is rigorously defined, but in those like energy/vorticity analysis, it is used
in a rather loose sense. This usage of terminology might cause confusion but we have to
live with it. Another thing that merits mentioning is the dimensionality of the definition
domain. For simplicity, this whole chapter deals with only the univariate case. But all the
results obtained here can be extended straightforwardly to a multi-dimensional situation (e.g.,
functions defined on a plane) without difficulty. This fact won’t be repeated when multivariate

problems are encountered in later chapters.

A final note on the notation of this chapter. Except in the first section, subscripts are
used to index locations for quantities like bases, energy, expansion coefficients, and so forth,
while superscripts usually signify scale levels, unless otherwise clarified. This makes it easy
to distinguish between indices of location and scale. A superscript, however, should not be
confused with a an indexed quantity raised to a power. In case that potential confusion does
arise, parentheses will be exploited to help clarify. Fortunately in this chapter only the power
2 will appear, as only squared (energy-like) quantities are of concern. In general, it should be

clear in the context when a superscript and a power coexist.
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2.1 Preliminaries from functional analysis

This section is an introduction of some terminologies and basic facts that will be used later
from functional analysis. The first three subsections may trace their origins from Kreyszig
(1989), Anderson (1996), and Young (1980). Their conventions of notation are therefore
followed, perhaps with slight modification to ensure consistency.? The remaining four parts,
which deal with infinite-dimensional spaces, are based mainly on Anderson (2001). Other
literature may also be referred to but is not essential. Terms showing up but not introduced

in advance can be found in the appendices of Kreyszig (1989).

Throughout this thesis, all the functions will be studied only in the setting of some Hilbert
space. However, we begin this section with an introduction of Banach space (complete normed
space), considering the concept of norm is needed in the following chapters. As a Hilbert space
is also Banach space, results obtained in the latter certainly apply to the former. This fact is

assumed whether specific clarification is made or not.

2.1.1 Banach space

Let R denote the field of real numbers. Suppose X is a vector (or linear) space over R. A
nonnegative mapping || - ||: X — R defines a norm on X if, for any z,y € X, and o € R, it

satisfies the following axioms:

1) el > 0.
2) ||z =0 <= z=0.

3) Mozl = laf - ||z

4) Nz +yl <zl + lyll (triangle inequality).

A vector space endowed with a norm is called a normed space. In this context, it is denoted

as a pair (X, || - ||), or simply X if it is clear in the context.

In this chapter,  will be used to denote a vector in a function space, and ¢ the independent variable of .
That is to say, x could be velocity, density, or any state variable, while ¢ could be time, or any dimension of
the physical space, if applied to real geophysical fluid flow problems. In short, z and ¢ in this chapter should

not be confused with the physical space and time variables to appear later.
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A function defined on the set of natural numbers, N, is called a sequence. It is denoted
in the form {z, }nen, but the index set is often dropped for notational convenience. Later on
in this thesis we also need to consider bi-infinite sequences, which are functions defined on

the ring of integers, Z. But until p. 32, we will restrict the indexing on N.

A sequence {z,} in a normed space (X, || - ||) is said to be Cauchy if for any ¢ > 0, there

exists an integer No = Ny(¢) € N, such that

|Tm — znl| <€, Y m,n > Np.
A normed space (X, || -||) is said to be complete if, for every Cauchy sequence {z, }nen C X,
there is an x € X such that
lim ||z, —z| = 0.
n—0o0

In other words, every Cauchy sequence is a convergent sequence, with  being the limit of the

sequence: z, — . A complete normed space is called a Banach space.

Any incomplete normed space can be completed. This is guaranteed by the Theorem of

Completion which is disscussed on p. 69 of Kreyszig (1989).

2.1.2 Hilbert space
Let X be a vector space over the field R. A mapping

g: X xX =R (2.1)
is called a bilinear form if, for all vectors z, y, z € X, and «, § € R,

1) g(z+vy,2)=g(x2) +9(y,2)
2) g(w,y+2) =gy +g(z,2)

3) glaz,By) = apf-g(z,y)

An inner product on a vector space X over R is a positive definite and symmetric bilinear

form. Denoted as (-,-), it is a mapping

()X xX R
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satisfying the above axioms and having the following two additional properties:

4) (x,y) = (y,x)

5) (z,z) >0

for all z,y,z € X, and z # 0. A vector space X over R equipped with an inner product (-,-)
is called an inner product space. It is denoted as the pair (X, (-,-)), but a simple X is

preferred if the context makes it clear.

An inner product space X is also a normed space, with the norm induced by the inner
product through
lz]| = [(z,2)]"*, VazeX

The concept of completeness introduced above then also applies here. A complete inner

product space is called a Hilbert space. Apparently, if a space is Hilbert, it is also Banach.

An inner product space is not just a normed space, however. It is endowed with more
geometric notions. Consider (X, (-,-}), an inner product space over R. For z,y € X, x,y # 0,

we have the following Cauchy-Schwarz Inequality:

i< Yy
Iz Tyl

This allows a definition of an angle § between vectors x and y, the cosine of which is measured

by (z,y)/l|z|||ly|]|. When 6 = £90°, or equivalently,
(z,y) =0, (x,y could then be zero)

z and y are said to be orthogonal.

One example of inner product space is R". It is spanned (cf. p. 31) by n linearly independent

vectors and hence has a finite dimension n. The inner product is defined as

<z, X> =Yz =x"y, (2.2)

for any

X = (‘fI;la "'axn)Tvz = (yla "'ayn)T € R".

R"™ is complete. It is a Hilbert space.
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Another example of inner product space is Cs[a, b], a < b, which consists of all real-valued

continuous functions z(t) defined on [a, b], and equipped with the inner product

(@) = [ wtoyyte) (23

for all z(t) and y(¢) in it. Cbq[a,b] is of infinite dimensionality. It is not complete. The
completion (Kreyszig, p. 41) is called Ly[a,b]. When the definition domain is extended to
the whole R, we obtain a space called Ly(R). It contains all those functions z such that
Je lz(t)|? dt converges. In other words, Ly(R) is a Hilbert space where lie functions square
integrable over the real line R. Note the real line may be replaced by more general a manifold.
Sometimes we shall need to consider the square integrable functions defined on a torus. A
torus Ty, o > 0, is the set of equivalence classes of R with two points on R identified if they
differ by ¢, for any ¢ € Z. (In this 1-D case, a torus can be identified with a circle with radius
o0.) The function space here is denoted as Lo(T,).

2.1.3 Subspace

Given a normed space X, a subspace Y is a nonempty subset which, when equipped with a
norm inherited from X (i.e., obtained by restricting the norm of X to it), also constitutes a
normed space. The subspace of an inner product space can be defined similarly, except that

now it is the inner product that is to be restricted.

Subspaces of a complete normed (Banach) or inner product (Hilbert) space need not be

complete by themselves. The completeness requires the concept of closedness.

Given a normed space X = (X, ||-]|), a subset Y C X is said to be closed in X if it contains
limits of all convergent sequences. Y as a subspace is closed if it is closed as a subset in X.
The smallest closed set that contains Y is called the closure of Y. It is written as C1Y. Y is
closed if and only if Y = C1 Y. A subspace of a Banach/Hilbert space is complete if and only
if it is closed (see Kreyszig, 1989. pages 67 & 140).

Let Y and Z be two subspaces of a Hilbert space X = (X, (-,-)). They are said to be
orthogonal (denoted as Y 1 Z) if foreach y € Y, z € Z,

(y,z) = 0.
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The orthogonal complement of subspace Y in X, written Y, is

Yi={zeX|zLlY}

3

If Y is closed, X can be decomposed into the direct sum?® of Y and its orthogonal comple-

ment, i.e.,
X=Yov"t

by the theorem of direct sum (Kreyszig, p. 146): that is, for any z € X, there is a unique

representation
r=y+z, withy €Y and ze Y.

In this case, y € Y is called the orthogonal projection of z € X on Y C X.

2.1.4 Totality and orthonormality

Given a normed space X = (X, || - ||), a set Y. is called an e-net for Y C X if for each y € Y,
there exists a y. € Yz, such that ||y — y.|| < e. A subset M C X is said to be dense in X iff

for all e > 0, M is an e-net of X.

Given a nonempty set M, we may define a span of it, denoted as spanM. If M is finite, its
span is made by all the linear combinations of vectors in M; if M is infinite, spanM is defined
by the union of all the spans of its finite subsets.? A vector space X is said to be spanned or
generated by M € X if X = spanM. A total set in a normed space X is a subset M C X
such that the span of it is dense in X, i.e., Cl (spanM) = X.

For an inner product space X, M C X is said to be orthonormal if, for every pair z,y € M,

1, r=y
0, 7y

It is called a total orthonormal set if spanM is dense in X. Every Hilbert space X # {0} has

(x,y) =

at least one such total orthonormal set/system M (Yosida, 1974, p. 86). If M is countable,
it can be made into an indexed family {z;};cz C X, or a sequence in X. Totality and

orthonormality also apply to sequences.

3A direct sum of two subspaces X and Y does not require orthogonality between them, however.
*This definition doesn’t invoke any issues of convergence. See Anderson, 2001.
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2.1.5 Basis

A finite set M = {vg,v1,...,v,} is said to be linearly independent, if equation

n
Z ajvj =0
=0
has no non-trivial solution for ;: that is, all ;’s must be zero. For a finite-dimensional vector
space X # {0}, a linearly independent subset B C X is called a basis of X if spanB = X. A
basis is a minimal spanning set in the sense that removal of one element invalidates span B=X.
A basis is also a maximal linearly independent set. Addition of any vector destroys its linear

independence.

For infinite-dimensional vector spaces, the concept of basis is no longer as simple as its
finite-dimensional counterpart. It is not our intention to give the details here. For a careful
and exhaustive treatment, the reader is referred to Anderson (2001). We restrict our discussion

to Hilbert space only.

We now change the indexing for sequences from the set of natural numbers, N, to the ring
of integers, Z. We will continue to refer to them as sequences, but from now on all of them

are assumed to be endowed with the bi-infinite notion.

According to Anderson (2001), a basis for an infinite-dimensional Hilbert space X is a
minimal total set of X. Particularly, a Schauder basis for it is a sequence of vectors {e,} C

X, such that for every z € X, there exists a unique coefficient sequence «;,, € R satisfying
m—Zaiez- — 0 as n — 0o,

and, a Riesz basis (or stable, unconditional basis) {e, } for X is a Schauder basis such that
the coefficients oy, for all z C X, is bounded above and below in the sense that®
Allz|? <3 lei|* < Bll|l?, (2.4)
1€EZ
with constants B > A > 0.
Riesz bases are equivalent to orthonormal bases (Young, pp. 31), in the sense that there ex-
ists an invertible bounded operator between a Riesz basis and an orthonormal basis. From now

on, all bases are assumed to be orthonormal, (or at least, Riesz), unless otherwise indicated.

5This definition follows Strang and Nguyen (1996). Other definitions may be found in Young (1980) on pp.
31-32, and Anderson (2001).
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2.1.6 The expansion property for a Hilbert space

Let X be an infinite-dimensional Hilbert space with an orthonormal basis {e;}. According to

Anderson (2001), each z € X can be represented as
r = Zajej, (2'5)
J

with {a;} ¢?>-summable, i.e., > laj|> < oco. This is called the expansion property by

Anderson (2001), with expansion coefficients
aj; = (z,e5). (2.6)

If the expansion }-; aje; = 0, all o are then zero, a property shown in Anderson (2001) which

is the analog of linear independence in a finite dimensional case.

From Eq. (2.6) we may identify an operator 7 from X to the space £2 (space of sequences

that are £2.-summable; see Kreyszig, 1989):
Tz — {(z,e;)}, VzelX (2.7)

This is the analysis or transform of x with respect to {e;}. Eq. (2.5), on the other hand,
defines another operator

R — X; Ria} — Zozjej. (2.8)

J

R is called a synthesis or reconstruction of x € X with respect to basis {e;}, and expan-
sion coefficients {a;} C ¢2. Again here {e;} is orthonormal, and in this case the expansion
coefficients {«;} are particularly given a name, Fourier coefficients. The collection of all
the Fourier coefficients also forms a Hilbert space. It is equal to £, and we shall refer to it as

a phase space.

2.1.7 Parseval relation

Suppose X is a Hilbert space, and {e;} C X an orthonormal set. For z € X, let {o;} = (z,¢e;).

We then have the Bessel inequality (see Kreyszig, p. 157)

J

> (e5)" =3 lwseg)” < [lall*. (2.9)
J
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Equality holds for every x if and only if {e;} is total in X. Stating in another way, if {e;} is
an orthonormal basis of X, then
> ()” = [l (2.10)
J
This is the so-called Parseval relation or Parseval equality. It reads that the squared
Fourier coefficients sum to the corresponding squared norm. In a careful treatment, Anderson
(2001) has established the equivalence between the expansion property (2.5), totality, and the

Parseval equality for an infinite-dimensional Hilbert space.

For any vector in a Hilbert space, Parseval relation sets up a connection between its rep-
resentations in the physical and phase spaces. As we will see later, it forms the basis of

multiscale energy studies.

2.2 Multiscale window transform

2.2.1 Multi-resolution analysis

By a multi-resolution analysis of Ly(R), we mean a sequence of closed subspaces {V;}jez,

such that (Herndndez and Weiss, 1996; Meyer, 1990)°

(1) ...VacWVycWVicCcV,... (Nestedness)
(2) ClUjez Vi = L2(R). (Totality)
(3) Njez V; ={0}. (Emptiness)

(4) There exists a translation invariant (affine) orthonormal set” {¢(t —n), n € Z} which

is total in V4.

(5) (t) € Vj iff 2(2t) € Vj4q (Refinability).

5In Meyer’s original definition, the index of V; runs in the opposite direction, namely, V; is associated with
basis function ¢(277¢) rather than ¢(27¢). This notation is also seen in other literature such as Holschneider
(1995). We will follow Strang and Nguyen (1997)’s convention (also seen in Louis et al. (1997) and Wojtaszczyk

(1997)).
"That is to say, an orthonormal set formed by shifting the independent variable by integers.
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The translation invariant set in condition (4) forms a space which we will refer to as a sam-
pling space. In a formal language, a sampling space is, for a Hilbert space X, a closed
subspace H C X in which all the functions can be expanded with respect to a translation
invariant orthonormal basis. In some literature (e.g., Holschneider, 1995), the “translation

invariant orthonormal basis” is relaxed to be “translation invariant Riesz basis”.

Conditions (4) and (5) combine to imply that every multi-resolution approximation of
Ly(R), Vj, j € Z, is a sampling space. Condition (5) also implies that the subspaces V; thus-
constructed are self-similar. For j > 0, it has a compressed orthonormal basis {2j/ 2p(27t —
n),n € Z} (27/2 the normalization factor), while if j < 0, the basis function is enlarged, with

the same form.

Scaling decomposition in a multi-resolution analysis is attained by considering the orthog-

onal complements of V; in Vj 1, Wj, in the sense that W; L V; and

If V; has an orthonormal basis {2//2¢(2/t —n),n € Z}, called a scaling basis (or dilation
basis), then it can be proved W is also a sampling space and has an orthonormal basis in
the form {27/24)(27t — n),n € Z} called a wavelet basis (Holschneider, 1995, p. 205).8 The
whole Lo(R) is now decomposed as
D WioVo=PW; = L(R), (2.11)
JEZL 4 JEZ
where Z = {j | j € Z, j > 0} is the set of nonnegative integers. The relationship between each
W, and Vj is schematized in Fig. 2.1. Note subspace W; embodies features of only one scale
277, or scale level j, in contrast to Vj, where all scales below level j are included. For this
reason, features on a scale level j (or simply scale j, if no confusion arises) are represented by
vectors in W;. In this decomposition, W; is orthogonal to W; for all 7 # j, i, 7 € Z. We obtain
consequently an orthonormal set {27/2¢)(27t — n)} = {1}, j,n € Z. (27/? the normalization

factor) whose span is dense in Lo (R).

8The functions ¢(t) and (¢), ¢t € R are then called a scaling or dilation function and a wavelet function,
respectively. In some literature, such as Meyer (1990), they are also referred to as a father wavelet and mother

wavelet.
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Figure 2.1: A schematic of the multi-resolution analysis, {..., V;_1,V}, Vj41,...}. W is the orthogonal
complement of Vj in Vi1, and W; @ V; = V44, V; L W;.

2.2.2 Multiscale analysis and energy on multiple scales

By multiscale analysis we mean an analysis with respect to some basis with indices correspond-
ing to scales. In the multi-resolution analysis setting, it is just another name for wavelet
analysis. Given z € X C Ly(R), let o, be the transform of it with respect to {1/ }. As the

basis is orthonormal, the Parseval relation states that

-\ 2
;;(a%) =l = [ (@(®)? at (2.12)

This relation allows a definition of energy on a scale-location mesh. In this example, E(t) =
12(t) is a generalized energy at some ¢. In geophysical fluid dynamics, if the vector z is velocity,
FE is simply the kinetic energy except for a constant multiplier; if the vector is density anomaly
p, then F is the available potential energy except for a factor %pog—;\,z with N the Brunt-Vaisala
frequency. The integration, [ F(t)dt, may have a different interpretation depending on the
independent variable ¢ is chosen. If ¢ is a spatial coordinate, then [p E(t)dt is simply the total
energy over that dimension; if ¢ is time, it can be understood as the energy integrated over
the time domain. Either way [, E(t)dt boils down to a quadratic quantity associated with a

notion of energy.

On the left hand side of Eq. (2.12) is a sum of indexed quantities. They are tagged with

the corresponding scales and locations. For every j and n, we may then square the Fourier
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coefficient to make an energy, i.e., to define (oz%)Z = EJ, to be the energy on scale j and

location n, in a generalized sense as explained above.

Note EJ depends on n, the location index, which is lacked in the classical representation.
This dependence comes from sampling space-generating basis {7 }. It provides the informa-

tion of locality in the multiscale energy representation.

Besides EJ, a quantity that measures the total energy on scale j can also be defined:
ET=)"El. (2.13)
nez

We will call it the marginal energy corresponding to that scale.

2.2.3 Scale windows and energy on scale windows

A faithful representation of the scale windowing phenomenon is a requirement for an adequate
MS-EVA formulation. A scale window, in a plain language, is just a subspace of some Hilbert
space with only a designated window of scales involved. Its rigorous definition may vary with

different notions of scale. Here we define it in the setting of multi-resolution analysis.

Given a multi-resolution approximation Vj, C L2(R) with jo > 0 some known integer, a
scale window, or simply a window, between scale levels j, and 73, with j, < jp < jo is

defined to be a subspace V¥ C Vj, such that
Vit =W, oW 41 ©...0 W, (2.14)

In other words, it is a subspace of V}, generated by a subfamily of {i(t), § < jo,n € Z},
{i(t), j € Jn € Z, with J = {ja, jo + 1, ..., ju}, where j, < 55 € Z correspond to the
upper and lower scale bounds. With this definition, we construct three scale windows,® V%,

VM and V°. They are

9 Arbitrarily many scale windows may be constructed. We build three because we will use only three in the

upcoming MS-EVA formulation.
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Scale window Notation Generating set
Large scale window v Wi Yiermez Jo={j€Z|j<jo}
Mesoscale window M Witienmez I ={€Z]|jo<j<n}
Sub-mesoscale window VS {WiYicsmez Jo={j €Z|j1 <j<jo}

Accordingly, V}, can be decomposed into a direct sum of these scale windows
‘/j2 :VL@VM®VS,

with VE VM and V° mutually orthogonal. For each vector z € Vj,, there is a unique

representation
=zl 4+ M + (IIS,

where ¥, M and z° are vectors in scale windows VL, VM and V¥, respectively. Let E7

denote the marginal energy for scale level j. The marginal energies of x associated with these
windows are, by definition,
EY = Y B, (2.15)
J<jo
J1
EM = N F, (2.16)
J=Jjo+1
J2
E° = Y E. (2.17)
J=ji+1

The Parseval relation then states that, for any z € Vj,,
EY + EM + ES = ||z?, (2.18)

i.e., energy is conserved with this decomposition.

The above energy expression requires a priori knowledge of the orthonormal basis {1/ }.
Sometimes, however, this may be unnecessary. An expression of the energy alternatively in
physical space could be more convenient. Recalling how VX, VM and V* are constructed, we
have, for any = € Vj},, with n € Z,

<$La T/J¥L> 7 < Jo
o, =(e.9l) =4 (+Mi)  o<i<i (2.19)

(z50) I <i<i
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As {¢}, j < jo,n € Z} furnishes a total orthonormal set for VX, the Parseval relation implies
(2
5 | N = 1
J<jo0

By (2.19), this is,

EY =" FE =|z"|* (2.20)
7<jo
Likewise,
EM = ||zM? (2.21)
ES = |z%|? (2.22)

Equations (2.20), (2.21), and (2.22) are the three parts of energy for « € V}, represented in
the physical space.

We now examine what is required for a proper scale window decomposition. This is useful
when approaches other than multi-resolution analysis are considered; plus, it also serves to
verify what we have already obtained. Remember our objective is to have a function decom-
posed into three parts, each part characteristic of a window of scales. In this context, this is

to say that we need to have a Hilbert space V}, decomposed as
Vi, =ViavMaeve,

This decomposition is for the MS-EVA formulation. The first requirement is thus with energy.
Energy must be conserved in the sense of (2.18); otherwise interactions in terms of energy
exchange between processes defined in different subspaces wouldn’t make any sense. This
energy conservation requirement should not only apply to the three windows as a whole, but
to any two of them also. With the notation adopted above, this is to say, we must have

o e e e e (2.23)

[l (7 + [|

17 + (1217 = [l + 25| (2.24)

as well as

[ e el e B e (2.25)
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for any ' € VI, oM e VM 25 ¢ V¥ z € Vj,, and z = ol + M 4 25 Tt is easy to prove
that (2.23) - (2.25) hold if and only if subspaces VZ, V™, and V*° are mutually orthogonal.
In the forward direction, this is trivially true. Conversely, for all z € VI, M ¢ VM (2.23)

implies
<£EL, xM> =0,
or in other words,
vi1vM,

Similarly we also have VM 1L V¥ and V¥ 1L V°. Consequently, to have energy conserved is

equivalent to demanding mutual orthogonality between the three subspaces.

The energy conservation requirement excludes some extensively used approaches from our
consideration for the MS-EVA formulation. Objective analysis (OA) is just such an example.'?
In forming (2.14), mutual orthogonality is guaranteed by the multi-resolution analysis. Energy

conservation is not a problem here.

Another requirement for the scale window decomposition concerns the multiscale energy
localization (see below for a definition of localization). As will be clear soon, a subspace of some
sampling space with a properly localized translation invariant basis contains functions which
will yield an energy satisfying the requirement. In our definition with the multi-resolution
analysis, VZ, VM and V¥ are all subspaces of the sampling space Vj,. The remaining problem

is then the basis localization, and this is the subject of the next subsection.

2.2.4 Localization

By the definition from the preceding subsection, energy is unfolded on a scale-location plane
in the phase space. The information of locality is represented by the location coordinate of
that plane. But this is not enough for the MS-EVA purpose. We need introduce the concept

of localization.

10ne only needs to check the non-perpendicularity between an estimator vector and the residual to it. Refer

to Appendix A5.2 for an introduction of OA.
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A function f(t) is said to have a polynomial localization about the origin (or simply

localization) of order «y if

1£(8)] < W =rS(t), ViER (2.26)

for v > 0, where C' is some positive constant. Parameter v describes how fast the function
decays with increasing |¢|. The larger the 7, the more localized the function f(¢). We consider
v > 1 only.

<

As |t| = oo, kS (t) approaches to i

S = m(t). With this 75 (¢), we may introduce a quantity

called e-length to measure the effective support of a family of localized functions. Mathemat-

ically, an e-length L. > 0 is defined, for sufficiently small positive €, such that

/|t 7O () dt =e. (2.27)

The integration on the left hand side converges for v > 1, and,

1
2 E S
L= () e (228)

Apparently L. depends on C and 7y as well as ¢; but we will suppress these two dependences

if it is clear in the context. If a function f(¢) is polynomially localized as (2.26), then

/t|>LE>0 |f(#)] dt < /t|>LE KS(t) dt < /|t>L€ mo(t) dt =e. (2.29)

In this case, we say f(t) is effectively supported on [—L., L] up to e.

Other types of decay are also possible: exponential localization is just such an example (e.g.,
Holschneider, 1995). But here the polynomial localization (2.26) is enough, since more often
than not we need only study our problems qualitatively. An exponentially localized function
may always be made smaller than some £%.

With the polynomial localization, it is possible to examine whether and how the energy on
a scale-location plane is localized. Recall the MS-EVA problem in this regard concerns the
localization of energy for localized events. In other words, a localized event in physical space

should have energy locally represented in phase space also. This can be achieved if the analysis

bases, i.e., the translation invariant bases {¢/} and {¢} introduced above, are localized. In
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fact, the Theorem 11.0.2 of Holschneider (1995) states that, for [z(t)| < k5(t), v > 1, if the
basis function ¢ (¢ or ¢) is such that |¢(t)] < k5 (%), then

. 2-In,
J ! .c
lag| < Ok (1 - 2].) (2.30)

for some constant C’ = C’(v,j) < oo, where o, = (x,p!). By Theorem 11.0.1 of the same

source, we then have

. . 2-J
B =|al]> <C" &S (1 +2”j> , (2.31)

where C” is some other constant independent of n, and 277n the location in the physical

space. EJ is therefore polynomially localized around 27/n.

Consequently, as long as ¢ (¢ or ) is localized, the multiscale energy localization is guar-
anteed. The only problem now is how localized they need to be, and this will be clear later in
terms of requirements on . From now on, any scaling or wavelet function is tacitly assumed

to have some localized structure of a desired order.

2.2.5 Multiscale window transform
Scale window construction

Scale windows are defined in the multi-resolution analysis setting (2.11) with direct sums of W;
(see (2.14)). The advantage of this definition is clear: It allows one to identify with ease any
scale windows of interest on a wavelet power spectrum (e.g., Kumar and Foufoula-Georgian,
1997). However, one will encounter two difficulties when attempting to calculate from (2.14)

the energy for a window at a specific location.

The first difficulty is resolution. Multi-resolution analysis earns its name from the relation
between scale level and resolution, as is easily seen in the form of basis functions (27t — n)
and ¢(2/t —n). As shown in Fig. 1.2b, the larger the scale (or the lower the scale level), the
lower the resolution. Built with these W; generated by {¢(2/t — n),n € Z}, the subspaces
VE VM and V¥ will then have different resolutions, with V¥ the highest, and V¥ the lowest.

When a signal is short,!! as is usually the case in a real-time forecast, the largest scale is more

"Here an extension of the finite signal is needed; but we will postpone the discussion of this to § 2.3.
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often than not the duration or basin scale, which yields the coarsest resolution - only 1 (or
2, depending upon how the location index is arranged) energy value on the whole definition
domain. This obviously violates the MS-EVA spirit, degenerating to something similar to
that in the classical mean-deviation formalism. This is the first problem we have to fix before

further actions are taken.

The second difficulty is encountered in building the scale windows. It is also related to
resolution. It is stated independently because the problem itself is fundamentally a different
one. Recall that a scale window is generated by a cluster of shift-invariant basis functions
21/ 24(27t — n) involving many scale levels. The corresponding energy thus requires a cross-
scale summation of the square of Fourier coefficients. The different resolution at different
scale level, however, essentially makes this kind of summation impossible. In the example of
Fig. 1.2b, energy takes value at only one location for the lowest level, which is at the center
of the time domain as shown. Above one level, it takes values at two locations, and one more
level higher, four, and so forth. These locations do not coincide in the time domain, and
values taken on them hence cannot be summed together. No interpolation should be made

since they are now in /3, rather than Lo(R).

In order to get rid of the above difficulties, the key is to fix the resolution with scale j.
However, there is no way to claim a higher resolution for the Fourier coefficients simultaneously
in the physical space and phase space. Raising one is at the cost of the other, as stated clearly
in Heisenberg’s uncertainty principle (see Strang and Nguyen, 1997). What is schematized in

Fig. 1.2 reflects an aspect of this problem.

Consequently, an alternative representation of scale windows in the spirit of (2.14), but with
the above difficulties overcome, is necessary. Forget for the time being the wavelet transform
and look back to the multi-resolution analysis {V;}. For each j € Z, subspace V; is generated
by {¢(27t —n),n € Z}. It encompasses all the scales with level below j, which means V; itself

is a scale window. Particularly, given jy the upper bound of scale window V%, we may take
vl =v,. (2.32)

Its basis in the form {2j0/2¢(2j0t —n),n € Z} guarantees that it is a sampling space. In doing

this, we completely avoid taking sums across scales to obtain the energy for a scale window
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at a specific location. Besides, the so-obtained window has a basis with the highest physical

space resolution to which its scales correspond (2770 here).

The construction of V™ and V¥ follows the same track as that of V', except for some
minor modifications. Suppose that j; and j, are the upper limits'? of scale levels for VM and
V'S, respectively. Consider the orthogonal complement of Vj, in V;; CVj, C La(R), written as
Vj, © Vj,. This subspace encompasses only features with scale level between jo < j < ji1, and
is orthogonal to the large-scale window V' constructed previously. Now the problem concerns
with localization, but this is not in question since it is a subspace of Vj,, a sampling space
with an orthonormal and localized translation invariant basis {271/2¢(271¢t — n),n € Z}. It is

then reasonable to choose

VM =V, oV, (2.33)
Likewise,

VS =V, oV;. (2.34)

Again, it is a subspace of a sampling space (V},), and it is orthogonal to both VL and VM,
meeting the conservation constraint, as well as the localization requirement if the scaling basis

is localized to some desired order.

The story is not complete as yet. The three scale windows thus-formed still bear bases with
different physical space resolution, of which V% is no doubt the worst. We need to have the

lower resolutions increased.

Notice that all the scale windows are subspaces of V},. Vectors in them can definitely be
represented uniquely with respect to the orthonormal basis {272/2¢(272t — n),n € Z}. The
Fourier coefficients (and hence the energy) obtained from the transform with this basis will
have the highest resolution admissible in the physical space (2772 here). This applies to all

the windows generated above, and the resolution is not a problem any more.

2The upper bound of scale level j» for the sub-mesoscale window V° corresponds to the smallest scale that
the series has (here 2792). Theoretically it should be +o0, but in practice we may assume there exists a finest

resolution. We will justify this in §2.4.
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Multiscale window transform

With the above preparation, we are now able to introduce a new analysis tool: the multiscale

window transform/analysis, or merely scale window transform/analysis.

Given a multi-resolution approximation V},, and a function p(t) € Vj,, t € R. Suppose Vj,

is spanned by an orthonormal scaling basis

CACK

where 272/2 is the normalized multiplier. The three scale windows, VX, VM, and V5, are

- {2j2/2¢(2j2t —n), n€ Z},
n

defined as in §2.2.3 such that they correspond to intervals of scale levels (—oo, j0], (jo,71],

(41, jo), respectively. All these windows are subspaces of Vj,.

Write the scaling transform (transform with the scaling basis) of p as

7= [ p(o) 640 dt. 2.35)

The caret is from now on used for transforms only, with different subscripts and/or super-
scripts signifying different types of transforms. In this definition, 7 symbolizes scale while n

is location. Likewise, a wavelet transform with {¢} is written

7= [ o) vio) de (2.36)
for later use.

With the caret notation we define three operators: large-scale, meso-scale, and sub-mesoscale
window syntheses. The large-scale window synthesis (or merely large-scale synthesis)
denoted in the superscript form [|™°: V;, — V', is such that

pot) = B ¢ (). (2.37)

neZ

It keeps only the large-scale feature in p(t). Similarly, the meso-scale window synthesis
(or meso-scale synthesis) [|~! is an operator from Vj, to V:

P = Do PR (1) —p™0 (), (2.38)

neZ
and the sub-mesoscale window synthesis (or sub-mesoscale synthesis) [|~? from Vj, to
VS performs an operation such that

P () = p(t) = D PR (2). (2.39)

neZ
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Scale window transforms are introduced with the aid of these syntheses. A large-scale win-

dow transform/analysis is an operator
Ton:Va— b o { [ 9 nez). (2.40)
R

Similarly the meso-scale window transform/analysis 7; , and sub-mesoscale window
transform/analysis T3, can be defined, with p™° in (2.40) replaced by p~' and p~?, re-
spectively. For mnemonic reasons, we also use carets as in (2.35) to denote these window

transforms

= / (t)pl2(t) dt, w=20,1,2. (2.41)
except for the superscripts suggestive of their corresponding scale windows.

Note in (2.41), each transform involves information from a window of scales. Although the
basis {¢/2} is employed, it is quite different from that in (2.35). One doesn’t have a basis
to accomplish a scale window analysis through a transform in the usual sense. Nevertheless,
we may still refer them simply as large-scale transform (analysis), meso-scale transform
(analysis), and sub-mesoscale transform (analysis), with the word window omitted, if no
confusion arises. With pi0, prt, and p?, Eqgs. (2.37), (2-38), and (2.39) can be re-stated as:

=Y B R, w=0,1,2 (2.42)
neZ

which forms a transform pair together with (2.41).

2.2.6 Properties of the multiscale window transform

In this subsection, we explore some properties of the multiscale window transform defined

above. These properties are important to the later MS-EVA formulation.

Theorem 2.2.1 Given two functions p,q € Vj,, and two constants c1,c2 € R, we have

(clp/—i—\CQq):w =c pyY +c2 q)Y, (linearity) (2.43)
(™)™ = (p™")™" = dpwp™" (2.44)
(™) = bow By (2.45)
PO T N A OR R OR (2.46)

nez
for each n € Z and v,w = 0,1, 2.
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Properties (2.43)-(2.45) can be proved with (2.41) and (2.42) and the orthogonality between
windows 0, 1, and 2. We give a little more discussion of (2.46). Notice on the left hand side, it
is a sum of the products over all the location indices. This corresponds to the reversal process
of the scale window sampling with a shift-invariant basis. In accordance to the concept of
marginal energy introduced before, (2.46) may be referred to as a property regarding the
marginalization of sampled quantities. When p = ¢ and v = w, this marginalization is

similar to the Parseval relation we have seen before.

The proof of (2.46) is straightforward, with the aid of Eqs. (2.42), (2.41), and the orthonor-

mality of scaling function ¢/2(¢). In fact,

Z@:U@:w = Z @:11]‘777;) 5n1,n2
nez n1,n2€EL
DS A~ R ACE O
n1,ne€Z R
= LIS e X q | ar
R ni1€Z no€Z

= /pN” g~ dt.
R
Recall that subspaces VE, VM and V are mutually orthogonal. That is to say,
07 = [P0 @ dE =0, Yot vw=0,12,
R

which immediately leads to (2.46).

2.3 Boundary extension and finite domain multiscale analysis

So far all the functions considered are defined over R. In practice, however, function evalu-
ations are usually available on some finite domain only. We must have them extended to R
before multiscale analyses in the above sense begin. In this section, we first describe some
available extension schemes and then modify the previously developed technique to handle

the analysis according to these schemes.
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2.3.1 Extensions

For continuous functions z1(¢) and zo(t),

AT D(xl) CR— R((I,‘l) - R,

o . D(xz) CR— R((IIQ) - R,

if D(z1) C D(x2) and z1(t) = z2(t), V ¢t € D(x1), 22 is called an extension of x;, and 1z
the restriction of z2 on D(z;). Without loss of generality, let D(z1) be [0,1). (A translation
followed by a rescaling will make any bounded half-open interval be so if it is not.) We will

see how a reasonable extension can be achieved in this context.

There exist many extensions of z;. Constraints are needed to select one for our purpose.
First, as a common practice in wavelet analysis, we impose continuity on the extended signals,
which requires the extension z2(¢) be continuous at the boundaries of D(z;). The second, and
the most important one in the light of MS-EVA, is preservation of energy. That is to say, the
extension must yield the same total energy over D(z1) in physical space and phase space alike,
up to an error within some tolerance, if there is any. The phase space energy representation

relies on the function space structure and will be clear soon.

The problem can now be cast as follows: Given an z;(t) € L2[0,1), find an extension of it

to R, called z5(t), such that

(1) z9 is continuous at ¢t =0, 1;

(2) z9 is consistent in energy in the sense that the energy of x4 over D(z;) calculated from
the physical space is equal to the energy obtained from the phase space over the same

domain.

In constraint (2) we require that the total energy be preserved with the extended signal. No
energy leakage outside the definition domain is allowed with the transform or synthesis. A
specific formulation of this constraint requires a knowledge of the structure of the space, and

we will postpone it to §2.3.5.

In wavelet analysis, people usually consider three types of extension. The first is zero-

padding, which pads zeros on R outside D(z1). The second is periodic extension, with the
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signal of concern wrapped around at the boundaries of D(z1) (here 0 and 1):
xo(t +£) = x1(t), Vie [0,1),€EZ. (2.47)

In the third extension, z1(t) is extended such that x(t) is symmetric about the boundary

points. It is called symmetric extension, or extension by reflection accordingly:

ot +0) = x1(t) Ceven, L € Z, t € D(z1), (2.48)
z1(l—t) Lodd, L€Z, t € D(z1).

Among the three extensions, zero-padding, if adopted, will validate all the previous efforts
in constructing the multiscale analysis. However, this simple scheme seldom has continuity at
the boundaries of D(z1), and is therefore excluded from consideration. Periodical extension
may not be able to meet the continuity requirement, either. But for periodic functions, it
will produce an exact extension. The third type, symmetric extension, gives an z2(t) which
is continuous at the boundaries, though the first derivative is, in general, discontinuous. We

discuss hereafter only periodic and symmetric extensions.

To approach the two extensions in a unified way, notice that with the aforementioned
periodic extension functions are actually periodized with period one. This definition can be
easily generalized to the case with any periodicities. For g € R, a p-periodic extension (or an
extension by periodization with period g) of a [0, g)-defined function x;(¢) is another function

z9 on R such that
:I?g(t + gé) = J?l(t), Vte [0, Q), Lel. (24:9)

With this definition, the previously introduced periodization is actually a 1-periodic extension.
For the symmetric extension, it can be achieved through two steps: an extension from [0, 1)
to [0, 2) by reflection, followed by an extension by periodization with period two. Since both
schemes are essentially the same, we need only study the case of periodization with some
generic period p. For simplicity, suppose g is a power of 2 (say, o = 2*).!3 If a periodization

scheme is referred to but with no period specified, p is always assumed to be one.

!3This assumption is actually not necessary. We have it here in order for Hernindez and Weiss’s results
(1996) to apply in our proofs of the following theorems. Anyway, we consider only two cases: ¢ = 1 and 2,

either with an integer power (A =0, 1).
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2.3.2 Multi-resolution analysis of Ly(TT,)

We have made extensions for the finite-lengthed signals. Now we need a space for these newly
formed functions. Specifically, a Hilbert space X is needed which contains all the p-periodic

functions on R such that
¢ 2
/ e(t)? df <00, VYazcX.
0

Clearly this space is just the Ly(T',) we have introduced before (p. 30). Our problem is hence

to be studied in Ly(Tl,) instead of Ly(R) from now on.

The change in function space requires a change in the entire system we have developed
before. Specifically, we need to build a sequence of closed subspaces of Ly(Tl,), {V,,;};>0, in

analogy to the multi-resolution analysis of Lo(RR), such that

(1) Vo0 C Vi C ... (Nestedness)
(2) U2,Vy,; is dense in Lo(TT). (Totality)
(3) There exists an affine orthonormal set which is total in V, ;.

(4) z(t) € V,j iff £(2t) € Vyjy1. (Refinability)

and redefine the multiscale window and multiscale window transform in accordance to the
new space structures. For convenience, we will assign this sequence a name, multi-resolution
analysis of Ly(T,), which, with the space Ly(Tl,) clearly specified, is easy to be distinguished
from what we have defined before on page 34 with Ls(R). The task of this subsection is
to construct such an analysis, and the procedure of construction generally follows that of

Herndndez and Weiss (1996).

Recall that {¢}(t)}nez is an orthonormal basis of V; C Ly(R). Assuming that ¢ has a
polynomial localization of order v > 1, we can form a new sequence
{027 (W)} eng = D_h(t+00), n=0,1,2,..20-1}, Vte[0,0,  (250)
LET
where /\/g ={0,1,2,...,270 — 1}. (With v > 1 the convergence of the infinite sum is not an
issue. Refer to the Lemma A2.5.1 on p. 109) Clearly {27 (t)},ens € L2(Ty), and moreover,
4

it has the following property:
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Theorem 2.3.1 {qﬁ%’j(t)}neNj furnishes an orthonormal system in Lo(1l,).
4

Proof: See Appendix A2.1

Theorem 2.3.1 allows us to build a subspace of Ly(T,):

Ve = span{¢f?}, o C Lo(Tr,) (2.51)

which has an orthonormal basis {¢g7(¢)} 7 and is of finite dimensionality 27¢ (hence closed).
4

This process can be repeated again and again for any 57 € Z, 7 > 0 and hence a sequence of

finite-dimensional subspaces of Ly(Tl,) is obtained. We wish this sequence to be the multi-

resolution analysis we want, and the following two theorems make the wish come true.

Theorem 2.3.2 For the subspace V,; of Lo(T,) formed by (2.51), the following inclusion
holds:
Vé’:j - V97j+17 \ ] = 0, ]., 2,

Proof: See Appendix A2.2
Theorem 2.3.3 ;2 V,,; is dense in La(1T,).

Proof: See Appendix A2.3

We have thence found a multi-resolution analysis of Lo(T,), {V,0, Vo1, V2, ...}, which are
spanned respectively by the periodized bases {¢2°}, {p2!}, {$2?}, and so forth. Likewise,

another periodized basis

{1/,571'(13)}“6/\/3 = {3 Wit +ol), n=01,2.,2p-1}, Vtel0,o) (2.52)
LET

and correspondingly a subspace of Ly(TT,)

Woj = span{yf’},, (2.53)

may also be formed. Clearly dimW, ; = 27 0. Following a procedure exactly the same as that

for ¢27 and V, ;. it is easy to show that
n 0,97 Yy

. {¢£’j}neNZ is an orthonormal basis of W, ;,
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i Wgz.] - VQ:]+1’
and, as in the Ly(RR) case,
Theorem 2.3.4 Wg,j 1 Vg,j and Vg,j D Wg,j = Vg,j-i-l-

Proof: The perpendicularity between W, ; and V, ; can be proved by following the same steps
as the proof of Theorem 2.3.1, together with the orthogonality between W; and V;. Besides,
we know

dimW, j + dimV, j = 270 + 279 = dimV}, j 1,
50 Vi @ Woj = Vot

Parallel to V;,W; C Lo(R), the two subspaces of Ly(T,), V, ; and W, ;, also classify the
function collections in the universe according to scales. V, ; encompasses features with all the
scales from level j down to 0 (277 to 2°), while W, ; contains only that with scale 277, For
convenience, V, ; will be referred to as the multi-resolution approximation of Ly(T,) up to

level j.

2.3.3 Multiscale window and multiscale window transform in L,(TT,)

With the multi-resolution analysis of Ly(T,), we now proceed to modify the previously defined
scale windows to the new space. Suppose the large-scale, meso-scale, and sub-mesoscale
windows are delimited by scales 2770, 2771, 2772 (argument pre-scaled by the signal duration),

with integer levels jo < j1 < j2, then the three windows can be constructed as follows:

Scale window Notation Definition
Large-scale window VQL Voijo (jo >0)
Meso-scale window vM Voir © Vaijo (1 > Jo)
Sub-mesoscale window |43 Voo © Vi (J2 > 1)

By Theorem 2.3.4, VQL , VQM , and VQS are mutually orthogonal. Note here we tacitly assume

that the smallest scale is cut off at some finite level jo. That is to say, all functions are assumed
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to be in Vj, ;,, a proper subspace of Ly(T,). This remains to be justified but the justification

will be put off to the next section. We merely take it for granted at this moment.

The modified multiscale transform now can be introduced. Before proceeding, we disclaim
that all the related symbols and terms used before will be kept for their respective usages.
The ambiguity of notation and terminology will not cause confusion, as from now on only
extended signals will be considered. As before, we begin with defining a scaling-like transform

(we still call it a scaling transform)

p= [ plt) 4271 (254

for p € V, ;. From this transform three reconstructions of p, called large-scale, meso-scale,

and sub-mesoscale synthesis, are defined, respectively, as

) = D P egh(), (2.55)
nE/\/'g2
Pt =Y P Rl —p™0(1), (2.56)
ne/\fj2
() = — > Pl 2 (2.57)
ne/\fg2

for all t € [0, 0). And, accordingly, the multiscale window transform can be introduced:

= [ o (2.58)

where w = 0, 1,2 signifies the three scale windows. With (2.58), the three equations, (2.55)-
(2.57), may be condensed to a single one
P = D ByYel(t),  w=0,1,2. (2.59)
neN?
Egs. (2.58) and (2.59) form the transform pair of multiscale window analysis in Ly(Il,). Note
in both equations, n runs over ./\fg2 ={0,1,2, ..., 292 9— 1}. In showing the final result, however,
we need only the first 22 values (i.e., those in Nljz), which corresponds to the domain [0, 1)

in the physical space.

2.3.4 Localization and self-similarity with the periodized basis

Recall that localness and orthonormality are two crucial issues in choosing a basis for the

MS-EVA study. For {¢2’ }nenri» the orthonormality is guaranteed by Theorem 2.3.1. The
e
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localness, however, could be problematic, as a basis after periodization is by no means as local

as it used to be. We will now examine this problem.

For a periodized basis {¢%7} of V,;, consider the element ¢27(t), n € NI, t € [0,1).

Involved in it is an infinite series sum:
4 P2t —n—20) + (2t —n) + (2Tt —n+20) +....

We know ¢(t), t € R is localized and has a localization of an order v > 1 by the assumption
invoked in the beginning of this section. $(2/t —n) is hence localized around 2~7n in the
physical space. The sum of the terms other than $(27t — n), denoted by OTHER hereafter,
corrupts the localization of ¢27(t) on t € [0,1) around 27/n. The degree of this corruption
depends on the scale level j as well as the localization order v of ¢. For a fixed v, the higher
the scale level (the smaller the scale), the weaker the influence of OTHER; for a fixed j, a
weak influence of OTHER is possible with a highly localized scaling function ¢. This is to
say, although $27(t) is theoretically not localized on ¢ € [0,1), in practice it may look like
so if the scale level is higher than a certain threshhold given a localization order. This may
be best illustrated with the aid of an example. As shown in Fig. 2.2, at a high scale level
(the bottom panel), $27(t) (0 = 1 here) is essentially the same as that of ¢/ (¢) (not shown),
for almost all n € ./\ff except those near 0 and 2/ — 1 where the boundaries are hit. With
the decreasing of j (increasing in scale), the effect of periodization encroaches more and more
upon the interior until all the domain feels the boundary modification on a scale comparable
to one (top panel). Therefore, if we consider only those j’s greater than some critical value,
and focus only on the interior region, i.e., a region not within the e-lengths to the two ends of
the signal, the localization is practically not a problem. In this example, 5 should be greater
than or equal to 3 for a satisfactorily localized $27. When a symmetric extension is used, i.e.,
o = 2, a smaller j could have the same effect for the same ¢. In that case, by our experiment,

§ = 2 can generate a ¢2 as localized as what j = 4 can do for ¢}/ (figure not shown).

Self-similarity or scale invariance is another feature we care about with the periodized basis.
Again, the periodization distorts this elegance only on a scale comparable to 1. (See Fig. 2.2).
If the signal is long enough, or if we focus on features with scales smaller enough (at least
eight times smaller than the duration scale for the above example), the self-similarity won’t

make much an issue in practice, either.
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Figure 2.2: An example showing the localization of periodized bases with scale levels j = 2 (top),
j =4 (middle), and j = 6 (bottom), respectively. The scaling function ¢ is shown in Fig. 2.6 and its
construction will be elaborated later.
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2.3.5 The energy consistency requirement revisited

With the function space established, we are now able to examine the issue of energy leakage
raised in the beginning of this section. We want to see if the above two extensions satisfy this
no-leak requirement, or if not, what additional condition should be imposed on the building

blocks we have developed thus far.

Let 2 be an extended function which lies in Vj, ; for some 5 > 0. Let

. 1
By = [ loalt) at (2.60)
' N—1 1 ‘
Eg)hase = Z (an)2 + 5 [(040)2 + (aN)Q] ) N = 2], (2.61)
n=1

where a;, = (z2,$27), then the energy consistency requirement reads

—F

J
E phase”

phys (262)

Here the energy in the phase space over [0, 1), E’

Shase’ is defined to be (2.61), rather than

Efzv:_ol (an)z, to well balance the two boundaries, n = 0 and n = N. Our task in this subsection

is to show that Eq. (2.62) holds for o = 1 and 2. For later convenience, we explore a more

general property than just energy.

Theorem 2.3.5 For any functions p,q € V, j with period o =1, we have the following equal-

1ty:
N—1

1
[ p0a(0) i = 3 anfa + laoh + )

n=1

where N =27, and o, = (p, d17), By = {q,p>7), forn =0,1,..., N

Proof:

As a periodized basis with p =1, ¢}\}j = ¢é’j, SO

ay = ag, By = Bo, %(aoﬁo +anBn) = af

and what we need to prove then becomes

N-1

| p0) at) dt = 3 aub.

n=0

But this is just the generalized Parseval relation (see Anderson, 2001), the theorem is

therefore established.
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Theorem 2.3.6 For any two symmetrically extended function p and q, if they belong to Vo j,
then

1 N-1 1
[ pta(®) dt = Y- b+ 5 (0B + )
n=1

provided that ¢(t) is symmetric about zero. Here N and «y, (B, have the same meaning as

they do in Theorem 2.5.5, except that {gb%’j}neNj 18 now a periodized basis with period two.
2

Proof: See Appendix A2.4

Let p = g, Theorem 2.3.5 implies that the extension by periodization preserves energy
unconditionally. For the symmetric extension case, there will also be no energy leak if the
scaling function ¢ used for the basis construction is symmetric about the origin.'* So, if a
symmetric ¢ is constructed, either of the two extension schemes meets the energy preservation

requirement.

2.3.6 Properties of the finite domain multiscale window transform

We have shown in §2.2.6 some properties of the multiscale window transform in Vj, C L(R).
We shall see that in V, ;, C Lo(T,), similar properties also hold. The following identities are

in a form same as those of §2.2.6:

Theorem 2.3.7 Given two functions p,q € V, j,, with either periodic or symmetric extension

adopted, and two constants c1,co € R, we have

— ~w
(cip+c2q), =c1pp” +c2q", (2.63)
(pr)NU = (pNU)Nw = 5vaNw (264)

— ~w
(P~"), = duw Pn", (2.65)

Jor each n € N> and v,w =0,1,2.

The proofs of these identities are straightforward. They follow directly from the definitions

(2.58) and (2.59), and the mutual orthogonality between the three distinct windows.

" Wavelet analysis doesn’t have this property as the wavelet basis function ¢ (t) is not symmetric about ¢ = 0.
Energetic studies with wavelet transform thus may encounter theoretical problems if a non-periodic extension

is used.
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Apart from (2.63)-(2.65), finite domain multiscale window analysis also has idiosyncratic

properties of its own. The following two theorems are important in the MS-EVA development.

Theorem 2.3.8 Suppose p(t), t € [0,1), is a function in V,;, with period o = 1. Suppose
further that the scaling function for V, j,, ¢, has a polynomial localization of order v > 1. We

have, for jo =0,
P8 =5y =p),  forte[0,1), (2.66)

where the overline signifies an averaging over the duration, i.e. p(t) = fol p(t) dt.

Proof
To prove this theorem, notice if the scaling function ¢ is of polynomial localization of order

v > 1, then

20t = ¢(t+0—n)=1, (2.67)

LEZ
for all ¢ € [0,1), a direct consequence of the fact that Y., ¢(t +1) = 1 when v > 1. (e.g.,
Hernandez and Weiss, 1996, p. 222; but the condition they impose is weaker.) By prop-

erty (2.65),

0 G

0
~ ~ ~0
(»9), = @), =0, =D =Dy
So

» 201 0 .
) = Y (), - 42°()

Q.E.D.

Theorem 2.3.8 implies that, for a periodically extended signal, if the large scale window has

an upper level bound jp = 0, then its synthesis on this window is simply the average over the
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duration. This relation between the large-scale synthesis and duration average, as we will see

later, is very useful in connecting the MS-EVA to the classical energetic formulations.

Another useful theorem regards something we shall refer to as finite domain marginalization,

in parallel to the marginalization property in V;, C La(R).

Theorem 2.3.9 (marginalization) Suppose p(t),q(t) € Lo(T,) are either periodically or
symmetrically extended (o = 1 or 2 depending on the extension scheme). Suppose further
that they lie in the subspace V,j, of La(T,), which is formed with a scaling function ¢(t)

symmetric about the origin, then with the notation N = 292, the following equality holds:
N-1 1 1
S B+ 5 B TR = [ 200 (2.68)
n=1

for all scale windows w = 0,1, 2.

Proof
For any p, q € V,, ;,, we can find the multiscale synthesis p~*, ¢~ € V}, for windows w = 0,1, 2.
Let N = 272, substitute respectively p~%, ¢~ for the p, ¢ in the equalities of Theorems 2.3.5

and 2.3.6, and use definition (2.58) which may be alternatively stated as

— s o

(pww)n = pn )
the result then follows immediately.

Theorem 2.3.9 is actually a re-statement of the marginalization property (2.46) on the finite
domain [0,1). For this reason, we call the left hand side of (2.68) the marginalization of
AW AW AW W

gy over [0, 1) (or merely marginalization of p,, ¢, if the domain is clear in the context),

and denote it as

N-1

e Eaavl 1 e e e e e e

DG+ S BT+ PRNAR] = M (57T). (2.69)
n=1

Using the overline notation for a duration average such that p = f01 p dt for any integrable

function p = p(¢) over [0,1), the marginalization property, Eq. (2.68), may be succinctly

written as

M (900") = PP, (2.70)

for the three windows w = 0,1, 2.
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2.3.7 Multiscale energy representation

The multiscale window transform equipped with the marginalization property (2.70) allows a
simple representation of the energy for any scale window in concern. For p(t) € V, ;,, N = 202,

let EV* = (p*)? (w =0,1,2, and correspondingly W = L, M, S). By (2.70),

MuEW* = /0 " dt, (2.71)

which is the energy of window W (up to some constant factor) integrated over [0,1). E* thus
can be viewed as the energy of window W summed over a small interval of length At = 2772
around location ¢ = 2772n. An energy variable for window W at 2772n consistent with the

fields at that location is therefore a locally averaged quantity

1 .
B = B =27 (5)", (2.72)

for w=0,1,2, and W = L, M, S correspondingly.

2.4 Treatment of discrete signals

So far all functions have been assumed to be in some finite level multi-resolution approximation

Vo,j» 0f Lo(T,). In this section we shall justify this assumption.

In practice, time signals generated with a numerical model are not continuous. They are
discretized as well as of finite length. For convenience, suppose the signals in question are
output at N = 272 equi-distant locations, for some positive integer jo. Taking for example
some z(t), ¢t being scaled by the signal duration, this is equivalent to saying that we have a
realization x,, = x(t,), with ¢, =n/N, and n =0, 1,2, ..., N — 1. Since we have no idea about
features with scale less than 1/N, what we need to justify is that the interpolation of these N
zp's with some basis lies in some V,, ; (and hence in any multi-resolution of Ly(Tl,) with level
higher than j). Choose the interpolation basis to be {27} eni® Then we need to show that,
under a specific extension,

Tn= Y amd%l(tn), n=0,1,...N -1 (2.73)
mE/\/'g
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has a unique solution for coefficients a,,. To fulfill the mission, we distinguish the following

two cases:

e Case with a periodic extension;

e Case with a symmetric extension.

2.4.1 Periodic extension

A signal () obtained by periodic extension means that it lies in some subspace V, ; C Lo(TT,)
with period o = 1. This subspace has a dimensionality 2/. Recall we have N = 272 observations

for z(t). They will furnish N equations for N unknown «’s if j is chosen to be jo:

N-1
S % () = x(tn), b = % n=01,.,N—1 (2.74)
m=0

Written in a matrix form, this is

[l=s

a =X, (2.75)
with the entries of H formed by summing up the scaling basis function:

Hym = 9272 (ta) = 3 0721 () (2.76)
leZ

If H is invertible , then o = E_lz, and this = thus interpolated lies surely in Vj, ;,. Therefore,
the question whether x € V,;, is justifiable is transformed into a problem regarding the

invertibility of H. The following theorem gives this question an answer.

Theorem 2.4.1 The matriz H formed above is of full rank, if the scaling function ¢(t) is

mazimized at t =0 and

$(0)
for some v > 1, which satisfies the inequality
2 4 1
27/2 + -1 -1 + (1 + 1- 217> N1 <1 (2.78)

where N = 272,
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Proof: See Appendix A2.5

Note (2.77) is much weaker than the corresponding localization requirement for ¢. It in-
volves only integer points on the definition domain. For many scaling functions, as the one we
will build soon, ¢(n) is almost negligible in comparison to ¢(0). The parameter v is thence
usually very large, albeit the localization order of ¢ is actually much smaller. In this case,
inequality (2.78) will hold provided that N is larger than a certain value. For example, when

v = 3.6, a signal with a length N > 8 will always have (2.78) satisfied.

2.4.2 Symmetric extension

For the symmetric extension, one may use the same trick as above to justify z(t) € V,;, C
Ly(Try). But it is easier to accomplish the task by availing ourselves of the proved Theo-

rem 2.4.1.

Extend the series z, = (%), n = 0,1,...,N — 1 symmetrically by a half to form a new

2=

series z], such that

Tn, n=0,1,.... N —1
ToN-n- Nn=N+1,...,2N —1
Here 'y = = is not provided by data. It could be filled with any number that is reasonable,
1

e.g., ty = 5(xy_; + 2y, ;) = xy_1. This extra point emerges in the symmetric extension for

discrete signals. For a continuous signal, it is not necessary.

Periodically extrapolating the newly formed signal z},, n = 0,1,...,2N — 1, fulfills a sym-
metric extension of x,, n =0,1,..., N — 1. The justification problem is now to show that the
interpolated function z'(t),t € [0,2) with periodic extension lies in Vj, j,. To do this, re-scale

the argument of z’ to construct a new function
y(t) =2'(2t),  teo,1), (2.80)
and its corresponding series

n
Yn =Y (ﬁ) =z n=0,1,...,2N — 1. (2.81)



CHAPTER 2. MULTISCALE WINDOW ANALYSIS 63

It is at this point that Theorem 2.4.1 applies. Note the N in (2.78) now should be replaced
with 2N = 2721 This replacement further weakens the already weak condition (2.78) for
a family of scaling function, under which y(¢), ¢ € [0,1) is a vector in V, j,41 by the above
theorem. This is to say, when (2.78) is satisfied, there exists a unique series «a;, such that

2N—-1

A=yt = Y amdtT(G)  te0?)
2%i01

= Y V20,987 (). (2.82)
m=0

In this case, #'(t),t € [0,2) is a function in V, j, with period 2, and so is z(t),t € [0,1). This

completes the justification under a symmetric extension.

2.5 Construction of the scaling basis

At this stage, the ground work has been finished and our problem left is to build a scaling
basis {¢(t — k) }ez. This scaling basis is not just an arbitrary one. It must meet the following

requirements according to the above sections:

. {¢(t — k) }kez orthonormal;
. ¢(t) symmetric about the origin and maximized at zero;

. ¢(t) polynomially localized up to order v > 1.

We begin this section with an introduction of the dilation equation, which must be satisfied
by any scaling function. Dilation equation brings together a scaling function and filter bank,
which is particularly important in scaling analysis and basis construction. The second sub-
section applies this equation to show that a scaling basis, if orthonormalized, is also scaling.
With this result, we start the construction with a function, the cubic spline function, which

is known to satisfy the dilation equation, and orthonormalized it to achieve our goal (§2.5.3).

Notation remarks: (1) Generally Strang and Nguyen (1997)’s conventions are adopted
throughout. Capital Latin or Greek letters with a hat represent functions in the frequency
domain (Fourier transform), while lowercase Latin or Greek letters without a hat stand for

time domain representation. (2) While throughout this thesis, all scaling bases are assumed



CHAPTER 2. MULTISCALE WINDOW ANALYSIS 64

to be orthonormal, in this section orthonormal and non-orthonormal bases do coexist. In case
any confusion arises, notation ¢ without any superscript or subscript is always reserved for
the orthonormal class, while bases in a more generic sense are distinguished with some proper

subscripts (e.g., ¢3 for a cubic spline).

2.5.1 Dilation equation and filter bank

The construction of scaling function ¢ begins with an equation called the dilation equation.

It is a direct result of the multi-resolution analysis (MRA).

We know, by the nestedness of MRA, that Vy C V;. The scaling function ¢ € Vj conse-
quently can be represented with the basis of Vi, {2'/2¢(2t — k) }rez:
o(t) =v2> ho(k)p(2t —k), VtieR (2.83)
kEZ
This is the so-called dilation equation, with iy (k) being the expansion coefficients. Likewise,
Wy C Vi implies
h(t) =V2 Y hi(k)p(2t —k), VteR, (2.84)
kEZ
an equality referred to as a wavelet equation. Note in Egs. (2.83) and (2.84), the pre-

multiplied factor is v/2, instead of 2 as in Strang and Nguyen (1997). This difference arises

from the different function spaces which have been chosen (Lz(R) here).

More generally, for any j, the nestedness of MRA implies that V; C V1. So there exists a
sequence {a‘/i}kez € {3, such that

#t) = ol (1), (2.85)

keZ

or

2112 p(27¢) = Z ai U204y _ ),
k€EZ
which becomes, with t replaced by 277¢/,

$(t') = V2 afp(2t' — k).

keZ
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This is just the dilation equation (2.83), with
al, = ho(k) (2.86)

independent of the scale level j. So, if sampled on ¢, (2.85) can be viewed as a signal output
from a convolution of the input with hy which does not depend on time. This time-invariant
operator, hox: Vi1 — Vj, is called a low-pass filter. Likewise,
W] C ‘/]’_1_1 — 1,[)] Z ﬁk(ﬁ]-'_l
. keZ
= (] =hi(k) independent of j.
And hy* : Vi1 — W is called a high-pass filter. Filters may be represented either by the
impulse response or by frequency response. {ho(k), k € Z} forms the impulse response for

the low-pass filter, while

= Z ho(k)e ™, weR,
keZ

gives the frequency response. Similarly, we have two responses, hi(k), and H;(w), for the
high-pass filter. For convenience, we will refer to a filter simply by its impulse or frequency

response.

ho and h; form a set of filters, called a filter bank.'® Filter banks are very important in

building basis functions and facilitating function analysis, as we will see later.

Filters can be found from a given scaling function and/or wavelet function. For the low-pass

filter, the dilation equation (2.83) implies
ho(k) = / B(t) - V2(2t — k) dt
= ¢ — k) dt (2.87)
oy

by orthonormality of {¢(¢)}xez. The frequency response is also easy to obtain. In fact, the

dilation and wavelet equations,

oty = 225 ho(k)p(2t — k),

keZ

() = 223 h(k)g(2t — k),

keZ

15To be precise, it is an analysis bank here.
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have a simpler representation in the frequency domain:

W) = ZH(5)d(3) (2.89)
o) = (). (289)
Eq. (2.88) yields
w P(w)
Ho(3)=vV2 —. 2.90
) =v2 3 (2.90)

In a similar way, the high-pass filter response may also be obtained. In real problems, however,
there is seldom knowledge of v in advance. The resulting formulas for H; and h; in these
forms thus are not of practical use. A common exercise to get them is from their low-pass

counterparts. We will see an example in the next subsection.

There is a very interesting property for the filter bank obtained from an orthonormal scal-
ing and wavelet basis: the double shift orthonormality. By the dilation equation and

orthonormality of the scaling bases formed by ¢,

o = [ G0t —m) dt
_ /R2 S ho(k)p(2t — k) - S ho(1)p(2t — 2m — 1) dt

keZ leZ

= 5 ho(k)ho() /R L1 Ghsa(t) dt
k [

- Z Z ho(k)ho(l) - Ok 2m+i-
k l

That is to say,
> ho(k) ho(k —2m) = 6o, YV meLZ. (2.91)
kEZ
Similarly we have, for h; and hyg,
> ho(k) hi(k—2m) =0, VmeLZ, (2.92)
kEZ
by the perpendicularity between V; and Wj. Egs. (2.91) and (2.92) describe the double-shift

orthonormality for a filter bank.
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2.5.2 Orthonormalization of the scaling basis

As mentioned before, one of the central issues in this study is the orthonormality of the
analysis basis, on which the Parseval relation relies. Until now, we have assumed the scaling
basis {¢?} to be orthonormal. But what if we have in hand one which is non-orthonormal?

In this subsection, we give a way to deal with this situation.

Suppose, for the time being, we have a translation invariant basis {¢.(t — k) }xez which is
non-orthonormal. We want to find from it an orthonormal one {¢(t — k)}recz. In the time

domain, the orthonormality of {¢(t — k) }rez reads that

a(6.0) = [ st~ Ryt = 5(h)

which, if transformed to the frequency domain, becomes (Strang and Nguyen, 1997)

A$w) = Y [bw+2m)P = 1.

This condition is also sufficient, a detailed proof can be seen in Strang and Nguyen (1997, p.

205). We thus have
{é(t — k) }rez orthonormal iff A(p,w) = 1. (2.93)

If, for some dilation function ¢, A(QB*, w) > 0, condition (2.93) implies that we may orthonor-

malize B, = {¢«(t — k)}rez in the frequency domain by dividing it by \/A((]B*,w). But the
positivity of A(¢,,w) is guaranteed by the Riesz basis property (cf. (2.4)) by Theorem 6.13

of Strang and Nguyen (1997); the orthonormalization of B, is therefore easily attained.

Our next task is to show that the orthonormalized basis

Borin = {¢(t - k)}keZa ¢(t) = F_l (M> ) (294)

A(¢*7 w)
with 7! being an inverse Fourier transform, is a scaling basis for V5. To be specific, we need

to show

e (i) ¢(w) satisfies the dilation equation (2.88);

e (ii) By is a basis of Vj.
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Notice that here the shift orthonormality of B, is automatically satisfied. The following
proof generally follows Truchetet (1998).'6

Recall that B, = {¢.(t — k)}kez is a scaling basis of V. ¢, must satisfy an equation in
the form of (2.88) (The derivation of (2.83) and (2.88) don’t require the orthonormality of

{¢«(t — k) biez):

o 1 W, ~ W

Pu(w) = EH*0(§)¢*(§)' (2.95)
So

g% w A(é*a%)) o

W) = ¢*(w) :L H,o(<) - w

which apparently satisfies the dilation equation with a low-pass filter

g) : 7‘4((’?*’ %)- (2.96)
A((ﬁ*,w)

This completes the first part of the proof.

The second part of proof requires one to show that the sequence By, = {p(t — k) }rez fur-
nishes a basis for V. Observe that Apr(w) = \/A(ds,w) is 27-periodic. It can be represented

with the Fourier basis as

Apr(w) =Y agr(k)e ™" (2.97)
keZ,

Hence

$(w) = W) Arr(w)
- (ZaRT(k)e_i“’k>-q3(w), (2.98)
k

which, when transformed to the time domain, becomes

o» (t) = (Z aRT(k) : ‘7:71 (eiwkéorth(w))>
k
= S arr(k) - $(t — k). (2.99)
k

16The English translation of the relevant part of this was generously provided by Dr. F. Nicolier of the
University of Burgundy, France.
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Translating ¢ by any integer yields a similar equation. So all f(¢) € spanB, can be written as
a linear combination of the elements in another family By, = {¢(t — k) }rez. In other words,

Borih 1s a basis of the space which is the closure of the span of B,, namely, V. Q.E.D.

In the above proofs we appeal to the low-pass filter bank many times to bring together the
dilation functions at different scales. Actually it is also possible to find this filter bank in

terms of the pre-orthonormalized ¢,. From Eq. (2.96),

H A((ﬁ*,w)
0(w) = Hyp(w) ——r=. (2.100)
V A(x, 2w)
But from (2.95),
_ \/ﬁé*@w)
H,y(w) = 7&‘(0)) . (2.101)
A relation bridging Hy and b, is then established:
Ho(w) = v22: %) Albow) (2.102)

P+ (w) Ay, 2w)
Note here Hy(0) # 1, different from that in Strang and Nguyen (1997), as we are considering

problems in space Lg(R) rather than L., (R).

To summarize, a scaling basis of Vj, if not orthonormal, may be orthonormalized with the
technique of (2.94). The resulting basis spans subspace Vj, and the corresponding scaling

function satisfies the dilation equation. It is, consequently, also a scaling basis.

2.5.3 B-spline scaling and wavelet functions

With the above preparation, we are now ready to build our scaling and wavelet bases, the
B-spline bases. The problem is to find the dilation and wavelet functions ¢(t) and 1 (t), for
teR

B-splines and scaling functions

It is well known that splines provide bases for certain piecewise polynomials (e.g., Strang and
Nguyen, 1997). They can be constructed to any degree. For the widely used cubic spline,

it consists of polynomials of the third degree on unit intervals within [—2,2] with derivatives
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continuous up to the second order. Splines are also referred to as B-splines, a name with the
origin not quite clear.!” As will been seen soon, B-splines are symmetric scaling bases.
Splines can also be defined with time-domain box functions. n + 1 box functions convolute
to form an n-th degree B-spline. Particularly, a cubic B-spline is
¢d3(t) = B(t) * B(t) x B(t) x B(t) (2.103)

with the box function B(t) defined as

1 It < 3
B(t) = ¢o(t) =

0 otherwise.

Fig. 2.3 shows the four splines of different degrees thus formed. Later on we will see that

X0 0
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
% -1 0 1 2 % -1 0 1 2
t t
@,(t) 0,0
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
9 -1 0 1 2 9 -1 0 1 2
t t

Figure 2.3: B-splines of zeroth, first, second, and third degrees

definition (2.103) allows an easy algebraic manipulation of ¢3 in the frequency domain.

17"The letter “B” might signify “bell” or “basic”.
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The family of splines {¢,(t),n > 0} has an appealing property, as established in Strang
and Nguyen (1997, pp. 252-253). In their book, the abscissa in the box function diagram is
shifted rightward by a half. As a result all the convolutions lie on the right hand side of the
ordinate. In that coordinate frame, by the cascading algorithm (p. 234 therein), the average
filter (3,2) leads to ¢o(t) (the scaling function for the Haar), (3,1) * (3,1) to the Mexican
hat, and so on. In general, the convolution of n + 1 average filters (3, 1) iterates to ¢n(t).
Therefore, ¢, (t), particularly ¢3(t), satisfies the dilation equation of multi-resolution analysis
(since it comes from the recursive iteration of low-pass filters). It is thus a scaling or dilation

function and its translation invariant family forms a scaling basis (see Strang and Nguyen,

1997, for details).

The orthonormalized scaling function and low-pass filter

The cubic B-spline has a good compact support. The corresponding filter is accordingly an
FIR (finite impulse response). It is also symmetric, if the data points are evenly spaced (we
don’t consider irregularly spaced series in this study). It is , however, not orthonormal on
translating. This can easily be seen from Fig. 2.3. In fact, Daubechies (1992) has established
that no orthogonal scaling basis with finite support can ever be found in the B-spline family
except for the Haar system. In other words, if we insist on orthogonality, the compactness has
to be abandoned; the two properties are not consistent within this family. For this reason,
the B-spline bases constructed are usually biorthonormal instead of orthonormal. In our
problem, however, orthonormality is of paramount importance, while compactness is not that
essential. A basis which is “effectively supported” on some finite domain is enough to meet the
MS-EVA needs (the localization requirement, see below). Our objective is, in spite of its non-
compactness, to find from ¢3(¢) an orthonormal scaling basis {¢(t — k) }rez. As established
in the previous subsection, ¢ may be simply be taken to be the orthonormalized ¢3(t). The

following shows how the orthonormalization is achieved.

Taking Fourier transform of Eq. (2.103), one obtains

. 4
&3(0)) = Sinc4(§) — (%) (2.104)

where w is frequency in radians. The orthonormalization is gained by dividing qgg(w) by
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(CYROX(®) (b) P(w) (©) @)
1 1 1
0.5 0.5 0.5
0 0 0
-5 0 5 -5 0 5 -5 0 5
w w t

Figure 2.4: The cubic B-spline (in frequency domain w in radians) (a), and its orthonormalization (in
both frequency domain (b) and time domain (c)).

A(<133,w)3 A
By = 2 (2.105)
A(ps,w)
where
A, w) = b |3 (w + 2mm) 2. (2.106)

An inverse Fourier transform of ¢(w) (Use the package from Press et al., 1993) yields the
desired ¢(t), which is plotted in Fig. 2.4.

The ¢(t) obtained is symmetric about and maximized at ¢ = 0. By translating it furnishes an
orthonormal basis of V4. The localization of ¢(¢) has also been studied. It decays exponentially
as |t| increases (Holschneider, 1995, p. 193), a property which guarantees the polynomial
localization which has been investigated before. It is not our intention here to go into details
of the localization problem. We just want to repeat a fact that the ¢ thus-obtained meets
the localization requirement: |¢(¢)| < £5(¢) with v > 1. As an example, Fig. 2.5 shows that
|p(t)| < KS(t), where ¢ = ¢(0) = 1.0889, and k§ is of order v = 2. Here the localization order
is twice the threshold value v = 1, implying a fast convergence rate for the series summations
involved in periodizing the bases. Besides, the ¢ obtained satisfies (figure not shown)

¢(0)

m, VnEZ,

[#(n)] <

with v* being a number greater than 3.6. Signals with length N larger than 8 will then meet
the inequality constraint (2.78) of Theorem 2.4.1 (cf. p. 62).
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lo®)] and k() (v=2)

0.8r b

0.6 4

0.4 b

0.2 1

0
-15 -10 -5 0 5 10 15

Figure 2.5: The absolute cubic B-spline scaling function |¢(t)| versus xS(¢) (thick) with =2,
C=¢(0) = 1.09.

Associated with ¢(t) is the low-pass filter. It is now easy to obtain, either by Eq. (2.87),

k) =5 [ o(5)0te =i (2.107)

or by (2.88),

Ho(w) = Y ho(k)e ™
k
_ Y2 o(w) (2.108)
P(w)

It is also easy to verify that the obtained sequence {ho(k)}kez is double shift orthonormal, as

expected from the orthonormality of {¢(t — k) }rez.

The wavelet function and high-pass filter

A wavelet basis is needed in computing the localized power spectrum for scale window iden-

tification. Wavelet bases are formed by dilating and translating wavelet functions (), while
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(t) results from the high-pass filter h; (k) by Eq. (2.84), given the scaling function ¢(¢). There
are many techniques available for the construction of hy, and alternating flip is just one such

(Strang and Nguyen, 1997, Eq. (2.17)). Tt states'®
H(w) = e “Hy(w + ). (2.109)
Or, in the time domain

hi(k) = / H, (w)e™ dw

_ / w(k—1) Zh’ (m —im(w+7)

— th /6 m— 1—|—k
- i( eiin 11
) Fho(1 — k)
- )

DFho(1 -k (2.110)

Notice this formula'®, differs from the usual ones like Strang and Nguyen (1997), where the
power of (—1) is k,
hi(k) = (—=1)*ho(1 — k). (2.111)

It is easy to verify that both of these formulas give the desired double-shift orthonormality
(2.92). That is to say, what matters here is the alternating feature of the minus sign, rather
than its location of appearance. Both (2.111) and (2.110) may be used. But keep in mind,
the time-domain counterpart of (2.109) is (2.110).

In addition to alternating flip, other approaches are also available to the building of A4 (k)
or Hi(w). The QMF (Quadrature Mirror Filters, or alternating sign), for example, is just one

of these approaches.

With the high-pass filter available, the wavelet function is now easily to be obtained. By
(2.84):
- 1

o) = SH(G)-9(3). (2112)

18Tn this subsection, overline denotes the complex conjugate.

190ther forms may also be possible. Actually one may choose, for any odd N, the alternating flip to be

hi(k) = (—1)*ho(N — k).

Again, the (—1)* can be replaced by (—1)**+'.
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Inversion of this equation gives the time domain representation of 1 (t), the wavelet function
we are seeking for. Figure (2.6) plots the ¢ and 1 obtained, and the corresponding filters hg
and hq.

2.5.4 Wrap-up for this section

We have obtained, from the cubic B-spline function ¢5(¢), an orthonormal scaling basis {¢(t —
k)}kez (and its corresponding wavelet basis) adequate for the multiscale window transform.
B-splines form a class of scaling bases, also Riesz bases, with compact supports. They are,
however, not orthonormal in the space where they are considered. By the results of §2.5.2,
these Riesz bases can be conveniently orthonormalized, and the resulting orthonormal outputs
retain their respective dilation properties. The construction procedure of ¢(t) is thereby
simply the orthonormalization of {¢(t — k)}rez. The ¢(t) thus-formed is symmetric about
and maximized at zero, and has a polynomial localization of order v > 2. For later use, its

corresponding filter bank and wavelet basis are also acquired.

2.6 Computation of the multiscale window transform and syn-

thesis

Given a p € V, ;,, the key to its multiscale window analysis is finding the scaling transform
» 0 .
po= | pt) il (1) dt

and, if necessary, the wavelet transform
Pl = / ) 12 (t)

for the three window bounds j = jp, j1, j2. Once they are obtained, all the window transforms

and syntheses then can be easily computed by their respective definitions.
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Figure 2.6: The orthonormalized cubic B-spline scaling and wavelet functions and their corresponding

filter bank.
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2.6.1 Fast scaling transform below level j,

Suppose that we already know p/*! for some scale level 5. The projection of p(t) on Voj+1s

the subspace generated by
{8 ey = {20*”/2 Dbt +ol) - n)}
(€7 neNI+!

is represented as
pini(t) = Y aTeRt(®). (2.113)
ne/\f”‘l
By multi-resolution analysis, this can be decomposed into a sum of two terms, i.e.,
Z pH—l Q,J+1 (t) = Z ﬁ%gﬁg’] ) + Z ﬁ7¢e,3 (2.114)
meNi neNy nenN
Using the orthogonality of V, ; and W, ;, we may compute from this equation the scaling

transform of p at location n and level j:

Bo= [0 e e o) d

0

meNit!
. o . .
= X W[ et et ar
mE/\/’j"_1 0
= > ity Z/ HELE + oly) @ (t 4 ofs) dt
meN]Jrl U ET L2ET
- X At S [ e o g0 af
mendt! ALET €T,

(t =1+ ols, A€:€1—€2)
- Y Y /¢J+1 ' + o) ¢ (') di’

meNit! ALeZ
- Y Y / V22" + 20— m + 27+ pAL) Bl (") dt”
meNit! AleZ
(t" = 29t' —n)
= Z p]+1 Z /¢m 2n— 2J+19A[ [Z hO ¢k ” ]
meNg ! AteZ

(dilation equation)

= Z ﬁ]rr—zl_l Z Zho /¢m 2n— 2J+19Al(t”)¢k(t”) dt"

meNi+! ALEL kEL
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= Z pirt Z Zho(k)5(k—(m—2n—2j+lgA€)),

meNi+! ALEL kEL

ie.,

o= > B> ho(m—2n— 27 pp)

meN; ! tez
= Z ﬁﬁ'lhg’jﬂ(m —2n). (2.115)
meNiT!
The convergence of
h§?H(m = 2n) =3 ho(m — 2n — 2% gl) (2.116)
Lel

is not in question. This can be seen from the equation (2.87), which we re-write here for easy

reference

ho(k) = %/qu(g) St — k) dt. (2.117)

From it hy may be viewed as the Fourier coefficient of a y-order localized function ¢(¢/2) with
respect to a y-order localized basis {¢(t — k)}, and hence it itself is also y-order localized by
the Theorem 11.0.2 of Holschneider (1995). As v > 1, by the way in which ¢ is built, the

infinite sum of (2.116) converges (cf., Lemma A2.5.1). Likewise, the wavelet transform

o= > B hi(m—2n— 2710

meNgt  len
= > PR (m - 2n). (2.118)
mG/\/'g+1

Again, the convergence of the infinite sum is not an issue provided that 1 is polynomially
localized up to an order > 1. Therefore, once pj2, the scaling transform at the highest level,
is obtained, all the transforms below level jo can be computed efficiently with (2.115) and

(2.118).

2.6.2 Scaling transform at the scale level j,

The remaining issue is now is to find p/2. The basic idea has been already mentioned before
in many places in §2.4. These pieces are re-organized in this subsection to make the story a
whole. Following the same procedure, we distinguish two cases: extension by periodization

and extension by reflection.
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Extension by periodization

Recall measurements of a function p(t) are available only at 2/2 = N points: t, = N o=
0,...,N — 1. It has been justified in §2.4 that the p(¢) reconstructed from these measurements

by interpolation lies in V, j,. When a periodic extension is used (¢ = 1), this is to say,

N—-1
pltm) = Y DRy (tm),  m=0,., N =1, (2.119)
n=0
or, in a matrix form,

H p” = p, (2.120)

. . . . T
where p = [p(to), p(t1), ..., p(tn—1)]", P> = [pOQ,p{Q, s DN_1| s and

Ho Ho, Ho n_1
H- f‘Il,O 1.171,1 H.1,N4 | (2.121)
Hy 10 Hny-1: Hy 1N
with the entries
Hpp = 002 (tm) = > ¢ yy(tm),  m,n=0,..N — 1. (2.122)
1€7,

with the ¢ obtained, this H is invertible. So

l=s

p”> =H'p, (2.123)

which gives the scaling transform of p at level js.

Notice that H is determined completely by the structure of the chosen space. It doesn’t
depend on the signal at all. Therefore the inverse of it may be obtained once and for all.
Notice further that H,, o N = Hypp, and Hy, n = Hytanta, for all integers o, m, and n that
make the indices meaningful, which is due to the periodic property of ¢.2(¢). This simple fact
implies that H is a circulant matrix, and hence E_l is also circulant (e.g., Davis, 1979). This
gfl therefore behaves like a cyclic filter (except for a constant multiplier), pre-treating signals
before they enters the fast analysis bank. For the orthonormal scaling basis built before, this

“pre-filter” with jo = 10 is shown in Fig. 2.7. From the plot, it is rather weak (side lobes

negligible compared to the value at zero), and will exert effects only on grid-size features.
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The "pre—filter" from the rows of Ht

0.03} b
0.02}
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Figure 2.7: The "pre-filter” formed from the rows of g_l in computing the scaling transforms at the
highest scale level allowed by signal. j, = 10 in this example.

Extension by reflection

The idea to calculate pj2 with an extension by reflection has also been mentioned in §2.4.
We first extend the discrete signal p(¢,) from [0,1) to [0,2) as we did for z, in (2.79), then
starting from this extended series, extrapolate it periodically to the whole R (period=2 now).
The computational problem with a symmetric extension now boils down to calculating the
transform of p(t) reconstructed from this extended signal. Let ¢(t) = p(2t). ¢(t) is then in
Vo,jo+1 and is formed by periodic extension from domain [0,1). By the result of the preceding
subsection, we can obtain g/2*! by solving equation

2N—1

XA ) = a5 (2.124)

Triej 0,1,...,2N — 1.

If N satisfies condition (2.78), so does 2N. This equation must have a unique solution for

@2*1. By what we have shown in (2.82), /2 is simply related to /27! as:

pjz =2 q32+1, n=20,..,2N —1. (2.125)

Consequently, the scaling transform of p(¢) at level j; can be conveniently computed, either
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with a periodic extension or a symmetric extension. Note pJ2 is not p,, itself (up to a constant
factor). The fast scaling/wavelet transform therefore doesn’t apply directly to p,. In other
words, signals must be “pre-filtered” before entering the filter bank. (Strang and Nguyen,
1997, p. 232). In this study, the filter for the pre-filtering is from the rows of the circulant

matrix H L.

Once p? is obtained, all the scaling transforms below level j, can be obtained easily with
the aid of Eqgs. (2.115) and (2.118). These transforms, when substituted in (2.58) and (2.59),

immediately yield the desired multiscale window analysis and synthesis.

2.6.3 Testing examples

To validate the multiscale window analysis developed in this chapter, two finite-lengthed

signals
Al = eﬂm—@2+aaﬁwﬁygnwa—%y (2.126)
1 1
fa(t) :t—§+mfmﬁﬁmw@—iy (2.127)

t € [0,1), which are highly localized in time and distinctly windowed on scales, are used
to test whether their multiscale features can be correctly reconstructed. With the following
parameters

a=25 p=1x10* w=150r, a=0.5,

these signals are plotted in Fig. 2.8 (top row). According to their distributions, we choose for
f1(t) and fo(t) respectively a periodic extension and a symmetric extension, and perform and
a two-scale window decomposition (windows 0 and 1) for the extended signals. In doing so,

the upper level bound of the large-scale window (i.e., window 0) is set to be jo = 5.

The results of the test are shown in Fig. 2.8, at the middle and bottom rows. In either case,
the two-scale localized features have been well reproduced in the synthesis channel (bottom),
with only some tiny error which is almost indiscernible by naked eye near the boundaries in
the right-bottom subplot. The capability of our multiscale window transform is thus tested,

satisfactorily with highly localized signals.
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Figure 2.8: Testing examples of multiscale window analysis with functions f;(¢) (column a), and f(t)
(column b). Sitting on the top are the original signals of f; and f», and the transforms and syntheses
are shown at the middle and bottom rows, respectively. The blue is for scale window 0, and the red for
window 1. Note the transforms are discretized in value. The window-1 distributions (the red “lines”
at the middle row) look continuous because there are too many data points involved. The abscissa
of the middle-row plots have been converted into locations in the physical space. In performing the
analysis, jo = 5 is chosen and extensions by periodization and by reflection are applied to f; and f2,
respectively.
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2.7 Two-dimensional multiscale window transform

As mentioned in Chapter 1, and will be more clear after Chapter 4, we need a multi-
dimensional or multivariate large-scale window transform to handle the scale decomposition
in the space direction. In this section, we illustrate how the one-dimensional (1-D) multiscale
window transform developed above can be extended to a multivariate case (particularly, a 2-D
case). In order to make the correspondence clear, the 1-D notations, such as those for filter re-
sponses, scaling functions, scale window transforms/syntheses, etc., will be used henceforth in
this section without change. The dimensionalities of the field over which they are defined can
be distinguished by the arguments they take, a practice resembling to the function overloading

in the C++ computer language.

2.7.1 Dilation matrix and multi-resolution analysis

The extension of the 1-D transform begins with a replacement of the dilation factor “2” in
the 1-D scaling function with an nxn matrix M. This M is called a dilation or sampling
matrix. It must meet the following requirements, as summarized in Kovacevic and Vetterli

(1992):

(i) Each entry m;; € Z,V i,j =1,2,...,n;

(ii) Every eigenvalue |\;| > 1,V i=1,2,...,n.

The corresponding dilation equation, parallel to the 1-D case, is

¢(x) =VN > ho(k)p(M x—k), xeR (2.128)

kezZn
with N = | det M|, the absolute value of the determinant of M. Here x € R" is the coordinate,
and k € Z" an integer vector. As in the 1-D case, hg(k) represents a low-pass filter. The
coefficient v/N appears so that the sequence {v/N $(M x — k), k € Z"} is orthonormal in the
function space Ly(R™). N itself is referred as the dilation factor because it measures the
overall dilation effect. When n = 1, the only reasonable choice for M is 2. The dilation factor

is then also 2. Compared to this 1-D case, multi-dimensional problems have more freedom in
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choosing M, and therefore more dilation factors are possible. For instance, when n = 2, the
dilation matrix could be
0

M, = , M, = , M, = . (2.129)

For the first case, N = 4, for the rest, N = 2. Dilation matrices like M, or M, are said

to be nonseparable, since they cannot be linearly reduced to a diagonal form by real

transformation. The opposite of the nonseparable dilation matrices are separable. M is

1

just such an example.

A dilation matrix M determines a sampling scheme. Given an M with | det M| = N, since
M(zZ") ={Mk, keZ"}

is a subspace of Z", we can form

2" [M(Z"),
the quotient space of Z™ by M(Z"). It has been shown that this space contains only N
elements-cosets (see Wojtaszczyk, 1997), which constitute close to the organ a principal par-
allelepiped on the sampling lattice generated by the M (strictly, by the basis of its column
vectors). This parallelepiped is referred to be a Voronoi cell (cf., Kovacevic and Vetterli,
1992). Fig. 2.9 shows the Voronoi cells and cosets with respect to M, (Z?) and ﬂQ(ZQ),

respectively.

The question is, among the many choices of dilation or sampling matrices, which one should
be picked? Before answering, we first look at the definition of a multi-resolution analysis over

R™.

Definition 2.7.1 Given an nxn dilation matrix M, a multi-resolution analysis with respect

to it is a sequence of closed subspaces {V},j € Z} of Ly(R™) such that
(i) icV;, VYi<yj, 1i,j€; (Nestedness)
(ii) Ujez Vj is dense in Lo(R"); (Totality)

(iii) Njes Vi = {0}; (Emptiness)
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Figure 2.9: Voronoi cells and cosets with respect to M (Z?) (left) and M, (Z?) (right).

(iv) Vp is spanned by some orthonormal shift (or translation) invariant basis
{o(x—k), ke Z"L
(v) fix)eV; iff f(Mx)€ Vjq. (Refinability)
This definition corresponds exactly to its 1-D version given in §2.2.1. Denote
#re(x) = N'Pp(M x — k). (2.130)

It has been established (see, for example, Meyer, 1992; Daubechies, 1993; Wojtaszczyk, 1997)

that the sequence {V}, j€Z}, where
Vj = span{¢j,(x), k € 2"},
does form a multi-resolution analysis, provided that
* $(x) = N'/? Tyepn ho(k)p(Mx — k)) converges in Ly(R");
e The Fourier transform of ¢(x), $(0), is not zero, and hg(w) is continuous at w = 0.

(Wojtaszczyk’s theorem also requires orthonormality of {¢(x — k}, but this is not an issue

here as it is included in the above definition of gbg(;).)

According to the multi-resolution analysis, Vj;1, the multi-resolution approximation

of Ly(R") to level j+1, can be written as

Vis=V; @ Vi~
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Meyer (1992) shows that, the orthogonal complementary V}L can be further analyzed into a

direct sum of N — 1 mutually orthogonal subspaces (N = |detM|):
N-1
Vit = P Wi, (2.131)
m=1

which, together with Vj, correspond(s) to the cosets with respect to M(Z"). So, when N = 2,
only one subspace is admitted complement to V; at that scale level. This is similar to the
1-D problem. But if N = 4, as is for M = M,, the number of subspaces grows to 3, a

multi-resolution analysis we have never met before in Chapter 2.

As explained by Meyer (1992), the above result may be understood intuitively as follows:
When V; gets dilated to V1, the size of the measure is incremented by a factor of N. In
other words, the space has been “enlarged” by N times. Therefore, V;,; is the direct sum of
Vj and N — 1 other subspaces. A related fact is also seen in Fig. 2.9, where the Voronoi cell

with respect to M, (Z?) is twice as large as that with respect to MZ(ZZ) or ¥3(22).

Our previous questions about the choice of dilation matrix M can now be answered. For
the analysis of V1, when N > 2, the features represented in subspaces Wj,, (m=1,...,N-1)
are not just the details in the usual sense. They may involve averages (approximations) in one
dimension but details in another, as that of the tensor product formulation (corresponding to
Ml). In other words, not all averages at level j are included in V. Some of them may also
be dispersed in other subspaces at the same level. This is obviously not what we want for
the local average. The dilation matrix M thus must be such that N = |detM| = 2. As only

two-dimensional cases are considered, we choose the M, of Eq. (2.129) henceforth.

2.7.2 The low-pass filter by McClellan’s method

To begin constructing a scaling function, ¢(x), we need first find a 2-D low-pass filter,
{ho(k)}kez2. There are many ways to approach the problem, Here we introduce a widely

used one, McClellan’s method.

McClellan’s method is elegantly simple. It involves the extension of 1-D low-pass filter im-
pulse functions. For a symmetric 1-D filter hg(z1), its Fourier domain representation involves

only cosines, which are definitely symmetric about the x9-axis on a two-dimensional plane
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represented by coordinate pair (z1,z2). Mathematically, it is

Hg(u)) = Zhg(k)e_ikw

keZ

= ) +2 Z ho(k) - cos(kw). (2.132)

Using the Tchebycheff polynomials {T}, %k = 0,1,2,...},20 the cosine terms can be written as
cos(kw) = Tj(cos w). (2.133)

It is at this point that McClellan applied his transform. Replacing cosw by a 2-D function

F(w1,ws), the filter is made into a 2-D one:
Hg(wl,QJQ = h() +22h0 wl,WQ)], (2.134)

where F(wi,ws) is required to be real, and its magnitude (absolute value) no larger than 1
in accordance with the replaced cosw (McClellan, 1973; Strang and Nguyen, 1997; Shapiro,
1994; Nicolier et al., 1998).

Equation (2.134) opens a vast variety of possibilities in building the 2-D filters. Shapiro
(1994) proposed for F(wy, we) a form

1 b
F(wy,wse) = §(cos w1 +coswsy) + g(cos w1 —coswsy) + g(sin 2w sinwy +sinwy sin 2ws), (2.135)

with parameters a and b varying (on condition that |F'| < 1) to adapt to any specific problems.

In the case of perfect isotropicity, a = b = 0, so only the first term is retained:
1
F(wy,wy) = 5((:08 wy + cos wy). (2.136)

In this appendix, we consider this simplest form only.

Using the 1-D hgy(n) derived before from the cubic spline scaling function, the 2-D hg(k) is

easily obtained by inverse transforming (2.134). The result is shown in Fig. 2.10.

20By definition a Tchebycheff polynomial of the nth degree is
T,.(z) = cos[ncos *(z)],

for |z| < 1. It is usually calculated from the recursion relations (cf., Press et al., 1993):
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hyk, k)

Figure 2.10: Impulse response of the 2-D low-pass filter ho(k). Note ho(k) is defined on the lattice
(k1,ko) € Z2. But for the sake of clarity, its discrete points are joined together with straight lines.

2.7.3 Scaling function from the low-pass filter with the cascade algorithm

The obtained 2-D low-pass filter ho(k) is now adopted to build the scaling function ¢(x),
with an algorithm called the cascade algorithm (Strang and Nguyen, 1997). The cascade
algorithm relies on the convergence of an iteration, which is beyond the scope of this section.
We just re-examine an example which has been used with success (see Nicolier et al., 1998,
1999, and references therein) and hence avoid invoking that issue. Let us assume there exists

such a function, ¢, such that

$(x) = N2 3" ho(k)p(M x — k), (2.137)
ke7Z?

where the factor N'/2 is for normalization. The scheme for the cascade algorithm is henceforth

e (i) Start from some ¢°(x),
o (i) ¢"'(x) = N'* Tpepo ho(k)¢"(Mx — k),  n>0,

e (iii) Repeat (ii) until ¢"(x) converges. The converged limit is the desired ¢(x).
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Theoretically the starting function ¢°(x) could be any element in Lo(R?). In reality a careful
choice of ¢°(x) can greatly speed up the convergence. Since ¢(x) is symmetrical about the

origin, we choose a box function

1 7| < & 79| < &
B(xl,xz): 2 2

0 otherwise
for the initialization.

The outcome of the iteration relies crucially on the dilation matrix. We have chosen

whose two column vectors, (1,1)7 and (1,—1)7, generate a quincunx lattice as shown in
Fig. 2.9. The Voronoi cell on that lattice has an area only half as large as the one formed by
tensor product (ﬂl), and accordingly the normalization coefficient is v/2 compared to the 2
in the latter case.

Figure 2.11 is the scaling function ¢(x) from the dilation matrix M, and the low-pass
filter ho(k). The convergence is not slow. Twenty iterations are enough to have the relative

error reduced to below T:O' We perform beyond this step 30 iterations more in case accuracy

presents an issue.

2.7.4 Orthonormalization of the scaling basis

We have found the dilation function ¢(x), and hence a basis {¢(x — k}yez2 for the subspace
Vo. In what follows, we shall orthonormalize this basis. Once this is done, every dilation basis

that derives therefore,
{bh heen: = {NT?$(MIx — k), k € 27},

will form a total orthonormal system in its corresponding subspace, V;.

The orthonormalization of {¢(x — k) }kez2 is similar to what we have done for the 1-D case.
It is based on the following fact, which is a generalization of the Theorem 6.10 of Strang and

Nguyen (1997):
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9 (x,, X))

15

Figure 2.11: The 2-D pre-orthonormalized scaling function.

Theorem 2.7.1 {¢(x — k) }kez2 s an orthonormal system of Vo if and only if

Alpw) = 3 [p(w +2mn)|* = 1,

nez?

where $(w) is the 2-D Fourier transform of ¢(x).

Proof
The proof is the 2-D version of that of Theorems 6.10 and 6.13 of Strang and Nguyen (1997),

with the 1-D Fourier transforms therein replaced by their 2-D counterparts.

The theorem implies, given a Riesz basis B = {¢.(x — k) }iez2 of Vo, we may form from it

an orthonormal sequence

Bortn = {¢(x — k), k € Z*}, (2.138)
where
p(x) = F! (M) (2.139)
APy, w)
ABew) = Y Ipulw+2mm)], (2.140)

nez?
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and F~! the 2-D inverse Fourier transform. The remaining issue is to show that By, is
a scaling basis of V3. This can be done by following exactly what we did for the 1-D case
(pp. 67-69), with appropriate modifications pertaining to the function arguments, and with
the dilation matrix M instead of the dilation factor 2. Fig. 2.12a shows the basis function

orthonormalized from that of Fig. 2.11.

Once an orthonormal {¢(x — k)}yez2 is found, the corresponding low-pass filter can be
easily obtained from the dilation equation. Multiply (2.128) by N/ qu(M x —k) and integrate

with respect to x over R%. Using the orthonormality, we get

ho(k) = / N2 (M x — k) $(x) dx. (2.141)

Formula (2.141) states how a filter can be determined from the scaling function. But in
practice, we rarely exploit it to calculate the impulse response. It will be more convenient
to achieve the goal in the frequency domain. Look at the dilation equation (2.128) again. It

becomes, with a Fourier transform taken on either side,

w) = ﬁHU ((M_I)T&) é ((E_I)TQ) ‘ (2.142)

If the argument w is replaced by ((M_I)Tg), we obtain from it a formula for Hy(w)

¢ (MTw

Hy(w) = \/Ng (2.143)
$(w)

This is the frequency response of the low-pass filter, and an inverse Fourier transform gives

the corresponding impulse response hg(k). In Fig. 2.12b we plot such an hy(k) derived from
the ¢(x) shown in Fig. 2.12a.

2.7.5 Boundary extensions and the 2-D multiscale window transform and

synthesis

As the 1-D case, practically, we only have functions defined on a finite domain. They have to be
extended to R? before the analysis or synthesis applies. Again, we consider for this purpose
only two schemes: the extension by periodization (or periodic extension) and extension by

reflection (or symmetric extension).
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@) @(x;,x,) (b) hy(k,, k,)

Figure 2.12: The orthonormalized scaling function (a) and its corresponding low-pass filter (b).

Suppose that we have a function f = f(x) = f(z1,22), X = (z1,22)", defined on D:
[0,1) x [0,1). By a periodic extension of f (with periodicity one by default) from D to R? we

mean a new function f’ over R? such that

Flzy + 1,20 + 1) = fl(z1,m2), 1= (l1,1)T €22 (2.144)

[, 22) = fz1,22)  ifx€D. (2.145)

Likewise, a symmetric extension of f is an f’ over R? such that

fl(w1,29) = f(z1,22), Vx€ED, (2.146)
but
f'(z1 + 11,20 + 1) = f1(Odd(ly) + (=1)1 21, 0dd(l) + (—1)225), (2.147)
where (I1,15) € Z? and
0dd(l) = L [€Z, Lodd (2.148)

0. [ €Z,1even

In more general cases, a function f(x) defined on [0, p) x [0, ) = D,, for any integer p > 0,

can be extended in a similar way. Particularly, a periodic extension of this f with periodicity
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o from D, to R? is a function f’ such that

flx+ol) =fx), lez* (2.149)

f'(x) = fx), x€D, (2.150)

With this definition, the symmetric extension can be understood as an extension first by
reflection from D to [0,2) x [0, 2) (the symmetric extension restricted on [0, 2) x [0, 2)), followed
by a periodic extension with periodicity two. The above two schemes, therefore, may be treated
in a unified approach by considering a periodic extension with an integer periodicity p. For

simplicity, suppose o = 2* with A being some non-negative integer (0 or 1).

Functions through periodization with periodicity ¢ are identified with those defined on a
2-torus TZ = T, x Ty. As in the 1-D case, the problem is now studied in Lg(ﬂl“g) instead
of Ly(R?). We need to construct a sequence of closed subspaces in Ly(T'0?) in analogy with
the multi-resolution analysis of Lo(R?). Note it is not our intention to build such a sequence
in a generic sense. We just want to fulfill our task with the spline scaling basis we have just

obtained, in order to avoid invoking any unnecessary theoretical issues.

Recall V; is generated by
{0420 beeze = (N p(M'x — k), k € Z°}.

From this qbi (x) we construct a new function
' (x)= > l(x+ol), YkeZ (2.151)
1722
With the ¢ obtained before, the convergence of this infinite sum is very fast and hence is not
an issue. Obviously qbi’j (x) € Lg('I[‘f,) and, denoting by V; the Voronoi cell with respect to
ﬂj , we have for it the following property:

Theorem 2.7.2 {d)i’j (K)}kev-m’ for x € D(x) = [0,0) x [0,0) and o = 2*, furnishes an
xeVj

orthonormal system in Lo(Tl ).

Proof

For any k, k' € V; 9y,

I #8700 0 ) ax
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_// Zqﬁj (x+ 0f) Zqﬁj (x+ol) d

éeZz e’eZ2
Z // ¢7 )(ﬁ{{,X—FQAg’)dX (X:§_|_Q£, Aﬁzgl—@
AL eZ? N
- / /R Sy) ¢ (k) dy + > / / Y b e @) dy.
AL'#0 =

If Al #0,as k' € Vjt2xs QMjAE’ — k' is never 0. By the orthonormality of {gﬁi(;)}zz the
second term hence vanishes. For the same reason, the first term is equal to d(k — k'). (Here

we use §(£) to signify 6(¢1)d(¢3) for any vector £ = (¢1,42)".) So

/ / PR (x) 47 (x) dx = 3(k — K) (2.152)

for all k, k' € V4, and the theorem is therefore proved.

Now let

Voj = Span{ i’ja ke Vj+2)\} . (2.153)

By the above theorem, this space has an orthonormal basis { ﬁ’j

= }EEVH—QA
dimensionality dim V, ; = 272X In addition, the following inclusion holds:

, and hence a finite

Theorem 2.7.3 V,; C V, i1, for all 5 =0,1,2,....

Proof

To begin the proof, first observe

(1) With the low-pass filter hg we have built, > .52 |ho(k)| < oo and actually converges

very fast. (We don’t intend to deal with more general cases.)

(2) Since V; C Vj11, we have

x)= > andh(x)

nez?

where

/ /R $it(x) ¢f(x) dx



CHAPTER 2. MULTISCALE WINDOW ANALYSIS 95

NI+ / (M "'x —n) ¢(M/x — k) dx
R2 T
— N2 / M x' — (n—Mk)) ¢(x') dx' (' = M/x — k)
R2 T -

= ho(n—Mk). (by Eq. (2.141))

From these two facts, we have, for x € D(x),

PIx) = D h(x+ol)

Lez?

= Y > hMk) ¢i(x+ol)

(€72 neZ?
= Y neZhon—-MKk) o5t (x)

= ) [Z ho(oM/ 't +s — M k)| ¢27%(x).

s€Vjt142n [t€Z?

The sum in the square bracket converges because of fact (1), and hence V, ; C V, ;1. But we

know dim V, ; < dim V11,80 V,; CV, 1. Q.E.D.

Theorem 2.7.3 could lead to a multi-resolution analysis of LQ(TZ), in analogy with its 1-D
counterpart. But we don’t need this analysis here. With the 2-D scaling function ¢ built
before, it is justifiable that all functions of our interest should be contained in V,, ;,, for some
positive integer js. In fact, as in the 1-D case, what we know about the functions in question
are only the values on a discretized mesh. The whole picture of these functions can only
be obtained approximately through some measure such as interpolation. For function f(x)
defined on a square mesh grid with 272 points in either dimension, we first enlarge it by o = 2*
times in either dimension, depending on which scheme of extension is chosen, then transform
the definition domain such the data points lie in the Voronoi cell Vj,2). For simplicity, we still
use f to denote the extended function and write the independent variable after transformation

in its old form tagged with location indices. The justification is then translated into whether

the algebraic equation set for «

Z ¢§’j2 (Xm) Qg = f(xm)a Mj2+2/\§m € ij-i-?/\ (2'154)
keVj,4on

has a unique solution. With the ¢ constructed in the last subsection (again, we consider only

this particular case to avoid more theoretical issues), the diagonal elements of the matrix
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thus formed dominates the sum of the off-diagonal entries by orders and hence the answer is

positive.

With the above preparation, we next decompose the space where our problem is studied,

Vj,, into a direct sum of three scale windows:

e Large-scale window VE£: V, j (jo > 0),
e Meso-scale window VQM: Voir © Vaio (41 > Jo)s

e Sub-mesoscale window VQS: Vojo © Vi (42 > J1)s

where the value of p = 2* depends on which extension scheme is used. Multiscale window
transform and synthesis can be introduced with this decomposition. As before, denote [0, o) X

[0, 0) as D(x). For f €V, ,, the 2-D scaling transform of f at level j is

fi= / / f(x) ¢ dx. (2.155)
- D(x) -
On basis of this we define the large-scale, meso-scale, and sub-mesoscale window syntheses,
respectively,
Mx = Y R #H"x (2.156)
keVji 4o
Al = Y R - %) (2.157)
keV; 1on
Px = f@- Y R e, (2.158)
kevj1+2>\
and accordingly:
fi = //D( )f“"(z) P72 (x) dx, (2.159)
rE =Y R ), (2.160)
keVij, 1o

for all the three windows w = 0,1, 2. Egs. (2.159) and (2.160) form the desired 2-D transform-

synthesis pair.
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2.7.6 Computational issues

From the definition, the key to the multiscale transform and synthesis is the computation of
scaling transforms. In what follows, we discuss how these transforms may be efficiently found,

with the aid of the low-pass filter introduced before.

For a function f(x) evaluated discretely on a square mesh grid with 272 points in either
dimension, the highest scale level is jo, and hence the problem is studied in V, ;, for some
o = 2* (0 or 1 depending on whether a periodic or symmetric extension is adopted). The
computation of fg is to finding the solution of equation set (2.154), and as in the 1-D case,
this is identical to applying a weak filter to f(x). In other words, the function must be

pre-filtered before entering the filter bank (see below).

Once the “pre-filtering” at scale level js is done, the transforms below that level can be
efficiently obtained. In fact, we have a fast algorithm for the computation. Given f(x) € V, j,,

the projection of it onto the subspace V, j, V 0 < j < jo, which is generated by

{¢i’j}k€Vj+2,\ = {Nj/2 Z ¢(¥] (X + Ql) - k)a ke Vj+2,\},
1622

can be represented as

fix) =Y flep.

keVjion
Since we have chosen an M such that N = 2, f;(x) can be analyzed as a sum of two terms,
i.e.,
SO i1 ol
> fmd) = XY AT+ ik (2.161)
meV; oy keVji_140a

where

fisi(x) € ng—la
the orthogonal complement of V, ;_; in V, ;. Multiply the above equation by qbi’j 71(5) and
integrate with respect to x over D(x) = [0, 0) x [0, 0). Because of the orthogonality between
Vo,j—1 and ngj_l, it results in

= [y X Thosdeo o dx

= meVj oy
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= Z f] // Z m gMJl Z ¢k gMJl’ =

meV; oy Vez?
= Y e z// P o ) #
meV; oy AleZ?

(x'=x+ol, Al=1-1)
= > fh Y ho(m—oM/Al-MKk)

meVjion Al€Z?
(by the proof of Theorem 2.7.3)
= Y Jaht!(m-Mk), (2.162)
meVjian

for all j = 0,1,2,...,5o — 1. Again, the convergence of hg’j(m - M Kk) = > acz2ho(m —
gﬂj Al — M k) is not an issue with the ¢ as constructed. Substitute these computed scaling
transforms into (2.159) and (2.160) and the 2-D multiscale window transform and synthesis

follow immediately.

2.7.7 Testing examples
Two functions

filz,y) = e 1@ V) | 9 64 +y?) sin(207z) sin(207y) (2.163)

folz,y) = (z+y+2) + 2e @) gin(20mz) sin(20my) (2.164)

are chosen to test the capability of the multiscale window analysis just introduced. They are
the 2-D version of the testing functions used in §2.6.3. In Fig. 2.13, their distributions are
contoured (top row), over a region {(z,y) | |z| <1, y< 1}. The function values are mapped on
a 64 x 64 mesh grid (hence js = 12), and a two-scale window analysis with jy = 5 is performed
on the mapped data. In doing so, the definition domain is first transformed into [0, 1) x [0, 1),
and then a periodic (symmetric) extension is adopted for f; (f2). The testing result is very
satisfactory. Displayed on the middle row of Fig. 2.13 are the large-scale reconstructions,
which agree very well with the expected features (not shown here, as the difference between
the reconstructed and idealized maps is almost indiscernible), except that for the fo case, there
exists some wiggle close to the boundaries. This anomaly has been expected, as the extension
scheme may cause some mismatch there. But even with this boundary effect, the error is

limited within the tolerance (less than 5%). Our multiscale window transform-synthesis is
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therefore capable of handling highly localized events, with the precision needed satisfactorily

met.

2.8 Summary

An analytical tool called multiscale window transform (MWT) has been developed, both on a
1-D field and on a 2-D field . With this MWT phenomena observed in GFD energetics, such
as the energy intermittence, scale windowing, and self-similarity, can be faithfully represented,
so long as the orthonormal shift invariant basis with which it is defined is properly localized,
and the events of interest are not within some crucial distance immediately close to either of

the two ends of the signal.

In the MWT development, we have particularly focused on the transform which can be
readily applied to real problems. In the 1-D case, all functions are assumed to be (1) defined
on a finite domain [0, 1) (pre-scaled with the duration), and (2) belonging to a space containing
scales larger than 2772, for some finite jo. The first assumption is merely the reality. It
motivates a study of the two no-energy leak schemes of extension: the periodic exention and
symmetric extension. The second assumption is justifiable, with either of these extensions,
and the justification is based on the fact that, in practice, signals are discretely defined on the

finite interval [0,1).

Properties of the 1-D MWT have been examined. A notable such property is the marginal-
ization over the domain [0,1). It identifies the sum of the phase space representation of a
quadratic product to its duration average. This property also allows a simple representation

of energy with proper units.

The 1-D multiscale window analysis can be conveniently realized. It is required that a scaling
function ¢ be found which is (1) polynomially localized up to order v > 1, (2) symmetric about
the origin and maximized at zero, and (3) shift invariantly orthonormal. We have constructed
such a ¢ and obtained its corresponding low-pass filter Ay from a spline function. With this ¢
and hyg, scaling transforms at all the scale levels that are available can be efficiently computed.
The computation involves first an application of a “pre-filter” at the highest level, and then a

fast scaling transform for each level below. The 1-D multiscale transform and synthesis follow
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Figure 2.13: Examples testing the 2-D multiscale window transform/synthesis with functions fi(z,y)
(top, left panel) and f2(z,y) (top, right panel), which are defined as shown in the text. Displayed on
the middle row are the features reconstructed respectively with f; and fy on the large-scale window.
The bottom-row plots show correspondingly the sectional distributions along y = 0, together with their
noise parts that have been separated.
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immediately by their respective definitions.

The 1-D results can be conveniently extended to a multi-dimensional case, especially a 2-D
case. In §2.7, we have constructed a planar MWT by following a procedure similar to that for
the 1-D transform. The tool construction is now completed, and we are ready to proceed to

the next chapter, the MS-EVA formulation.



Appendix to Chapter 2

A2.1 Proof of Theorem 2.3.1

Proof
We have already shown that {$27 }nen Delongs to Lo(TFy). We need only to show that
4

4 . . .
/0 $EI(1) $2 (1) dt = 6(n—n'), o' =0,1,2,..,2— 1.
By the definition of periodized bases,

/ " oed(t) 27 (1) dt
—ZZ/ Gt + o) @), (t + ot') dt

LETL U ET

ZZ/ oLt + oAl) ¢, (1) dt!

ALEZL U ET
(t'=t+ol, AMM=10-1)

= % [ O aialt) Gt at

ALEZ

:/R%(t’) ¢l () dt' + 3 /¢7 o) G () dt.

ALH£0

In the derivation we have used term-by-term integration, which is made possible by the lo-
calization assumption for ¢ (polynomially localized up to an order v > 1) we made in the
beginning. Since n,n’ € NI, an integer A¢ which is different from zero will not give any
chance for n — 2/pAf to be equal to n’. By the orthonormality of {#/},cz, the second term
of the above equation is thence zero, and the whole equation is simply §(n —n'). This finishes

the proof of Theorem 2.3.1.

102
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A2.2 Proof of Theorem 2.3.2

Proof
We have assumed that g is a power of 2. Let it be 2*, and X a positive integer. This yields

the following two useful identities:

qs:;f'“(é) — /a2 (1), (A2.165)
NI =N\ (A2.166)

For any p € V, ;, it has a representation like

p(t) = D andf?(t), (A2.167)

ne/\/'g

with oy, some expansion coefficients. Make a transformation
t'=t/o, t = ot.
By (A2.165) and (A2.166),

plot') = Y andi(ot)

nE/\/'g
a .
= Y =),
ne/\ff“‘\/a

This is to say,
po(t') = plot') € Vijin.
As proved by Hernandez and Weiss (1996),
Vig+x CVijsten
So

plot) =po(t) = > Bupp? M)

nE/\/’ljJr)‘Jrl

= Y VoBasit(ot),

nE/\/'gJrl
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where (,, are some expansion coefficients. Transformed back to ¢, this is

pt)= > Bup2i 1),

ne/\/'g+1

which means p € V, j;1. Since p is chosen arbitrarily from V, ;, we have
Voi € Vojt1-
But dim V, ;11 > dim V,, ;, so

Vo C Vojt1-

104
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A2.3 Proof of Theorem 2.3.3

Proof

Because of the inclusion property we have just proved in Theorem A2.2, what we need to
show here is that limj_, V,; is dense in Lo(T,). The proof of the 1-periodic case of this
theorem has been done by Herndndez and Weiss (1996). Moreover, they have shown that, for
any function g € Lo(Ty),

lg — Plgllc. =0, (A2.168)

lim
j—00
where Plj denotes the projection operator from L; (') onto Vi ; (Cu[a, b] is the normed space

of continuous functions who have finite extrema over the definition domain). Now consider an

arbitrary vector f € Lo(T,). We want to examine the performance of

If = Pl fllcs

when j is very large. Here PJ : Ly(T,) — V,j projects vectors in Ly(TT,) onto V,j, (Notice
Vo,j C Cx(R) for j > 0) and p is by assumption a power of 2. Make a transformation of
variable:

t'=t/o, t=ot,

and let
g(t") = f(ot'),

then g € Lo(T'). By (A2.168), for any € > 0, there always exists a J = J(g) > 0, such that
lg — P{*gllcy, <e (A2.169)

as j > J. Here A = log, o is a positive integer, and

o .
PITg(t)y = Y andy?A(Y)
neNi

with the Fourier coefficients being

Qp = <ga¢rlz’j+/\>
= Loty @) ar
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= / f( gt f(ﬁg’]( ") dt (Eq. (A2.165) applied)

where {3,} are the Fourier coefficients of f with respect to basis {$27}. So

PljJ”\g(t') — Z Tﬁn Voo (ot') (Eq. (A2.165) applied)
neNit

= > Bug2(t) (Eq. (A2.166) applied)
neN
= PJf(1).
But we also know g(t') = f(ot') = f(t), what Eq. (A2.169) actually states is thus

If = Plfllc., <e

as j > J. That is to say, given any € > 0, when j > J(¢), V,; is an e-net of Ly(T,), and

hence lim;_, V, ; is dense in Lo(TT,).
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A2.4 Proof of Theorem 2.3.6

Proof

First observe that

2N—-1

[0 0w de =3 aus, (A2170)

n=0
holds for p,q € V2 ; by the generalized Parseval relation. Since both p and ¢ are obtained by

symmetric extension, we have
p2—t) =plt),  a(2—1) = qlt). (A2.171)
So the left hand side of (A2.170) is
2 1 2
[ awa = [ PO ) dr+ / 20 )
= [0 aw = [ pe-t)qe-tya (=21
= ["p0 aw) de+ [ o) att) ot

0
1
— 9 / p(t) q(t) dt. (A2.172)
0
To perform a similar decomposition for the right hand side of (A2.170), notice
2 )
an = [ () ¢ di
0
2 :
= [ Ot ant) dt

LEZ,
- /OZP(t)Z\/W(Nt—nJere) dt
LET
- _/20p(2—t')2\/ﬁ¢(N(2 —t)—n+2NO) df (=2 1)
LEZ,
= /OZP(t,) Z\/Nﬁé(Nt' — 2N +n —2NY) dt’ (p & ¢ symm.)

LeZ
2 9.
= [ o) 63, ) ar
0

= OQ2N-n,
and this is true for all n € ./\/’27 . Likewise,

Bn = BaN—n, Vn=0,1,2,..,2N — 1.
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So

n=0 n=1
Egs. (A2.172) and (A2.173) substituted back to (A2.170) yield
N-1

2

/Olp(t) q(t) dt = Z By + l(aoﬁo + anfBv).

n=1

Q.E.D.

2N—-1 N-1 1
Z anfBy =2 (Z anBn + 5(04050 +04NBN)> :

108

(A2.173)
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A2.5 Proof of Theorem 2.4.1

We begin the proof with a lemma.

Lemma A2.5.1
1 1=
Z S L Vy > 1.

Y~ 1 =21’
7n2mo>0’m 1 2

Proof

Let pp and p; be positive integers such that

2P0t <y < 2P0, oL < N, < 2P, (A2.174)
then
N, 2P1 —1
LS| 1
Y~ <Y —
m=mg m m=2p0—1
B 1 1
B (2po—1)7 + (2P0 — 1) ) (2p—1)yy T + (21 —1)7
1
po—1 p1—1

< 2 o=y T +2 ST

2(po—1)(v=1)

_ ﬁ ‘ [2_(,,0_1)(7_1) (1 _ 2—(?1—?0)(’7—1))} _

This summation converges when v > 1. Taking the limit as N,, — oo, we get

~(po-1)(3-1)
y o Lrrm (A2.175)

04 — 91—y
m>mas0 M 1-2

As 2Po~1 < my, this is exactly what we want.

Now let’s get to the proof of Theorem 2.4.1. By assumption, the localized function ¢(#)

attains its maximum at ¢ = 0. Let this maximum be C', then

We also know, for n € Z,

v> 1. (A2.176)
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This “localization” can be used to estimate the bounds for the entries of matrix H:

Hym = Z(ﬂri—HN(tn)

€7

= Z\/m(Nﬁ—m—lN)
€7 N

= Y VN¢(n—m—IN), nm=0,1,.,N-L (A2.177)
€7

Obviously, H = {Hp;, } nx v forms a circulant matrix (e.g., Davis, 1979). On the diagonal,

Huyn = VN Y ¢(—IN) = CVN + 1, (A2.178)

leZ

where

lEZ,|l|#0
< VN Z - -
- 2 2
iz0 (LN
1
N - N
< CVN-> N
[I|>0
— 20VN-- Y -
N7 = el
2C 1

The off-diagonal elements, on the other hand, equal to

Hnm:Z\/ﬁgﬁ(n—m—lN), where 0 < |n —m| < N. (A2.180)
lEZ

We now examine »-,, .+, |[Hnm|. As H is circulant, this sum is the same for all 0 <n < N. It
suffices to consider the case n = 0: E%;% |Hop,|. For convenience, split the summation into

two parts:

|Hom| < VN |p(m+IN)|

lEZ
WY ——
icz [14 (m +IN)?]"
- C\/JV{ 1 s+ 1 2}
[1+m2? " [1+ (m—N)2/
(PRIN)1m
+ (OTHER)p, (A2.181)

IN
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where

(OTHER),, = CVN ! . +CVN Y . (A2.182)

As m > 0, we have

and

1 n Z 1
S L+ (m+IN2P? S L+ (m o+ N2
1 n Z 1
(N —1—IN) " &5 [-(V - 1) T IN]
1
SJI-1)N+1 2; sz
_ 2 1 < L L fory>1 (A2.183)

il <——
NVZ,ZIW 1-2=-7v N7

by Lemma A2.5.1. Hence, in (A2.181),

—~
—
—

SN—
Il

1>2

Il
DO

(OTHER),, < CV'N {1 + %} % (A2.184)
So
N-1 2 1
mg_:l (OTHER),, < C\/—[ W} (N =1)
2 1
< CVN [1+ 1_217} AT (A2.185)
The other part, (PRIN),,, sums to be
N-1 N-1 JE 1 1
(PRIN),, = CVN
mzzjl Z {(1+m2)7/2+[1+(m—N)2]7/2}
1
= 20\/_271“”2 s
- 0V lw X
21—
< 2CVN 27/2 i (A2.186)

by Lemma A2.5.1. Putting (PRIN),, and (OTHER),, together, we have

Z | Hom| < 0\/_{ <27/2 27_1(11_21_7)> + Ni_l (1+%>] (A2.187)
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We are now able to make a comparison between |Hop| and SN 1| Hg,,|.
N—-1 N-1
|Hool = 3 [Hom| = |CVN +ro0| = Y [Hom|
m=1 m=1
N-1
> CVN —|roo| = Y |Homl-
m=1
Substitution of (A2.179) and (A2.187) for |rog| and YN _1|Hy,y| gives

N-1
|Hoo| — Z | Hom|
=1

m
2 1 2 2 1 2
> C’\/N{l T1 9l AN (27/2 - 27-1(1 _217)> - N1 <1 + 1—217>}

2 2 4 1
> C\/ﬁ{l ~on T ) (1 + 1 21_7> N7—1} (A2.188)

which is greater than zero given that (2.78) is satisfied. This is to say, H is strictly diago-
nally dominant under condition (2.78). Nonsingularity follows immediately from this diagonal

dominance (e.g., Ortega, 1987).
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Chapter 3

Formulation of the Multiscale

Energy and Vorticity Analysis

With the multiscale window transform introduced in the preceding chapter, we proceed to
formulate the MS-EVA, multiscale energy and vorticity analysis. The first section is about
the primitive equation (PE) model from which the formulation starts. Concepts of kinetic
energy and available potential energy are introduced and their evolution laws presented (same
as those in a classical EVA setup). The large-, meso-, and sub-meso-scale energy equations are
derived in respectively Sections 3.2, 3.3, and 3.4. Connections to their classical counterparts
are also investigated (§3.5). The following two sections deal with the process separation, in
order to substantiate the decomposition adopted in the energetics just developed (§3.6), and
supplement it with interaction analyses to unravel the inter-scale information which would
otherwise be deeply hidden in the “polluted” energetic maps (§3.7). In Sections 3.8 and 3.9,
we present the vorticity equation and the multiscale enstrophy analysis. This chapter is closed
with a brief summary and a discussion on how energy can be redistributed between locations
in the physical space and between scale windows in the phase space, and what a role the
mechanisms such as rotation, advection, buoyancy, and wave propagation may play in the

redistribution.

In deriving the MS-EVA equations, all the time series are assumed to be defined on domain

[0,1). They have to be extended to the whole real line before scale window transforms can

116
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be applied. Throughout the formulation, the symmetric extension is adopted except in the
periodic case, where periodization yields the exact result. As shown in Chapter 2, either way

energy will not leak outside the domain at any scale level.

Recall in Chapter 2 there is a constant factor 272 for the multiscale energy definition
[Eq. (2.73)], where j2 is the maximal permissible scale level for a series with finite length.
In this chapter, however, we will drop that factor in order to avoid cumbersome expressions.
Therefore, all the energetic terms hereafter, including the definitions of multiscale
kinetic and available potential energies, unless otherwise indicated, should be

multiplied by 272 before physically interpreted.

3.1 Three-dimensional primitive equation model and energy

equations

As conventional, let P stand for pressure, p for density, and (x,y,z,t) for the space-time

coordinates. The horizontal velocity is written either in a vector or a component form like
v = (u,v).

Note we use the vector form v only for the horizontal components. The vertical velocity, w,
is treated separately. This is because, for a geofluid, the vertical dimension usually has a size
much smaller than its horizontal counterparts, and as a result, w can be neglected compared
to u or v. The negligible w allows a definition of kinetic energy (KE) K with only v and v

involved,

K=—-(v-v)= %(u2 + v?). (3.1)

For the same reason, the horizontal and vertical gradients are also written separately. The

gradient notation V is used only for the horizontal components:

(3.2)

VAv-k=¢ (3.3)
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is referred to as a wvorticity field, though in fact { measures only the rotation around the

upward direction.

All the variables thus defined, either dependent or independent, are dimensional. With

them the 3-D primitive governing equations are written as',

%%::—VK—ﬂ%%—U+OKAX—%VP+EM+Em, (3.4)
0= Vvt 2 (3.5)
0 = —g—f—pg (3.6)
% = —z-Vp—w%+th+th, (3.7)

where the F-terms stand for subgrid process parameterizations, subscripts A and z signify-
ing (z,y) and z directions, respectively. In the above equations, the flow is assumed to be

incompressible. Also invoked are the hydrostatic and Bousinesq approximations.

A geofluid system is rather an inefficient heat engine. A huge part of its potential energy
is not available for release or conversion. In order to define an energy of position, which will
be called available potential energy henceforth, to better describe the system’s capacity to do

work, decompose the density field p into three parts,

p=po+p(2) +p'(2,y,2,1) (3.8)

with p' < p < po the density perturbation. Here we do not scale p and p’ as usual (e.g., Pinardi
and Robinson, 1986), since we want to make all the variables dimensional, in accordance to the
Harvard Ocean Prediction System. This decomposition allows the pressure to be integrated

out, from the hydrostatic equation,

z

P = Pum— pgdz

—

!The momentum equation can also be written in a form

B VK~ (f +OkAY = (A (Wk) = VP HE,
- 0
where
¢ =it
and
.o
Cl - (37;’ CZ - 827

to facilitate the multiscale energetic equation derivation in later sections.
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X pogn —g /0 p'dz + Pyt — pogz — /0 p(z)gdz, (3.9)

where 7 is the sea surface elevation and P, the atmospheric pressure at the sea surface.
Suppose Py, is a constant. The only pressure part that accounts for horizontal motions is

then the sum of the first two terms on the right hand side, or the dynamic pressure,

V4
P'=pgn—g [ old (3.10)

The governing equations can be written with P’ in place of P as the field variable. Likewise,
P may also be used to replace p in the mass continuity equation. In doing so, a large part
of pressure and density that do not really affect in the motion is removed, and the resulting
equation set naturally leads to the definition of awvailable potential energy and will be seen
soon. For convenience, Eqgs. (3.4)-(3.7) are now recast as follows, with the primes of P’ and

p' dropped hereafter,

ov ov 1
% = —VK—wa—(f+C)k/\z—gVP+Emz+Emh, (3.11)
ow
VL 12
0 V-v+ 9 (3.12)
P = pogn—g/o pdz, (3.13)
dp dp  N?py

In these equations, P and p are now understood as the dynamic pressure and density pertur-

bation, and
_9.9p

N? =
po 0z

is the buoyancy frequency, which varies with z only. For a stably stratified geofluid, N? is
positive.

The kinetic energy equation is obtained by taking the dot product of v with Eq. (3.11).
With the incompressibility assumption and hydrostatic approximation [(3.12) and (3.13)], it

reduces to
0K B d(wK) P 0 P
where

0
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is the work rate by the buoyancy force. We will see soon that it plays an important role in

mediating between the kinetic and potential energies.

The evolution of available potential energy (APE)

1 92
A= 3 e p2 (3.17)
0

is derived from equation of density perturbation. Multiplying Eq. (3.14) by pg?/(pg N?), it is

easy to get
0A 0 0 g°
—— =_V.(vA4) — =—(wA — wA— (log N*? F,,+F,};). 1
g =~V (0A) = @A)+ b= wA (05 NY) 4 p(Fs + Fy) (3.18)

The fourth term on the right hand side has been called apparent source or sink due to the
stationary shear (Pinardi and Robinson, 1986; Spall, 1989)2. Note that the buoyancy force
work term bears a positive sign here, in opposite to that in (3.15). Summation of (3.15) and
(3.18) cancels this term out. It is, therefore, merely the rate of conversion between the two
energy forms (KE and APE). This kind of process, which converts energy from one form to
another without causing net change in the total quantity, is called a conversion process.

Here, if b > 0, K is converted to A; if b < 0, then A is extracted to feed the kinetic motion.

Equations (3.15) and (3.18) are the kinetic energy and potential energy evolutions for a
geophysical fluid flow. A similar procedure will be followed to derive the equations for our

multiscale energetics.

3.2 Large-scale energetics

3.2.1 Large-scale kinetic energy equation

The formulation of large-scale energetics generally follows from the previous derivation for
the evolutions of K and A. The difference lies in that here we consider our problem in the
phase space. Since the basis function ¢27, for any 0 < j < j, is time dependent, and the
derivative of ¢?J does not in general form an orthogonal pair with 27 itself, the local time
change terms in the primitive equations need to be pre-treated specially before the energy

equations can be formulated. Similar problems also exist in Harrison and Robinson (1978)’s

*It seems that the factor 1 in Spall (1989)’s formulation in front of this term should be removed.
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formalism. Appearing on the left hand side of their kinetic energy equation is ¥ - %—%, not in a

form of time change of KL = %i - V.

To start, first consider %—%. Recall that our objective is to develop a diagnostic tool for an
existing dataset. Thus every differential term has to be replaced eventually by its difference
counterpart. That is to say, we actually do not need to deal with dv /0t itself. Rather, it is
the discretized form (space-dependence suppressed for clarity)
v(t+ At) — v(t — At)
2AtL

=0V

that we should pay attention to (At is the time step size). Viewed as functions of ¢, v(t + At)

and v(t — At) make two different series and may be transformed separately. Let

0 .
/ V(4 Af) gE(t) dt = 3, (3.19)
0

0 .
[ v -an g a = 53, (3.20)
0

where p is the periodicity of extension (¢ = 1 and 2 for extensions by periodization and

refection, respectively), and define an operator 6, such that

an0 _ on0

R v -V
op vV = e 3.21
n¥n o (3:21)
3@; 0 is actually the large-scale transform of d,v, or the rate of change of v, 0 on its corre-

sponding scale window. Similarly, define difference operators of the second order as follows:

By = v(t+ At) — ?igl + v(t — At) ’ (3.22)

52,970 = / S2v™0 B2 (1) d, (3.23)

Now take the dot product of ¥7"* with 6,v7°,

o0 g0 = [ Tar 0+ n++og9>f,:g 0
B 2 2 2A¢
= %At(liﬁi vy - ;Azﬂ-vgg (A0)? (325" - 5,20
= K — (80 (5,37 8,92°). (3.24)
where
Ky = %ﬁo 2o (3.25)
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is the kinetic energy at location n (in the phase space) for the large-scale window (the factor 272
omitted). Note that K/ is different from f(\nwo. The latter is the large-scale window transform
of K, not a concept of “energy”. Another quantity that might be confused with K is K0,
or the large-scale part of the field variable K. K~ is a property in the physical space. It is

conceptually different from the phase-space defined K. for flow v.

Observe that the first term on the right hand side of Eq. (3.24) is the time change (in
difference form) of the large-scale kinetic energy at time 2772n (scaled by the series length).
The second term, which is proportional to (At)2, is in general very small (of order O[(At)?]
compared to SnK{i) As shown in the appendix, it could be significant only when processes
with scales of grid size are concerned. Besides, it is expressed in a form of discretized Laplacian.
We may thereby view it indistinguishably as a kind of subgrid parameterization and merge it
into the dissipation terms. The term v, 0. &ﬁ; 0, which is akin to Harrison and Robinson’s

v- %—%, is thus merely the change rate of the large-scale kinetic energy, with a small correction

of order (At)? (t scaled by the series duration).

Above is how the time change term 0;v is treated for the momentum equation. Similar

treatment can also be applied to the density equation and we will see it later in this section.

Terms other than 0;v and J,p in a 3-D primitive equation system do not have time deriva-
tives involved. Multiscale window transforms can be applied directly to every field variable
in spite of the spatial gradient operators, if any. To continue the derivation, first take a

large-scale transform of (3.12),

9y N
g’g +V-90 =0, (3.26)

This form-conserved continuity equation will be useful later. It relates the horizontal velocity

to its vertical component.

~

Dot product of the momentum equation (3.11) with ¥,°¢272(t), followed by an integration
with respect to ¢ over the domain [0, 1), gives the large-scale kinetic energy equation. The left

0. %—%, which we have already

hand side of this resulting equation is the time change term, v,
taken care of. Our task in the next step is to manipulate the right hand side into a summation

of physically meaningful terms.
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Look at the pressure work first. By Eq. (3.26), it is

0 p~ P~
/ - . V_qs%,m tydt = —v3°. VB~
0 Po 0 N

1 0 O~ 0 OP0

= _% |:V : (Pn Ozno) + &(Pn Owno):| + wnoa—z

1 A 0 0 =0 [N

= _% |:V ' (Pn Uzno) + &(Pn Owno):| - gwnopno

= ALQpr + A,Qpr — b, (3.27)

where A, Qpr and A,Qpr (Qp the pressure flux) are respectively the horizontal and vertical
pressure working rates (@ stands for flux, a convention in many fluid mechanics textbooks).
The third term, —b% = —/;‘iomg 050 is the rate of buoyancy conversion between the large-scale

kinetic and available potential energies.

For the term pre-multiplied by f + ¢, the total vorticity, the integration reduces to:

=

Tire = [ —0087(0)-[(7 + Ok Ay di

0 4
= [0 kA -0 [ [CkAY]O827 (1) dt

- . / T ICk A9 (1) dt
0 — ~0
= 97 kA (), - (3.28)

o

It is of interest to observe that, Txr . generally does not vanish, in contrast to that of
Eq. (3.15), the classical EVA formulation. This term represents the contribution to the large-
scale window through a kind of process called a perfect transfer process in phase space
which we will define rigorously in §3.6.1. For a given flow, perfect transfer processes don’t
invoke net energy gain or net energy loss. What they do, in plain language, is to redistribute
energy over the scale spectrum of that flow. In some sense, a perfect transfer process plays
a role in energetics akin to what a conversion process does, and indeed, these two names
have been used exchangably in the literature. We distinguish them by limiting conversion to
processes between the two different forms of energy, while reserving the term transfer process

for energy exchange between scale windows.?

Now we know rotation (f excluded) contributes to energy transfer, though it does no work

to the whole system. Denote this rotation contribution as T -, which stands for “Transfer

3In this thesis, the term transfer process without the attribute “perfect” is used in a rather generic sense,

referring to a general process of energy transfer in the phase space (energy could be gained or lost).
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rate to large-scale kinetic energy K due to (”.* Here ¢ appears in the subscript to signify
the mechanism. Since transfer rate is a natural measure of energy transfer, we will use the

term “transfer” and “transfer rate” identically if no confusion exists in the context.

Among the remaining terms are the horizontal and vertical advections. After being dotted

with Q;O, they total up to

v /Q {(—VK— =) - ¢ (t) dt
v, 0 waz n

0 o0 ~0 )
= —/ [V C(OK™0) + g0 90 + 90 [wa_g} ] 272 (t) dt
0

oz 0z
— — ~0
T 0 g L OK ov
=-V- (XnOKnO) - &(wnOKn 0) +wnoa—§ _Xno : <wa>n
= AhQKL + AZQKL + TKL,waz + TKL,(')ZU' (329)

The Q-terms, ApQpr and A,Qgr, represent respectively the horizontal and vertical energy
transports from surrounding spatial locations. The residual parts, Tkt 5,,, and Tz 4,5, , would
sum up to zero if no transform were performed, as in the classical EVA formulation, Eq. (3.15).
Here their sum in general does not vanish. Rather, they form another important type of energy
transfer, the transfer due to vortex tube tilting. To see this, write up the part in its integral

form. It is easy to show that®

4 ~0 .
Tispn = [ k- [ug]™ A5 027(0) dt

= v0. kA (Cw), (3.30)
where
¢ =i+ G,
and
N ov
Cl - _aa
N ou
(s 9%

Vector (* is actually the horizontal component of the real vorticity field, curl(u, v, w). Physi-

cally (and geometrically) it may be interpreted as the horizontal tilting of the vertical vortex

4A deeper look reveals that energy transfer is actually due to the evolution of ¢, rather than ¢ itself.
5The following result can also be obtained (in fact, more easily) in a broader context where w is treated

equally with v.
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tubes. Since we have reserved the name vorticity and symbol ( for the vertical component of
curl(u, v, w), it is not tagged with that name. Instead, it is referred to as the vertical structure
of horizontal flow v, and is denoted as ¢*. By the thermal wind relation, this vertical structure
is closely related to its horizontal density gradient. Therefore, an evolving density horizontal

structure (a density front, for example) is also a cause of the in situ kinetic energy transfer.

The other transfer term, Tz ,,5,, may also be written in terms of ¢*:

o .
Titwn, = = [l AGE) o 1)

(3.31)

In a three-dimensional fluid flow with z in a position identical to z and y, a form like (3.31) is
a convenience for comparison’s sake. In a geophysical fluid flow, however, it just complicates
the physical interpretation. In the derivation that follows, we will stick to its original form:

=0
00K,

TKL wy, Oz

(3.32)

Woz —

It should be pointed out, in general, that either Tz .5 or Tz 5, alone does not represent
a perfect transfer process defined before. It is the sum of these two terms that can be put in
this process category, as will be clear in §3.6.2. We write them separately because we need to
consider them later individually when the two well-known processes, barotropic and baroclinic

instabilities, are examined (see Chapter 4).

In Eq. (3.15), the friction terms, F,,,, and F,,;,, stand for the effect of unresolved sub-grid
processes. An explicit expression of them is problem-specific. They depend on the sub-grid

parameterization that is adopted. For the commonly used Laplacian formulation, they are

0 ov
sz = ;5 Av__ )
82( 8z>

th = V- (AhV 'X),

where Aj, and A, are the horizontal and vertical eddy viscosities, respectively. A large-scale

window transform followed by an application of dot product with v’ 0 gives

an0 g 0 POV, 62;0 9 K" 82770 62;0
-(F = -— | Ay =— 1A, — A, . .
Y- Ema)n Yo 9z ( Oz ) Oz Oz Oz Oz 3.33)

— ~0

T
VO Bn)y = G0V (ARVE0) = V- (A VEE) - 4,957 (V)L (3.39)
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These are what we can get from a Laplacian type dissipation. But we do not really use them
in our MS-EVA. We will simply write these two terms as Fy. , and Fr ), (location index n
suppressed for clarity). For one reason, in HOPS the horizontal sub-grid effect is parameterized
with a Shapiro filter, so the above formula does not quite apply; for another reason, one may
want to include into Fir j the afore-derived correction to SnKT’;J, as it behaves like a kind of
horizontal dissipation. In short, different users of MS-EVA may modify these friction terms
differently to meet their specific needs. It is better not to make the formula too particular

here.

In a summary, the kinetic energy evolution on the large-scale window is governed by

R e 8 e
671KT% = —-V. (XnOKn 0) - &(wnoKn 0)

R — 0 GOKY 0

0 kA (Cy), +@)° . + 370 kA (Cw)

P\ 0 By’
V. X;:U n _ 8_ ,&3770 n _ i@;aOﬁ;O
Po z Po Po

+FKL,Z +FKL,h? (335)
or, symbolically,
Ké’ = ApQrr+ A Qpr + TKL,C + TKL,waz + TKL,aw
+ALQpr + AQpr — by + +Fgr , + Fyr . (3.36)

3.2.2 Large-scale available potential energy equation

To arrive at the large-scale available potential energy equation, introduce for the time being
a shorthand ¢ = ¢%/(p2N?) to simplify the otherwise cumbersome derivation (Note that c is
z-dependent). Take the large-scale window transform of the time-discretized version of Eq.

(3.14) and multiply it by ¢p;°. The left hand side becomes, as before,

— ~0

DOy = D8y

= Ondf = (A% (8257° - 6uy")

n

where

At = 5o () = 5 () 3
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(constant multiplier 22 omitted) is the available potential energy at location n in the phase
space (corresponding to the scaled time 272n) for the large-scale window. Compared to 5nAﬁ ,
the correction is of order (At)?, and could be significant only at small scales, as argued for

the kinetic energy case.
For the advection-related terms, the transform followed by a multiplication with cp}? yields

0 — ~0

(AD) = cp%/o (—V (vp)™ — %) Po72 (1) dt = —cp°V - (vp),, — cnnog(wp)n :

As will be explained later, we need to collect flux-like terms. In the phase space, these terms

are:
1 —— ~0 1 — ~0 __
M@ = =V [, + o), 5 (3.38)
_ a 1 WOANO 1 /Z\NOANU
BQu =~ |3 el + e, 5 (3.39)

In §3.6.1, we shall explain why they should be written in such a form. With this flux repre-

sentation, (AD) is decomposed as

(AD) = ApQar +A.Qut

—— ~0
- [c@:“V @+ AhQAL}

~

- [cpn[]&(wp)n +AZQAL:| .

Making use of Eq. (3.26), and denoting

1/ 9 —~0 —5~0__ o\ Jc
78 = 5 (50we), + 7). 5°) 5. (3.40)

this can be further written as

(AD) = ApQur +A,Qute
— —— ~0 1 [, == N0 0
|V ol 8@ = e (Vw205

~~0 0 —.~0 1 ~~0 /87” ~ /2\N0 8@_770
P 5, WPl + BeQar +TSyr = 2| 570 2) -+ (%) =5

+T'S 1
= ApQar +AQ 4t +TAL,3hp +TAL,32,0 + TSz, (3.41)
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where ApQ 41 and A,Q 41 are, as we already know, the horizontal and vertical transports.

The other pair,

— ~0
Tarop = —cpn[]V-(Xp)n —ApQar
1 — — ~0 — ~0 o
¢ <PnU(PV'X)n + (P, V-zn()) (3.42)
_ ~~0 8 — ~0
Tary, = —cp, g(wp)n —A,Qur — TSyt
— ~0
1 [ o, Ow ?Noa@;O
4 9, . 3.43
+¢ (Pn (Paz)n + (p?),, > (3.43)

represent two mechanisms for APE transfer across scale windows. (The explanation is put off

to §3.6.2.) By some algebraic manipulation, they can be reduced to

¢y — ~0 g 0
Tarp,p = E[pno(z-Vp)n - VpR? - (vp), ]
— _ ~0
c | . op opy0 — ~0
TAL,BZp = 5 [pn()(w&)n — az (wp)n .

But in the later development, we won’t use these simplified expressions. The original equa-
tions, more complicated as they might be, preserve better the total energy during numerical

computations.

If necessary, ApQ 4z and Tz g, , can be further decomposed as

AhQAL == A;L'QAL + AyQAL, (344)

TALyahP = TAL,azp—i_TAL,aypa (34:5)

where AyQar (Tar p,,) and AyQar (Tar g, ,) are given by the equation for ApQr (Tar g, ,)
with the gradient operator V replaced by d/0z and 0/0dy, respectively.

Besides the above fluxes and transfers, there exists an extra term

1 o0 /\NO/\N oc
TSy = 4 (P0G, + 6D ) o
LY g0 0N D(loge)

= et + @, ) 28

1 (g —~0 —~0 o\ O(log N?
= —C (pno(wp)n +(p2)n wn[]) ( 8 )
4 0z

(3.46)

in the (AD) decomposition (recall ¢ = ¢g?/pgN?). We will show in §3.6.2 that this term
represents an apparent source/sink due to the stationary vertical shear of density [cf. (3.18)],

as well as an energy transfer.
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Next consider the term w%. Recall that N2 is a function of z only. It is thus immune

to the transform. So

— ~0 N?
2 (wN2), = —Lp0a
= TG00 =k, (3.47)
0

which is exactly the buoyancy conversion between large-scale available potential and kinetic

energies.

The diffusion terms are treated the same way as before, they are merely denoted as

— ~0

FAL,z = cﬁ;:o(Fp,z)n ) (3.48)
— ~0 A ~
Favy = g (Fpn), +(At)c (532%0 : 5npn0) : (3.49)

Put all the above equations together (with the aid of notations (3.38), (3.39) and (3.46)),

AL = ALQar+A.Qu
0 —— ~0 L (o, o= ™ | 730G w0
=V (¥p), — AnQar + e (0 (PV - x), 4 (0%), V- ¥y
— ~0
P A Ry Y
+ —CPnoa(wP)n — A QL =TSy + 1° PnO(Pa)n + (), B—Z
TS 4 + piwgoﬁ;;o + Fao, + Farp, (3.50)
0
or, in a symbolic form,
Aﬁ = AhQAL + AZQAL + TAL,ahp + TALyazp +TS,r + bﬁ + FAL7Z + FALyh. (3.51)

3.3 Meso-scale energetics

In a classical Reynolds formulation, the meso-scale energetics are usually quite different in
form from their large-scale counterparts (e.g., Harrison and Robinson, 1979). Our multiscale
window transform, however, will eliminate this difference and bring forth two meso-scale energy
equations in a form exactly the same as (3.35) and (3.50). This will be clear upon closing this

section.

Following the definition in §2.2.5, the meso-scale kinetic energy for location n (constant
multiplier 272 omitted), which is denoted by KM hereafter, is

1
KM = —g~t gl (3.52)

n §—n Yn
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Application of the meso-scale window transform to (3.12) and (3.13) gives a continuity equation

and a hydrostatic equation in the phase space:

ot o
82 +V-vl=o, (3.53)
oPy'
5 = hn g (3.54)
Reconstructed back to the physical space, they become, in their original forms,
ow™! 1
v =0 3.55
5 TVY : (3.55)
op~1 N
5 =P Lg. (3.56)

This form-conservation stems from the fact that they involve only linear operations. Egs. (3.55)

and (3.56) are to be used later in derivations.

In order to obtain the evolution for KM, one needs to take the meso-scale window transform
of the momentum equation. As in the preceding section, this is somewhat cumbersome due to
the nonlinearity. We will do it step by step. First apply the meso-scale synthesis to the time-
discretized momentum equation once. What results is the meso-scale momentum equation

~1 ~1 ov ~1 ~1 ~1
v~ = -VK™" — wa— —fkAY™ = (CkAY)
z

1
0
Take a dot product with ¥, ¢272(t) followed by an integration over the [0, ). As before, the

VP L BN+ B (3.57)

left hand side is equal to

Suky! — (A1) (329" 6,377
the rate of change of the meso-scale energy corrected by a small term of order (At)2. On the
right hand side, the advection-related terms become

0 . ~1
— / Vg2 (t) - lVKleL(w%) ] dt

0

- v [ R - g (0R)
Recall that
oK _ k¢,
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ov
— = —kA ).
Yoz kA (we)
The above energetic terms are thereby reduced to
- VR - 2 (a7 K
oK N\
~~1 98y ol *
W 0z t¥n 'k/\(gw)n
= AhQKM + AZQKM + TKM,waz + TKM,azU’ (358)

where T 5, together with Txm 5 represents the transfer due to the vertical structure

evolution of the horizontal velocity field.

The contribution from the vorticity field is obtained the same way we did before in deriving

the large-scale energetics. The result is
— QANI Qaj? ~1 ~1
Tgme = —/ Ve (1) [fe AV + kA (Co)] dt
0
— ~1
= o [feas kA )|

— ~1
= -7 kA (), - (3.59)

Similar action performed on the pressure terms yields

Byt Pyt 9 Byt o (P
anvl n a~vlin ~~14n ~~1 n
- V2 = V. - = i el
n £0 <Xn P0 ) 0z <wn P0 > T s < P0 >
Pl 0 Pl g
= —V.|(vt ) - 2 (gt ) - Lgint 3.60
B2 (0B g
= ApQpv +A,Qpu — bV, (3.61)

All the above terms, together with the dissipation which we just write symbolically as Fyn ,

and Fyu p, form an evolution law for the meso-scale kinetic energy

WKy = -V e - % (@ K
! 318(771 kA (g/*z\u):l

Symbolically, this is

KN = AnQuow + AcQions + Tyens o, + Tiens o, + Tiene
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+ ApQpuv + AQpar — b + Frenr, + Frenr . (3.63)

To get the meso-scale available potential energy equation, recall the time-discretized per-

turbation density equation is

0 N?
6tp:—z-Vp—w—p+w Po
0z

+sz+tha

which, after being applied with the meso-scale synthesis, becomes

(wp)™

op™t ==V (pw) ™ = =

N2
+ w~17”° + F 4+ L, (3.64)

Transforming it with $272(t), one gets

o' ==V (pv), = 5-(wp), + wpy!

+Eyl+ Fy (3.65)

The available potential energy evolution is obtained by multiplying this equation by cp}?

(recall the temporary notation ¢ = g%/p3 N?). The resulting left hand side,
SnAr];/[ - (At)%(ggﬂﬁr:l : 5nﬁ;1),
is dominated by the rate of change of

A= 5o = 3 ) a0

i.e., the evolution of meso-scale available potential energy. The other term, as before, is
significant only when the grid-scale processes are of interest and might be put in the sub-grid

process parameterization.

To further the derivation, apply the transport-transfer decomposition technique used before

to the advection-related terms. Let

1 o —~ 1 —~1
MQav = =V |, + oD, o (3.67)
R RO e I
8.Quw =~ e we), + eled), o (3.68)
| Ml B
s = g (), + 07, ) o (3.69)
4 0z

This yields,

ApQam + A Q qum
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o — ~1 1 o — ~1 —~1 .

— |m 'V o)y AnQu = e (A OV )+ (), V5|
— ~1

— ~1 0w

2 n

+ (0" —5,

— 1

oy 1 [ .., Ow
- Cpnla(w/))n + Az Qum + TSy — 1€ Pnl(f’a)n
+T'S ™

= AhQAM +AzQAM +TAM,(9hp+TAM,E)Zp+TSAMv

The next mechanism that accounts for the evolution of AM is the buoyancy conversion:

N290

Cﬁ’;l i p ,&37’:1 _ %@gl/\;l
= M, (3.70)

It is equal in magnitude to its counterpart in the meso-scale kinetic equation, but with an

opposite sign.

All the above terms, plus the diffusion, add up to form the meso-scale available potential

energy equation [with the aid of notations (3.67), (3.68), and (3.69)]:

oAM= ApQuan 4+ AQanm
Vo, = 8@ + e (50 ), + (7)) 0 5]
— ~1
N 1 (., ow — 1 O
+ —CPnla(wP)n — A, Qum —TSym + 1° (Pnl(ﬂa)n +(P*)n 8—2
TS gr + pi@glﬁgl + Fav, + Fan g, (3.71)
0

which is also written as
AN = ApQ v + A.Quv + Tant g, p + Tart g, p + TSanr + Y + Fan , + Fany,  (3.72)

for the sake of notational simplicity.

3.4 Sub-mesoscale energetics

Arbitrarily many scale windows and their energetics can been obtained in a way as the meso-
scale energy equations are obtained. We usually consider only one window more: the sub-

mesoscale window. The derivation will be the same as before. What is needed is to change
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the superscript, which should be switched from ~ 1 to ~ 2. On this window, the kinetic and
available potential energies are

1

K? = 52;2@;2, (3.73)
1 92 2

s _ + ~~2

AS = 2p0N2(") . (3.74)

In analogy to their meso-scale counterparts, the equations governing the evolutions of K;? and

S
Ay are

WKy = -V [9K] - % (@72 K;?)
) 8{;52 FI kA (gAw);z

. — 2
_—n2 kA (Cz)n

P2 0 P2
—V' a2t n _ ~~24n
(X” 70 > RE (w” 0 )

—pi@fﬁf + Fys, + Frs . (3.75)
0
and
0nAY = ApQus +ALQyus
re 2 L (o, o= ™2 "M an2
=V - (o), = AnQas + e (7 (PV - x), + (%), V¥,
—_— ~2
0 ~2 1 ow — ~20w?
~~2 ~~2
+ | —¢on &(wﬂ)n —A.Qus —TSys + 1€ (Pn (Pa)n + (P, 6—2
TS s + pi@g?ﬁ;;? + Fus, + Fas p, (3.76)
0
where
1 _o—n~2 1 —5~2__
BiQus = V- [jemt @), + el .77
0l L o—~2 1 —~2_
BQus =~ |gemtwe),” + 7o), 57 (3.78)
1/ .0 —n~2 —=~2__,\ Oc
Tss = 5 () + (P 57 o (3.79)
As before, these equations are also symbolically written as
K; = ApQgs+A.Qgs + Txs wo. + Trs g0 T Trs ¢
+ALQps + A.Qps — by + Fys, + Fys , (3.80)

Ai = AhQAS + AZQAS + TAS,Bhp + TASﬁzﬂ
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+TSAS + bi + FAS,Z + FAS,h (381)

for later use.

3.5 Connection to the classical energetic formulation

The connection between our MS-EVA to the classical energetic equations is easily seen if we

begin the formulation with the momentum equation (dissipation ignored) in a form

Oy =-V-(v z)—é(wz)—fk/\z—iVP (3.82)
ot 0z 00

rather than (3.11). A large-scale transform followed by a dot product with ¥7° yields

—  ~0 ~
~0 [OV . — ~0 0 ——~0] pPy°
o e IR e L A N T B e (3.83)

¢y (I)
where term (I) is equal to the sum of all the transport and transfer terms in our previous

large-scale KE equation, and
(IT) = ApQpr + A.Qpr — by

We will see what this equation reduces to if j; = jo (that is to say, only two scale windows

are considered), jo = 0, and a periodic extension is employed.

Let ¢ be any field variable (u, v, w, or P). A two-scale window decomposition means
g=q"+q" (3.84)

With the choice of zero jy and periodic extension, we know from the preceding chapter that

¢~ is constant in time and is equal to § or 272/

2G>V in magnitude, that is,
¢ =7=2""g" (3.85)
and hence
¢ =q-q¢"=q-q=4¢. (3.86)
In this case, Eq. (3.84) is simply

¢=q+dq, (3.87)
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with ¢ and ¢’ satisfying

@, = (@), =a"=27""¢ (3.88)
(@), = ("), =0, (3.89)
by the properties of multiscale window transform.

Substituting v and w for the ¢ in (3.87), the velocity field is decomposed as

! — !
V=V+Vv, w=w-+w.

|<i

Let K = %g - ¥. The equivalence between the large-scale transform and duration average

allows an expression of the large-scale kinetic energy K% in terms of K. In fact,

; 1. o 1 _
KL =20 <§X;O-zn0> :§g-g:KL. (3.90)

Note here we have taken into account the multiplier 272. These facts are now used to sim-
plify the term (I) of Eq. (3.82). With the two-scale decomposition, the dyad (v v) after

transforming is expanded as

— ~0 — ~0 — ~0 — ~0 — ~0

vv), = (¥, +@Ev), +¥y, +v¥), (3.91)
= 39 e v et (v (3.92)
— ~0
= v+ (v'v)), . (3.93)
Likewise,
—~0 — ~0
wy), =wv," + (W), . (3.94)
These allow term (I) to be written as
—_—~ — ~0
M = 50 [V w50 - )] 5 [ ), - ),
0z 0z
= 27 {— (vr™) - % (oK") ++v {—V (v'v/) - —(w’z’)]}
= 20 lv (k") - L (aK") 4 vovs T} (3.95)
where
B, B,
— i 4+ j— + k—
Vi =i xﬂaf 5%’



CHAPTER 3. MS-EVA FORMULATION 137

and

T=| —(wu) —(@) —@uw) |- (3.96)

Term (II) is treated as that in (3.27). As stated before, it is equal to ApQpr + A, Qpr — bE,

which is, in the present setting,

. 1 _ 1 _
(I) = 270 {——v (Pw) -~ 9 () — iwﬁ.} (3.97)
Po po 0z Po
Substitute (I) and (II) back to Eq. (3.83). Considering that the left hand side is now 27/0% -
(a—%), we have, with the common factor 2770 cancelled out,
— ov _ " 0/ 1
v (g) = V- (K") - ; (wK")
1 _ 10 -
——V - (Py) - —-(P#) — Lp
Po po 0z P0
+v-V3-T. (3.98)

This is exactly what Harrison and Robinson (1978) have obtained for their large-scale kinetic

energy, with T the Reynolds stress tensor in their formulation.

For the meso-scale window, the counterpart of Eq. (3.83) is

— ~1 ~
o ov . —~ 0~~~ Pl
wl(5) swveew) —wt few) st v )

In order to make it comparable to the classical eddy KE equation, just jo = 0 and periodic
extension are not enough, as now there no longer exists for field p a linear relation between
p>t and p’. We have to marginalize (3.99) to the physical space to fulfill this mission. In this

particular case, the marginalization equality (2.70) is simply

M @ =0d, Y pa € Vs, (3.100)

since here the deviation operation (prime) and the meso-scale synthesis operator are identical.

Marginalization of (3.99) yields

g’-;:—m—v’-g(u&)’—z’-v<—>. (3.101)

™ Ir) (I11")
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It is easy to show, as we did before,

P! P! S
Iy =v- (z’—) + 82 <w’—> + iw’p’. (3.102)
Po z\ p/)  po
The other two terms on the right hand side are
) = v-V-(vv-vv)
= vV (¥ v +Vv¥V+vV)
T~
= V- (zz 2z> +v-V-vy
v v/
= V. (z_ 2_ > +(V-¥)v'-v+v'v:Vy, (3.103)
and likewise,
0 v v/ ow’ ov
IT) = — (w—= Y fw! + —. 104
(Ir) 8z<w 2 >+(8z)z Y+yw 0z (3.104)

These two terms sum up to

+v'v' Vv + v/ - — (3.105)

ov' v v/ 0 v v/
/. — = _\. - — [ - —
Y v (X 2 ) 2 <“’ 2 )
v (v/g> _ 2<wlg> _ iw’p’
~ po 0z\_ po/ po

(3.106)

Again, this is exactly the eddy KE equation obtained by Harrison and Robinson (1978).

With the same expansion and following the same procedure, a mean and an eddy APE
equations in the classical sense can also been recovered. Therefore, in a classical Reynolds
formulation, the mean energetics are just those of a very particular case (a two-scale de-
composition with a zero jy and periodic extension) in the MS-EVA framework, and the eddy
energetics may be obtained by marginalizing the corresponding MS-EVA meso-scale energetics

for that particular case. In this sense, MS-EVA is a generalization of the classical formalism.

We have explained in Chapter 1 that the meaning of analysis in MS-EVA is two-fold:

It means not only a multiscale analysis in the phase space, but also a process analysis in
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the physical space. The above comparison is made actually in the context of multiscale
decomposition. It should be pointed out that, even in the above particular situation, MS-
EVA and the classical Reynolds formalism are different in terms of analysis in the physical
space. The classical formalism attributes all processes, except the mean flow advection, to
the Reynolds stress without distinguishing the roles of rotation, vertical shear of horizontal
flow, and eddy transport. In this sense, even at jo = 0 with a periodic extension, MS-EVA is

expected to do a better job in process identification.

3.6 Transfer and transport

Process identification with the MS-EVA relies on a clear classification of the processes rep-
resented by the energetic terms. According to previous researchers, these processes can be
categorized into four classes: transport, transfer, conversion, and dissipation (e.g., Harrison
and Robinson, 1978; Fournier, 1999; Lesieur, 1990). Conversion processes occur between the
two forms of energy and have been introduced before (cf. p. 120). Dissipation is important
but is beyond the scope of this thesis. In this section, we discuss the transfer and transport

processes only.

We have mentioned that, in the multiscale energy equations, terms symbolized with T" rep-
resent the rate of energy transfer through phase space. A process responsible for this task
is called a transfer process. Its counterpart in the physical space, distinguished symboli-
cally with ) among the remaining terms, is the transport process. Strictly speaking, by a
transport process we mean a process which vanishes under integration over a closed spatial
domain. As we have seen before, there could be some ambiguity with the transfer-transport
separation in the derivation of the APE equations. A purpose of this section is, therefore, to

fix this ambiguity problem through a physical clarification of these two processes.

3.6.1 Perfect transfer and transfer-transport separation

In the class of transfer processes, there is a subclass which accounts for the phase space
energy redistribution, but makes no contribution to the total energy evolution. These kind of

processes are called perfect transfers (or perfect transfer processes). We have introduced
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the concept in deriving the large-scale kinetic energy equation (p. 123).

Mathematically, a perfect transfer is a process represented by a term Tpw ,,, E standing for

K or A, such that
> MyTpw ,, =0, (3.107)
w

where the window index W belongs to {L, M, S}, and n runs over the sampling space on the
time duration. As the sampling space corresponds to time in our formalism, one may say that
a perfect transfer process has a vanishing property in the time direction, in comparison to the

space vanishing property of the transport process.

We now claim, with the definition (3.107), that the process represented by the advection-
related term in the potential energy equation derivation (i.e., the (AD) on p. 127) can always be
faithfully decomposed as a combination of a transport process and a perfect transfer process.
Before showing how, we need some knowledge of the structure of the transfer terms (7' terms)

in the energetic equations.

Observe that all these T-terms are made of a more basic class of transfer functions, which
are in the form

w

T(w,n) = Z7° - (pq),, (3.108)

for any functions Z, p, and ¢ in V, ;,, with w € {0, 1,2} corresponding to the large-, meso-, and
submeso-scale window, respectively.® This is a direct consequence of the quadratic nonlinear
interactions in the PE model equations. (We may re-define the transfer process as something
represented by an energetic term which has a form as a transfer function.) Marginalization of

T(w,n), followed by a summation over windows w € {0, 1,2}, gives
-~ W
Z MnT(wa n) = Z ManTw (pQ)n
w w

1
= /Zzww(pq)ww dt.
0 w

As the large-, meso-, and sub-meso-scale subspaces are mutually orthogonal, this is simply

1
S Mo T (w, 1) = /0 Z (pg) dt,

5As a superscript, w denotes a scale window. We will distinguish this w from the notation for vertical

velocity by reminding the reader of its scale window identity each time it is used.
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or, in a more concise form,

> MaT(w,n) = Z (pg). (3.109)

With this equality, we are now able to give an explanation of why the transport in the APE
equations should be written in a form like (3.38) and (3.39) (p. 127).

For simplicity, consider the 2-D, non-diffusive version of the density equation

dp _
5=V (w=-V-Q, (3.110)
where gp stands for the flux of density (with a nondivergent horizontal flow). Take a transform
for the window w and location n, then multiply it by p,". We get, on the right hand side,

the advection-related term

(AD) = 3" V - (/g\p):w. (3.111)

The flux of A = %pQ (the pre-multiplier ¢ dropped for clarity) in the physical space is in a
form of pgp = ppv. In the phase space, only quadratic quantities have physical interpretation
by the property of marginalization, so the flux of A for window w, which has its root in (AD),

should be in a form like

— ~w W
ﬁlpnw(gp)n +H2(92)n ana
with k1 and ko some constants to be determined. We choose k1 = k9 = K to reduce the

number of unkonws to one.” In this way, (AD) is decomposed as

——_ ~w W
(AD) = -V-(s;"(Q,) " +r(p?), %.")
— ~w — ~w TN A
— V@) =V (k(Q,) T + k(%) )]
~\v TN ~w w
= —v-(nﬁ,;“’(gp)n +1(p2), )+ T (3.112)

"This relation is chosen for the time being in analogy to the Leibniz differentiation rule. It is supported
by a later comparison of the transport thus-obtained to the classical energetics, and the validation result of
the MS-EVA in Chapter 4 with the Eady instability problem. (Different 1 and k2 will lead to an asymmetric
vertical structure which is not expected from the analytical solution.) A theoretical justification, however, is

left for future work.
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We want to make T, represent a perfect transform process. It is then expected that

> M, TP =0.
w

By equality (3.109), this is to say (Recall the definition of gp and the nondivergence of v.)

1
| oV (o0 =V - (020 =V - (2]

= (25— 5) V- Py =0

1

Obviously, s can only have one value, 7, in order for ), M,T” = 0 to hold for any scalar p

and nondivergent flow v. The decomposition (3.112) is therefore unambiguously determined.

The above argument can be extended to a 3-D case straightforwardly. The result is similar
and the £ is again unambiguously 1. This explains why we chose the way as (3.38) and (3.39
to separate the transport and transfer processes for a multiscale APE equation, and why the

chosen separation is unique in this sense.

Recall that in formulating the APE transfers, we did not just stop at this transport-transfer
separation. Rather, we added to each of the transfers already obtained an extra term obtained
by taking advantage of the continuity equation. The consequence of this addition is that, every
T term of the APE equation, as well as the sum of all the T terms, now has a correspondence

to a perfect transfer process. In the next subsection, we will give a proof of this remarkable

property.

3.6.2 The T terms as perfect transfer processes

For each scale window, we have collected six energy transfer terms from the MS-EVA energetic
equations. They are, symbolically,
Tgwe, Txwowa., Trwae
Taw 5,00 Taw 5,0, Taw 5. p
with W = L, M, S standing for the large-, meso-, or sub-meso-scale window. Using equality
(3.109), we now show that these six T-terms actually represent five perfect transfer processes.

First look at Tyw g, , (note that the dependence on n is suppressed). Its expression is seen

in the Tyw 4, , of Eqgs. (3.50), (3.71), and (3.76), with the operator V- replaced by 9/0z. Make
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the summation over W = {L, M, S}, followed by a marginalization over n. We have

w0 —~w 0 ~w

1 — 1 —~w
MiTaw o, = X Ma {5 (o), + 5 |G o, + oD, 5
%; P Xw: oz or |4 4
1 [ 0u\"" | 0 Oy
+=c | Py <pax>n P 5
0 0 1 ou 1 ,0u

4
o o] o () o)
= Jo U PP T gy (4PN TP TP 9P ) T AP s

1 0 9, cp®.  cp?ou
- —ep2 I W dt
/0 { cpax(up) + Bx(u 2 )+ 2 Oz

= 0.

Likewise, we also have

Y MuTaw 5, =0.
w

In the transfer due to d,p, Tyw p,,, the additional

Lo =~ | —5
7 o we), + (%), @

0
I5.

happens to cancel out the extra term in } y, M,Tyw 5 _, brought up by the z-dependence of

c or N2. The final result is, again,
> MpTyw 5., =0.
w

For the kinetic energy equation, marginalization of the T-terms results in

1
S MiTwe = = [ vkacvdi=o
W 0
L 90K
Mirs, =~ [0
%V: nt KW wo, 0 02
1
> MpTrw 5., = —/ v-kA(Cw) dt
W 0
1 v ou
= /0 v k/\{—wa 1+w$i} dt
L 9K
= — | w=—dt
/0 “’az

Clearly, Tgw . represents a perfect transfer process. Tgw .9, or Tgw 5, alone usually does

not qualify for this category (unless w%K = 0), but their sum Txw 9. + Tgw 5., does. We

write them separately because we need to use their individual expressions later.
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Besides the six T-terms, there is another transfer term, 7'S,w, in the multiscale APE
equations, which is related to the apparent source/sink in Eq. (3.18). This transfer is imperfect,
as it generally does not sum to zero over the windows and locations in the sampling space. In

fact,

Z MnTSAW
w

ANwac
_ /0 MA& (1ogN2) dt,

which is the apparent source/sink term in Eq. (3.18) averaged over the time duration. It does

not vanish, should there be a stationary vertical shear in the background density profile.

3.6.3 More about the transport processes

Transport processes are represented by these “Q-terms” in the multiscale energy equations. In
this subsection we want to gain more understanding about these terms’ physical significance.
For each (Q-term, the horizontal and vertical components are expressed in the same form. As
a result, we only need to look at the former, and the physical interpretation thus obtained

applies equally to the latter.

Let QY, Q. Qp denote, respectively, the fluxes (horizontal) of APE, KE, and pressure

with scale window w, i.e.,

]_ o~~~ — ~Ww ]_ /\Nw/\r\l

Q) = 7" (pv), +7¢(0), 3, (3.113)
1

QL = —v,"P, (3.114)
0

Qy = K, (3.115)

the transport terms are then just
-v-Qi, -V-Qp, -V-Qp. (3.116)

Here again the location indices have been suppressed for simplicity. Throughout this subsec-

tion, only two scales (corresponding to windows w = 0, 1) are considered.

Of the three Q-terms, the one with an apparent physical interpretation is V - 9% By

marginalization it yields V - pio(zNwPN“’). In the particular case when jy = 0 and a periodic
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extension is used, this becomes, for windows w = 0 and w = 1 (cf. Theorem 2.3.8),

1l —— 1 _- 1 — 1
—X"’OP"’O — —\7P, _lepwl — _lela

Po Po Po Po

which apparently represent the mean (former) and eddy (latter) pressure working rates.

The interpretation of the other two processes, V - Qf or V- QY however, is far more
complicated. Look at V- Qp first. The complexity of V - Q% over V- Q7 stems from the
fact that Eg“’ is by no means equal to the energy on scale window w. To see this, notice that

v=v"04+ le, which gives

1 1
K = ¥ Y= 5( vl (v v
1 1
= v vy v v v (3.117)

Taking a large-scale transform of it, we get

~0
n -

(3.118)

— 1 — ~0 — ~0 1 —
Ky =5 (w0 v0), 4 (vl ov0), 4 (v v

If jo = 0, and a periodic extension is used, we know from Theorem 2.3.8 that the large-scale

v~ is just the mean over time v (constant in time) and is equal to 2j2/2§;0. Thus

(0 y0), = v- (), =220 900 =2k 2
— ~0 . — 0
(v>l-v™0) = v-(v~1), =0
_— ~0 ) )
(v>l.v>l) = 902/ 2yT T = 97 92/2 Z Q;l -igl (marginalization)
2-72n€0,1)
= 2K} 22,
where

avg 1
Lo I D SR v
2772n€l0,1)

is the meso-scale energy KM = %ig L. 9~1 averaged over all locations. So

(3.119)

?

Kp° =9k 4 972/? [KM]™

and

~mo0 T i /2 s i /2 avg
XnOKnU _ 2]2/2!n0K£+232/2!n0[K¢]LV[]
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= vKEi4+w [Kgf]“g.

(3.120)
This is to say, j(\nN 0 is not just related to the large-scale energy. It involves contributions from
other scales also. In this particular case, those contributions are quantified in an amount of the
averaged meso-scale energy over all locations in the sampling space. In general, Eq. (3.118)
cannot be reduced to Eq. (3.119). The transport process V - g?{ thereby cannot be interpreted

simply as transport of the large-scale K, in contrast to that of V - QOP.

For the meso-scale energetics, the counterpart of Eq. (3.118)

~1

~1 1 _—
+ 5 (v, (3.121)

- 1 — ~ —
Kyt =g (@0-v), 4 (v,
gives much more complex a flux form. Even in the simplest case when jo = 0, and a periodic

extension is adopted, the flux can only be simplified to

—  ~1

1
vyt el ), (3.122)

n —n 2—n

which cannot be written in a form similar to ¥;"°K 0, let alone Q%

The interpretation for V - gz is also complex, By the marginalization property,

1 o —r~w 1 =~
Mngﬁ = M, ZC,Onw(,OX)n +Zc(p2)n an

= Ep”“’(pz)ww + E(pz)wwvw“’-

If jo = 0, and a periodic extension is used, then

p=p, p~ =1,

So when w = 0,

1l — 1= 1 — 1—_
MuQ = Jeplpy) + 70p?% = 2ep(py) + 7ep°%
i 1
= 40P (v + V) + 7¢(p" + pP)v
oty L (v 5a e
= ¥ (5ep7) + ¢ (zp p+p X)- (3.123)

The first part is the flux of the large-scale APE by the large-scale flow (recall p = 272/ 2p0
in this case). Again, there exists an extra term which describes contributions from the other

scale window. Similarly, when w = 1, it can be shown that the marginalization of g’z can
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be written as something like the flux of %c ,0’2 (not the eddy APE, however), %c vp'?, plus a
residual term. The details of the residual are not shown here. Generally speaking, a flux to a
designated spot on a designated scale window involves processes not just for that window. It

is a complex combination of the contributions from all scales over the spectrum.

3.7 Interaction analysis

Different from the classical energetics, a localized energy transfer involves not only interactions
between scales, but also interactions between locations in the sampling space. We have already
seen this in the definition of perfect transfer processes (3.107). A schematic is also seen in

Fig. 3.1. The addition of the sampling space interaction compounds substantially the transfer

A
S5
8o
S \\\ ///
LN V4
M.| ™ 000 00—
v »
L. s N
I I —
n-1 n n+1 Location

Figure 3.1: A schematic of the energy transfers toward a meso-scale process at location n. Depicted
are the transfers from different scales at the same location (thick arrows), transfers from surrounding
locations at the same scale level (coiled arrows), and transfers from different scales at different locations
(dashed arrows).

problem, as it mingles the inter-scale communications with transfers from the same scale
window, and as a result, useful information tends to be be disguised, especially for those
processes such as instabilities. We must get rid of this part in order to have the desired

information show up from under the camouflage.
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3.7.1 Triad interaction and detailed analysis

The inter-location and inter-scale transfers can be distinguished with an analysis of the inter-
actions involved. Observe that each interaction term in the PE model equations (3.4)-(3.7)
adopts a quadratic form. This makes the interaction triad a basic unit for each of the transfer
processes that arise (particularly, perfect transfer processes). By an interaction triad we
mean three entities, called modes, with distinct location and scale identities which interact
with each other in the phase space.® In our formulation, these modes are labeled with their
corresponding location index n and scale window index w. We write a mode as (n, w), and
a triad as (n,w; ny,wi; no, wo). for n,ni,ng = 0, ..., 2/2-1, and w,wy,wy = 0,1,2. When a
meso-scale window is concerned, such a mode has been identified as an eddy in real geophysical

fluid flows.

Interactions between the triad modes, or triad interactions, are fundamental in energy
transfer processes. We have examined before a basic transfer function, T'(w,n) = fnw w. (p/E)ZU),
for fields Z,p,q € V, j,, withw = 0, 1, 2, corresponding to the large-, meso-, and sub-meso-scale
window, respectively. In this context, it just represents the cumulative transfer due to many
of these irreducible interactions (while one or more of these basic transfers make(s) a (perfect)
transfer process). Decomposition of a transfer term into a sum of triad interaction functions
is called a triad interaction analysis, or simply interaction analysis. In this section, we

—— ~wW

will show how such an analysis works with the basic transfer function T'(w,n) = énw“’(pq)n

To begin, a representation of triad modes is necessary. Compared to the classical energetic
studies, triad interaction analysis in the MS-EVA is compounded by the addition of location-
location interactions in the phase space (cf. Fig. 3.1). Fournier (1999) and Khac (1998) also
mentioned this fact in their wavelet formulations. For p € V, j,, recall from Chapter 2 the

reconstruction

2
pt) = > B R ().

w=0 neNg2

This is to say, p’“¢272(t) may be technically treated as the characterization of mode (n, w).

8The term #riad is borrowed from the Fourier (and wavelet) energetic analysis with respect to space, where a
conservation rule can be derived (see lima and Toh, 1995; Rajaee and Karlsson, 1992; Pedlosky, 1979; Waleffe,

1992; Fournier, 1999). Here we have not found such a rule and the usage of this terminology is rather loose.
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Denote

— ~W

AW VW2 ( 0,72 Q7j2)
n

Tr(n,w | ny,wi;ng, wy) = 27:“’ {pm ! 272 403 , (3.124)

which stands for the rate of energy transferred to (n,w) from the interaction of (n;,w;) and
(ng,ws). The basic transfer function T'(w,n) then takes the form
T(w,n) = Z Z Tr(n,w | ny,wi;ng, ws). (3.125)
w1,wa n1,no
For convenience, Tr(n,w | mi,wy;ne,ws) is called a unit expression of the interaction
amongst the triad (n,w; ny,wy; ng,ws), where (ny,w;) and (ng, wy) are the giving modes

while (n,w) is the receiving mode, a naming convention after Tima and Toh (1995).

Equation (3.125) is the detailed analysis for the basic transfer function 7'(w,n). Because of
its “atomic” structure, virtually any kind of interaction analysis-related task can be fulfilled

with it.

3.7.2 Modified interaction analysis

As just mentioned, theoretically Eq. (3.125) is enough for us to achieve the goal of inter-scale
information unraveling. Practically, however, it is by no means an efficient way to serve our
purpose. The computation with it is very expensive because of the huge number of mode
combinations and hence the huge number of triads, while such a detailed analysis is not at all
necessary for real problems. If (3.125) is modified such that some of the terms are combined the
computational redundancy may be then greatly reduced whereas the physical interpretation
could be even clearer. In this subsection, we will derive such a modified expression. For
convenience, we still call it an interaction analysis though now it is not a “detailed” one any

more.

Look at the meso-scale window (w = 1) first. It is of particular importance because it
mediates between the large scales and sub-meso scales on a spectrum. For a field p, make the

decomposition

p o= PLPR(t) +pa
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where

P =p— Py o2 (1) (3.127)

and p:ll is the meso-scale part of p,1,

e S e
= Y plepn. (3.128)
iEN2 i#n

The new interaction analysis concerns the relationship between scales and locations, instead
of between triads. The advantage of this is that we don’t have to resort to those triad modes,
which may not have physical correspondence in the large-scale window, to make interpretation.
Note not any p;’!$272 can convincingly characterize p™!(t) at location n. But in this context,
as the basis function $272(#) is a very localized one (localization order v > 2. cf. the preceding
chapter), we expect the removal of p'¢$272 will effectively (though not totally) eliminate from
p™~! the contribution from location n. This has been evidenced in the example of of a meridional
velocity series v (Fig. 3.2), where at n = 384, v]{" is only about 6% (|=33:%%|) of the v™! in
magnitude, while at other locations v and 1):11 are almost the same (fluctuations negligible
around n). Therefore, one may practically, albeit not perfectly, take p;; lqﬁ%j? as the meso-scale
part of p with contribution from location n only (corresponding to ¢ = 27/2n), and p:ll the

part from all locations other than n. Note p:ll has an n-dependence. For notational clarity,

it is suppressed henceforth.

Likewise, for field ¢ € V}, ;,, it can also be decomposed as
g = ¢"+q +q? (3.129)
= ¢+ G g g (3.130)
with interpretation analogous to that of p*Nll for the starred term. The decompositions for p

P |
and ¢ yield an analysis of the basic transfer function T'(1,n) = Z;'1 - (pg),, into interactions

as shown in the following:
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() v'* and V:ll for n=384

(a) vand v™°
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Figure 3.2: A typical time series of v (in cm/s) from the IFF forecast dataset (point (35, 43, 2). See
Chapter 5.) and its derived series. There are 272 = 1024 data points, and scale windows are chosen
such that jo = 0 and j; = 4. The original series v and its large-scale reconstruction v™~° are shown
in (a), and the meso-scale and sub-mesoscale are plotted in (b) and (c) respectively. Also plotted
in (b) is the “starred” series (dotted) v(i! for location n = 384. (d) is the close-up of (b) around
n = 384. Apparently, v];' is at least one order smaller than v™! in size at that point, while these
two are practically the same at other points. Location n corresponds to a scaled time ¢ = 2772n (here
forecast day 8).
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p™? Pyt Py p™?
q™° L-L L-M,, L-M, L-S
' 27 M,-L Mn-My M,-M, M,-S
Ot M.,-L M,-M, M., -M, M,-S
g S-L S-M, S-M, S-S

In this table, L stands for large-scale window and S for sub-mesoscale window (all locations).
M, is used to denote the meso-scale contribution from location n, while M, signifies the meso-
scale contributions other than that location. Among these interactions, M,-M, and M,-M,
contribute to T'(1,n) from the same scale window (meso-scale). There’s no cross-scale transfers
happening in there. Cross-scale energy transfer is fulfilled through other processes. We may

sub-total all the resulting sixteen terms into five more meaningful terms:

~ — o~ — .~ —  ~1
T = 20 000), + @ e 0n ), + (™0,
- ~1 o ~1
+ o (D872 0), + (p™1g™0),, ]
~ i — ~1 —_ ~1 —_ ~1
= Z0 (0%, +(~'¢), +(p~0q”1)n} (3.131)
2551 A1:1 Ta oo T ™1 PCITY s
T, = Z7 - \bn (h70%), + (03'e?), +a@ (~?en”),
_ 2~ t PN
), + ), |
~ i — ~1 — ~1 — ~1
= Z' (™), + (022), +(pN2qN1)n} (3.132)
~ i — ~1 — ~1
Tr(z)@Q_)l — ZTTI' (p~2q~0)n +(pN0qN2)n:| (3133)
- —
T2 = 20 e (407 n] (3.134)
11 Sl = T P IvY St
~ ~ ~ ~ ~ 2J2
Tothor—sn = 25 - (p lq*l )n +q, (;0*1 n )n ] (3.135)

If necessary, T2 and TL’L . may also be combined to one term. The result is denoted as
1—=1
T,7".

The physical interpretations of above five terms are clear. Their superscripts reveal how
energy is transferred to mode (1,7) from other scales. Specifically, 70! and 727! are transfer
rates from windows 0 and 1, respectively, and T9%2~! is the contribution from the window
0-window 2 interaction over the meso-scale range. The last two terms, 7!} and T}

other—n?

sum up to T} !, which represents the part of transfer from the same window.
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Above are the interaction analysis for T'(1,n). Using the same technique, one can obtain a

similar analysis for T'(0, n):

T0,n) = 2.

— ~0
(pq),,

_ 1—0 2—0 162—0 0—0 0—0
- Tn + Tn + Tn +T + Tother%na

n—n

— 0 —_— 0 —_— ~0
(»~9~?%), + @ %¢?), +(p”2q”°)n]
— ~0 — ~0
(p~2q~h), + ®~'a™?), ]

- — ~0
. ﬁ;OEIvTZO((ﬁTQL,jz)Zn ]

~0 — . ~0
~~0( ~0 10:]2
n Ty (p*o n )n j| )

(p~q0)

— ~2

(rq),

_ 0—2 1—-2 0p1—2 2—2 2—2
- Tn + Tn + Tn + T, + Tother—m?

where
TIS0 = 20,
720 — 0.
710290 _ 30, [
oy = 2
T4 = 20|
and T'(2,n):
T(2,n) = 27
where

02 = ZAHNZ i

T2 = ZAnNZ . _
TO®1-2 27’72 i

1 - 2
TiE . = 27|

n—n

- — ~2
. m2§;2(¢%j2)2n ]

~ ~2

— 2 — .
W IR) + TR, }

In these analyses, p,o and p,» are defined as

Pso

D2

= p—py e27(t),

= p— Py o5 (1)

(3.136)

(3.137)
(3.138)

(3.139)
(3.140)

(3.141)

(3.142)

(3.143)
(3.144)

(3.145)
(3.146)

(3.147)

(3.148)

(3.149)
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The physical meaning of the interaction terms is embedded in these mnemonic notations.
In the superscripts, arrows signify the directions of energy transfer and the numbers 0, 1,
2 represent the large-scale, meso-scale, and sub-mesoscale windows, respectively. For easy
reference, we give a complete list of the interaction analyses in Table 3.1 for the transfer

function T'(w,n), for w =0,1,2.

What merits mentioning is that these interaction analyses are by no means unique. One
may obtain different analyses by making different sub-grouping for Eq. (3.125) according to
the problem studied. The moral here is to try to avoid those starred terms as in Eq. (3.135),
which makes the major overhead in computation (in terms of either memory or CPU usage).
In the above analyses, say the meso-scale analysis, if a whole transfer process is calculated,
the sum of those terms in the form of 7)}7! will vanish by the definition of transfer processes

(note a transform does not affect the spatial structure of a field). This also implies that the

sum of those transfer functions in the form of 71

iher—sn Will be equal to the sum of terms in

the same form but with all the stars dropped. Hence in performing interaction analysis for a
transfer process, we may simply ignore the stars for the corresponding terms. But if it is an
arbitrary transfer term which does not necessarily form a transfer process (e.g, T 4,5, ), the

starred-term-caused heavy computational overhead will be still a problem.

Fortunately, under certain circumstances, this overhead may be avoided in practice. Recall
that we have built a highly localized scaling basis function ¢. For any p € V, ;,, it yields
a function p(t)$p272(t) with an effective support of the order of the grid size. The large-
or meso-scale transform of this function is thence negligible, should j; be smaller than js by
some considerable number (3 is enough). Only when it is in the sub-mesoscale window need we
really compute the starred term. An example with a typical time series of p and u is plotted in
Fig. 3.3. Apparently, for the large-scale and meso-scale cases, ﬁ;o(uq;??h):o and py l(u;%\’j?);l

—

red circles) are very small and hence (p’u)  and (p™'u)  can be approximated by (p™~Ou
* n * n n

— o~
and (p~lu)

» » respectively. This approximation fails only in the sub-mesoscale case, where

the corresponding two parts are of the same order.

It is of interest to give an estimation of the relative importance of all these interaction
terms obtained thus far. For the mesoscale transfer function T'(1,n), T9®27! is generally

not significant (compared to other terms). This is because, on a spectrum, if two processes
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Table 3.1: Interaction analysis of the energy transfers for transfer functions T'(w,n), w = 0,1,2. (L.,
M. and S. denote large-scale, meso-scale and sub-mesoscale windows, respectively.)

Destination Analysis term Source
Tnl*0 M eso-scale window
Large-scale 2-0 -
window, Tn Sub-mesoscale window
location 7'°%° M.-S. interaction
T(0,n) o0 0-0 Same scale window (large-scale), same location (n)
T ot , )
n T:th:r—m Same scale window (large-scale), locations other than n
o1 Large-scale window
Meso-scale Lo :
window, Tn Sub-mesoscale window
location n 7! L.-S. interaction
n
T(1,n) ol nl;l Same scale window (meso-scale), scame location (#)
T > , ,
n T:m;m Same scale window (meso-scal€), locations other than n
Sub-mesoscale :*2 L arge-scale window
window, ) X
location 7 . meso-scale window
7% L.-M. interaction
1(2,n) . 33 , .
- Same scale window (sub-mesoscale), scame location (n)
T rx , ;
n Tozth:r—'n Same scale window (sub-mesoscal€e), locations other than n
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Figure 3.3: An example showing relative importance of the decomposed terms from T4 5,,. Data
source: same as that in Fig. 3.2 (zonal velocity only). Unit: kg/m?s.

— ~0 — 0

Left: (px’u),  (heavy solid line) and p7,° (u¢%’j2) (circle);
n
—_— ~d - ~1
Middle: (pji'u), — (heavy solid line) and pj* (ugzﬁ%’”) (circle);
B
2
(circle).

Right: (p32u)  (heavy solid line) and p;,? (ud)%’”)
n

Obviously, the (p3i’u),, in the decomposition

w

—_ ~w —_  ~Nw - ~
(p~vu), = (pRu), + Py (ugn’®),

w
can be well approximated by (p~vu), for windows w =0, 1.
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are far away from each other (as is the case for large scale and sub-meso scale), they are
usually separable and the interaction are accordingly very weak. Even if there exists some
interaction, the spawned new processes generally stay in their original windows, seldom going
into between. Apart from 729271 all the others are of comparable sizes, though more often

than not 797! dominates the rest (e.g., Fig. 3.4b).

For the large-scale window, things are a little different. This time it is term 7270 that is
not significant, with the same reason as above. But term T;'®270 is in general not negligible.

In this window, the dominant energy transfer is usually not from other scales, but from other

TO—)O

locations at the same scale level. Mathematically this is to say, Toq ',

usually dominates
the other terms. This is understandable since a large-scale feature results from interactions
with modes covering a large range of location on the time series. If each location contributes

even a little bit, the grand total could be huge. This fact is seen in the example in Fig. 3.4a.

By the same argument as above, within the sub-mesoscale window, the dominant term is

T2, But TP®172 could be of some importance also. In comparison to these two, 702 and

T272 =T222 |+ T232 are not significant.
2,.3 2,.3
_ a)T ., (ms _ b) T m, (M°/s
<107 @ T, ( ) <107 (0) Tm, ( )
3 T 6
2 af
~ N I
1 ~ 2 4

_1 [ _2 L
_2 L _4 L
-3 -6
2 4 6 8 10 2 4 6 8 10
Forecast day Forecast day

Figure 3.4: An example showing the relative importance of analytical terms of Tk ¢ at ten (time)
locations. The data source and parameter choice are the same as that of Fig. 3.2. The factor 2/2 has
been multiplied.

(a) Analysis of Tz ¢ (thick green solid): T}7% (thick green dashed), Tx7) (red solid), T}ﬁ?{’o (blue
solid), and Ty79 (blue dashed). (b) Analysis of Ty ¢ (thick green solid): T7'. (thick green

dashed), T, (ved solid), TR37 " (blue solid), and Ty (blue dashed).
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3.8 Vorticity equation

With the multiscale energetics formulated, the vorticity part of the MS-EVA now can be easily

developed. The following two sections deal with this development.

First we need a governing equation for the vorticity field, { = k- V A v. It is obtained by

crossing the momentum equation (3.4) followed by a dot product with k,

4 0
a_g:g.v/\wa—f—k-V/\[(erC)k/\z]+F<,Z+F<,h, (3.150)

where F; ., and F¢ ) denote respectively the vertical and horizontal diffusion. Making use of

the continuity equation (3.5), we get,

o¢ 0 ow ov
B =V (0 = G w0) B+ + Ok GEATw R+ B (3151)
0 ) () V)

Here 8 = 0f /0y is a constant if a (-plane is approximation is assumed. But in general, it

does not need to be so.

In Eq. (3.151), there are five mechanisms that contribute to the change of relative vorticity
¢. Apparently, term (I) is the advection of ¢ by the flow, and term (V) the diffusion. S-effect
comes into play through term (IT). It is the advection of planetary vorticity f by meridional
velocity v. Vortex tubes may stretch or shrink. The vorticity gain or loss due to stretching or
shrinking is represented in term (III). Vortex tube may also tilt. Term (IV) results from such

an effect.

In order to better understand the contributions to the evolution of ¢, Spall (1989) split the

velocity field into a rotational component and a irrotational component.
v=kA VU + Vy, (3.152)

where W is the streamfunction, and x the velocity potential. As a geostrophic flow is hor-
izontally nondivergent on an f-plane, this decomposition helps distinguish geostrophy from
ageostrophy in a flow. With decomposition (3.152), ¢ is related to ¥ as: ( = VAv = V0.
Following Spall (1989), denote terms due to geostrophy by superscript qg, terms appearing
only in the linear balance by Ib, and terms appearing in the full balance by fb. The evolution

of ¢ is then

<" = =, = w, ) - (193] " - [vx- vi©
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19 VP = [ov] g
— [V - VOIP = J(w,x:) + F. + Fen, (3.153)

where J signifies the Jacobian operator (J(a,b) = %g—z - %g—;). This is the Eq. (15) of
Spall (1989), and the interpretation for each term is seen in the following sections therein

(also seen in Lorenz, 1960).

3.9 Multiscale enstrophy equations and their interpretations

3.9.1 Large-scale enstrophy equation

Enstrophy Z = %C 2 is a positive definite measure of rotation. It is the “energy” of vorticity.

According to Chapter 2, the large-scale enstrophy at location n is defined to be
1/~ 2
Zy =5 (&) (3.154)

We begin the derivation of evolution of ZL with Eq. (3.151). Eq. (3.153) is too cumbersome,

and unless necessary for some specific problems, it is not advised for multiscale analysis.

As before, first discretize the only time derivative term in Eq. (3.151), 9¢/0t, to 6;¢. Take
a large-scale transform of the resulting equation and then multiply it by Eg 0. The left hand
side results in the evolution &, ZL plus a correction term which is of the order At2, At being
the time spacing of the series. Merging the correction term into the horizontal diffusion, we

get an equation

— ~0

Zy = =G° {V-@Z%L%?” ]—ﬂ G 05"

~ /
~~

(AD)

—  ~0 — ~0
~ ow ~ ow
~0 (YWY ~0 hfhed
(5 +at (<G
~0
/\V'LU) +FZL,Z+FZLJL‘

n

oy

S0y
ok <3z

Again, Fy1 , and Fyz , here are just symbolic representations of the vertical and horizontal

diffusions. Following the practice in deriving the APE equation, the process represented by
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the advection-related terms (AD) can be decomposed into a sum of transport processes and

transfer processes. Denote

MQz = V- E?:O(zc) 1@, (3.155)
_ 9 1o —= 0 5~0

B8.Qu = —g |10 @0" + @) 05 (3.156)

then it is
A.D — AthL + AzQzL
@ - G0 @O, + 5T, @,V 5
— ~0 — _~0

20 0w)y ) | 1o 0w 1 5 ~09wy”

—AQz — G+ G <C£>n (CZ) 57 ]

= ApQur +A.Qz + Ty ¢ +T7L 5.¢

where ApQ,r and A,Qzr represent the horizontal and vertical transports, and Tz g, c,
Tyr p,c the transfer rates for two distinct processes. It is easy to prove, with the aid of
(3.109), that both of these processes belong to perfect transfer processes. Note the large-scale
continuity equation (3.26) has been used in obtaining the above form of decomposition. If
necessary, ApQ L and 11 5 - may be further decomposed into contributions from z and y

directions, respectively.
The enstrophy equation now becomes, after some algebraic manipulation,
Zt = ApQur+A.Qu
~ — ~0 1asy, .= o~
@ - G0 @O+ 50T, @Y 5
— ~0 — _~0
I 00O 1/ 0w 1A~oa@~0]
—A, 02 e ) 2 ~0< _> 2
+[ @zr = Gn 0z +4Cn Caz n (C) 0z J
— 0
0 o 0wy Lo ow
—B G050+ £ GO T+ 80 ()

~0

~ ov
k- <$ A Vw)n + Fyi, 4+ Fyry,. (3.157)

Or, symbolically,

Zylll o AthL +A2QzL +TzL’ah< +TzL’aZC+
Sgr g+ Szt pvw TTSzL cvy + TS g1 i+
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FZL,Z +F2L,h. (3158)

Each term of Eq. (3.158) has a clear physical interpretation. We have known that A,Q ,z
and A,Q . are horizontal and vertical transports of ZZ, respectively, and TyLg,cand Ty 5 ¢
transfer rates for two perfect transfer processes. If { is horizontally and vertically a constant,
then T'zz 5 ¢ and Tyz 5, - sum up to zero. We have also explained Fi;r , + Fj1 ; represents the
diffusion process. Among the rest terms, Sz g and Sy ry., stand for two sources/sinks of Z
due to B-effect and vortex stretching. This is the reason why they earn symbols initialized with
the letter S. The other two terms, TSy rv., and T'Syz 4y, transfer as well as generate/destroy
enstrophy. Processes cannot be well separated for them. In a two-dimensional flow, both of
these terms vanishes. As a result, the multiscale enstrophy equation will be more useful in a

plane flow than a 3-D flow.

3.9.2 Meso-scale enstrophy equation
The meso-scale enstrophy is defined to be
1/~ 2
Z) =S (&) (3.159)

A meso-scale transform of Eq. (3.151) followed by a multiplication by ETLN ! gives an evolution

equation for ZI' similar to Eq. (3.160),

ZT]LV[ = AhC’?ZM + AzQZM
~ — 1~ A
+ | 8Q =GV GO0 + 15V, 4 3OV
— ~1 o
21 0w(), ) | 1z, ow 1/\N13@~1
- = Xlad (50 e jEn ]

ot N Tt (c/aa—é)wl

— ~1
+EHNI k- (g—f A Vw> + Fym , + Fyum g, (3.160)
where
]‘AN o~
M@ = =V [5G+ @)% (3.161)

9 1~
8Q =~ 3G w0+ ;@7 ay (3.162)
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For mnemonic reasons, it is also written as

ZT]LW = AthM + AzQzM + TzM’ahC + TZM,azC—i-
Sgm g+ Sgm poy + TSgu ovy +TSgm gt
FZM,Z +FZM,h' (3163)

Interpretation of these terms is analogous to that of (3.158), except that now it is for meso-scale

processes.

3.9.3 Sub-mesoscale enstrophy equation

Following the same procedure as above, an equation governing the sub-mesoscale enstrophy,

~ N2
75 = % ( Nl) , can be obtained:

n

Z; = DuQys +A:Qys
~ — ~ 1~ — ~
n [—Aths—cﬁv(vo ) 1T @)Y
—_ ~2
o~ 8(w§) ) 1o/ 0w 1 — ~20w,?
8@z — PR 20 ((GE) @) ]
a%? ow\™?
-8 G f GO+ G (o)
— N2 n
+6772 k (% /\VU)) +FZs7Z +FZs7h, (3164)
where
1A~2 ’\N2
MiQzs = V- 3870, + 1@ % (3.165)
0 1oy, —
8.Qps = —g |{e w0 + @) . (3.166)

It is also written in a pithy notation

er = AhQZS + AZQZS + Tzs,ahc + TZS,82C+
Szs g+ Szs pvy +TSzs cvy +TSyzs it
Fys, + Fys, (3.167)

for later use.
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3.10 Summary and discussion

Multiscale energy, vorticity, and enstrophy equations are derived from Eqs. (3.11)-(3.14).
These equations form the basis of the multiscale energy and vorticity analysis (MS-EVA).
Similar to its classical EVA counterpart (i.e., the Pre-EVA developed by Spall, 1989), the
MS-EVA admits processes like transport, buoyancy conversion, and diffusion, though perhaps
appeared in different forms. In our formulation, transport of energy is in general much more
complicated that it seems to be. A large-scale energy transport, for example, may involve
fluxes contributed from all other scales. But the buoyancy conversion process is relatively
simple. It acts as a protocol between kinetic and potential energies for the same scale window.

No inter-scale contribution is present.

The distinction between the current and the classical versions of EVA lies in the emergence
of those T-terms in our formulation. These terms represent energy transfer processes in the
phase space. The transfer can be unambiguously separated from the transport via a careful
classification of processes. When a flow is rotating with a nonstationary vorticity, kinetic
energy begins to transfer and the transfer is perfect in the sense that rotation does no work
to the whole system. Among other kinetic energy transfers is the one due to the vertical
structure of horizontal velocity. It is actually also a rotation-caused transfer, considering that
the vertical gradient of a horizontal velocity forms another component of vorticity in a three-
dimensional flow. For the available potential energy, transfer (in fact, perfect transfer) occurs
when the density gradient (either in z, y, or in z) is under variation. These processes, together

with others, are summarized in Table 3.2.

Transfer terms can be further decomposed to unravel the complicated scale-scale interac-
tions. This is the so-called interaction analysis. An interaction analysis of a transfer function

T results in many interaction terms, which can be classified into the following four categories

Twlﬂw Tw2 —w

? ?

w1 Pwr —w w—w
T : ",

each characteristic of an interaction process (T " may be further decomposed if necessary).

Here the superscript w = 0,1,2 stands for the large-, meso-, and sub-meso-scale windows,
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Table 3.2: Symbols for the multiscale energy equations (Location n, Scale L., M., or S.).

Kinetic energy Available potentia energy
) Time rate of change of kinetic ) Time rate of change of available
Kn energy at location n An potential energy
AQ Horizontal kinetic energy AQ Horizontal APE advective
hTK . . h™A .
advective working rate working rate
A QK Vertical kinetic energy advective A QA Vertical APE advective working
¢ working rate ‘ rate
TK R Rate of kinetic energy transfer TA 5 Rate of APE transfer due to the
"™ | due to the vertical advection *P horizontal gradient of density
o Rate of kinetic energy transfer T, s Rate of APE transfer due to the
T due to the vertical shear of $P vertical gradient of density
horizontal velocity
TK . Rate of kinetic energy transfer
’ due to the time change of bn Inverse buoyancy conversion
vorticity
Rate of an imperfect APE transfer
Ath Horizontal pressure working rate TSAM due to the stationary shear of the
density profile
AZQP Vertical pressure working rate FA . Horizontal diffusion
—bn Buoyancy conversion FA . Vertica diffusion
F . Vertical dissipation
FK h
’ Horizontal dissipation
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respectively, and,
wy = (w+ 1) mod 3, wy = (w + 2) mod 3.

Explicit expressions for these functions are given in Egs. (3.131) - (3.134).

The MS-EVA developed is connected to the classical energetic analysis (e.g., that of Harrison
and Robinson, 1978). When a two-scale window decomposition is performed, and if jo, = 0 and
a periodic extension is adopted, the meso-scale MS-EVA equations marginalize to the eddy
energy equations in a classical framework, whereas the large-scale equations are essentially
identical to their classical counterparts. This fact, together with the comparison made above,
implies that our MS-EVA is a generalization of the classical energy analysis, either in terms

of EVA, or in the sense of multiscale energetic studies.

Based on the same practice, multiscale enstrophy equations are also derived from the vor-
ticity equation. These terms are summarized in Table 3.3. Interaction analyses can also be

performed and the resulting processes are expressed in a way analogous to the above energetics.

To summarize, the multiscale energy analysis is schematized in Fig. 3.5. Arrows are em-
ployed to indicate energy flows, and box and discs to represent the KE and APE, respectively.
From there, the APE and KE are related through buoyancy conversion within each window,
whereas across the scales, the relations are established and maintained by different transfer

processes.

A final remark on the energetic processes. It is well known that advection plays a role
in redistributing energy in the physical space, and so does wave propagation. Now we know
vorticity (to be precise, it should be the evolution of vorticity), which is a measure of rotation,
acts to redistribute energy over a spectrum, i.e., to transfer energy across scales. The three
mechanisms, advection, wave propagation, and rotation, can essentially make energy reach
anywhere in either the physical or the phase space. It is not unreasonable to conjecture that,
patterns formed in a geophysical fluid flow, complex as they may appear to be, could be a
direct consequence of these energy redistributions. Examples will be seen in the next chapters,

where we shall give the MS-EVA developed a validation and a real-ocean application.
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Table 3.3: Symbols for the multiscale enstrophy equation (Location n, Scale L., M., or S.).

Z°n: Time rate of change of the large-scale, mesoscale, or sub-mesoscale enstrophy
AQ Horizontal transport rate S Source/sink of enstrophy due to
h~Z Z, fNv . .
- horizontal divergence
Rate of Z transfer and generation
AQ Vertical transport rate TS due to the interaction between ¢
z Z Z, (Vv . .
- | and horizontal divergence
TZ 5 Rate of enstrophy transfer due to TSZ " Rate of Z transfer and generation
T the horizontal variation of ¢ ’ due to the vortex tube titlting
T Rate of enstrophy transfer due to F Horizontal diffusion rate
Z,0¢ . L7 Zh
z the vertical variation of ¢
SZ 5 [3-effect-caused source or sink of FZ Vertical diffusion rate
’ enstrophy &
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Figure 3.5: A schematic of the multiscale energetics for a particular location. Arrows are used to
indicate the directions of the energy flow, in both the physical space and the phase space, and labeled
over these arrows are the processes associated with the flow. The symbols adopted are the same as those
listed in Table 3.2, except that no mechanism (e.g., the evolution of vorticity and density gradient)
is specified for the T-terms in their subscripts in order to have them represent transfer processes in
a general sense. The superscripts of these T-terms stand for the corresponding interaction analyses
whose interpretation is referred to the relevant parts of Section 3.7 (pp. 147-157). Note we have used
bi-directional arrows in the superscripts to simplify the notation. Take TG*! for and example. It
should be construed as T9,;* and T3°. For clarity, transfers from the same window are not shown.
From this diagram, we see that transports (AQgw, AQpw , AQ sam, for windows W = L, M, S) occur
between different locations in the physical space, while transfers (the T-terms) mediate between scale
windows in the phase space. The connection between the two forms of energy is established through
the buoyancy conversion (positive if in the direction as indicated in the parenthesis), which invokes
neither scale-scale interactions nor location-location energy exchange.
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Figure 3.5: (Continued)



Appendix to Chapter 3

A3.1 Correction to the time derivative term

We have shown in §3.2.1 that there exists a correction term in the formulas with time deriva-

tives. For a kinetic equation, this formula is

5K, — SAt)Q (025, - b, ), (A3.168)
(K) 5

where (C) is the correction term. Scale superscripts are omitted here since we don’t want
to limit the discussion to any particular scale window. Let’s first do some nondimensional

analysis so that a comparison is possible. Scale ¥,, with U, ¢ with T, then

2 2
Term (K) ~ %, Term (C) ~ (At)Q% : % = (At)Z%.

This enables us to evaluate the weight of (C) relative to (K):

Term (C) _ (At)’U%/T° _ <g>2
Term (K) v/t \T) "~

Apparently, this ratio will become significant only when T ~ At, i.e., when the time scale

is of the time step size. In our MS-EVA formulation, the correction term (C) is hence not

significant for both large-scale and meso-scale equations. Fig. A3.6 confirms this conclusion.

The correction (dashed line) is so small in either the left or middle plots that it is totally

negligible. Only in the sub-mesoscale window can its effect be seen, which, as argued before,

might be parameterized into the dissipation/diffusion.

169



CHAPTER 3. MS-EVA FORMULATION 170
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Figure A3.6: 4, K,, (thick solid) and its correction term (dashed) for the large-scale (left), meso-scale
(middle), and sub-mesoscale (right) kinetic energy equations. Data source and parameter choice are
the same as those of Fig. 3.2. The unit is m?/s3. Factor 272 not multiplied.

A3.2 Some notes on the numerical computation

1. Discretization

The HOPS PE model adopts an Arakawa B-grid (Arakawa, 1977). The positioning of
variables is schematized in Fig. A3.7, in which wr and w, are vertical velocities at tracer
points and velocity points, respectively. MS-EVA equations are discretized in this grid, with
uniform horizontal spacings Az and Ay, and varying vertical step size Az (Fig. A3.8). The
discretization is realized with a central difference scheme. In the vertical direction, this requires

some interpolation. Take the vertical transport term % as an example. It is

d(wp)
0z

1 [ Pr—1A%; + prpAzp_1 Pe+1A2k + prAzy i1
wk . — w .

_ . (A3.169
k Az Az + Azp_y b Azp + Azpyq ( )

where w is understood as wr, the vertical velocity at tracer points.
2. Transform

Some fields, such as p, vary so little that the fluctuation is smaller than the mean value by
several orders of magnitude. The huge energy concentrated in the mean makes a transform
susceptible to big computational error because of the finite precision arithmetic. To overcome

this difficulty, use decomposition (take p as an example)

p(t) =p+p'(t)
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Figure A3.7: A diagram of the HOPS PE model discretization in an Arakawa B-grid. Indices i, j,
k are used to position a location in the z, y, and z directions, respectively. T (filled circle) and U
(square) represent the grid points for some tracer property 7' and horizontal velocity (u,v), whereas
W, (diamond) and W (circle) denotes respectively the vertical velocity w evaluated at the U and T

points. The vertical dimension of the w array begins with level 1%.

At the ignored level £, w is always

zero since a rigid-lid is imposed. For arrays of (u,v), the easternmost and northernmost values should

be discarded.

to remove the mean part before any transform is performed. The final transform of p is

obtained from that of p' through formulas

—~ ~0 ——n~0

GINENrIN
4 .

[ oot de+

5/ 2j2/2¢(2j2t—
R

——n~0
)

b\;:O
(),
2_j2/2[) +
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—~n~1 —n~v1 —n~v1
=), + ) =),

~~2
Pn =

—~

n) dt+ (),

(A3.170)

(A3.171)
(A3.172)
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Figure A3.8: A diagram of the nonuniform vertical discretization used in the computation. Each
dashed line marks the central level for a discretized vertical layer with some size Az and bounded
below and above by two solid horizontal lines. In each layer, the vertical velocity w is defined at the
boundaries, while all other fields, denoted as p in the diagram, are evaluated at the center.
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3. Data communication

More often than not, the dataset to be processed (produced by HOPS or other model
systems) is huge, as the time series have to be long enough to yield an adequate multiscale
decomposition. When programs are run on a connected clusters of computers within a local
network, time spent on the data communication turns out significant in the overall expense.
This problem becomes especially severe at a time when the traffic is heavy. But there is
no way to alleviate it just by reducing program overheads. If possible, choose a physical
transmission media (say, fiber) with better transmission characteristics (e.g., full-duplex), and
adopt a digital subscriber line with high downstream (receiving) rate and upstream (sending)
rate. In a word, do whatever possible to facilitate the communication between the server and
clients. A through communication channel is expected to help improve the performance of

MS-EVA applications significantly.
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Chapter 4

MS-EVA validation and dynamic
fingerprinting with the MS-EVA

4.1 Introduction

We have completed the formulation of the MS-EVA, the multiscale energy and vorticity anal-
ysis. This chapter serves to give it a validation with some highly idealized models, and in the
meantime explore with this validated tool the associated energetic structures, which will help

identify processes of the same kind in a real ocean or atmosphere.

The stability problem example, which was introduced in the beginning of this thesis, is
chosen to achieve the above goals. Following this section is a brief review within the classical
framework, where barotropic and baroclinic instabilities are introduced. In §4.3, these two
fundamental processes are related to the MS-EVA, and one will see that the relationship is
established through two combined MS-EVA transfer terms, which are denoted respectively by
BC and BT'. This section shows how the MS-EVA can be applied to a specific problem.

Processes represented by BC' and BT are supposed to lead directly to the baroclinic and
barotropic instabilities. This fact is the starting point to test MS-EVA diagnosis. In §4.4 and
§4.5, we pick two well-known models, each admitting only one process, to validate what we
have formulated before, and, along with the validation, to investigate the MS-EVA structures

characteristic of the two processes. The last section is a brief summary and a discussion of
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how the procedure introduced in this chapter can be modified for a real regional ocean or

atmosphere.

4.2 The classical linear stability problem

This section introduces two types of instabilities, barotropic instability and baroclinic insta-
bility, for a geophysical fluid flow with an idealized configuration. The treatment is standard
and can be found in many textbooks (e.g., Pedlosky, 1979). The problem is re-derived here
because the existing formulations are mostly with a quasi-geostrophic (QG) flow, which might
not quite fit our primitive equation model. Indeed, as we will see later, an additional term

will come into the final result if no QG approximation is invoked.

Consider an ideal (frictionless) zonal flow channeled between y = L. The governing
equations are (3.4)-(3.7),! with the dissipation and diffusion terms neglected. Written in a

component form, they are

% = —u%—vg—z—w%—i-fv—%g—]; (4.1)
e RS (42)
0 = %Jrg—ZJraa—f (43)
2_1: _ o (4.4)
% _u%_v%_w%. (4.5)

In this system, field p (and hence P) is understood to be de-meaned. That is to say, the
constant part py has been removed (but the vertical background structure is not touched).

Though in different variables, the equation are still of the same form as those of (3.11)-(3.14).

The boundary conditions are no-normal flux across y = £, and rigid at the bottom z = —H
and surface z = 0. In the x direction, the boundary is assumed to be cyclic or periodic with

period L.

'"We do not adopt the set (3.11)-(3.14) because here the background density field, p (see later), has a

dependence on y as well as z.
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In order to linearize the problem, it is necessary to scale the variables so that a term-by-term

comparison is possible. As usual, let

($7y) NL7 ZNH’
H
~Y ~Y U—
(u’v) b) w L’
L
T ~ — ~
U’ f f07
LU
P ~ AP = pofoLU, p~Ap= %

then the governing equations become,? after non-dimensionalization,

Ro% = —Ry (u% —i—vg—z —i—w%) + fo— 88—5, (4.6)
Ro% = —Ry (ug—z —i—vg—z —i—w%) — fu— ?9_];’ (4.7)
) = _2_1:, (4.9)

% - —u%—vg—g—w%, (4.10)

where Ry = U/ fyL is the Rossby number. In many problems of interest, Ry is very small.
But since what we consider here is a generic PE model, its size is not prescribed. With the
scaled variables, the boundary conditions are
w=0 at z=0,—1; (4.11)
v=0 at y==xl; (4.12)
and cyclic in the z-direction.

Suppose we have a basic flow
(67 /D? ,LD) = (a(y7 z)707 0)7 (4'13)

which, with the dependence on both y and z, provides a background potential vorticity that
admits both barotropic instability and baroclinic instability, the two fundamental instabilities

for a geofluid flow. The basic pressure and density are determined through geostrophic and

2From now on to the end of this section, all variables are nondimensionalized.



CHAPTER 4. MS-EVA VALIDATION AND DYNAMIC FINGERPRINTING 180

thermal wind relations

opP

-— = —u 4.14
op 0 OP o0

— = ———=f—. 4.1
oy 0z Oy 0z (4.15)

Equations (4.13) - (4.15) form the background system for a linear instability problem. It
has a general configuration which may be simplified to obtain many well-known formulations.

For example, if the problem is considered on an f-plane (f = 1), and

%:A:const, g—Zzo,
it is nothing but the Eady model; if the geometry is a S-plane (f = 1+ By with § a constant),

and

_ 10p
ht=—--2L
p Oz

is a constant, with other conditions the same as above, then it becomes the Charney model.

Now perturb the basic system with a small disturbance
(ul7 /UI, wl? pl7 P,)

such that

!

max = e < Ry. (4.16)

The inequality seems to be a very stringent constraint on the perturbation, but, as we will
see later, it is crucial to the linearization of those governing equations. Fortunately it can be
justified if only disturbance growth at initial stage is considered.> One may argue that, based
on the continuity of the field functions, the system can always be made satisfy the constraint

so long as the evolution time is short enough.
With the perturbation superimposed on the background, the fields are now

u=1u+u, v="1, w=w,

) (4.17)
p=p+p, P=P+P.

3This is a limitation of linear stability theory. The disturbances may grow so fast that the theory soon

becomes invalid.
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Substitution of them into the governing equations yields, with terms of order higher than O(e)

dropped,
ou' ou’ o0 o0 opP’
Ry— = —Rylu— '— '—) h— 4.18
i °<“ax+“ay+waz IR (4.18)
ov' ov' opP’
Ry— = —Ryui— — fu' — 4.19
ou' o' ouw
0 = —+— 4.20
Ox + oy + 0z’ (4.20)
opP’
;o 4.21
p 82’ Y ( )
op' _op' ,0p ,Op
R A A A 4.22
ot Yor "oy 0s (4.22)
The kinetic energy of the disturbance (eddy kinetic energy) is defined to be
1,
M _ 2 2
K" = 5 (u +v ), (4.23)

where the mean is performed over the whole sample space.* The evolution of K™ is obtained
by a multiplication of (4.18) by u plus a multiplication of (4.19) by ', followed by an averaging

over the entire ensemble,

oKM O(KMu) ——ou ——0u
Ry 5 = —Ry B —i—uwa—i-uva—y
_ ou' P! n ov' P’ N ow'p’

oz dy 0z

—w'p'. (4.24)

Let

<R0KM>Q - VLQ// QROKMdV,

namely the perturbation energy averaged over the model domain
Q= {(IE,y,Z) | T € [07 ]-] and CyCliC, ye [_17 1]7 z € [_170]}7

which has a volume Vi. Take this spatial average on both sides of the above equation for K™

to get

Q
‘9<R0KM> —__0u 9\ 0
N - Tod 20 T2 _ ]
5 R0<uw P + u'v 6y> <wp> . (4.25)

4Here the sample space is a statistical concept, and the mean over it is independent of time and the physical

space.
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Likewise, define the available potential energy of the perturbation field:

1 p?
AM = - 4.2
—0p/0z 2 (4.26)

Note —% > 0 for a stably stratified ocean. The positive-definiteness of AM is then guaranteed.

/

Multiply (4.22) by _—a% and then perform an ensemble average. The evolution of AM is

obtained thereby:

0AM ouAM 1 —0p ——
A v’p’a—y—i—w’p’. (4.27)

ot Ox  —0ploz

Integration of this equation over (2, followed by an application of the specified boundary

conditions and a division by Vg, gives

o aM\" .
< ot i - ‘<—a;/az”'_p'g_z>ﬂ + <W>Q (4.28)

()" = v

Q Q
is the spatially averaged perturbation APE. The sum of <AM > and <R0K M > measures the

where, as before,

Q
capacity of perturbation. Write it as <EM > . Its evolution is obtained by adding Eq.(4.28)
to Eq.(4.25),
Q

8<EM> Foo__au\? _0a ——du\"
N S AU S N e _ [Pl [PV et
5 <—8p/8zv’0 3z> R0<uv By + u'w 8z> . (4.29)

In arriving at this equation, the thermal wind relation (4.15) has been used.

Equation (4.29) is virtually the same as the equation (7.3.11) of Pedlosky (1979), except
for the introduction of a second term in the second angle bracket on the right hand side. The
reason why Pedlosky’s formulation lacks this term is that he begins with the quasi-geostrophic
assumption, which basically excludes vertical advection in the momentum equations at order
O(Rp).5 In the primitive equation model, this does not necessarily hold, however. The

BN
representation in our problem is the retaining of the extra term —<R0u’w %> . In fact,

5This follows from the fact that, to the lowest order, the flow is geostrophic, and geostrophic flow is horizon-

tally nondivergent (i.e., ‘?9—';’ = 0 to the lowest order). With the rigid lid boundaries specified above and below,

this yields a zero w (to the lowest order) throughout the water column, which eliminates the vertical advection

mechanism in the first order momentum equations.
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it is possible to estimate, in terms of the known scaling numbers, the relative importance of
— .\

this term (call it Term (/1)) and its counterpart, Term (I)= —<%U’p’> , if the vertical

structure of p is rewritten as a factor times the buoyancy frequency N2. Since

(a5 - o

(where those quantities in the parentheses are all dimensional and N2 is the scaled buoyancy

frequency), and according to the scaling introduced before, Ap = po foLU /gH, we have

op NiH? N NEH? 1,
0z  foLU - flL? Ry '
Now let the buoyancy frequency be correctly scaled (i.e., N? ~ O(1)), the ratio of Term (I1)

to Term (I) is then

Term (I1) 1 NZH?
R S RO X —
Term (I) Ry f2L?
NZH?
0

This is exactly the reciprocal of the I" used in the formulation of Pinardi and Robinson (1986),
or the stratification number S in Pedlosky (1979). Note
NZH? I?

i Iy

where Lp is the Rossby deformation radius. As argued by Pedlosky (1979) (pp. 454 - 455),

I =L?%

length scales of the order Lp are most preferred for fluctuations to be fed with the mean
potential energy. In other words, I' ~ O(1) for most of the meso-scale atmospheric or oceanic
motions, if these motions are generated through baroclinic instabilities. For this reason, Term
(II) could be of the same importance as Term (I) in a PE model. To make the scaling more
clear, Eq. (4.29) is recast as
o(EM >Q
ot

f _au>9 <_au 8u>Q

= —Ry(I'=v'p'— ) — Ro(uv'— w'— ) . 4.31

0< N2v’08z 0 uv8y+uwaz ( )
0

A system is unstable if <EM > increases. From Eq. (4.31), there exist two mechanisms that

may cause an instability. They are, when properly grouped, represented by the two spatial

averages on the right hand side (see, for example, Pedlosky, 1979; Robinson, 1996). The first

average comes from the equation for AM. The perturbation growth due to this mechanism is
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called a baroclinic instability. The second average, which includes two parts here, represents
the rate of the energy extracted by the Reynolds stress against the background velocity profile.
It has a kinetic energy origin, and the instability brought about by it is said to be barotropic.
From Eq. (4.31), a barotropic instability is possible only when the perturbation streamlines

are aligned against the basic flow profile (cf. Pedlosky, 1979. p. 436).

It is a common practice to define barotropic instability and baroclinic instability according
to the structure of the basic flow u. People usually refer to the former as perturbation growth
on a background field without vertical dependence, while defining the latter to be instability
with @ as function of z only. In the quasi-geostrophic formalism, the term involving u/w’ in
(4.31) diappears (e.g., Pedlosky, 1979; Robinson, 1996), and the dependence of u corresponds
precisely to the energy source for the perturbation growth. This definition is thence equivalent
to the concept of instability introduced above. In a PE model, however, things are more
complicated. With the introduction of u'w’, the one-to-one correspondence between instability
type and mean flow dependence is no longer valid. In addition to <AM >Q, barotropic growth
may also be fed with energy extracted against a vertical profile of 4. In general, the instability

type of a PE model flow cannot be told simply by the structure of its mean flow alone.

4.3 MS-EVA in wave instability identification

Our MS-EVA is developed on basis of a dimensional primitive equation model. It will be more
convenient to have the energy equation, Eq. (4.31), also expressed in its dimensional form for

comparison:

Q
3<EM> f o1 Q O O Q
_ 9 — /_u _ 7 /_u 7 /_u
5 = <p0N2vp8z> <uv 9y + u'w 6z> . (4.32)

Mnemonically this is written

Q
a(EM)" = (BCH® + (BT})" + (BT})®, (4.33)
where
x fg ﬁ@
BC* = —pONZUpaZ, (4.34)
BTy, = —u’v’@, (4.35)
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BTy, = —u’w’%, (4.36)

with BT* and BC™ symbolizing the mechanisms that lead to a barotropic instability and
baroclinic instability, respectively. The subscripts V' and H of BT* stand for the vertical
and horizontal profiles of the basic flow against which the Reynolds stress extracts energy to
fuel the barotropic perturbation growth. When the basic flow lacks a vertical structure, both
(BC*)® and (BT{})Q vanish, and the system will be unstable if (BT})? > 0. But if what
is lacking in the basic flow structure is a horizontal gradient, disturbances could grow with
either positive or negative (BC*) or (BT), provided their sum, (BC* + BT%)?, is greater

than zero.

It should be pointed out that, in practice, a statistical ensemble is usually not feasible. We
have to use another form of average in place of the ensemble mean during the derivation of
Eq. (4.33). If replaced by a spatial average, all the space derivatives on the right hand side
will be influenced and no such simple form as (4.33) would result; if replaced by a temporal
average, only one term, i.e., the 6t<EM >Q on the left hand side, needs some modification.
The modified 8t<EM >Q is just as that in Harrison and Robinson (1978), which still has an
interpretation of eddy energy change with respect to time if manipulated in the same way as

we did in the preceding chapter.

We now proceed to establish a connection of Eq. (4.33) to the cross-scale parts of the MS-
EVA terms in (3.63) and (3.72). We first examine the interaction analysis with linearizations
applied, then study how the MS-EVA kinetic and potential energetics can be related to (4.33).
In the last subsection, some criteria are summarized for the identification of barotropic and

baroclinic instabilities.

4.3.1 Linearized interaction analysis

Recall for a linear instability problem, only the meso-scale part of a two-scale decomposition

is considered. For a meso-scale transfer term [cf., (3.124) and (3.125) in Chapter 3]
T(lan):z\gl'@;la VZapaqevg,jm

the interaction analysis will be

~1
n -

T(l,n) =T + T2 =T 4 230 (poig) (4.37)
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Connection with the classically formulated energetics is possible when jo = 0 and a periodic

extension is used. In this case,

'=q, ¢'=4d VqeV,;,

so the marginalization property (2.70) becomes

Mnﬁr:)larjl = ,qla v P,q € Vg,j27 (438)

where M,, is over {n | n € Z,2772n € [0,1)}.

Marginalization of (4.37) yields

M, T(1,n) = M7+ 2. (p/q)

= M 2 (g - 1]

&

M, 1! by linearization.

So, for a meso-scale transfer, only the cross-scale part will be left in the linearized energetics

when marginalized. That is,

»

where ”=" is understood to be an equivalence relation up to linearization.

4.3.2 Kinetic energetics

In the meso-scale kinetic equation (3.63), KM = 1v~1.v>1. Clearly M, KM = KM = v/ v/,

a direct result of the marginalization property. So
Q Q
M, (KM = (kM) (4.40)

Q
which forms the kinetic part of the <EM> in Eq. (4.33).

Among the other terms of Eq. (3.63), those with the symbol T' (T ¢, Tga 4p,, and

Tk p,,) have been argued to characterize two transfer processes. By what we have defined,
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it is anticipated that some instabilities of interest will be represented by these terms. To see

if it is true, first marginalize T m ¢

So,

// Mn 0—)1C dV

kA (Cv)

S Y
I - ] 2

MnTKM,C = _Mnigl kA (CX)n

(location dependence suppressed for simplicity):

~1

After integrating by parts followed by an application of the boundary conditions (no-slip at

northern and southern flanks; rigid-lid on the top and bottom; cyclic in the z-direction), this

integral is reduced to

[ i av

Likewise, the marginalization of

Notice that here

],

K' =

uv)

N | =

av

M_W/U%ﬂw

[(ﬂ +u')? 40" —a@?|,

%NW—W#N & 5
Q 0
u’v’a—y dV+/// u! o dV.
Q
TIO(}QI 9 is
Mn [O(Y/Il’wa —MnTKM’waz
BKNI
1
= My 0z
W - 0K’
9z

> u dV (by continuity)

(4.41)
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different from the KM in the meso-scale energy equations. After linearization (terms dropped

at order higher than 2), the above equation is integrated over 2 to get

0
0—1 _ 1 (!
[t v = [f g o av
z= !
= //ﬂw’u’ dxdy—///u’aw u dV
z=—H 0z

— _///Q u’a;; a dv. (4.42)

Put (4.42) and (4.41) together,

—__ou
// QMn(TIOﬁl,( + Tt ys,) AV = —///Q u’v’a—y dv, (4.43)
or
Q ou\
My (TR + TR o) = —<u’v’a—y> (4.44)

which is exactly the term (BT}})Q in Eq. (4.33). That is to say, TIO(Y,IIC and Tyt o together

marginalize to the energy needed for a barotropic instability due to BT7y;.
The other T-term in the kinetic equation is T v 5 ,,. We anticipate that its cross-scale part,
TIO(_A}I, 9. Will be marginalized to BTy, in Eq.(4.33), and this is indeed true. For convenience,

the expression for T 5, is rewritten as follows:

where
("= Ci+ (o)
and
ov ou
C1 9’ (2 5

By the marginalization property, we have

MnTIO(_A)/Il’azv = MnTKM,Bzv
=v kA ((w)
v/ - [y - (Gew)i]
= —(u + u) (w)" + V' (Gw)’
ou

— —duw'

0z
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after linearization. So,

Q —\ 0
Mn<T[°(74{azv> =—<u’w’%> . (4.45)

Again, this is exactly BTy, one of the terms in Eq.(4.33).

4.3.3 Potential energetics

The treatment of the available potential energy equation runs a little differently from that of its
kinetic peer. Before making any comparison between (3.72) and its classical counterpart, one
thing about the density field p has to be clarified. Recall in arriving at (3.18), the p actually
has been removed by a stationary vertical profile, and this removed structure is embedded in
the parameter N2, ¢, or whatever derives. For this reason, if that density is averaged again,
the so-obtained mean should be z-independent. That is to say, gg = 0. This is somewhat
confusing since we insist that there exists a sizable buoyancy frequency N2. In deriving the
classical energy equations, p is not removed by that vertical profile, p is a function of both y
and z. The two different starting points from which we obtain the available potential energy
equations could cause a little confusion, but fortunately everything, at least in notation, should
be the same (even 0p/dy is quantitatively the same, albeit p itself has a different meaning),

except that in the following derivations the term %, if any, should be set nil.

As the kinetic case, the meso-scale available potential energy AY marginalizes to AM, and
hence ./\/ln<A,]¥[>Q = <AM>Q. For the T-terms on the right hand side of Eq.(3.72), we expect
they together contribute to the (BC*)® of Eq.(4.33). Since Eq.(3.72) involves a complicated
separation of the field p, we will not follow how it is formulated. Instead, we just consider the
sum of all the right hand side terms in that equation except the buoyancy conversion. Because
the transports integrate to zero over the whole domain €2, the final result should just be the

same. In other words, what we need to consider is the summation of

—5y 'V - (px),, = cpy 5 (wp),

— ~1

over all possible n’s. By the marginalization equality, this sum is

T'=—cp'V-(pv) — cp’g(wp)’-
0z
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Integrate T over 2. The first part is, with terms of higher order dropped,

///Q 'V (o) dvz///_Cp'V‘(ﬁ!’+p’2+p’z’) dv
= / / / —cp/'V - (pY' + p'¥) dV

A BT e
=/, 7 v,

The second part involves the z-derivative of the mean of p. As explained before, it should be

set zero. This part is thus integrated to

[[[ ~eoaztwoy av = - [[] cp'%'m av
[l

Therefore, the integral of T" over €2, which is the sum of the above two parts, is equal to

/// pv’ av. (4.46)

92

PN?

Recall that

CcC =

Substituting it for the ¢ in (4.46) followed by an application of the thermal wind relation,
Eq. (4.46) turns out to be none other than the (BC*)* in Eq. (4.33):

// M (Tym g, +TAM 0.p T TS ym) dV

—d
//QPUN2 v

= (BC*)“

This is to say,
01 01 0—1\? _ )
Mo (TS7, , + T, + TS5 = (BCH)®, (4.47)

by Eq. (4.39).
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4.3.4 Instability identification with the MS-EVA

According to the foregoing proofs, marginalization of MS-EVA cross-scale transfers yields ex-
actly the corresponding energetic terms for linear stabilities, so long as the large-scale window

is set with the gravest index (jo=0) and a periodic extension is adopted. Denoting

1 1
BTy = Tgﬂ’g—i—T}){]}’waﬁ,
0—1
BTV - TKM,&:’U’
BC = Tk, ,+Tanly., + TSI,

(n-dependence suppressed for simplicity) with BT = BTy + BTy and BC corresponding
respectively to the barotropic and baroclinic instabilities as with their starred counterparts,

Eq. (4.33) then can be written
. Q
M8 (AN + K)) = Mu(BOY® + My (BTw + BT)®. (4.48)

Here the time derivative has been modified as we did in deriving the multiscale energetic

equations in Chapter 3.

Equation (4.48) is a marginalized statement of energetics for linear instability. It reflects
the accumulated effect of all the dynamic phenomena on the meso-scale window. A localized

version of it is
~ Q
Su( AN+ K)T) = (BC)" + (BTy + BTV)" + (R)®, (4.49)

where the extra term (R)* (again location dependence suppressed) is such that M,R = 0.
R is apparently the total transfer from the same scale window (meso-scale), and because of
its existence, $n<Aﬁ4 + KM >Q is no longer the instability indicator as Mn3n<A7{\b4 + KM >Q
is in (4.33) (unless R is negligible). Given a location, one has to calculate the sum of the
cross-scale transfers (BC’)Q + (BT + BTV>Q to see whether a system is stable or not. This,
together with the notion of barotropic and baroclinic instabilities, gives the following criteria

for process identification:

1) A system is unstable on the meso-scale window if (BTy + BTy + BC 2 > 0 and vice
( y

versa (in a quasi-geostrophic model, BTy vanishes).
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(2) For an unstable system, if (BTy + BTy)? > 0 and (BC)" < 0, the instability the

system undergoes is barotropic.

(3) For an unstable system, if (BC)® is positive but (BTy + BTy)* is not, then the insta-

bility is baroclinic.

(4) If both (BTy + BTy) and (BC) are positive, the system must be undergoing a mixed

instability.

It should be pointed out that, if the system is not a closed one, or if it is a spatially local
feature that needs studying, the average cannot be made over the whole spatial domain. €
must be chosen to encompass only the feature of concern with dynamical integrity. In a model
with an idealized configuration, this is not a difficult business; in real problems, however, an
unambiguous choice for € is usually not feasible. We will get back to this issue after the
following two sections, the validation of MS-EVA with two idealized models, the Eady model

and the Kuo model.

4.4 MS-EVA validation with a baroclinic instability model

The Eady model is among one of the most extensively studied examples of linear wave stability.
Introduced by Eady (1949) in an elegantly simple form, it has since become a benchmark for
baroclinic instability studies. In this section, we will use this model to validate the MS-EVA,
and at the same moment explore using MS-EVA processes how a baroclinic instability is

formed.

4.4.1 An overview of the Eady model

Originally, Eady built his model from a frictionless primitive equation set [cf., (4.1)-(4.5)],
on an f-plane with Bousinesq and hydrostatic approximations. The model domain extends

infinitely in either horizontal direction, and is bounded above and below by two rigid-lids, i.e.

w=0 at z =0,z = —H (H= const). (4.50)
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The basic flow has only a z-dependence:

ou

5 A = const, (4.51)

u = u(z),

permitting no gradient in the mean potential vorticity. Nevertheless, this background config-
uration still meets the requirements of the Rayleigh theorem for baroclinic instability (see, for
example, Holton, 1992; Robinson, 1996). As Vu = 0, barotropic instabilities are essentially

excluded. Simplify the model further by assuming a basic density profile:
p=Byy+ Bz, (4.52)

where B, and B, are two constants. The linear dependence on y is a result of (4.51) by the
thermal wind relation (4.15). A straightforward calculation gives B, = pgfoA/g. The linear
dependence on z is not essential, though it does help simplify the derivation that follows.
Introduce a perturbation small enough so that (4.16) is satisfied. A linearized equation set is

obtained thereby, in the dimensional forms of (4.18) - (4.22):

ou'  _ou  ,0u , 01 , 1oP
o' o' 1 P
W g LOP (4549
ou ov  ouw
_ o o 4.
0 5 Ty e (4.55)
OP'
Plg = —7- (4.56)
op' - 0p 0p
8_’; = —adp - U'a—z - w'a—g. (4.57)
If a solution of the form
o' u(z)
v’ 0(2)
w' — Re( ﬂ)(z) . ei(k:v-l—ly—wt))’ (4.58)
I3 p(2)
P | P(2) J

is to be sought (k and [ non-negative, and w = wy + iw; complex), Eady shows that the
problem is reduced to solving for @ an ordinary differential equation

£(€2 — 1)@ +2(1 — iof)cfl—? +

o [Ro& + 2io]d = 0 (4.59)
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subject to boundary conditions
w = 07 at 5 = gtopa fbot (460)
where
uk — w
§=¢(2) = I §top = £(0),  Epor = E(—H), (4.61)
! 2
o= R, = (1+ 0°)R;, (4.62)
and the Richardson number
g/po - 9p/0z 9B.
_ = — . 4.
pE (4.63)

R, = 5
(Ou/0z)
He also showed, when R; > 1, and |¢?| < 1, this equation can be well approximated by
(4.64)

dPW 2dW
= — R,W =0,

g2 & d¢
with the new variable
(=g,
W(z) = (1+£> (2), (4.65)
(4.66)

Eq. (4.64) and boundary conditions
at £ = £topa and & = &por,

W =0,
form the new eigenvalue problem. Let @, = u(0), tpoyr = u(—H). It has nontrivial solutions

(4.67)

if and only if
wo = %(ﬂtop + Tpot)
W] = 'y\/—l%.
Here vy is defined such that
72 = (a—tanha)(cotha — @) (4.68)
(4.69)

and
VR, _
(—A)kH = —2f
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is the scaled wavenumber. Plotted in Fig. 4.1 is the variation of 2 as a function of o.. Unstable

solutions exist if and only if «y is real, i.e., ¥ > 0. Unfolded on the axis of «, this is possible

only if
la] < e = 1.1997, or (4.70)
k| < j—lj;_gAu Ot R 2.389¢LR_UAu, (4.71)
where At = Usop — Upot-
02 : : : 7
° o o .

-0.1
-2 -15 -1 -0.5 0 0.5 1 15 2

Figure 4.1: 42 as a function of a.

Eq. (4.67) gives the eigenvalue w for problem (4.64) plus (4.66). Corresponding to it is the

eigenfunction of w(z):

i(z) = (%) 2 W, (4.72)

where
W(z) = CreVF(1 — VRy€) + 0227V (1 + /Ry

and the constants C; and Cy are related through
02 o _6_2\/1{_0_&01, (1 -V Raitop)

a 1 + \Y Rtrftop
Once w is found, other eigenfunctions are easily determined. Let a = —A/f. They are,
. a odw . ,w dw
= —— |- - —+ - 4.
i) = 1[5 i ). (4.73)
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() = f‘{ﬂ Ei—? +ia(%~ - fl—?)] , (4.74)
P(z) = %(iwf)—ikﬁf)— Fil)

= 1fa2 % (%Cfl—?ﬂa%)ﬂw—g‘;—?)], (4.75)
pz) = —ég - f‘;’)o 5 [(%Cfl—? + Ry) +io( - ‘fl—?) L (aT6)

which, when substituted into (4.58), yield the perturbation fields (u',v',w’, p’, P")T. Notice

again, here all variables are dimensional.

4.4.2 Dataset generating

To form a MS-EVA-ready dataset, choose a configuration as follows:

00 = 1025 kg/m3 H = 1000 m
Utop = 20 cm/s Upot = 10 cm/s
B, = —1x1072kg/m* f = 1x107* Hz

which is to some extent typical of the mid-ocean setting. Let the domain extend 1000 km in

both 2 and y directions (not essential), and make the following calculations:

A = (Gyop — Tpot)/H = 1.000 x 10~ 45~

B, = pofA/g=1.046 x 10 %kg/m*

;= ——5 =19.561x 10
R A2 9.561 x 10
a = —A/f=-1000

Obviously, the Richardson number R; > 1. This is one of the two conditions under which
the Eady solution is valid. To see whether another condition ¢? < 1 holds, notice that the
instability requirement |a| < 1.1997 implies

f
VR,

The wavenumbers of interest are thus of order O(10~%) m~! or smaller. By (4.67) a wavenum-

k < 2.389 Ad ~ O(107%) m™'.

ber of this order will give an |w| smaller than order O(107¢) s=!. Therefore

= ”kf_w <0(10°2),
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which, together with the fact R; > 1, validates Eady’s approximations and thus the above

solution indeed holds so long as waves of concern are long enough such that k¥ < O(107°) m~!.

Next pick an eigen mode to examine the energetics. Without affecting the representative-
ness, choose a zero y wavenumber,® i.e., let [ = 0. In this case, 0 = 0, R, = R;. The solution
(4.72) - (4.76) is hence very much simplified, and the shortwave cut-off (corresponding to
Qert) 18 kepy = 2.454 % 1075 m~!. Given a k smaller than this k., an unstable solution is
obtained, and correspondingly a dataset can be generated. What we need consider next is the

consistency of this set.

For a dataset to be consistent in the sense of MS-EVA application, its time sequences must

be

e Long enough to span some integer cycle(s), otherwise aliasing effects will come in and

give a spurious basic flow for the decomposition;

e Short enough that the amplitude of perturbation is within the tolerance of a valid linear

solution.

These seemingly contradictory requirements can be easily met if we choose an unstable system
with perturbation large in frequency while small in growth rate, i.e., |w,| > |w;|. By (4.67), if
we have k distinctly larger than zero, and at the same time let vy — 0, then this condition is
satisfied. Such k’s do exist. They are near the critical wavenumber k., as shown in Fig. 4.1
(notice k o< a when [ = 0). In the present configuration, R; is very large, so this issue is not
very serious. We simply choose & = 1 x 107 m~!, which gives an w = 1.50 x 1075 + 2.53 x

10~7i rad/s, meeting the above requirements.

With the eigenvalue and eigenvector, we compute the solutions of all the fields and truncate
them at exactly the end of the second cycle to form a series for each data point. The series
length is thence

2% 2T~ 8.38 x 10° s = 97 days.

Wy

Within this interval, disturbances grow at most by exp(8.38 x 105w;) ~ 8.31 times. So, if

initially the perturbation is set smaller than the basic field by 8_—%16 (¢ the permissible relative

6 A nonzero [ results in a similar solution to the case | = 0 except that on the horizontal levels, the crest/valley-

alignment now has an angle relative to the meridional lines.
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magnitude for a linear disturbance), then the solution will be valid throughout the 97-day
time duration. This can be done by properly manipulating the constant C of W(z) (p. 195).
Choose C; = 2 x 107 7. It yields a maximal |u'|/% < 1073, which is much smaller than the

Rossby number Ro = fLL ~ 1072

Apart from the unstable solution, we also need to examine the energetics for a stable mode
and a neutrally stable mode. Here growth rate is not an issue any more. The solution
will always be valid as long as it is so in the beginning. We choose for the two modes
k=3x10""m ! > key and k = kepy = 2.454 x 1075 m ! which yield w, = 4.04 x 105 rad/s
and w, = 3.68 x 1076 rad/s, respectively. Again, the solution series are truncated at the end
point of the second cycle (36 days and 39 days in length, respectively). The three chosen
solutions are sampled at 2'° = 1024 time instants, and mapped onto an Arakawa B-grid (see
Fig. A3.7) with a mesh of 20 km x 50 km x 100 m (50 points in z, 20 points in y, and 10

levels in z). The datasets obtained are now ready for the MS-EVA application.

4.4.3 MS-EVA validation with the Eady model

With the datasets thus generated, a two-scale decomposition is performed on each field. Let
jo = 0 (j2 = 10 known) and adopt a periodic extension. The perturbation is expected
to be reconstructed precisely on the meso-scale window, i.e., p™~! should be equal to p' in
its discretized form, for any p of concern. We therefore need only consider the meso-scale
energetics, and in fact, we need only consider the meso-scale energetics for a particular instant.
This is because, as a result of linearization, solutions of the Eady model are similar at all time
points. Any snapshot of a field is typical of the evolution pattern of that field throughout the

duration.

Contoured in Figs. 4.2-4.4 are the day-10 meso-scale syntheses of the solution vectors on
section j=10 (y=>500 km) for the three chosen modes. Their distributions in y are not displayed
as there is no variation in that direction, a result of the choice of a zero [. Different modes
bear different section structures. For the unstable mode, the reconstructed pattern is shown
in Figure 4.2. It was documented in Eady’s original paper, and is also consistent with the
outcome of a quasi-geostrophic model (e.g., Holton, 1992. p. 261). A conspicuous feature is

the tilting of the phase lines on all the section plots. On the same section with the other two
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datasets, this phenomenon is not seen. In the neutral case where k = k., (Fig. 4.3), crests
and valleys are aligned parallel to the z coordinate and distributed symmetrically about the
mid-depth. When k& exceeds the short wave cut-off (Fig. 4.4), the phase line alignment is
still as that of Fig. 4.3, though the mid-depth symmetry disappears and the disturbances are
generally bottom-trapped (except w™!). In the Eady model, therefore, the tilting phenomenon

is peculiar to the unstable mode.

The above is a general picture of the section distribution of the unstable mode versus its
stable counterparts. If observed closely, the tilting pattern actually varies from field to field.
Phase lines of different fields generally have different slopes. Of particular interest is that

of p~!

, which tilts in a way distinctly different from its peers. Recall that the basic flow
is eastward. The counter-tilting of p™~! thence means a phase advance of the upper-level
perturbation relative to the lower-level perturbation (or a phase lag for other fields). This
fact, which is believed to characterize baroclinic instabilities, has been identified in many

baroclinically unstable events in both atmosphere and oceans. (e.g., Cummins and Mysak,

1988; Holton, 1992).

The phase line tilting is not a characteristic belonging to the meso-scale syntheses only.
It is also seen on the energetic distributions for the same scale window. Plotted in Figs. 4.5
and 4.6 are the MS-EVA terms computed respectively for the corresponding potential and
kinetic equations, each with axes of trough/ridge sloping with height. In Fig. 4.5, the phase
line titling of §,AM (a), Tym p,, (), and BC = Tgﬂ}ahp + Tgﬂ,lazp (h) is toward the east
with height. Their peers, b/ (d) and Ty g,, (f), and all the kinetic terms shown in Fig. 4.6,

have an opposite tilting direction, however. Particularly, the two interaction analytical terms,

BTy = T?(TJ{ ¢ + T?(ﬁl,w 5. and BC, tilt in a way at odds with each other.

While the energetics vary with a tilting pattern similar to the perturbation, its scale of
variation is quite different. Roughly speaking, the zonal scale has been reduced by a half
compared to that of Fig. 4.2 (as energetic terms are all quadratic). Recall that energetics for a
scale window are related to the energy variation, rather the energy itself, on that window. The
difference in scale is thus not surprising. For a similar example we have already mentioned the
scaling discrepancy between the streamfunction and vorticity in a barotropic turbulence. One

should not, therefore, attempt to tell from maps of energetics the scale for the corresponding
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Sectional distribution (day=10, J=10)
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Figure 4.2: Meso-scale reconstruction of the unstable Eady mode for day 10 on section y = 500 km.
1=0,k=1x10"° m ! (corresponding to |a| = 0.489 < a..¢), and C; = 2 x 10~ 7. Note ("' is not
an element of the solution vector.
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Sectional distribution (day=10, J=10)
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Figure 4.3: Meso-scale reconstruction of the neutrally stable Eady solution. Parameters are set as
Fig. 4.2, except k = 2.454 x 107° m~! here (corresponding to |a| = aept)-
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Figure 4.4: Meso-scale reconstruction of the stable Eady solution. Parameters are set as Fig. 4.2,
except k =3 x 107° m~! here (corresponding to |a| = 1.467 > qept)-
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perturbation.

The computation of MS-EVA terms allows an easy identification of the energetic balances.
From Fig. 4.5, the dominant sources for the meso-scale APE evolution are from the two transfer
processes, Tym 5 , and Tyn g, p- The buoyancy conversion b is one order smaller, and others
are negligible (at least two orders smaller). Notice that in Pinardi and Robinson (1986)’s
QG-EVA and Spall (1989)’s Pre-EVA, no transfer process is present, and buoyancy conversion
is hence dominantly important. When transfer processes come in, the balance changes. The T'
terms are obviously of much more substance. While they marginalize and sum cross-scalewise
to zero (that’s the reason they do not exist in the classical EVA formulation), they account
for the largest part of the change of AM. The balance of the meso-scale APE equation is thus
mainly between SnAT]l/[ » Tam g, TAM,ay > and only when processes of one order smaller are

included, does b} weigh on the balance.

But the buoyancy conversion is definitely of importance. It is the only connection between
the two types of energy, APE and KE (cf. Fig. 3.5). From the Fig. 4.5d, it is negatively defined
at all vertical levels, with a maximum achieved in the middle. The negative b} indicates a
net conversion of meso-scale APE to meso-scale KE throughout the water column, which has
been identified as a signature of baroclinic instability by previous EVA studies (e.g., Pinardi
and Robinson, 1986). If compared to Fig. 4.2, this negative definiteness of b actually has
been implied by the relative distributions of w™!, p™!, and v™~!. Look at the right corner of
the maps of these fields in Fig. 4.2: v™~! and w™! are positive (ridge), while p™! is negative
(trough). This relative positioning of the ridge and trough yields an advection of negative
perturbation density toward the top and the north. The direction of this advection has a
slope of the order 2 x 1078/2 x 1073 ~ O(10~°). Remember that the background isopycnals
incline northward with height at a slope |B,/B,| ~ O(10™*), which is greater than O(1075).
The milder slope of the advection lines relative to the isopycnals implies that there will be
inevitably an injection of buoyancy into the heavy isopycnal layers, leading to a negative

conversion and hence a release of available potential energy.

So far we have described the meso-scale potential energetics. For the kinetic energetics on
the same window (Fig. 4.6), things are quite different. Transfer processes no longer dominate.

Although T ( is still the biggest over most of the domain, the buoyancy conversion and
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pressure working rates are also of significance. The balance is thence between 5nKT]LV[ s Tgem
ALQpr, A,Qpu, and —bM . Note the negative b represents the buoyancy working rate con-
verted from the APE. Its section distribution pattern bears a strong resemblance to A,Q par,
the vertical pressure working rate, except for an opposite sign. This implies, by and large,
that the incoming energy from the APE is redistributed away by A,Q pam upon arriving. And,
by the loss-at-mid-depth and gain-at-boundaries pattern, the redistributing is mainly toward
the surface and the bottom. This is the very scenario which has already been depicted by

Pinardi and Robinson (1986) in their baroclinic instability study with the QG EVA.

Our MS-EVA therefore yields a result in agreement with the classical scenario. We proceed
to show that the process is indeed a baroclinic instability by the MS-EVA diagnosis. This is
the key step in the validation.

First look at SnAq{\[[ and SnKT]LV[ . Their section distributions are plotted in Figs. 4.5a and
4.6a. Both of them oscillate in z, contour lines of SnA% tilting with height toward the east,
while those of SnKTJLV[ toward the west. Their horizontal maps are also plotted, at the left-top
corners of Figs. 4.7 and 4.8. Compared to Figs. 4.5a and 4.6a, these maps are rather plain.
No variation in y is in existence. Simple as they may look, important information does exist
in the relative amplitudes of the ridges and troughs. On either of them there is an apparent
gain of energy, and this is true for each level throughout the water column (maps other than
level 5 not shown). This can be seen clearly from plots of SnA% and SnKT]LV[ as functions of
z only. Shown in Fig. 4.9 are such plots at some y for the surface, mid-depth, and bottom
levels. The signals are sinusoidal, and if averaged over a wavelength, there will be a positive
residue for each level (see Fig. 4.11c). Recall the classical definition of instability: A system is
unstable if the marginalization of the total meso-scale energy increases when averaged over a
closed spatial domain. Here since transfer from the same scale window is not significant (not
shown), these positive residues then imply that an instability is indeed going on there. The

next question is: Is this instability really a baroclinic one?

As proved in the preceding section, the two types of instabilities can be distinguished by
performing a proper interaction analysis on the transfer terms. For a baroclinic instability,
it is these transfer processes represented by Tym g, , and Tym 5 , that matter, and BC' =

Tgﬁlahp + Tgﬁl&p integrated over the definition domain must be positive; for a barotropic
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instability, what we should pay attention to is BTy = TIO(YJIC +T[0(_A’,,1w 5.- These two terms are

contoured, respectively, in Figs. 4.5h and 4.6h, and Figs. 4.7i and 4.8i.

From Figs. 4.5 and 4.6, the variations of BC and BTy generally follow the same trend as
those of 5nA£/[ and SnKT]LV[ , respectively. Their axes of troughs and ridges tilt against each
other. To make a quantitative evaluation possible, we plot, as we did for SnA% and gnK,]LV[ ,
these transfer rates as functions of x for each vertical level. Shown in Fig. 4.10 are such plots
for levels 1, 5 and 10 (corresponding to 50 m, 450 m, and 950 m). Plots for other levels are
similar. It is obvious that there is a net gain in the transfer BC' at each level, while for BTy,
no gain, nor loss. This fact is true for all the horizontal levels throughout the water column (cf.
the averaged BC in Fig. 4.11d), implying from the MS-EVA point of view that the instability
is indeed baroclinic, and moreover, purely baroclinic. This result is exactly what is expected
for an unstable Eady mode. Our previous assertion with the MS-EVA on baroclinic instability

is thence validated here.

To continue the validation, we extend the MS-EVA diagnosis to the neutrally stable dataset.
The energetics computed are graphed in Figs. 4.12 and 4.13. From these figures the patterns
are fairly symmetric, and the unstable scenario described before totally disappears here. As
k = k¢, there should be no transfer and nor conversion for the system as a whole. This turns
out to be true with our calculation. Although b), BC, and BTy oscillate from negative to
positive or vice versa, they average to zero on every horizontal level of the model. To see this,
a selected group of MS-EVA terms are plotted versus z for level 10. (All other levels have
shown the same trend. We choose level 10 simply because the perturbation is enhanced there.)
All these energetic functions are nearly sinusoidal, which, if averaged over an integer number
of wavelengths, result in values at least two order smaller than their respective amplitudes.
It is fairly reasonable to say that within the computational error tolerance, their horizontal
averages are nil. These vanishing transfers and conversions from another aspect validate our

MS-EVA diagnosis for baroclinic instabilities.

We close this section with a pictorial representation of the scenario of baroclinic instabilities.
Sketched in Fig. 4.15 is a cartoon of how several MS-EVA-represented processes (roughly)
make such an instability. We examine the horizontally averaged properties only (the bracket

signifies an averaging over the z-y plane). Originally, there is no perturbation energy in
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Meso-scale APE terms. (day=10, J=10)

M
(@ & A (b) A.Qm
0 . BoemEmE.
€ 2
£ 400
< 1.5 0
§ 600
0 -2
800
-1.5e-11 -4e-11
0.25
200
—~~ _05
E 400
£ -2.97e-13 - 2.96e-13 -1.25
@ 600
a -2
800
-2.75e-12
(e) TAM’ 2p
Y/ W ¥ ¥ \Y 3
200 v V V ’ 0.9
~ O
S
£ 400
= 3 0.5
@ 600
a -6 0.09
800
A / _ge_13 _0.36_11
@ Tm 0p
200 0.9
£ 400 0.5
£ -1.54e-14 - 1.5e-14 '
@ 600
a) 0.09
800
-0.3e-11
0 200 400 600 800 1000 0 200 400 600 800 1000
X (km) X (km)

Figure 4.5: (a)-(g) Meso-scale potential energetics (in m?/s?) of the unstable Eady mode for day
10 on section j=10 (y = 500 km). Those insignificant terms are masked for clarity. (h) BC =
Tgﬁ}ahp + Tgﬁ}azp + TS%' (T'S4m =0 with this Eady model setting).
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Meso-scale KE terms. (day=10, J=10)
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Figure 4.6: As Fig. 4.5, except for kinetic energetics. Note the two transfer terms Tpum .5, and
Tgwm g, are not shown here. They are less than O(1071%) and are negligible compared to T ¢
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Meso-scale APE terms. (day=10, lev=5)
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Figure 4.7: Meso-scale APE terms (in m?/s?) of the unstable Eady mode for day 10 on the mid-depth
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Meso—-scale APE terms. (day=10, J=10)
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Figure 4.12: Meso-scale potential energetics (in m?/s®) of the neutrally stable Eady mode for day 10

on section y=500 km.
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Meso-scale KE terms. (day=10, J=10)
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presence. Both <Aﬁ4 >my and <K7]LV[ >$y are zero. When a baroclinic instability occurs, a part
of potential energy is released from the large-scale reservoir, directing toward the meso-scale
window of APE. This release is achieved through the transfer process represented by (BC)*Y.
It is more or less uniform through the water column, though from Fig. 4.11d we do see an
increasing trend with height. Due to this transfer, the meso-scale APE is increased accordingly.
But the increase is different level by level, as there exists a sink for <A7{\[I >my, the buoyancy
conversion, which is minimal at the two boundaries and maximal in the middle. The buoyancy
conversion carries the perturbation potential energy over the APE-KE bridge to activate the
meso-scale motion. The converted energy would be piled up at the mid-depths, if there were
no other process to help evacuate it. The fact is that, there does exist such a process. It is
the vertical pressure work, which is represented by (A,Qpn)*. The energetic scenario is now
clear: When a baroclinic instability occurs, the large-scale APE is released to feed the growth
of <AT]¥[ >$y, while <AT]¥[ >$y is converted simultaneously into <K£/[ >my through the buoyancy
conversion. The pressure work greets at the mid-depths (roughly) the arrivals from the APE
side, and ushers them immediately upstairs or downstairs. The outcome of the whole process
is simple. It is two dumbbell-shape vertical profiles, for the meso-scale available potential
energy and kinetic energy (the bottom panel of Fig. 4.15. Also see Figs. 4.11a,b). This kind
of vertical structure for either <AT]§/[ >xy or <K7{LVI >xy implies that, when the instability ceases,
all the disturbances, either in horizontal velocity or in density, will be trapped near the two
vertical boundaries, a result in precise agreement with what we have observed in Fig. 4.3. The

MS-EVA is thence validated again with success.

4.5 MS-EVA validation with a barotropic stability model

We have verified with the Eady model that, a system is baroclinically unstable if the spatially
averaged B(C' is positive; and vice versa. We have also verified with the same model that the
spatially averaged BT vanishes (BTYy is insignificant) when no barotropic instability occurs.
The remaining question is then whether a positive so-averaged BT implies a barotropically
unstable system. In this section we will give this question an answer with Kuo’s model, a

model admitting only barotropic instabilities.
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Figure 4.15: A cartoon of the energetic processes for an Eady-like baroclinic instability. Before
disturbances grow, the averaged perturbation APE and KE (resp. (AM)* and (K )"") are zero (top
row). (The angle bracket represents an averaging over the z-y plane.) When the instability happens,
potential energy is transferred from the large-scale window toward the meso-scale window, and the
measure of this transfer, (BC)"? is uniformly distributed in the vertical direction (middle row). At the
same time, the meso-scale APE is converted to the meso-scale KE. The conversion is maximized at the
middle depth, where the converted energy is brought upward and downward by the vertical pressure
work ((A,Qpm)*Y). The results of these processes are two dumbbell-shape vertical distributions of
(AMNY and (KM)*™ (bottom row).
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4.5.1 An overview of Kuo’s barotropic instability model

Barotropic instabilities can be completely described by a barotropic model (Pedlosky, 1979).
In this section, we examine the stability of a zonal barotropic jet 4 = @(y). On an f-plane, the

two-dimensional version of the equation set (4.18) - (4.22) is, after translated to its dimensional

form,
ou' ou ,0u , 1oP
M g g - 4.
ot “or " oy A po Oz’ (417)
ov' o' , 10P
= g — - — 4.
ot Y or “ po Oy’ (4.78)
ou' o'
- 4.
0 5+ oy (4.79)

The basic flow u(y), which depends on the meridional coordinate y only, requires a background

pressure field

by geostrophy.

Let
u' u(y)
o | =Re(| o(y) | eFren). (4.80)
P P(y)

Egs. (4.77) - (4.79) are thereby reduced to

d*v U
— —k*)5=0 4.81
dy2+<c—ﬂ )U ’ (4.81)

where ¢ = w/k is the phase speed, and & = giyg the gradient of the background potential

vorticity. By Rayleigh’s theorem, % must change sign over its definition domain in order for

any instability to occur (see Pedlosky, 1979).

Consider a channel bounded to the north and south respectively by y = L and y = —L.

The boundary condition for this system is then

0 =0, at y = +L. (4.82)
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Egs. (4.81) and (4.82) form the eigenvalue problem of barotropic instability with a basic flow
w. It is the same as the one obtained by Kuo (1949) with a quasi-geostrophic model (5 = 0
here), except for the dependent variable and hence the boundary condition. For convenience,

we still call it a Kuo model. With o solved, the other two fields are obtained easily:

i dv
U = = 4.83
u kdy’ (4.83)
~ if,. L dv
P = py— (ﬂ—f)v—(u—c)—] . (4.84)
k dy
Consider now a cosine background jet:
~ 1+ cos(md) ~ T
u(y) = #umax = Umax cos? (5%) (485)

(see Fig. 4.19a). This configuration was originally studied by Kuo (1949) (also seen in Kuo,

1973). With it the ambient potential vorticity gradient is
_ - 2 _ Y
@y = =0 = =575 lmax COS 7, (4.86)

which vanishes at y = +%, meeting the necessary condition for a barotropic instability (cf.

27
Fig. 4.19b).
For convenience, scale the variables as follows

1
(@, ¢, V) ~ Umax, y~ L, k~ T (4.87)

Using the same notation as before, the eigenvalue problem is re-cast as

23+ (5 - k) v =0, (4.88)
0=0 at y = +£1, (4.89)
with
_ 2 z
1 = Cos (2y),
and

_ Yy 1
pP= —/ u(y)dy = —— (my +sinmy) .
0 27

Note all variables are now understood to be nondimensional, and this convention will continue
until the end of next subsection, where dimensions are recovered to generate the MS-EVA

dataset.
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4.5.2 Particular solutions and dataset formation

The eigenvalue problem (4.88)-(4.89) is solved with the approach used by Kuo (1949) (see also,
Kuo, 1973; Pedlosky, 1979). We need a neutrally stable solution and an unstable solution.

For the former, there exists an eigenvalue

~ 1
€= u(yc) - 5
which gives
u_ = 7%= const,
¢ —u(y)
and hence a simplified version of (4.88):
d*v 2 12\x
d_y2 + (7T —k )U =0. (490)

This equation together with (4.89) has a nontrivial solution (Pedlosky, 1979. p. 508)
k=—m, 0 = cos —. (4.91)

The perturbation flow pattern obtained therefrom is shown in Fig. 4.17.

The choose of the unstable mode is not arbitrary. For a valid dataset, as in the Eady model
case, the eigenvalue ¢ = ¢, + ic; must be such that |¢;| < |c,| while ¢; is significantly greater
than zero. Again, a k near its critical value @ﬂ' (on the unstable side, of course) will yield
such a solution. We pick & = 0.757. Use the shooting method (e.g., Press et al., 1992) to solve
(4.88). The convergence is usually pretty fast, and the resulting eigenvalue thus obtained is
¢ = ¢ +ic; = 0.4504 + 0.04767. Clearly |c;| is much smaller than |c,|, allowing an extraction
of several cycles from the solution to form the dataset. Plotted in Fig. 4.16 are the growth
of perturbation [subplot (a)] and the corresponding complex eigenfunction o = 0, (y) + 4 9;(y)
[subplots (b) and (c)]. Notice the inflection of @, near y = +1. Its implication will be
clear soon. In obtaining the eigenfunction, the magnitude of |0,| has been made small so
as to have the solution valid throughout. (Specifically its magnitude is controlled such that

dor.

0 = 0.1.) It is thus not normalized as usual. For an instantaneous pattern of the

y=-1

solution, refer to Figs. 4.18a, b, and c.

The solutions are now re-dimensionalized to generate the datasets. Choose L = 100 km,

Umax = 1 m/s, f = 10=* 1/s, which are typical of western ocean jets, and let z run over
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[-2L, 2L], and ¢ span exactly two cycles (approximately 21 days for the neutrally stable mode
and 14 days for the unstable mode). With the k&’s picked, the = extends at least one wavelength
for either of the datasets, allowing an application of the zonal average whenever necessary.
The solutions are mapped on an Arakawa B-grid with 40 x 80 grid points (Az = 10 km,
Ay = 0.5 km), and sampled at 2'°=1024 time moments. These gridded solution sequences
are now ready for MS-EVA.

4.5.3 MS-EVA validation with the Kuo model

To start the MS-EVA study, we first need to specify options for the multiscale analysis and
synthesis. As for the Eady model case, a two-scale window decomposition is performed with
jo=0 and a periodic extension. This specification is supposed to reconstruct the perturbation
field on the meso-scale window, i.e., p™~! should be equal to p’ for any field p. The results
confirm this claim. Shown in Figs. 4.17a, b, and 4.18a, b are instantaneous maps of the
meso-scale syntheses for the velocity components of the two modes under study. In either
the neutrally stable or the unstable case, they are exactly equal to u’ and v, respectively. By
(4.79), the meso-scale continuity equation, these v’ and v’ can be used to define a perturbation
streamfunction 1)’ such that

/ /
o = _‘98_‘;, o = %—z/;. (4.92)
This derived field, which is respectively contoured in Figs. 4.17d and 4.18d for the two modes
of concern, describes more clearly the perturbation flow. Observe that for the unstable mode,
all the phase lines bulge in the middle toward the west. Compared to Fig. 4.19a, this pattern
shows a tilting trend of phase lines against the distribution of the background velocity. That is
to say, wherever z—z > 0, the phase lines slope to the west with latitude (slope being negative),
and vice versa. This distribution has been proved to be necessary for a barotropic jet to lose

stability, as only through this kind of tilting can the Reynolds stress extract energy from the
basic flow (Pedlosky, 1979, p. 511).

Another conspicuous feature of the unstable modal solution is the kinky variation of «’ with
y (Fig. 4.18a). The kinks occur at the y positions where the two inflections on the eigenvector

0(y) appear (Fig. 4.16b). It seems that there are two discontinuities near y = j:% which
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separates the interior flow from its side peers. To understand why there should be such a
phenomenon, recall that for a barotropic instability to exist, it requires not only that a basic
potential vorticity gradient g, change sign through y € [—L, L], but also that (2 — ¢,) and g,
be positively correlated over the same domain (Kuo’s theorem). (See Kuo, 1973, pp. 277-279.)
Although this positive correlation requirement is stated in an integral form, locally (in y) it
may also apply wherever the system is more or less meridionally isolated. This is to say, the
sign of the product (@ — ¢,;) x g, may be pivotal to the instability, and hence the zero points

of 4 — ¢, and @, are critical to the dynamics. Recall here ¢, = 0.4504% .y, and

1
u(y) = = (1 + cos %) TUmax-

2
Thus
u(y) —c, =0 = y==£0.53L (4.93)
Gy =—ii=0 => y==050L. (4.94)

These critical y’s divide the flow into five regimes, as sketched in Fig. 4.19¢. In the middle
regime (hatched), both ¢, and % — ¢, are positive, so their product is also positive. The
regimes at the two ends, with both g, and % — ¢, being negative, also have a positive product
Gy(@ — ¢;). These polar regimes and the interior regime are separated near y = +0.5L by
two narrow strips (with a width of only 0.03L) where g,(u — ¢,) < 0, and just because of the
opposite sign of g, (% — ¢, ), the dynamics in the strips could be completely different from the
interior regime. The existence of the kinks in the pattern of u’ near y = +0.5L is therefore not
surprising. (Kuo’s theorem tells only the possibility of such an existence, as it is the integral
with respect to y over [-L, L] that matters.) We will soon see that the energetics in these two

narrow strips do turn out to be completely different from their surrounding regimes.

The dynamic features above are now diagnosed with the MS-EVA. The computed energetic
terms are contoured for the neutrally stable mode in Figs. 4.20a-f, and for the unstable mode
in Figs. 4.21a-f. First look at 6, KM [subplot (a)], the rate of change of the meso-scale kinetic
energy. In either case, the map of SnKT]LV[ shows strong variation in both xz and y. The
difference lies in the pattern of variation. For the neutrally stable mode, the variation is

precisely sinusoidal and thus averages’ to zero. That is to say, this mode does not admit

"In this section, if not specified, the average (or sum) is understood to be over a wavelength in z and the

whole domain of y.
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Instantaneous maps for a neutrally stable mode at t X UmaX/L = 8.64, (day 10)
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Figure 4.17:  The day-10 instantaneous maps of u’ (a), v' (b), total pressure (P + P') (c), and
perturbation streamfunction ¢’ (d) for the neutrally stable mode of the barotropic instability model

(kL = éﬂ')
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The day-10 instantaneous maps of u' (a), v’ (b), total pressure (P + P') (c), and

perturbation streamfunction ¢’ (d) for the barotropically unstable mode (kL = 2).



CHAPTER 4. MS-EVA VALIDATION AND DYNAMIC FINGERPRINTING 226

(a) (b) (©)

1 1 | 1 g, <0, Uu-c, <0
2+ 12 - 112 g <0, Uu-c,;>0
S of S or | S o 4 >0, u-c >0
12 F A2 F ' 172 4, <0 U-¢ >0
| 4, <0 u-c,<0
-1 -1 ! -1 V
U/ Ul &/ (Unax /L)

Figure 4.19: A sketch of the background velocity @(y) (a), and vorticity gradient g, = —giy’;‘ (b) for
the Kuo model. The five regimes resulting from this basic structure and the chosen phase speed ¢, are
indicated in (c).

any perturbation growth by our calculation. For the unstable case, however, things are quite
different. The zonally-averaged 6,KM (over one wavelength), as is shown in Fig. 4.22b,
displays a positive residue over the whole domain of y, indicating that the mode is indeed

unstable by the MS-EVA diagnosis.®

While SnKT]LV[ implies whether the system is unstable, BT = BTy = TIO(}{ ¢ (for a barotropic
model, BTy vanishes) tells whether the instability is barotropic. As expected, the BT for
the neutrally stable mode vanishes, if summed horizontally (Fig. 4.20). The unstable mode,
however, has an averaged BT (over both z and y) distinctly greater than zero. This fact is
easily seen from Fig. 4.22d, which is the zonally-averaged profile of BT as shown in Fig. 4.21.
Recall that a positive averaged BT means a barotropic instability. Our MS-EVA calculation

is clearly in agreement with the analytical result.

The MS-EVA is therefore validated with the Kuo model. We proceed to investigate the
energetic processes of the barotropic instability. Look at Fig. 4.21g, the map of perturbation
energy, and its zonally averaged version Fig. 4.22a. A certain structure is displayed in both
of these figures. We want to know how such a structure is generated through these processes

from an originally unperturbed system.

8This claim is true only if the same-scale transfer is negligible, as is the case here (cf. Figs. 4.20h and 4.21h).
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We have described earlier in this section that, for the unstable mode, there exist in the flow
pattern two remarkable features, the westward bulging and the kinks near y = :l:% (£50 km).
On the perturbation energy map, such features are also noticeable. From (Fig. 4.21g), the jet
is energetic at the core while much more sluggish on the two wings. The contour lines tilt from
the center toward the right while extending poleward. Along the two narrow critical bands,
they are almost disconnected, separating the interior core from the northern and southern
regimes. The energetics that account for the formation of this pattern are those shown in
Figs 4.21a-f. The rate of change of KM, SanzV[, has a spatial distribution similar to KM
itself. This is not a surprise, for KM emerges from a horizontally uniform zero pattern. The
remaining terms appear on the right hand side of the energetic equation. They stand for the
mechanisms that account for the growth of disturbances. From the scaling, it seems that the
pressure work [subplots (e) and (f)] dominates the balance, and this does account at least in
part for the tilting trend of KM. But, if one observes closely, the variations of A,Q pu, AyQpm
are almost out of phase. A huge part of pressure working rate thence cancels out when the two
summed together. Moreover, if a zonal averaging (over some integer number of wavelengths)
is performed, neither of these two terms turns out significant compared to their peers on the
energetic balance. Thus the pressure work does not function as substantially as it appears
to, considering processes like instabilities are concepts based on average properties. In the
present context, the advection and transfer and pressure work are of comparable importance,

to say the least.

With the energetic balance clear, it is now possible to analyze the the processes that lead to
the perturbation structure. Although the contour lines of 5nKT]LV[ bulge westward conspicuously,
the map of Tym o (Fig. 4.21d) shows no indication of this phenomenon. Among the other
processes, the y advection (Fig. 4.21¢) does not evidence much relevance, either. The only
mechanisms causing the bulging are then the zonal advection and the horizontal pressure
work. For the contour breaking of SnKT]LV[ , which corresponds to the kinky distribution of «' in
Fig. 4.18a, things are quite different. Recall what we have analyzed with Kuo’s theorem: the
narrow strips where the kinks lie are a direct result of the model configuration and depend
only on latitudes. On the map of an energetic term essential to these strips, their signature(s)
should remain there in spite of any kind of zonal averaging. However, all the three terms,

ApQpv, AzQpr, and AyQpun, will be virtually gone if averaged in z over some integer
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wavelengths, despite those obvious “necks” on their maps at the critical latitudes. Therefore,
in this case we need only focus on T m  and AyQ g for processes that lead to the instability

structure.

To some extent, T m - and AyQ g m have a very similar distributive pattern, except for the
opposite sign. Both of their horizontal maps, Figs. 4.21c and d, show an active interior and two
inert wings, and between these dynamically different regions there wedge many isolated small
positive/negative “tear-drops”. This pattern is also seen on the map of the interaction analysis
BT = TIO(Y,,I’C, a result of the insignificant Tll(ﬂl’g (see Figs. 4.21h, i) and vanished BTy.? The
extended “negative similarity” between A, Qg and BT is particularly clear in their zonally-
averaged y-profiles (Figs. 4.22¢ and d). Let (.)* stand for the z average over a wavelength. It
is very interesting to see that the positive values of (BT)" and negative values of (A,Qxm)”
appear only in a well, with two peaks/negative peaks near y = £50 km as the “walls”. The
implication is that unstable events occur only in this energetic well, and the y-advection serves
to transport the transferred energy toward the two poles, which, if not removed by the inverse
transfer, would be accumulated at the walls. The inverse transfer near the critical bands is
another feature of interest. We have conjectured from Kuo’s theorem that it’s hard for free
disturbances to exist in the critical narrow bands if these regions are relatively isolated. The
distribution of (BT)" in these peaky regions verifies this conjecture. There energy transfers
are not directed from the large-scale window to the meso-scale window, but in the opposite
direction (the stable-like direction), although the system as a whole is unstable. This inverse
transfer is important, as it is the only feed-back admissible in this model. If computed with a
higher resolution, these peaks will not be this sharp. They do have some structure, as shown
in Figs. 4.22e-f, the close-ups for (A, Qg )* and (BT)" near the southern critical band. These
two figures are obtained with a resolution six times higher than the original one (Ay = 500
m). From their distribution, we see that the two peaks do not really span only the critical
bands (0.5L to 0.53L and —0.53L to 0.5L). For either of (AyQgu)* and (BT)", there is a
tail extending beyond the £0.53L limits. This is in agreement with our early conjecture, as
what Kuo’s theorem states is in the form of an integral with respect to y from —L to L, rather

than a local one. The scenario could be made more clear if a dataset is generated with a ¢,

9For a two-scale decomposition, Tym = TIO(}}I,C + T}l(]’dl,c = BTy + TII(]’/II,C, and BTy = BT — BTy = BT

for 2-D flows.
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and u(£%) better distinguished.”

The general picture for a barotropic instability with Kuo’s model is now clear. Sketched
in Fig. 4.23 is a cartoon of the processes that constitute such an instability. The two narrow
hatched regimes, where (% —c;)g, < 0, form the two “walls” of a well which limits the energetic
activities. Originally the system is not perturbed, KM (and hence <K7]LV[ >$) is uniformly zero.
When an instability begins, a part of energy is transferred from the large-scale window to
feed the growth. The transfer takes place only in the well, and the transferred energy due to
this parietal process is transported from the center toward its two wings until it hits the walls
where the poleward transportation is almost halted (a very small part of transport still exists
and that makes the KM increase, as shown in Fig. 4.22b). An inverse transfer then brings
the transported energy back to the large-scale window, effectively barring the perturbation
from reaching the southern and northern boundaries. An equilibrium result of this series of

energetic processes is a distribution of meso-scale energy as shown in Fig. 4.22a.

It is worthwhile to investigate the fate of that part of energy inversely transferred near the
critical strips (the hatched regions in Fig. 4.23). Theoretically this is not a question answerable
here as no feedback is permissible to the background field in a linearized model. But one thing
is for certain, while the basic jet loses energy at its core, it gains energy at its wings. This
implies a broadened jet after a barotropic instability, a result in precise agreement with what

has been predicted by Pedlosky (1979. p. 511) with analytical arguments.

4.6 Summary and discussion

We have shown in this chapter how the MS-EVA can be applied to a stability problem. The
result of this application has given the MS-EVA a successful validation, and revealed energetic

structures for the two fundamental processes, barotropic instability and baroclinic instability.

The MS-EVA validation is made essentially with two combined interaction analytical terms,

BC = (T4, , + Taat'y. ), and BT = BTy + BTy = (Tl . + Tgit,.) + Tii'y.,» Which

10A bigger |c, — 4(£L/2)| seems to be hard to achieve, however. In order to generate a dataset such that

|ci] < |er|, the wavenumber should be chosen near the critical k = @ﬂ', which always yields a ¢, near % and

hence two narrowly stripped regimes with negative q(a — ¢;).
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Figure 4.20: The day-10 meso-scale energetics for the Kuo model: the neutrally stable case. (a)-(f)
The meso-scale KE terms (in m?/s®). (g) The meso-scale KE (in m?/s?). (h)-(i) The interaction
analysis of T ¢ (in m?/s%). Notice in (h), Tjy;'. vanishes everywhere in the domain, and in (i), the
fact that BTy = 0 has been used.
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The interaction analysis of Trar ¢ (m?/s%). In (h), Tg5', is not significant compared to BTy = BT
and is hence masked for clarify.
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Figure 4.23: A cartoon of the MS-EVA processes that make a barotropic instability. Hatched are
the critical regimes where (@ —¢,)g, < 0.

have been shown to be indicative of the two instabilities. With their clear physical inter-
pretation, BC' and BT distinguish the MS-EVA from its classical counterpart in that pro-
cess identification with MS-EVA is made objective. Specifically, when the spatial average of
BC+BT is positive, the system is unstable, and for an unstable system, the type of instabil-
ity is determined by the signs of BC and BT averaged over the domain in study: A positive
averaged BC' corresponds to a baroclinic instability, while a positive averaged BT implies a
barotropic instability. In the cases studied, BT may be simply replaced by BTy, since BTy

is insignificant in comparison to its peer.

The MS-EVA validation and energetic exploration has been carried out with both the Eady
model and the Kuo model. For the former, BTy averages to zero on all horizontal surfaces (so
does BTy, but this is not shown because of its insignificance). But BC'is different. It averages
to a positive quantity, just as expected. In fact, for all vertical levels, BC' horizontally averages
to a positive quantity. The potential energy is continuously transferred from the large-scale
reservoir to the meso-scale window, with a (more or less) uniform distribution in the vertical
direction. But the meso-scale APE is not the only recipient of the transfer. A significant
part of the energy is converted into another form, the meso-scale kinetic energy, upon being
transferred. The conversion occurs mainly at the mid-depth, where the converted energy is
carried away toward the surface and bottom via pressure work. These are the processes by

which an Eady system is energized via a baroclinic instability, a scenario in agreement with
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that portrayed by Pinardi and Robinson (1986) with their classical QG EVA. The final result
of the instability is a dumbbell-shape profile for either the horizontally averaged meso-scale
APE or the horizontally averaged meso-scale KE, implying a trapping of disturbances at the
two vertical boundaries for both the density and velocity fields, which is indeed the case with

the analytical results.

For Kuo’s cosine jet model, only barotropic instability exists, so one expects a positive
averaged BT (actually BTy, since BTy = 0 for a 2-D flow) when an unstable mode is
concerned. This has been exhibited in the MS-EVA diagnosis. Moreover, if the spatial average
is performed in x only, this averaged BT has an interesting meridional profile. This profile is
shared simultaneously by the y-transport, A,Q j, except for having the opposite sign. The
z-averaged BT and AyQ v jointly make the energy circulate for a barotropically unstable
mode in a physical-phase space. Specifically, the large-scale KE is first transferred toward the
meso-scale window. But this transfer is limited within two critical latitudes, which resemble
the two “walls” of an “energetic well” around the jet core. The regions outside the well are not
involved. The transferred energy is redistributed by A, Q g, which directs it poleward but it
also effectively stops near the walls, barely going further. The incessant transfer (provided the
instability continues) plus the transport would make the perturbation energy accumulate near
the two critical latitudes y = 4., should an inverse transfer not come into play, which brings
part of energy back to the basic flow within two narrow bands near those critical latitudes.
This inverse transfer is actually implied in Kuo’s theorem, and agrees well with what Pedlosky
has predicted with analytical arguments about the effect of barotropic instabilities on the basic
jet.

The MS-EVA is thereby validated and what it predicts is in agreement with the known
analytical results. It must be pointed out, however, the spatial averages we have adopted
for the Eady and Kuo models are too special to be of practical use. In real problems, it is
usually not feasible to have dynamics in precisely a sinusoidal form, so it is very difficult to cut
out a suitable subdomain for averaging. We have to find a general way to make the desired
energetic features come out. This is achieved by the multivariate large-scale window synthesis

or reconstruction.

The multivariate or multi-dimensional large-scale window synthesis is the multivariate gen-
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eralization of the large-scale window synthesis introduced in Chapter 2. It may be understood
as a low-pass filter (in a multi-dimensional setting) which conserves total energy, or in a rather
loose sense, it is just a local average. With such a synthesis, the averaging domain is not an
issue any more, as now the average is performed at the location of concern. Clearly, this will
work for our purpose so long as the large-scale window (in the spatial direction) for averaging is
set larger than the scale of the dynamic features under study. In Chapter 6, a two-dimensional
version of this synthesis will be applied to study the Iceland-Faeroe Frontal variability. For
an introduction of the two-dimensional multiscale window transform, and an example of the

large-scale synthesis, refer to §2.7.
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Chapter 5

Real-time forecasting of the

Iceland-Faeroe Frontal variability

The Multiscale Energy and Vorticity Analysis (MS-EVA) will now be applied to a real problem:
the dynamical study of the Iceland-Faeroe Front (IFF). In this chapter, we make an operational
forecast for the IFF variability based on an unprecedented dataset collected on the 1993 R/V
Alliance cruise (see Robinson et al., 1996; Miller and Cornuelle, 1999). The forecast result

will serve as the input for the MS-EVA application in the next chapter.

5.1 Introduction

5.1.1 The Iceland-Faeroe Front and its hydrographic environment

The Iceland-Faeroe Front (IFF) is a narrow band with sharp gradients of temperature and
salinity over the Iceland-Faeroe Ridge (IFR), the widest and shallowest gap among the three
major channels that connect the North Atlantic and the Arctic. In close vicinity to the
IFF are the Greenland Sea, Iceland Basin, and Norwegian Sea (GIN). Fresh and cold Arctic
waters and warmer and salty North Atlantic waters from the GIN meet together along the
ridge, forming a zone containing several fronts with distinct hydrographic properties on either
side. Identifiable on a temperature map like Fig. 5.1 are three such fronts, the IFF being the

strongest and most pronounced.

238
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Figure 5.1: Typical temperature distribution (depth 350 m) for the Iceland, Norwegian, and Greenland
Seas. Indicated on the map are the three major fronts in this region: the Jan Mayen Front, the
Norwegian Current Front, and the Iceland-Faeroe Front. (Adapted from Smart, 1984).

The IFF emerged from among many ocean frontal regions as a focus of attention a long
time ago. (For a historical account, see Hopkins, 1988.) Incessant research efforts have been
made ever since by the commercial and military, as well as the scientific communities. The
intense vertical motion, which is associated with the divergence/convergence along the front,
is a driving force for the fishery industry of the surrounding countries; the energetic current
system and accordingly the sound speed variation, on the other hand, makes this region an
ideal testing ground for the military who rely on sonar to detect sound signals under the
sea; in oceanography, this region’s richness in relevant scales is a challenge to seek better
understanding of the fundamentals of frontal dynamics; and, most importantly, the IFF sets
a boundary for the Arctic and the North Atlantic oceans, and hence its variability plays a
decisive role in the communication between two of the major oceans of the world. For all
these reasons, the IFF has earned its niche in the temple of regional ocean problems. In the

following, we give a brief description of the water environment and the frontal variability in
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this region as known to date.

Around the IFF many water masses with distinct hydrographic properties have been iden-
tified, as summarized by Allen et al. (1994), and Read and Pollard (1992). Roughly speaking,
waters from the Greenland Sea and waters from the Iceland Basin have T-S values that form
the two extremes. The former are generally cold and fresh, while the latter are much warmer
and saltier. Those from the Norwegian Sea lie in between. A more careful study reveals that
there actually exist seven such water masses. By the naming convention of Allen et al. (1994),
they are, respectively, the North Atlantic Water (NAW), the Modified North Atlantic Water
(MNAW), the Norwegian North Atlantic Water (NNAW), the Norwegian Sea Deep Water
(NSDW), the Arctic Intermediate Water (AIW), the East Icelandic Water (EIW), and the
East Icelandic Current Water (EICW). Among these waters, the EIW and EICW are two
fresh varieties from the west. Another variety of EIW, the Modified EIW (MEIW), has also
been identified (Read and Pollard, 1992) but is not included here. The NNAW and EIW
appear in the literature by many different names (Muller et al., 1979; Becker and Hansen,
1988; Blindheim, 1990; Meincke, 1978). We adopt Allen et al.’s convention because it seems

that they have given the most relevant and complete account so far.

Closely related to the distribution and formation of the water masses in the region is the
frontal variability. As is well known, the IFF varies on a variety of distinct scales. On average,
it is believed to lie approximately parallel to the IFR (Smart, 1984). Either the thermally
defined gradient (2-7°C) or the 35.00 psu isohaline (which has been used as an alternative IFF
definition) has been observed to follow the bathymetry well on a large scale, though the defi-
nition by salinity might have less seasonal variation. (See, for example, Hansen and Meincke,
1979.) On a smaller scale, however, the IFF is quite energetic and intermittent. Excursions
from its mean state of up to 200 km in several months are not uncommon (Smart, 1984). In
comparison to the long-term average, the meso-scale variability, which is characterized by the
internal Rossby radius of deformation (Robinson, 1983), is usually of more interest, because of
its role in the heat/energy and mass transport between the Arctic and the Atlantic (Allen et
al, 1994; Hallock, 1985; Willebrand and Meincke, 1980). With the synoptic or quasi-synoptic
surveys conducted since 1960, the IFF variability has gradually come clear. Coherent struc-

tures have been identified and temporal and spatial scales estimated. For example, Hansen
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and Meincke’s (1979) dataset revealed a number of eddy-like features and meanders; Meincke
and Ross observed a cold anomaly and a warm meander on either side of the front (see Wille-
brand and Meincke, 1980); Gould et al. (1987) located 7 cold centers in their study; Scott
and Lane (1990) found ten cold eddies south of the front; and so forth. These meso-scale
events are quite episodic and intermittent. In the frequency spectrum of energy, Willebrand
and Meincke (1980) found that there usually exist two peaks, one at scale 2-5 days and an-
other at scale 8-11 days. This was partially verified by Allen et al. (1994), who observed a
temporal scale of 2-4 days for the variability. Spatially, Niiler et al. (1992) obtained a scale of
10-17 km (corresponding to an eddy size 30-50 km) from a combination of airborne (AVHRR
and AXBT) and in-water observations (CTD) together; similar scale is also seen in Scott
and Lane (1990). A slightly larger estimate is made by Allen et al (1996), 15-17 km. Both
10-17 km and 15-17 km are in good agreement to the internal radius of deformation, which is

approximately 10 km for this region (Robinson et al., 1996).

The short time and space scales of the frontal variability raise an issue for the IFF study.
Because of the stringent synoptic constraint, it is quite challenging to obtain a hydrographic
dataset without missing significant energetic events. This challenge had seriously limited
the understanding of the dynamic processes for this region, which are highly energetic and

intermittent, until the advent of a new approach, real-time operational forecasting.

5.1.2 A brief history of the forecasting for this region

Real-time operational forecasting was initially introduced by Robinson (1992). Based on the
Harvard Ocean Prediction System (HOPS), it aims at predicting those fast changing and highly
energetic events, either for oceanographic research or for the rapid assessment of regions for
naval operations. Since its introduction, operational forecasting has been launched in many
regions of the world ocean, and has become an important methodology in oceanographic

studies, many of which would be impossible with traditional approaches.

For the IFF region, a quasi-geostrophic (QG) forecast (Miller et al., 1995a) and a primitive
equation (PE) forecast (Robinson et al., 1996) had been made before the present study was
undertaken. The QG forecast was launched with the data acquired during the hydrographic
survey conducted in October 1992 by SACLANTCEN (Supreme Allied Commander, Atlantic
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Undersea Research Center) and Harvard University, while the PE forecast was set up dur-
ing the 1993 R/V Alliance cruise, which was also conducted by Harvard in cooperation with
SACLANTCEN. The PE forecast was formulated as a real-time shipboard problem, as intro-
duced by Robinson (1992) for naval operations. The unprecedented IFF’93 dataset provides
this forecast with a good initialization and an objective validation. The basic features observed
during the survey have been captured, particularly in the run with all available observational
data assimilated. As explained in the paper of Robinson et al. (1996), the results are sat-
isfactory, either by visual inspection or by quantitative validation (in terms of the anomaly

correlation coefficient and the root-mean-square error).

Besides these two previous forecasts, we noticed, while the present study was in progress,
that Miller and Cornuelle (1999) had completed another one, also with the 1993 R/V Alliance
dataset. An inverse scheme was exploited to initialize their model runs, which helps overcome
the synopticity problem with the observations. Their result is dynamically consistent and
qualitatively and quantitatively successful. But they also found that there is no clear superi-
ority of the inversely initialized scheme over the less sophisticated initialization method used

by Robinson et al. (1996), in terms the quantitative measures of forecast skill defined above.

Notice that for the MS-EVA application we need a PE model dataset of the IFF variability
which faithfully reproduces the dynamics of the meso-scale window and is robustly tested
against parameters. The available PE forecasts, either by Robinson et al. or by Miller and
Cornuelle, are both performed using a model with a horizontal grid spacing Az = Ay =5 km
and only 5 levels in the vertical direction. Considering the 10-km radius of deformation,
reproduction of the meso-scale processes might be affected by the coarse grid resolution.
Moreover, the HOPS code has been upgraded since Robinson et al.’s study, the current version
having many new capabilities, and it is anticipated that a better forecast could result by
using the new version, including an improved PE model. In a word, there is still a room for

improvement in the 1993 TFF forecasting, and that motivates the study in this chapter.

5.1.3 An outline of this chapter

We therefore need a physically consistent forecast of our own for the MS-EVA application.

As no superiority has been found to adopting a sophisticated initialization, we keep using the
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Robinson et al. (1996) forecast strategy, and as many of their parameters as possible, to set
up the PE model for this region, employing the current version of HOPS with modifications
as appropriate. Note that in Robinson et al.’s forecast, the old PE model is used. Adopting
their methodology thus allows one to see the HOPS improvements since our forecast will be
made comparable to their benchmark study. For the same reason, this chapter is also arranged
similarly to their paper, albeit everything is started from scratch. Immediately following this
section is a preparation of the original data for the PE model, which is set up in §5.3. The
forecast results are described thereafter, followed by a section of sensitivity study which is
lacked in their study. After that we give an evaluation of our results with the forecast skill
quantitatively defined before. This chapter closes with a summary and a brief discussion of

some issues raised during the forecasting.

5.2 Data pre-processing

5.2.1 The dataset

The IFF93 dataset was acquired from the R/V Alliance cruise in a rectangular domain centered
at 64.25°N, 10.75°W (Fig. 5.2), with a zonal extent of 140 km and a meridional extent of
190 km. The cruise began on August 14, and lasted through August 23. During the 10-day
period three surveys were conducted. They are, as named for convenience by Robinson et
al. (1996), the initialization survey (August 14-16), the zigzag survey (August 18-20), and
the validation survey (August 20-23). The initialization survey is intended for the forecast
initialization, while the validation survey is for verification. The zigzag survey, which earns
its name from its zigzag cruise track, aims at gleaning more close-up information about the
meandering stream to update the model in the vicinity of the frontal axis. The data acquired
during the first and third surveys include CTDs, XCTDs, and XBTs, while along the zigzag
track, only XBTs are available (see Table 5.1). These hydrocasts were supplemented with
the deployment of two sets of surface drifters and current meter moorings. The current data
retrieved from these sets have been exploited for absolute velocity inference by Robinson et

al. (1996). But in the present study, we will use them only for reference whenever necessary.

The locations of the data points are shown on the sampling maps in Fig. 5.3. Two almost
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Table 5.1: Number of the hydrocasts during the IFF93 surveys.

CTD XCTD XBT
Initialization survey 16 19 125
Zigzag Survey 0 0 116
Validation Survey 37 9 125

identical sampling patterns are seen for the initialization and validation surveys, with stations
roughly 7 km apart in the north-south direction and 24 km in the west-east direction. Drawn
beneath these maps are the corresponding cruise tracks. Initially the ship entered the domain
from the eastern boundary. It took about three days to complete the data acquisition for
the first leg of the cruise. As we will see later, this data nonsynchronization raises an issue
for the nowcast, and something in compensation must be done with the unsampled western
region for the initial days. During August 20-23, the ship followed the same cruise track as
the initialization survey, in the hope of gathering a dataset comparable with the first one. The
zigzag survey was conducted during August 18-20. It does not have a regular track and the
northern region has an apparent lack of sampling points. The scarcity of data there proves
to be a problem when attempting to extract the domain-scale features for that duration, but
for the stream along the frontal axis, the data coverage should be dense enough to reflect the

corresponding processes.

5.2.2 Salting and smoothing

From Table 5.1 we see that a large number of hydrocasts are XBTs. No salinity data were
collected for the corresponding stations. To make the dataset forecast-ready, these XBT
casts have to be salted, i.e., to be augmented by consistent salinity information. Salting is
justified by the observation that temperature and salinity are more often than not statistically
highly correlated. T-S diagrams, for example, often allow one property to be derived from
the other. In the present problem, salting is achieved through T-S diagram inference (typical
of the IFF region) guided by comparisons with the surrounding CTD/XCTD profiles and the

climatological data for the ambient stations. The typical diagram used for the inference is
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Figure 5.2: The IFF93 experimental domain and its underlying bottom topography (depth in meters).

shown in Fig. 5.4, which is simplified from Read and Pollard (1992). We use the historical
result instead of the current dataset for this purpose in order to make the forecast a real
operational one. (We don’t have the IFF93 data in advance.) As a verification, Fig. 5.5
depicts the same diagram with the IFF93 CTD/XCTD data (from all the three surveys).
Clearly, most of the seven water masses are present (except the East Iceland Current Water
and the Modified North Atlantic Water), though their varieties may not coincide with Fig. 5.4
exactly. The salting procedure is simply an exercise to derive from Fig. 5.4 the S (salinity)
given a T' (temperature) as an input. As is seen on the diagram, S is a multi-valued function
of T. When salting, we first pick for an XBT datum an S,, on the main branch (the thick

curve), then compute for this point and this level the linear interpolation S; of the available
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salinity values at the same level from the surrounding stations. If S,, differs from S; by a
significant amount (define this amount to be 0.1 psu), try all the branches of Fig. 5.4 until an
S is found which is closest to the interpolated value S;. This S is then taken to be the desired

salinity corresponding to the given 7.

The salted dataset allows one to build two temperature/salinity profiles, which are typical
of the hydrographic properties south and north of the front. These profiles are to be used
later in a feature model construction to initialize the forecast. Fig. 5.6 shows such profiles
for the western region of the domain which are obtained in a manner similar to that used by
Robinson et al. (1996). It is of interest to notice that, while the temperatures are distributed
in a similar trend, the salinities have completely different vertical structures. More interesting
is that fact that, these temperature/salinity profiles, distinct as they may be, result in two
almost identical density structures for the regions north and south of the front (Fig. 5.8). The
lack of density gradient across the front implies to some extent the importance of barotropicity,

as will be clear in the next chapter.

In distinction to the typical smooth profiles, the observed temperature and salinity sig-
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Figure 5.4: A simplified T-S diagram used for the salting of the IFF93 XBT data (adapted from
Read and Pollard, 1992). Indicated in the figure are the water masses identified in this region, among
which NAW stands for the North Atlantic Water, MNAW for the Modified North Atlantic Water,
NNAW for the Norwegian North Atlantic Water, AIW for the Arctic Intermediate Water, NSDW for
the Norwegian Sea Deep Water, EICW for the East Iceland Current Water, and EIW for the East
Icelandic Water.
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Figure 5.5: T-S diagram based on the CTD and XCTD data acquired during the IFF93 surveys. The
water masses are indicated in the boxes. Refer to Fig. 5.4 for an explanation of these shorthands.
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Typical temperature and salinity profiles north of the IFF
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Figure 5.6: Typical hydrographic profiles north (left) and south (right) of the IFF. T indicates tem-
perature whereas S is salinity.
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Figure 5.7: (a) The first three EOF functions (the mean removed in advance) versus the scaled vertical
coordinate o, and (b) a typical upper-layer temperature profile (in °C) and its reconstruction (the thick
curve) with these modes. (The mean has been added back to it).
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Figure 5.8: Typical density profiles north (solid) and south (dashed) of the IFF.

nals are rich in fine vertical structure which cannot be resolved by the model. These small
scale ripples must be eliminated before the data can be adapted into the nowcast. To do
this, we fit each signal with the first three empirical orthogonal function (EOF) modes (cf.
Appendix A5.1). These EOFs are calculated each time a new set of assimilation fields are
requested. (Since the prediction is in a real-time operational mode, we are supposed to use
only those hydrographic data available up to the day of forecast.) Different as they may be, it
is observed that, for all of the vertically demeaned profiles, the first three modes account for
at least 95% of the total variance. Fig. 5.7a is just such an example. It shows these structures
derived from the whole initialization data set. Shown together with it is a typical temperature

profile and its reconstruction with these modes (Fig. 5.7b).
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5.2.3 OA maps

The salted and smoothed hydrographic data are now mapped onto the mesh grid points to
prepare for the nowcast and data assimilation. (See §5.3 for a description of the model grid.)
The mapping is achieved with objective analysis, or OA for short. OA is a widely used
statistical tool based firmly on a few assumptions which have been justified by Gandin (1965)
for the atmosphere and oceans (cf. Appendix A5.2). In this application, we use the “Two-stage
approach” proposed by Lozano et al. (1996) to corroborate these assumptions. This approach
was adopted in Sloan (1996) and further delineated by Lermusiaux (1997). In our problem, it

can be re-stated as the following procedures:

(1) Guess a mean of the field in concern. This may be done by fitting the observation
with a lower-order polynomial (e.g., a bilinear function f(z,y) = az + by + czy),

or simply by taking the arithmetic mean.
(2) Estimate the covariance function and the scale of correlation. (see Appendix A5.3).
(3) Apply OA to calculate the basin-scale features.

(4) Take the result of (3) as the mean field and repeat (2) and (3).

In Lozano et al. (1996), Steps (1), (2), and (3) are viewed as one stage, and Step (4) as

another stage. That is how the “T'wo-stage approach” earns its name.

It must be pointed out that the so-called “basin scale” is different from that elaborated in
the other chapters of this thesis. Here no energy issue is involved, and, as a matter of fact,
energy will not even be conserved with the “scale” defined hitherto in this chapter. Since our
purpose here is not energy study, but only to map the observational data onto some prepared

mesh grid, a practical way like the two-stage OA is just fine.

As shown in Appendix A5.2, the covariance matrix C and the error E are two major
parameters to be tuned in the objective analysis. C reveals the scale of correlation, and E,
in analogy to what we know from the multi-resolution analysis, actually determines the detail

space— with the exception here that it is not perpendicular to the approximation space. In
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the current version of HOPS, the covariance is chosen to be'

Corr(x;,x;) = (1 - r?) exp (—%) (5.1)

with

B At\?
o= (x— Xj)Tél ’(x; — x;) + <—>

-
21 = 7ol
ry = (xi— Kj)Téz_Q(& —X;) + (%)2
L, = rl

=2

where rg and rg are respectively the zero-crossing and the e-folding decay scales, x; is the
model grid point position, and and I the identity matrix. This prescription essentially reduces

the OA to a problem of how to manipulate the four parameters:

e Zero-crossing ro,

Spatial decay scale rq,

Temporal decorrelation scale 7,

e Error variance FE.

If possible, some relation connecting r¢ and r4 will further reduce the complexity of the problem
of parameter manipulation. In practice, a linear relation ry = a - r4 with a < 2 turns out to
be a good choice.? With these assumptions the parameters are then tuned until an optimal
estimation is achieved. An optimal estimation is determined according to the following two

criteria:

(1) The correlation coefficient approaches zero at some large distance;
(2) The ratio 0']2c /o? is consistent with E (ideally they should be the same). Here
0? = (Yoa — o A)2 and O']% = (1) — Yo4)* with the overbar signifying the ensemble

mean and o4 being the OAed field.

!This definition is the same as the one in Sloan (1996), p.41, except that he defines Corr(x;,X;) (X, the

data point position) while here we define Corr(gi,gj). We invoke only X; to make the form look simple. But

these two are essentially identical.
2Carlos Lozano, personal communication.
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As there could be scale change in the vertical direction, different ry and r4 are generally
needed for different levels. But in this study the same parameters are adopted for all fields
throughout the water column. The tuning begins with a guess for ry made from the correlation
analysis (Appendix A5.3). After many experiments (could be tedious and time-consuming),
the parameteric combination r9 = 60 km, r4 = 40 km, 7 = 4 days, and £ = 0.1 appears to

yield a satisfactory estimation.

Some of the OA results are plotted in Fig. 5.9. From left to right are, in their own order,
temperature maps for the initialization survey (centered on August 15), zigzag survey (August
19), and validation survey (August 22). From top down, distributions for the 25-m, 80-m, and
125-m levels, and o-level 7 (cf. Fig. 5.12) are displayed. These maps are generally the same
as those of Robinson et al. (1996) except the 80-m-level one, which is not presented in their

paper. We keep it here for later use.

We now give a brief summary of the features shown with these maps, though many of
them have already been elaborated upon by Robinson et al. (1996). From Fig. 5.9 the three
surveys have captured snapshots of how a deep-sock meander was formed in the middle of
the domain during the experiment. Initially the fresh cold waters are well separated from the
warm salty Atlantic waters. The front is in an intact form, albeit with some wiggles riding
on it. Generally, it is strong in the western region, and gets weaker and weaker toward the
east. (Similar observations are seen in Smart, 1984.) A cold vortex is found on the northern
flank, attached to another warm eddy from further north. This vortex pair is apparent until

the 80-meter level. It is not significant in deeper layers, however.

When time reaches August 19, the frontal axis suddenly straightens toward the southeast.
Accompanying this event is a strong northwesterly flow, which has also been observed with
the drifter trajectories. (Not shown here. See Robinson et al., 1996.) Although in Fig. 5.9,
temperature distributions for this period are shown only for those regions with tolerable errors

(25% of the maximal variance), this front straightening is easily seen.

Following the re-orientation of the front comes a sudden meandering during August 20-
23. By its shape this cold-tongue intrusion has been described as “deep-sock” (Robinson et al.,
1996) and “hammer-head” (Miller et al., 1995a; Miller and Cornuelle, 1999). From the satellite

infrared image (AVHRR) (Fig. 5.10) of the sea surface temperature (SST), this phenomenon is
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Figure 5.9: OA maps of the observed temperature for August 15 (left panel), August 19 (middle
panel), and August 22 (right panel), 1993, which represent the initialization, zigzag, and validation
surveys, respectively. The axes are in longitudes (degrees west) and latitudes (degrees north).
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Figure 5.10: A satellite infrared image (AVHRR) for the sea surface temperature of the model domain
on August 22, 1993. Temperature is higher in the yellow area than in the pink area. The blue indicates
clouds. (Re-drawn from Robinson et al., 1996)

also apparent, with a meander similar to that of Fig. 5.9. In Fig. 5.10, the yellow color indicates
warm waters while the pink is cold. The blue area is covered with cloud. The general pattern
of the intrusion on this image is actually like a T with upper side down, oriented toward the
southeast, with some warm water sheetificated into the north. Superimposed on this pattern
we also see features of smaller scales, thanks to the high resolution. These “details” reveal to us
an SST map which is rich in self-similarities, implying the possible role of strong nonlinearity

in the frontal meandering process (cf. §1.3).

The vertical distributions also show some interesting phenomena. In Fig. 5.11, a meridional
section across the center of the deep-sock meander displays how the two waters, one from the
north (right) and another from the south (left), interact with each other and eventually lead

to an intrusion. The front is initially seen as a interface with a sharp temperature gradient in
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Figure 5.11: Temperature distribution on a meridional section across the deep-sock meander
(10.75°W). The unit is °C.

the middle, then on August 19, it appears to be almost perpendicular to the bottom from the
north, while in the south, a lot of sub-mesoscale features emerge, reminiscent of the interference
with waves reflected from the front. On the same day, the northern part seems to be quiescent.
But this might not be true since observational coverage is scarce there. On August 22, the
oscillation in the south subsides, but the Arctic waters are advancing southward (the cold
intrusion), followed behind by a wake of meso-scale eddy-like fluctuations. Based on what is
described above, it is reasonable to postulate that the eddy wake is a result of the north-south

negotiation, reflecting the response to the onset of the frontal meandering.

5.3 Model set-up

The IFF93 experiment spans a 140 km Xx 190 km rectangular domain which is centered at
64.25°N, 10.75°W (cf. Fig. 5.2). In the forecast model, this rectangle is horizontally dis-
cretized into 56 x 76 mesh grid boxes (57 x 77 grid points), with an equi-distant spacing
Ax = Ay = 2.5 km. In the vertical direction, a hybrid coordinate system is adopted. Above
a constant interface depth H.=150m, the domain is discretized into k. = 5 horizontal levels.
Below this depth are 4 terrain-following levels (o levels). HOPS adopts the Arakawa B-grid
(cf., Arakawa and Lamb, 1977), with the tracer and velocity placed on different grid points
(refer to Fig. A3.7). In Fig. 5.12, we plot the configuration of the tracer boxes (T-boxes) for
two typical vertical sections. The thicknesses of these T-boxes are, from top to bottom, 15 m,

20 m, 25 m, 40 m, 50 m, 78 m, 156 m, 224 m, 312 m. The top 5 horizontal levels are thence
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Figure 5.12: o-levels (dashed lines) for a typical meridional section (left) and a zonal section (right).
The solid lines delimit each vertical layer.

at, respectively, 7.5 m, 25 m, 47.5 m, 80 m, and 125 m. Below them are 4 sigma levels.

In order to meet the consistency requirement for the hybrid coordinate system (see Ap-
pendix A5.5), the bottom topography is clipped to the range [-950 m, -300 m] (Fig. 5.13a).
The hydrostatic consistency factor (HCF) for this conditioned topography and the coordinate
system is contoured in Fig. 5.13b. The maximal HCF is 0.548 < 2, lying within the consistent
limits (Lozano, 1995).

The model prognostic fields are now initialized. Since the forecast is an operational one,
we pretend to know nothing about the future in setting up the model. Recall that on August
14, 1993 (denoted as day 0 for convenience), the hydrocasts cover only the eastern part of the
domain. The western region lacks data, and hence artificial “hydrocasts” are needed to fill
the gap. In Robinson et al. (1996), a simple feature model based on the SST image is used
to fulfill this goal. We will adopt their approach here. (Other approaches are also available,
e.g., Miller and Cornuelle, 1999.) In the feature model, the front sits on an average axis,
artificial stations placed on either side in the western region with their corresponding typical
T-S profiles obtained before (Fig. 5.6). The station placement is such that the front has a
width of roughly 15 km.

The feature model makes it easy for the field initialization. For the temperature and salin-

ity, what is needed is to map the available data, both from the real stations and from the
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Figure 5.13: (a) Conditioned bottom topography used in the model (min = —950m, max = —300m,
CI = 50m). (b): Hydrostatic consistency factor (min = 0, max = 0.548, CI = 0.05).

artificially sampled points, onto the model grid with the objective analysis. The parameters
and application procedures are the same as those used in the OA described in the last sec-
tion. For the velocity field, the baroclinic mode is first calculated, with a reference depth
600 m. The barotropic mode is inferred from the quasigeostropic flow field. (Invert for the
barotropic vorticity to obtain the transport. See Lozano, 1995.) In Robinson et al. (1996),
the surface drifter information helps determine the external mode. We choose not to do so
since it might be inappropriate to have the limited current information extended throughout

the whole model domain.

The next step for the model set-up is the specification of boundary conditions. In our prob-
lem, there are four horizontal boundaries. We specify implicit Orlanski radiation conditions
(Orlanski, 1976; Chapman, 1985; Lozano et al., 1996) on all of them for all the prognostic
fields: tracer, velocity, transport streamfunction, as well as vorticity. In the vertical direction,
there are also two boundaries where conditions are needed. On the surface, a rigid-lid is im-
posed (this being the only option for the current version of HOPS), and no external forcing is
applied. At the bottom, no momentum, heat or salt flux is allowed through the solid sea floor.
These horizontal and vertical conditions, if possible, are updated along with the interior data

assimilation, as the model is advanced forward.
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In order to stabilize the numerical scheme, spatial and temporal relaxations are applied to
each grid point adjacent to the boundaries. That is to say, the boundary conditions are not
felt by the interior points immediately. They are relaxed to the interior values within a spatial
distance and a designated period. This kind of nudging greatly reduces the possible mismatch
in the conditions that are specified and then a longer model integration is ensured. Appendix
Ab.6 provides some details on this issue. The relaxation parameters used in the model are

listed in Table 5.2.

Another issue that the model must resolve is the subgrid process parameterization. In the
vertical direction, the effect of these processes are modeled with a Laplacian type diffusion
term, while horizontally a Shapiro filter (Shapiro, 1971) is exploited for the parameterization.
The equivalence between the Shapiro filtering and Laplacian diffusion can be demonstrated
for a single wave with wavenumber x. In this case, a Shapiro filter with parametric triplet
(p,q,r) (refer to Table 5.2 for an explanation) is equivalent to an effective eddy diffusion with
diffusivity (Lermusiaux, 1997, p. 136)

K= [1 —(1- sp)q/”] f—;, (5.2)

where Ky = (Az)2/At, s = sin?(kdz/2). In the present problem, the typical spatial scale is
about 10-25 km (cf., Hansen and Meincke, 1979; Robinson et al., 1996), the effective diffusivity
for the parametric triplet adopted (cf. Tab. 5.2) is estimated to be of order 160-900 m? /s, which

is reasonable for real physics.

To close this section, we give a summary of the adopted model parameters and options, and

tabulate them in Table 5.2. The model is now set up and ready for the forecasting.

5.4 The forecasting

5.4.1 General strategy

The strategy of Robinson et al. (1996) is chosen to achieve our forecasting goal. We believe
it is the right approach to find a satisfactory forecast, though some modifications may be
needed. Generally speaking, it is a kind of field updating which corrects sequentially the

model prediction. As the model advances forward, the observations are taken in whenever
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Table 5.2: A summary of the PE model parameters.

261

Parameters Value
Model configuration and mesh grids
Grid D7 X 77 %9
Mesh 140 km x 190 km
Time step for
velocity 180 s
tracer 180 s
transport streamfunction 180 s
Horizontal grid spacing
Ax 2.5 km
Ay 2.5 km
Vertical grid spacing
Horizontal level 1 15 m
Horizontal level 2 20 m
Horizontal level 3 25 m
Horizontal level 4 40 m
Horizontal level 5 50 m
Sigma level 6 78 m
Sigma level 7 156 m
Sigma level 8 224 m
Sigma level 9 312 m

Shapiro filters (p,q,r)

(Order, Freq. of appl., No. of time steps between appl.)

Velocity

Tracer

Vorticity

Transport streamfunction

Boundary relazation
Spatial e-folding distance ds for
Velocity
Tracer
Temporal e-folding distance 74 for
Velocity
Tracer

Friction parameters
Vertical eddy viscosity v
Vertical eddy diffusivity A,
Bottom drag coefficient

(2,1, 1)
(2,1, 1)
(2,2, 1)
No application

0.7 grid point
0.8 grid point

24000 seconds
12000 seconds

5 cm?/s
5 cm?/s
2.5 x 103
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available, for both the interior and the boundaries. The whole procedure is therefore totally
data-driven. In our problem, recall initially only the eastern region is surveyed. The data-
lacking western region is sampled with artificial data from a feature model. As the data
coverage builds up, the feature model gradually retreats from its role, until the domain is
fully updated. The data for the updating are prepared with objective analysis (OA). When
acquired, they are mapped onto the model grid, where corresponding errors are also given.
The gridded data are then melded with the forecast using a pointwise interpolation scheme
called optimal interpolation or simply OI (see Appendix A5.4). Ol is actually a linear weighted
averaging scheme, with the weights determined from the forecast error field and the OA map
error field. This procedure repeats for the first two days (August 15-August 16) until all the
initialization data are assimilated. The whole system is then completely initialized and ready

for the next-step forecast.

At this stage, the simulation scheme bifurcates on the flow chart of forecasting strategy
(cf. 5.14). Tt goes into two directions, depending on whether the zigzag data are assimilated
or not. The branch without further data taken in gives an F2 forecast, while the other leads
to an FJ forecast. The F2 and F5 forecasts were so designated by Robinson et al. (1996) to
simplify the otherwise cumbersome terminology. They also labeled the day 14 August 1993
to be forecast day 0, 15 August 1993 to be forecast day 1, and so forth. With the aid of these
labels an F2 is simply a forecast based on the observations up to day 2, and an F5 the forecast
based on the observations up to day 5 (August 19). Both F2 and F5 are advanced forward at
least to day 8 (August 22), the day when a validation is supposed to be conducted.

The general idea of the above methodology is pictorially presented in the flow chart of
Fig. 5.14. For clarity, the F2 and F5 schemes are grouped and distinguished by two individual

boxes.

5.4.2 F2 forecast

The F2 forecast is a HOPS application based solely upon the data acquired from the initial-
ization survey. As shown in the flow chart of Fig. 5.14, before the model is let go on its own
from day 2 (August 16), nowcasts are launched and the model and boundary conditions are

sequentially updated. The updating is with a pointwise optimal interpolation, in which the er-
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Figure 5.14: Flow chart of the forecasting strategy. The shaded round-corner rectangles represent
the HOPS modular applications at that step, while the other boxes show the input/output or forecast
status. For an explanation of the terminology, refer to the text of §5.4.1.
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ror (variance) field plays a crucial role. The observation error is obtained simultaneously with
the OA map (cf. Fig. 5.21), while the forecast error is estimated using some simple model.
The exponential decay equation for the prediction certainty in Appendix A5.4 is a choice.
But here we use an even simpler one, which appears to be as good as those seemingly more
sophisticated schemes, to a large extent. In this model, the forecast error is assumed to be
uniform throughout the domain, and is simply taken to be the basin mean of the observational
error field. This bold simplification is out of the too much loss of predictability and based
on the observation that many other sophisticated but expensive schemes have no convincing

superiority by any chance.

Figures 5.15-5.16 show how the forecast initialization is completed with the sequential data
updating. These temperature pictures agree well with those of Robinson et al. (1996), and
besides, Fig. 5.16 is very similar to the OA map in Fig. 5.9, except that the latter is richer in

small-scale features.

Beginning day 2 (August 16), the model is driven entirely by its own physics. The outputs
after that form the F2 forecast sequence; shown in Fig. 5.17 is the day-5 temperature in the
sequence. As we have described before, a remarkable feature on this day is the re-orientation
of the western frontal axis from what it used to be on day 2 toward the southeast. Our forecast
has captured this event. It is seen on the maps for all the depths through the water column,
and is especially evident on mid-levels such as levels 4 (80 m) and 5 (125 m). A little problem
here is that the slope of the front is still too mild and the southeastward current is not strong
enough (cross-front temperature gradient not large enough). The maximal speed along the
straightened frontal axis is 69 cm/s (figures not shown), about 10 cm/s less than the 79 cm/s

inferred from the surface drifters (Miller et al., 1995a,b).

The deep-sock or hammer-head meander of day 8 (August 22) has also been well reproduced.
In fact, this is the most successfully simulated phenomenon for the F2 forecast. Comparing the
temperature distribution of Fig. 5.9 to that of Fig. 5.18, the forecast meander is correlated well
to the observed one, either in its spatial location or its geometric shape. Particularly appealing
is the way the meander is oriented. The cold water intrudes westward, in good agreement
with both the satellite image and the hydrographic observation. Besides, some indication of

scale-similarity, which is lacked in the OA maps (Fig. 5.9) because of the sampling resolution



CHAPTER 5. FORECASTING OF THE IFF VARIABILITY 265

but is present in the AVHRR image (Fig. 5.10), is also significant here. Some other not-that-
significant features in the OA maps, such as the cooler tongue intrusion from the northwestern
corner, a cold eddy immediately above the southern boundary, etc., are also seen in the forecast

result.

If inspected carefully, the time sequence of temperature reveals that a subtle event takes
place after the front’s southeastward re-orientation. This event, which is characterized by a
sudden cresting of the front on the western side of the “valley” (Fig. 5.19), seems to be crucial
in bringing about the deep-sock meandering. Most of the failed experiments don’t have this
phenomenon. In those runs, the front intrudes at the deep valley, making the western flank
not able to crest up (northward) back to a state similar to day 2. It is reasonable to conjecture

that this cresting may be a pre-condition for the formation of the deep-sock intrusion.

To a satisfactory extent, F2 forecast can be said to be successful. Not as satisfactory,
however, is the frontal strength on the western flank of the meander. The contour lines of
the highest temperature are not able to crest northeastward as other contour lines do in that
region. This is the major forecast-observation discrepancy that affects the forecast skill, with
skill scores defined by anomaly correlation (refer to §5.6.2). Many problems could account
for this discrepancy, but here the persistence of boundary conditions after day 2 (August 16)
might be the main reason. Nonetheless, as displayed in the forecast sequence (plots not shown
here), the thermal pattern changes so much from day to day that whether a dataset with a
time span as wide as three days can really provide a detailed structure precise enough for the

validation is still in question.

Above are the major features evidenced on the horizontal maps. The section temperature
distribution also tells something interesting about this forecast. The solitary cold center of 19
August 1993 near the bottom south of the front (Fig. 5.11) shows up on the fifth forecast day
(Fig. 5.20), with some smaller features riding on it. On day 8 (August 22), the observed front
pushes a little more southward than the forecast one does, but the wake behind (north of IFF)
is well reflected on the wavy 1.8°C contour line. In this sense, the F2 forecast results are well
correlated to the observations, though the second cold center over the bottom doesn’t find its

way into Fig. 5.20 (right), and the wake is not strong enough to be quantitatively satisfactory.
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Figure 5.15: F2 nowcast of the day-0 (August 14) temperature.
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Figure 5.16: F2 nowcast/forecast of the day-2 temperature (August 16). Initialization is completed
by this step.
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Figure 5.17: F2 forecast of the day-5 (August 19) temperature. The southeastward straightening of
the front is clearly seen at all the levels shown here.
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Figure 5.18: F2 forecast of the day-8 (August 22) temperature. Notice the deep-sock meander in the
middle of the model domain.
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Figure 5.19: F2 forecast of the 25-meter temperature of day 7 (August 21).

5.4.3 F5 forecast
Assimilation of the zigzag data

The F5 forecast starts with the same setting as that of F2. The difference lies in its assimilation
of the zigzag data en route to day 8 and beyond. The zigzag dataset, which was acquired on

August 18 through August 20, is distinct from the other two sets in that

(1) It does not contain any salinity information,

(2) The hydrocasts cover only the central and southern parts of the model domain (cf. Fig. 5.3),

and

(3) A considerable number of probes did not reach the bottom.

The first limitation is removed with the technique of salting described before. (The initial-
ization CTD/XCTD casts are used for comparison.) Robinson et al. (1996) extrapolated the
incomplete XBT profiles to the bottom and so the third limitation is not a problem. But
here we choose not to apply this extrapolation. (The reason will be seen in the § 5.5.4.) We

simply take what they have and prepare the assimilation maps with all the hydrographic data
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Figure 5.20: F2 forecast temperature on a meridional section (10.75°W) across the deep-sock meander
for day 5 (left) and day 8 (right).

available up to forecast day 6 (August 20). In doing so the third limitation is also gone. We
are now left with only (2). It is this limitation that makes the zigzag data assimilation an

issue for the F5 forecast.

A direct result of the limited XBT coverage is the nonuniformly distributed observation
error field. As shown in Fig. 5.21b, the observed temperature error is very large outside the
zigzag area defined in Fig. 5.9 (the middle column), compared to either that of the interior or
that of the initialization survey (Fig. 5.21a). We will show now, in the following paragraph,
that this kind of error nonuniformity may introduce spurious structure to the forecast field if

the observation is assimilated with a classical scheme.

Let us illustrate the problem with a simple example. In this example, the physical space is
simplified by considering only two locations, location 1 and location 2. Suppose there is an
observation T, and a prediction® T, for some field T' (not necessarily temperature, but any
prognostic variable). They are evaluated at locations 1 and 2, and denoted as T,(1), T,(2),
T,(1), T,(2), respectively. Suppose further that

To(1) = Tp(l)‘l_o

3Here the superscript “” is used to signify a field before any observation is assimilated. Likewise, the

superscript “+” will be used for a field after assimilation.
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where C' is a constant. Then the observed and the predicted fields share an identical spatial
structure, though the absolute values are not equal. For many fields, one anticipates a correct
structure much more than the absolute value. That is to say, the offset may not be that im-
portant. Examples of these fields in geophysical fluid dynamics include temperature, salinity,
density, to name but a few. In fact, the forecast skill in the next section will be defined in
just this spirit (cf., the anomaly correlation coefficient). As the observed and predicted fields
have the same structure, ideally we expect the field after assimilation, denoted as 7" (1) and
T™*(2), also preserves the structure. However, with a classical assimilation scheme, this is not

possible in general. We will soon see why.

By optimal interpolation (Appendix A5.4), when no correlation between the observation

and model prediction is considered, the assimilated field is

i) = (B0 O] B OO+ 51 0)].,
T2 = [B'@+ 5] (5 OLE 5 @1 ).

where F, and E, are the variance for T, and T}, respectively. The new structure, which is

characterized by the difference of T,/ (2) and T,f (1), is hence

—1
[E*1(2)To(2) —E'2)T, (2

<I+Eo(2)>1_ <1+ 7, 1))1
Ep(2) Ep(1) '

This difference will not be equal to the previous [T, (2)—T,, (1)], unless C' = 0, or Ey(2)/Ep(2) =

)
1

B, (WT(1) - B, ()T, (1)

(

E,(1)/Ey(1). Unfortunately, neither of these conditions are generally satisfied in real prob-
lems. That is to say, with the classical OI, assimilation of an observation with the same
structure but not identical in values could result in something with a completely different

pattern just because of the presence of error nonuniformity!

This problem actually originates from the classical optimal interpolation methodology. The

scheme is to minimize a performance or cost functional such that the observed field and the
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model prediction as a whole are combined into a new field. This does nothing to discriminate
features of one scale against others. This proves to be problematic if the error field is not
spatially uniform, as exemplified above. Since error inhomogeneity is unavoidable, one has
to keep an eye on the physics instead of just doing the mathematics of optimization. In the
present study, this problem could be severe, considering that the zigzag error is in a pattern
like Fig. 5.21b. The multiscale issue, therefore, must be addressed in devising an appropriate

assimilation scheme for the F5 forecast.

An in-depth study of multiscale assimilation is beyond the scope of this thesis. To cope
with the problem we just adopt a simple scheme, a scheme aiming at reducing or removing
the C in the above example (as the error field is something not alterable). This is achieved
by removing the large-scale part of both the model result and the observation. The two fields
that are to be melded are therefore the de-trended fields. After the assimilation, the trend
(of the model prediction) is added back to get the updated field. In doing so, the potentially
spurious structure due to the discrepancy of the predicted and observed large-scale features,

if any, is then effectively removed.

The large-scale features, by which we mean here the basin-scale trend, is obtained through
a reconstruction using the 2-D scaling basis built before (see Fig. 2.11 on p. 90) with a spatial
scale level index jo = 1. Fig. 5.22 are the basin-scale distributions of both the predicted and
observed temperatures, 7T, and Tp, for the forecast day 5 (August 19). Notice the difference
in value (about 0.5°C) albeit the pattern as a whole is similar. This offset would surely
lead to spurious patterns (and hence spurious flows by the thermal wind relation) with the
zigzag observation errors, should these two basin-scale features be involved in the optimal
interpolation. We therefore subtract these features from the originals and then apply the
pointwise OI on the de-trended structures. Suppose the so-assimilated field be T1;+' The

forecast temperature is then updated with TIIJJr + Tp.

In order not to shock the system, the assimilation is ramped up from day 4 to day 5, instead
of getting to the day-5 melding in one step. The assimilation weight w (See Appendix A5.4)
is increased from 0.50 for day 4, to 0.99 for day 5 (w = 1 means 100% of the observation
is assimilated). The forecast fields are then updated and the updated temperature is like

Fig. 5.23. After all the zigzag data are taken in, the model is let go on its own.
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Figure 5.21: The nondimensionalized observational error of the temperature (scaled by its maximal
value) for day 1 (a) and day 5 (b). The contour interval is 0.1.

Forecast results

The sequence of the forecast temperature is shown in Fig. 5.23 through Fig. 5.25. Compared
to Fig. 5.17, the assimilation of zigzag data introduces many small-scale features, scattered on
all but particularly the upper levels. These grid-size events are soon dissipated. They are not
significant enough to influence the large scale evolution. On day 8, or August 22, the deep-
sock meander is clearly seen in the middle of the domain. The intrusion “depth” (southward
extent) is more realistically reproduced than it is in the previous F2 experiment (Fig. 5.18),
though the geometric size is somewhat a little smaller. One of the significant improvements
here in comparison to the F2 forecast is the reproduction of the frontal strength on the
western flank of the meander, and accompanying this is a high temperature pool centered

near (11.5°W, 64.2°N) in the surface layers.

As observed (Fig. 5.9), the deep-sock meander is actually not centered at exactly the same
position throughout the water column. There is a phase difference between the surface layers
and the mid/deep layers. This is particularly clear if one compares the observed 25-meter and
the 80-meter temperature distributions. Considering that the flow is generally from the west

toward the east, the surface layers lag the deep layers by a significant amount of phase. We
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Figure 5.22: The large-scale temperature distribution reconstructed with (a) observation, and (b)
model prediction for the fifth forecast day. A window index jo = 1 is used for the 2-D multiscale

window analysis.

know from the linear stability theory that the lag in phase of the upper layers usually implies
some mechanism related to baroclinic instability (e.g., Holton, 1992). This phenomenon is
thus not trivial, and for this reason, it is interesting to see on Fig. 5.24 there is indeed some
indication of such a lag. Upon a close scrutiny, the 80-meter meander is centered at somewhere
near 11.5°W while the 25-meter meander is a little bit to the west. Our model has at least

qualitatively captured the phase lag phenomenon.

The deep-sock meandering intrusion is therefore successfully reproduced. We integrate
further to see what happens. After day 8, the model is advanced for another 3 days to
day 11 (August 25). The forecast temperature is displayed in Fig. 5.25. From the picture, the
meander formed on August 22 now seems to reach the end of its life cycle. An eddy is being
snapped off the main stream. The detachment may not be as evident as those observed in the
Gulf Stream system (e.g., Robinson et al., 1988; Sloan, 1996), but it is still noticeable in the

upper layers (25 m and 80 m).

The eddy detachment is also seen in some section distributions. Particularly in bottom

layers, it seems to occur even earlier. This is indicated on the section distributions of the
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day-8 temperature (Fig. 5.26), where a sequence of the forecast temperature on a north-south
section (10.75°W) is plotted. The section runs across the center of the observed deep-sock
meander. Observe the small-scale features in the middle layers on day 5. They agree well with
those of Fig. 5.11 for the same day. After one day’s integration, these features are damped
out, but with the southward pushing of the front, some new small features appear again just
one day later (August 21). Accompanying these events is the appearance of a solitary benthic
cold center, a herald of a series of events on the next day (August 22) which eventually lead to
a splitting of the cold center into two just above the bottom, and a “wake” with an amplitude
comparable to that of Fig. 5.11. The well-reproduced two cold centers and the following

large-amplitude °

‘wake” indicate, at least in the deep-sock meander region, a high correlation
between the forecast and the observation, and indeed, this forecast skill gets much improved

from the F2 forecast, as will be quantitatively evaluated later.

5.5 Sensitivity study

In order to know whether the forecast is sensitive to the choice of certain parameters, four
testing experiments have been conducted. They are, (1) the vertical mixing test (to test the
eddy viscosity and diffusivity), (2) the filtering and boundary relaxation effect test, (3) the
mesh grid resolution effect test, and for the F5 forecast only, (4) the zigzag data assimilation
test. For (1), another factor that affects the vertical mixing is the mixed layer depth pre-
scription. But in this study external forcing is totally neglected, so it is excluded from our

consideration.

5.5.1 Vertical eddy viscosity and diffusivity

This study is to test the effect of the two vertical mixing parameters, v (vertical eddy viscosity
for the momentum equations) and A, (vertical eddy diffusivity for the tracer equations) on
the simulation. First v and A, are chosen respectively to be 0.5 cm?/s and 0.1 cm? /s, reduced
by more than an order in comparison to the 5 cm?/s and 5 cm?/s for the standard run. The
outcome (figures not shown here), however, doesn’t show a visible difference from those shown

in the above section. Likewise, incrementing v and A, by 15 cm?/s does not significantly
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Figure 5.23: F5 nowcast /forecast of the day-5 (August 19) temperature. The small-scale features come
in with the zigzag data assimilation, which is a melding of the F2 forecast and the zigzag observation

by optimal interpolation.
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Figure 5.24: F5 forecast of the day-8 (August 22) temperature. The deep-sock meander is in the
middle of the domain.
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Figure 5.25: F5 forecast of the day-11 (August 25) temperature. This extended forecast reveals an
eddy pinch-off in the upper layers.
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Figure 5.26: The F5 temperature forecast sequence for a meridional section (10.75°W) which runs

across the deep-sock meander.
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affect the results, either.

5.5.2 Filtering and boundary relaxation

Filtering and boundary relaxation jointly exert effects on the field evolution. Shapiro filters
are used to parameterize the subgrid processes. Their application is felt by all points in the
domain throughout the integration. The effects of the boundary relaxation, on the contrary,
are restricted only to a small region (of scale dg) in close vicinity to the open boundaries
within a limited time (with scale 75). Since the model domain of this forecast is small, the
large-scale process is on a basin scale, which is driven by the boundary conditions. For this
reason, the boundary relaxation should be as small as possible so that these conditions can be
felt in time by the interior points. Considering this, it may then be required that the filtering
be stronger than usual in order to attain a stable solution. In the standard numerical run,
the relaxation is made such that their effects are limited within 2-3 grids immediately close to
the boundaries, and filter triplets (2,1,1), (2,1,1), (2,2,1) (see Table 5.2 for interpretation) are
chosen for momentum, tracer, and vorticity, respectively. A little stronger than usual as they
might be, the filtering effects are within reasonable bounds. By Eq. 5.2, for a typical length
scale 25 km, the effective viscosity is estimated to be 160 m?/s when At = 450 s is used, or
400 m?/s when At = 180 s, in good agreement with the 300 m?/s estimated by Willebrand

and Meincke (1980) from their observation.

Unlike the vertical eddy viscosity and diffusivity, filtering and boundary relaxation do affect
the simulation. Fig. 5.27 is the surface temperature forecast with a spatial decay scale d; =
3 points and a temporal decay scale 7, = 1800 s, and a filter triplet (p,q,7) = (2,2,1) for
both the momentum and tracer equations. It appears on these maps that the day-5 frontal
straightening does not occur in the western region, and hence no deep-sock meander shows on
day 8 (August 22). Clearly, the meso-scale events have been severely inhibited by the large

relaxation and the heavy filtering.

Although changes of boundary relaxation and filter parameters may result in significantly
different consequences, our forecast is not that sensitive if these parameters vary within some
limits. By experiment, when a second order Shapiro filter is employed, the boundary relaxation

scale d; has to be greater than 0.5 grid point for either momentum or tracer evolution equation.
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Figure 5.27: Surface temperature predicted with a boundary relaxation ds;=3 points, 7s = 1800s, and
a filter (p,q,r) = (2,2,1) for both momentum and tracer equations. The left is the temperature at
25 m for the fifth forecast day (August 19) and the right for the eighth day 8 (August 22).

Otherwise the numerical integration will soon blow up. When ds; > 1 point, the resulting day-
8 meander pattern appears not that good as the one in Fig. 5.18; When dgs > 2 points, the
deep-sock meander no longer emerges on that day. If ds lies on [0.5,2], change of 75 does not
affect the emergence of the meander, though the shape variation could be significant even by
eye inspection. We may then safely conclude that the model is qualitatively insensitive in

some parametric neighborhood of the boundary relaxation and filtering.

5.5.3 Mesh grid resolution

Originally, this study began with a model with a coarse resolution (Axz = Ay = 5 km, and
5 levels in the vertical direction), and a satisfactory forecast was obtained. The parameters
used in that model are basically the same as those used in the present one, except for a
little modification in the choice of (within the ”"neighborhood” mentioned above) the filter
and boundary relaxation in order to ensure stability (filter triplets (2,5,1), (2,1,1), (2,1,1) for
momentum, tracer, and vorticity, respectively, and boundary relaxation (ds, 75) = (1, 5400)
for momentum and (0.8, 7200) for tracers). Shown in Fig. 5.28 are the surface temperature
(25 m) maps for day 5 (August 19) and day 8 (August 22). The two events, the southeastward

frontal-axis straightening on August 19, and the deep-sock meandering on August 22, are both
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Figure 5.28: The F2 forecast of the 25-m temperature using a model with a grid spacing Az = Ay =
5 km in the horizontal and 5 levels in the vertical.

reproduced satisfactorily, though quantitatively it may not be quite as successful as those of
Fig. 5.17 and Fig. 5.18. A very impressive observation from Fig. 5.28 is that, in this forecast,
the major events are greatly enhanced due to the small-scale-process-removing effect with a
coarse resolution. This makes it even easier to identify the events that are essential to the
observed phenomena. An examination of the evolution sequence (not shown here) reveals that,
from day 2 (Aug. 16) to day 5 (Aug. 19), the front is undergoing an evident re-orientation
process until it lies straight toward the southeast. The current attains a speed as strong as
80 cm/s, in good agreement with the observation. On day 6 (Aug. 20), the straightened part of
the front suddenly bends from the middle, eventually leading to the formation of a deep-sock

meander on day 8 (Aug. 22).

The coarsely resolved model is more sensitive to the choice of boundary relaxation. This is
not surprising, since with the same relaxation, a coarsely resolved model has a larger influenced
region compared to a finely resolved one. Experiments indicate that a change of d; by 0.2

point will give rise to a drastic variation in the final meandering pattern.
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5.5.4 Zigzag data assimilation

An appropriate zigzag data assimilation scheme is the key to the success of the F5 forecast.
Table 5.3 lists nine selected runs for this test. The first is the standard run which has been
described in the last section. We know that the zigzag dataset comprises of only XBT mea-
surements, (many casts did not reach the bottom), and some areas are not covered by data.
Run 7 and Run 8 are designed to see what if assimilated with only those available data. Un-
fortunately both of them blow up. In all the remaining runs except Run 2, the assimilation is
ramped up from that of day 4 to day 5 (August 19). In Run 2, the assimilation is first ramped
up, with the weight w going up from 0.4 on day 4 to 0.8 on day 5, and then it is ramped
down, toward 0.4 again on day 6. This ramp-up and ramp-down strategy was originally used
in Robinson et al. (1996), but here it turns out not successful. The meander thus formed is

not in the “deep-sock” form.

Table 5.3: Run table for the zigzag data assimilation test.

Run| Assimilation Fields Datasets | Vert. | Special treatments and comments
Weights assimilated used ext.

1 | .50.99 .00 TSV, U Z. + 1. No Standard run

.40 .80 .40 TSV, ¥ Z. + L No Intrusion not in a form of deep-sock
meander.

3 | .50 .99 .00 TSV, ¥ Z. only Yes | Meander shape and orientation not
good.

4 1.50 .99 .00 TSV, ¥ Z.+ 1. Yes | Front too sloped west of the meander
and meander shape not correct.

5 | .50 .99 .00 T only Z.+ 1. No No deep-sock meander.

6 | .50 .99 .00 T and S .+ L No Similar to Run 6.

7 1.50.99.00 (TSV,V .+ L No Assimilate in Zigzag domain only. In-
tegration blows up.

8 | .50 .99 .00 TSV, ¥ Z.+ 1. No Assimilate up to available depth only.
Integration diverges.

9 |.50.99 .00 TSV, ¥ 7.+ 1. No Classical OI applied. Meander shape
and orientation not good.

N N

A note on the symbols or terms used in the table:

T S V; ¥: Temperature, salinity, internal velocity, and transport streamfunction.
Assimilation weights: Assimilation weights for days 4, 5, and 6
Vert. ext.: Vertical extension of XBT data downward to bottom

Z. I.. Datasets for zigzag survey and initialization survey, respectively.
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As of August 19 (day 5), two datasets, the zigzag dataset and the initialization dataset,
have been acquired. Should we use all the data available thus-far or use only the zigzag data
for the assimilation? Run 3 is intended to answer this question. Since the XBT dataset is
not complete, and a partial assimilation will cause the integration to diverge (Run 8), vertical
extension has to be made for all the observation data points. The result of this extension
is that, as one might expect, neither the forecast meander shape nor its orientation is good.
Even with the initialization data taken in, the extension still yields a forecast result which is

not satisfactory (Run 4).

Besides the dataset exploitation, vertical extension, and assimilation weight tests, other
testing runs include Runs 5 and 6, which have only part of the fields updated, and Run
9, which does not consider the potential effect of the multiscaling on the assimilation in
the presence of error field inhomogeneity. The results of these runs strengthen, from many
perspectives, our previous arguments (§ 5.4.3) on how to choose the assimilation scheme and

parameters for a successful F5 forecast.

5.6 Quantitative evaluation of the forecast skill

5.6.1 Forecast skill score

As described in the last section, the IFF forecast has qualitatively reproduced with success
the major events observed during the zigzag survey and the validation survey. Especially
successful is the deep-sock meandering intrusion. By visual inspection, not only its location
and its size, but also its geometric shape and orientation have been predicted. This is the first
time such a satisfactory operational forecast has ever been made since the acquisition of the

IFF ’93 dataset. It testifies from this one aspect to the power of the new version of HOPS.

Besides qualitative evaluations, the unprecedented IFF ’93 dataset also allows, to some
extent, a quantitative validation of the forecast. Following Miller et al. (1995), the forecast
skill is measured using the anomaly correlation coefficient (ACC) and the root-mean-square

error (RMSE):

ACC = — 20 (5.3)
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and
RMSE = (T, — T,)2 /7, (5.4)

where the overline denotes an averaging over some designated space domain, and T is the
temperature with subscripts p and o representing prediction and observation, respectively.
Here by observation we mean the data OA mapped in the mesh grid. In the expression of
ACC, T" denotes the mean-removed temperature fluctuation. By these definitions, a high skill
should have a high ACC and a low RMSE. We may therefore use the ACC and RMSE of
forecast versus the ACC and RMSE of persistence to score the forecast skill, as defined by
Miller et al. (1995) and used by Robinson et al. (1996).

5.6.2 Validation of the F2 forecast

Tables 5.4 and 5.5 give the calculated forecast skills against persistence for four different do-
mains: the Full domain, Subdomain A, Subdomain B, and the Zigzag area. By “full domain”
here we actually mean the entire model domain with 3 grids close to the four open bound-
aries excluded. These excluded points belonging to the relaxation-affected regions, where the
forecast fields cannot be compared with real observations. Subdomains A and B are marked
in Fig. 5.2. They are designed for the validation of the two major events, the frontal re-
orientation, and the deep-sock meandering. The zigzag area is the one shown in Fig. 5.9. This
is the region where a comparison with the zigzag data is possible. In Table 5.4, no calculation
is available below sigma level 8, since the XBT probes have a vertical extent of only 400 m or

SO.

Generally speaking, Tables 5.4 and 5.5 indicate a successful forecast for day 8 (August 22),
especially in the deep ocean. For day 5 (August 19), the ACC is increased versus the persis-
tence for most of the vertical levels, though the RMSE does not see a decrease as a whole.

This is actually as expected, for the southeastward current is too weak to make the *

‘valley”
deep (south) enough. The southernmost tip of the front lies at too high a latitude. Contrast
to this is the day-8 forecast. In Subdomain B, where the deep-sock meander is identified,
virtually at all levels the ACC gets increased and the RMSE decreased except at levels 3 and

4 (the 47.5-m and 80-m levels). Even at these two levels, they are much more improved in
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Table 5.4: F2 forecast skill vs. persistence (assimilating 16 August /predicting 19 August).
Subdomain A Zigzag area Full domain
Temp at ACC RMSE ACC RMSE ACC RMSE
change change change change change change
75m +0.017 +10.8% +0.052 -11.9% +0.034 +10.7%
25m +0.007 +2.4% +0.041 +5.5% +0.036 +3.3%
475 m +0.028 -14.6% +0.022 -0.6% +0.035 -3.4%
80 m -0.011 +10.1% -0.008 +5.3% -0.013 +3.1%
125 m -0.005 +2.5% +0.008 +1.5% -0.006 -0.4%
o ~166 +0.006 -2.2% +0.020 -3.1% +0.007 -4.3%
o,~215 +0.007 -2.8% -0.005 -0.6% -0.006 -1.9%
¢,~300 N/A N/A N/A N/A N/A N/A
0,~405 N/A N/A N/A N/A N/A N/A
Table 5.5: F2 forecast skill vs. persistence (assimilating 16 August /predicting 22 August).
Zigzag area Full domain Subdomain B
Temp at ACC RMSE ACC RMSE ACC RMSE
change change change change change change
7.5m +0.029 -0.64% 0 +1.3% +0.206 -14.0%
25m +0.015 +8.9% -0.012 +11.2% +0.171 -2.5%
47.5m -0.033 +14.3% -0.024 +16.3% -0.036 +21.7%
80m -0.052 +20.7% -0.042 +24.7% -0.062 +32.1%
125m -0.001 +5.7% -0.002 +4.0% +0.033 -1.5%
o ~166 +0.063 -17.5% +0.038 -17.1% +0.108 -31.6%
0,~215 +0.083 -23.7% +0.057 -23.9% +0.014 -47.8%
o,~300 +0.062 -13.1% +0.049 -14.6% +0.012 -45.3%
o,~405 +0.019 -2.5% +0.019 -4.0% 0 -15.8%
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comparison to the forecast skill of August 19, if one examines carefully the time sequences
of the skills of forecast and persistence from August 16 to August 22 (Figs. 5.29-5.30). In
fact, a process with a period of 5-6 days is seen from these sequences. The recurrence of some
processes on August 22 makes the persistence highly correlated to the observation. But even

with this, the forecast skill still exceeds the persistence skill at most of the levels.

5.6.3 Validation of the F5 forecast

The ACC and RMSE for the Fb forecast are tabulated in Tab. 5.7 for the three validation
domains. In this case, only day 8 is used for the verification. Compared to Tab. 5.5, this
time it is on the two top levels that the ACC and RMSE are not as good as desired. All the
other levels see an increase in ACC and a decrease in RMSE. On levels 3, 4, 5, and 9, the
correlation increase and error decrease are particularly significant. The time sequences of ACC
and RMSE for some typical levels over Domain B are plotted (thin solid lines) in Figs. 5.31
and 5.32. Level 4 (80 m) is perfect in terms of the forecast skill as defined. The ACC keeps
going up until toward the eighth day, while the RMSE continues to go down until reaching its
lowest point on August 22. Level 5 (125 m) is also good in this regard. The other two levels,
level 2 (25 m) and sigma level 7 are examples with not-so-good quantitative skills. We will
show, however, even for these two levels their skill scores will be significantly increased after

some phase corrections.

The quantitative evaluation with phase correction is also from Robinson et al. (1996).
Here what we need to do is to have the fields lag in the z direction by some distance (moved
westward). The lag differs level by level. For all those well forecasted, no lag is necessary; For
others such like levels 1 and 2, a little more lag is needed. A detailed report of the necessary

lags is provided in Tab. 5.6, with grid interval being the unit.

The spatially lagged F5 skill scores of forecast versus persistence for all levels are calculated
in Tab. 5.8. Now on each level, either ACC increase or RMSE decrease is improved, by a
significant amount. The time sequences, plotted as the thick solid lines in Figs. 5.31 and 5.32,
also indicate a greatly improved forecast skill. Except for the 25-m level, where ACC is a little
bit bigger on August 21 than on August 22, all other sequences reveal a maximal ACC on

August 22, the very day when forecast is validated. Even for the 25-m level, the 21 August
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Figure 5.29: Anomaly correlation coefficient for the F2 forecast (solid line) versus the persistence
(dashed line).
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Table 5.6: Spatial lag in x (positive if moved westward). Az = 2.5 km.

Level Spatial lag Level Spatial lag
Level-1 8 points o-6 3 points
Level-2 6 points o-7 6 points
Level-3 0 points o-8 6 points
Level-4 0 points -9 2 points
Level-5 2 points

ACC exceeds the 22 August ACC only by just a small amount, and anyhow the latter is well
above the persistence. By all accounts, the forecast skill scores are high for all levels. In other
words, the results are highly relevant and correlated to the observations. Our forecast is thus

satisfactorily validated.

5.7 Summary

During 14 August-23 August, 1993, an unprecedented dataset with three (the initialization,
zigzag, and validation) surveys was acquired on board R/V Alliance from the Iceland-Faeroe
Frontal (IFF) region. This chapter presents a real-time forecast with this dataset for the IFF
variability using the Harvard Ocean Prediction System (HOPS). The model is set up on a
hybrid coordinate system. It is totally data-driven, sequentially updated until it is fully ini-
tialized. The forecast is launched with two schemes: the F2 scheme which is based solely upon
the initialization data, and the F5 scheme which updates the field with the zigzag data. The
zigzag updating requires some multiscale treatment because of the apparent inhomogeneity in

the error field.

The events observed include a re-orientation of the curved frontal axis on August 16 to a
straightened one on August 19, and the formation of a deep-sock or hammer-head cold water
intrusion on August 22. These events are observed from the surface to deep levels, with an
apparent indication of barotropicity. On an N-S vertical section across the intrusion center,
the front is observed pushing southward, and in the process two cold pools are generated
just above the bottom, leaving behind a wake-like fluctuating isothermal structure. These

events have been reproduced satisfactorily, in either the F2 forecast or the F5 forecast, if
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Table 5.7: F5 forecast skill vs. persistence (Assimilating 19 August /Predicting 22 August).
Zigzag area Full domain Subdomain B
Temp at ACC RMSE ACC RMSE ACC RMSE
change change change change change change
7.5m -0.103 +3.9% -0.073 +5.6% -0.032 +4.9%
25m -0.036 +0.5% -0.028 +3.8% -0.018 +0.48%
47.5m +0.100 -19.5% +0.057 -16.3% +0.173 -31.7%
80m +0.088 -15.1% +0.038 -14.4% +0.189 -32.4%
125m +0.059 -12.3% +0.027 -10.6% +0.136 -21.5%
o, ~166 +0.044 -10.3% +0.019 -71.5% +0.076 -8.1%
0,~215 +0.026 -5.9% +0.012 -2.8% +0.049 +1.6%
0,~300 +0.024 -6.5% +0.015 -4.2% +0.086 -2.0%
o,~405 +0.086 -29.6% +0.078 -29.3% +0.186 -37.0%

Table 5.8: F5 spatially lagged forecast skill vs. persistence (Assimilating 19 August /Predicting 22
August).

Zigzag area Full domain Subdomain B
Temp | moved ACC RMSE ACC RMSE ACC RMSE
w. by change change change change change change
7.5m 8 pts +0.040 -16.5% +0.015 -13.5% +0.076 -29.2%
25m 6 pts +0.060 -18.8% +0.033 -15.0% +0.093 -31.1%
47.5m | O pts +0.100 -18.8% +0.057 -16.3% +0.173 -31.7%
80m 0 pts +0.088 -15.1% +0.038 -14.4% +0.189 -32.4%
125m | 2pts +0.071 -17.1% +0.033 -14.9% +0.150 -25.6%
o, 3 pts +0.070 -21.8% +0.032 -17.3% +0.124 -23.4%
o, 6 pts +0.074 -28.9% +0.042 -23.1% +0.119 -36.2%
O, 6 pts +0.091 -30.0% +0.066 -26.8% +0.173 -50.8%
o, 2 pts +0.126 -40.3% +0.106 -40.1% +0.228 -52.8%
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Figure 5.31: Anomaly correlation coefficient for the F5 forecast (solid lines) versus persistence (dashed
line). The thick solid line indicates the spatially lagged skill score.
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Figure 5.32: Root-mean-square error for the F5 forecast (solid lines) versus persistence (dashed line).
The thick solid line indicates the spatially lagged skill score.
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inspected qualitatively. Quantitatively, the F5-produced events are also highly correlated to
the observation. The forecast skill score is high, as evaluated against persistence, with the

anomaly correlation coefficient and the root-mean-square error.

The success of the forecasting is not contingent. Parametric study indicates that the model
is not sensitive to the choice of vertical eddy diffusivity and viscosity. The grid spacing is
not an issue, either. With the resolution halved, the major events are still there, agreeing
qualitatively with the observation. The boundary relaxation jointly with the Shapiro filtering
could be a little problematic, but there is no drastic change in the major features produced if
these engineering parameters are allowed to vary within reasonable bounds. By all accounts,
we safely conclude that the PE model does reflect correctly the fundamental dynamics that

lies behind the observed phenomena.

Something that merits more attention is the multiscale data assimilation. We have shown,
with a simple example, that in the presence of spatial error inhomogeneity large-scale prediction-
observation discrepancy may introduce spurious structures into the fields after assimilation.
This problem arises from a lack of multiscale consideration in the classical optimal interpo-
lation scheme. Given that the multiscaling is a reflection of the underlying dynamics, the
classical OI may have to be replaced by a new scheme which addresses the multiscale issue as
well as the variance minimization. This chapter gives only facets of this problem in carrying
forth the F5 forecast. Much ground work is needed before a sophisticated scheme can be made

for more generic applications.



Appendix to Chapter 5

A5.1 Principal component analysis

The principal component analysis (PCA), also known as the empirical orthogonal function
(EOF) analysis, has been widely used in the science of atmospheres and oceans (see von Storch
and Frankignoul, 1998; Preisendorfer, 1988, and references therein). In an elegantly simple
way, it transforms a series which might otherwise have a large number of elements into a small
set of uncorrelated entities. These entities are referred to as principal components (PCs). (An
exact definition will be given soon.) With its correlated structures grouped together in these

PCs, an efficient representation for a field variable becomes possible.

The PCA can be introduced in a variety of frameworks. In the calculus of variations, it is
stated as a problem of first maximizing a performance functional that measures the variability
the first PC accounts for, then maximizing that functional for the succeeding PC, and so forth.
Suppose we have a field variable U(¢,x), which is defined on a spatial domain D and time
interval 7. The physical space (described by x) could be one-dimensional, two-dimensional

or three-dimensional. Let the sequence
{\IIJ(K)}JEJ :{\Il(tjag)a] € J}a J = {0a132a"'an}a

(tj € T, Vj € J) be a realization of ¥(¢,x). Further suppose that,*

Consider the space spanned by the realization, H = span {V;(x)}. Apparently H C Lo(D),

and dim H := m + 1 < n + 1 since the spanning set might not be linearly independent.

4This is not essential. An ensemble mean can always be removed before the analysis is applied.

296
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The finite dimensionality of H implies H is a closed subspace of La(D) (cf. Chapter 2). Our

objective is to find for H an orthonormal basis, B = {e¢;(x),7 =0,1,...,m}.

There could exist many such B’s in H. We choose a {e;(x)} which maximizes the energy
(variance) first of the zeroth mode, then of the first, then of the second, and so forth. Elements
of such a basis are called empirical orthogonal functions (EOFs), and corresponding to them

are the EOF modes. Any function in H can be represented with these modes. Particularly,

Ui(x) = Y odei(x) (A5.5)
=0
where
of = (T;(x), ei(x)) . (A5.6)

The energy of the i'" mode averaged over T is

B = ni 1 ]X; (o)’ (A5.7)

It is easy to prove (Aubry et al, 1988), by using the calculus of variations, that the maxi-
mization of Fy, then Ei, and so on, is is equivalent to solving a Fredholm integral equation

eigenvalue problem (cf. Kreyszig, 1989)

/ R(x,x') e(x') dx' = Xe(x), (A5.8)
D
with the kernel
Rl x) = —— 3" ()0 (x) (A5.9)
RS bt '

being the element of a (symmetric) autocorrelation matrix. The eigenvalues A and eigenfunc-
tions e(x) can be found easily with the aid of computers. The obtained eigenfunctions e;(x)
form a total and orthogonal set, spanning the whole space H (Preisendorfer, 1988). If {e;}
is normalized, the eigenvalues \; are just the energy F; attached to the corresponding e(x).
They are called the principal components (PCs) for {U;(x)}. Since the PCs are maximized
toward the low orders, functions in H are expected to be effectively represented with just a

few EOF modes.
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A5.2 Objective analysis

The objective analysis, or OA for short, is a powerful tool in meteorology and physical oceanog-
raphy which has been particularly useful for data assimilation and field estimation. Its deriva-
tion can be found easily in literature (e.g., Gandin, 1965; Bretherton et al., 1976). In this
appendix, we provide only a brief introduction. Note the notation here may conflict with that

elsewhere. The reader is supposed to take this section as a self-contained one.

OA is a direct corollary of the Gauss-Markov theorem in statistics. For a scalar variable
Y = P(x), x = (z,y) € D, with a finite number of measurements, ¥,, at N locations x,.,

r=1,2,..., N, the problem is stated as follows:

Find the best linear estimator (least square) of ¥ (x), given that

(i) 1 is a random variable, and its statistical properties are homogeneous and isotropic

on D.
(i) ¢¥(x) ~ N(0,C), i.e., 1(x) obeys a multivariate Gaussian distribution.

(iii) The errors €, = ¥, — b, r = 1,2, ..., N, are uncorrelated with each other and with
the field ¢). They are also normally distributed, e ~ N(0,E), and E = EI, where

E >0 is a given constant.

Assumption (i) was justified by Gandin (1965). It allows an explanation of 1) as a realization
of a statistical ensemble, and hence allows a replacement of the ensemble mean by the mean
over domain D. In (ii), the zero-mean assumption is actually not essential. It can be always
relaxed by a translation. In order not to compound the notational problem, here it is set to
be zero. Usually the entries of the covariance matrix C is assumed to depend only on the
distance between the two points considered, which correponds to the stationary assumption in
time series analysis. The third assumption states that e is independent of 1, since for normal

distribution, uncorrelation implies independence (Gut, 1998).

Let an overbar denote the mean over D, and let subscripts signify where a variable is

evaluated. The problem becomes, in a more formal language, to find a 1/3,5 to minimize

(s — )
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subject to

P =0
z/)xd)gm»{ = 6m,m+§
61"1/)5 =0, €& =V, — Q/)r

€€ = FEb,g forr,s=1,...,.N

By the Gauss-Markov theorem (see Bretherton et al, 1976), this results in a linear estimator

1/3 of ¢ given the observation W:

N N
hy =Y Cor D AT, (A5.14)
r=1 s=1
In a matrix form, this is
v=CA'¥ (A5.15)
where
A = VU, =05+ FEdpg (A5.16)
Cmr = 1/):1:\1/1" = Ogr (A517)
with the variance of the error
A N
(d)x - 1/)95)2 = C:v:v - Z Oerst;sla (A5'18)
r,s=1

which may be intuitively interpreted as that the reduction of uncertainty is due to the addition

of information through observation.

Egs. (A5.14) and (A5.18) are the two equations for the objective analysis. A detailed
derivation of them can be found in Bretherton et al. (1976). In general the so-obtained
estimator does not satisfy the orthogonality condition: The difference between the observation
and the estimator is correlated to the estimator itself. This is quite different from the linear
regression, which always yields estimators independent of the measurement-estimator residual

for normally distributed variables (Gut, 1998).

An issue that must be resolved before any application is made is how the field can be

translated so that the homogeneity and isotropicity assumption is met. Apparently the field
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itself, like temperature or salinity, is in general not homogeneous or isotropic at all. A good
choice is the “eddy field”(Gandin, 1965), the residual with the large-scale features removed.
For this reason, the OA application in real ocean problems is usually implemented with a two-
stage approach, which was first proposed by Lozano et al. (1996) and now has been adopted in
the Harvard Ocean Prediction System. For the details of this approach, refer to the original

paper of Lozano et al.. A brief description of the general procedure is given in §5.2.3.

A5.3 Structure and correlation analysis

In Chapter 5, we need to perform structure and correlation analysis to estimate for the OA
the scaling parameters. Specifically, we need to find two functions, the structure function and

the autocovariance function (or simply correlation function).

Suppose we have a realization, T'(x), of some state variable, with x being the position vector.
Here T is taken as a random variable. Following Gandin (1965), the structure function B and

correlation function C' are defined (without much rigor),

B(xy,x;) = E [T(&) - T(§2)]2 ) (A5.19)

C(x1,x0) = E[T(x1) T(xs)]- (A5.20)

Estimation of B and C' encounters difficulty when statistical properties of T vary in space.
In that case, the ensemble for a location is usually too small to make the estimation statis-
tically significant. A usual way to circumvent this problem is to introduce an assumption
of homogeneity and isotropicity. A homogeneous and isotropic T' has statistical properties
translationally and rotationally invariant. The resulting B(x;,x,) and C(x;,x,) thus depend
upon only the distance between the two locations, r = |x; — x5/, unrelated to the locations x;

and x5 themselves.

In analogy to the stationary assumption in time series analysis, homogeneity and isotropicity
allow a great reduction of the complexity of the estimation problem. Unfortunately, they
usually do not hold directly for 7. As elaborated by Gandin (1965), they make some sense
only for the “eddy” part. That is to say, if T'(x) is decomposed as

T(x) = B(T(x)) + T'(x),
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observational facts indicate that the above assumption applies to some extent to T"(x) rather
than T'(x) itself. For this reason, re-define the statistical structure as

b(r) = E[T'(x)—T'(x)]", (A5.21)

co(r) = E[T'(x)) T'(x9)], (A5.22)

with r = |x; — X5|. In many situations, we may prefer the normalized version

Br) = bb((g), (A5.23)
vy = 4 (A5.24)

Here v(r) is the correlation coefficient function. It is actually all we have to estimate since
B(r) can be derived from it once it is obtained:

b(r) = E[T'(x)]*—2E[T"(x)) T'(x)] + E [T"(x)]”

= 2¢(0) [1—~(r)], (A5.25)
and
bloo) = 2 c(0), (A5.26)
Bir) = 1—~(r). (A5.27)

The estimation of (r) begins with transforming the multi-dimensional data T'(x), which
might be irregularly distributed, into a one-dimensional series. Since the v to be estimated
is dependent on the distance r only, we may take it as the only coordinate and carefully
discretize it into many distance gradations called “bins”. For each bin there must be some
data falling in it, and an average of them is taken as the transformed value at the location r
corresponding to that bin. The next step is simply to estimate the v for a equi-distance 1-D

series. For convenience, the distance dependences are now replaced by integer indices.

To make an estimator ideal, it should be consistent, unbiased, and positive definite. Using

a caret for an estimation, and an overbar for a mean, the estimator provided by Fuller (1983),

| N=h ) )

o) = Y [16) —T@)] - [7G+WTG+ 1), (A5.28)
=1

(OIS (45.29)

¥ = A + i (1= B0F). (A5.30)
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(where N is the size of the sample) proves to be positively definite and only slightly biased

for a relatively large sample volume. The bias can be measured approximately

Bl ) = 0(x3) (A5.31)
N—h 1 _

Cov[¥*(h),7" ()] =~ ONE 1+)O(N2) hl >0 (A5.32)
el else

and 4*(h) is approximately normally distributed. Thus 95% of the estimated correlation

coefficient would fall between

(N _ h)1/2

+1.96
N

With (r) estimated, b(r) and c(r) are easily obtained from the relations (A5.23), (A5.24),
and (A5.25) developed before.

A5.4 Pointwise optimal interpolation

In this study, observational data are assimilated into the model using a pointwise scheme
called optimal interpolation (OI) (see Lozano, 1996; Lermusiaux, 1997). It melds observations
and forecasts with a linear weighted average. The theoretical foundation of this melding is

the Bayes rule in statistics.

Suppose, for this moment, we have a random variable 1, and an observation of ¢, ¥,
Yp+e=1,

with € the mismatch or error. The problem of OI reads:

If the statistical properties of € are known, find the expected 1 given the observation

U, i.e., find the expectation of |W.

Let p(1) and p(e) be, respectively, the probability density functions (pdf) of ¢ and e. Accord-

ing to the Bayes rule, we have

) xpl)
P = ) o) a5
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where the integeration is taken over €2, the whole probability space of 1. In the above equation,
p(U|)) = pe(¥ — 1)), and p(¢)) is given. The conditional density of 1) and hence the expected
value of 1 after the observed information comes in can be easily calculated. Suppose further
that ¢ and ¥ are normally distributed (the distribution most commonly used in estimation
theory), then the ¢ given the observation ¥ must be also a normal or a Gaussian, with the
expected value and variance determined by the variance of ¢, Ey, and the variance of ¥, Ey.
And when 1 and ¥ are not correlated (correlation and dependence are equivalent for normal
distribution), the expectation of 4|¥, 4| ¥ (an overbar will be used hereafter in this appendix
to symbolize the mean), is just equal to a weighted mean of ¢ and ¥, with weights inverse

proportional to the corresponding variances (cf., Gut, 1998, Chapter V). More precisely, if

) E, 0
1/)NN¢, v ,

U U 0 Ey
then
YT ~ N (T, Bya ),
with a mean
P = By (B;'$ + By'0) (A5.33)
" v )
and a variance
B B —1
Eyw = (B +Bg') (A5.34)

Note Ey|¥ is smaller than either Ey or Ey. The addition of information (observations) thus
reduces the uncertainty by a significant percentage. If there is a correlation between ¢ and
U, the correlation coefficient v° will be involved in the above equations (cf., Gut, 1998, p.132;
Brockett, 1996):

|V = Eyy [E¢1¢ + By -2y /B EL (9 + \1/)} : (A5.35)

and

-1
Eyly = <E¢1 + By - 27,/E¢1Eq,1> : (A5.36)

This « is different from that of Appendix A5.3 in that here only a single point is involved.
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The above result can be easily generalized to problems with arbitrarily many statistical
variables, with a simply replacement of ¢ and ¥ with two vectors, and the E’s with the
corresponding matrices of variance E. Since in the current study we care about only pointwise

interpolation, a vectorized version is not necessary.

For our problem, there is a model predicted quantity T, plus an observation T,. We are
asked to find the best estimator Tp+. Substituting T, for v, T, for ¥ in Egs. (A5.35) and

(A5.36), we obtain, after some algebraic manipulation, the best estimator

T, =ol, + (1 —a)T,, (A5.37)

where

o= — Lo= Z VBl (A5.38)
Fo+ By — 27 /EoBy_

and the variance with TpJr

B _ EOEP*(l - 72)
P B, + E,_ —27\/E,E,_

This is the linear blending scheme for the OT used in HOPS (Lermusiaux, 1997; Sloan, 1996),

(A5.39)

which is also seen in Dombrowsky and de Mey (1992). The correlation +y is a user supplied

parameter. It has been proposed® that we may choose

X T5T,

VETA /LT

where the sum is over the whole model domain. However, Dombrowsky and de Mey (1992)

argue that there is no advantage for a delibrately chosen 7 over the simplest case v = 0, and
as a matter of fact, v = 0 could even be the best choice. For this reason, we adopt a zero
correlation between 7, and T,. The OI scheme now reduces to those of Egs. (A5.33) and
(A5.34).

In the HOPS, the variance of T,, FE,, is obtained through the objective analysis OA (cf.
Appendix A5.2). The other variance, E,, has to be provided by the model. Since solution of
an evolution of the uncertainty is expensive, a simple empirical model is used instead. The

forecast variance (error) is increased like

Ey (1) =Ey(t—r)+2(1-E/%).

SCarlos Lozano, personal communication
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In the equation 7 is the time since the last assimilation. The e-folding decay scale 7, measures

the time for a loss of predictability.

For real problems, a ramped OIis a common practice in data assimilation to avoid shocking
the already ajusted system. In a ramped OI, the weight « in the linear interpolation is pre-
multiplied by a factor, w, 0 < w < 1, such that no assimilation is performed when w = 0, and
all observation is assimilated when w = 1 (w hence reflects the percentage of assimilation).

With this Eq. A5.37 now becomes

+ _ —
T, =wal, + (1 —wa)T, . (A5.40)

It should be pointed out that, in order for the OI module to be reusable, the ramping in
HOPS is actually not carried out directly with Eq. A5.40. The procedure is fulfilled through
inverting Eq. A5.38 for an effective observation error E, with the new weight wa, followed by

an application of the original interpolation scheme, Eq. A5.37.

A5.5 Hydrostatic consistency factor

The hydrostatic consistency factor (HCF) is a quantity that measures the consistency for a
hybrid or double sigma coordinate system when handling the computation of pressure gradient
(see Lozano, 1995; Haney, 1991). It is defined as (Haley, 1995):

Ax

a Oh
Ao |H((If,y) - HC|

oz

o Ay

HCF = max ( A e —
AO’|H(:E,y) _Hc|

gg‘) (A5.41)

for a hybrid system (0 < o < 1), and

Ay
2§5> (A5.42)

HCF — max (‘ 2-0)fs+ (0 —1)H;| Az ‘ (2—0)f, + (0 —1)H,

H(xay)_f($7y) E, H($7y)_f($7y)

for a double sigma system (1 < o < 2). In these equations, H < 0 is the topography,

H. = const (hybrid system) or f = f(z,y) (double sigma system) the interface depth, o the
scaled vertical coordinate, and Az, Ay, and Ao are the horizontal and vertical grid spacings,
respectively. A hydrostatically consistent coordinate system requires that HCF < 2 (Lozano,

1995).
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A5.6 Boundary relaxation

In HOPS, boundary relaxation is a nudging approach to stablize the numerical scheme. The

following note is from some written material by Haley,” and private communications from him.

For a prognostic variable u (velocity or tracer), the boundary relaxation adds sponge layers
to the near-boundary points. It appears on the right-hand side of the prognostic equation as
a Newtonian damping term

1 _(ay?
——e (&) (u — up),
Ts

where d is the distance to the nearest boundary, 7, and ds the temporal and spatial decay

scales, respectively. This forcing alone gives an exponential decay of u to ug
u = ug+ Ce ™,

where

and C a constant.

In the HOPS PE model, the relaxation is turned on only when both 7, and d; are positively
evaluated (off if set zero). Besides, 75 must be set above some critical value, 7, in order for

the integration to be stable. For a simple system with both nudging and rotation,

du 1
d 1
d—:+fu+—sv =0

this 7. can be found analytically with von Neumann analysis, and it proves to be a function
of differencing scheme, implicit Coriolis weighting factor,® ac,., Coriolis parameter, f, and
time step, At. Tab. A4.9 tabulates four expressions for 7.’s with different parameters. For the
current PE model set-up, acor = 0.5 (semi-implicit treatment of the Coriolis term), At = 180s,
f ~ 1.318 x 1074, and Leap-Frog differencing scheme is used. The critial value 7. is thus
calculated to be 180 s. Our choice of 74, either for momentum or for tracers, greatly exceeds

this value (Refer to Tab. 5.2).

"It is maintained together with the HOPS documentation by Patrick Haley, Jr., and available if requested.
81f Gor = 0, the Coriolis term is treated explicitly; If acor = 1, a fully implicit scheme is used. The treatment

lies in between when 0 < acor < 1.
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Table A4.9: Critical decay times 7. for the boundary relaxation.

Leap-Frog Euler
a >0 2At At
cor 144/14 (2acor —1)(2Af)2 144/14+(2acor —1)(ALf)?
a =0 At At
cor 1-Atf 14++/1—(Atf)?

A5.7 The pressure computation

It is required that the pressure be given prior to any MS-EVA application. The current version
of HOPS, however, does not have this field computed during the integration (cf., Lozano et

al., 1994). We need to find a way to evaluate it based on other state variables.

From the hydrostatic assumption (3.6),

or
82 - pg,
the pressure
z
P =P(0) — g/ pdz (A5.43)
0
can be written as a sum of a barotropic part Pgr = P(0) and a baroclinic part Ppc = —g [ p dz.

Ppc is easy to compute as the density anomaly p is already known (p is understood to have
been removed by a constant vertical profile p(z). See §3.1). The problem here is how to find

Ppr, the barotropic pressure.

Observe that Ppr doesn’t have z-dependence. We then only need to consider the vertically
integrated equations. Look at the continuity equation (3.5) first. It becomes, if integrated

from the bottom z = —H to the (rigid) surface z =0,

a (v a [0 A
— dz + — dz = 0. 44
8£/J{u z+ay/HU z=0 (Ab5.44)

Eq. (A5.44) allows us to define a transport streamfunction ¥, which is such that,
0
/ vdz=kAVU. (A5.45)
—-H

In the HOPS output, V¥ is an evaluated field.
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The momentum equation is treated similarly. Rewrite (3.4) as

8_v+v (vv)—l—&U—X—i-fk/\g:—iVP-i-2 (’)/a—z> + Ep, (A5.46)
ot 0z 00 0z \' 0z

where v is the vertical kinematic viscosity coefficient, and the dot product of V - vv is under-

stood to apply only on the the first vector of the dyad vv. Integrating both sides with respect
to z from —H to 0, and substituting k A VW for f,OHX dz according to (A5.45), we get

k/\V——i—/ V- (vv) dz + (wv)|’ gy — fVU =

1 0
——VPBT i VPBC dz

T T b / Fh dz. (A5.47)

(r, and T, are stresses at the surface and the bottom, respectively) In order to avoid the
cumbersome computation of the horizontal gradient in a o-coordinate grid, use the Leibniz

rule, which here implies
0 0
/ V¢ dz = V/ ¢ dz— ¢(—H)VH, for all ¢ with dependency of z,
—H —H

to integrate it into

ov 0
KAV +V- / vv dz = VH - (v¥)|o=—pr + (wy)[y — fVT
-H
H
:—p—VPBT——|:V/ Ppc dZ_PBC|z— u VH
0
_ 0
LD, / F, d-. (A5.48)
Po -H

In a HOPS output, ¥, v, and w are known, Ppc can be computed from (A5.43), and the

bottom friction stress is parameterized as
7, = poCB|Vy|vy (A5.49)

(vy, = ¥|,=—m, and Cp some prescribed constant) while 7, is pre-specified by the user. So
all the terms in (A5.48) other than —%VPBT are easy to calculate except fEHEh dz, the
horizontal dissipation. Since we use filtering instead of an explicit formula for its parameter-
ization, this term is hard to evaluate directly. Nonetheless, it is generally believed that the
horizontal dissipation is small in comparison to the vertical friction, while here the latter, by

our result, is at least two orders smaller than the Coriolis term and the baroclinic pressure
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gradient. Notice that we are not repeating the HOPS scheme to make the computation (ac-
tually there is no pressure computation in the HOPS algorithm), and the difference in scheme
will generally give rise to discrepancy in results. This discrepancy, though not significant if
controlled, may be larger in magnitude than that of LU g Fpdz. It is therefore meaningless
to fuss with an insignificant term like the horizontal dissipation, and we simply drop it out
from the momentum equation. The resulting (A5.48) now involves only one unknown. Put

the term with it on one side, and all else on the other. The equation becomes

ov
VPpr = kAV—
B H [ " ot

VI ()i + (w0) |+ L2070

0
_P —|—V-/ vv dz
—H

1 0
_— |:V/ PBC dZ_PBC’|z:7H VH:|
H —H
Is - Ib
H
J, (A5.50)

where J = (J,, Jy) is totally determined by the HOPS output.

Taking divergence on both sides of Eq. (A5.50), we obtain a Poisson equation

V:Ppr =V -J =D, (A5.51)

which, together with conditions
agiT = J,, (A5.52)
8§§T = J, (A5.53)

specified respectively at the meridional and zonal boundaries, forms a Neumann problem
for Pgp. It has a solution if and only if the flux of J across the boundaries vanishes, i.e.,
$5J -ndS = 0. By our computation, this condition is satisfied to a tolerance of error. So this
Neumann problem is well defined. But the solution is underdetermined. Another condition,
which corresponds to the arbitrary additive constant for the barotropic pressure field, must

be supplemented. Here we simply choose
Ppr(0,0) =0. (A5.54)

Eq. (A5.51), together with boundary conditions (A5.52) - (A5.54), can be solved easily with

the available softwares (e.g., Press et al., 1992). The obtained Py combined with Ppc makes
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the total pressure P, the very field needed in the MS-EVA application. A computed snapshot
of Ppr and P is shown in Fig. A5.33 .
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Figure A5.33: The computed barotropic pressure (a) for the eighth day of the IFF variability simu-
lation. Also shown are the transport streamfunction (b), the baroclinic pressure at level 5 (c), and the
total pressure at level 5 (d) for the same day.
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Chapter 6

Application of MS-EVA to the IFF
variability study

6.1 Introduction

In this chapter, we will perform an MS-EVA diagnosis for the IFF variability forecast con-
ducted previously. The successfully validated MS-EVA, together with the conspicuous mean-
dering event captured on August 22, 1993, is expected to shed light on the physics which is

characteristic of the complex frontal processes in the IFF region.

The dynamical study of the IFF variability has long been of interest among physical
oceanographers. The results to date, in summary, show that the variability could be either
driven by external forcing or due to some intrinsic reason. For the former, the existence of the
Iceland-Faeroe Ridge was once of concern (e.g. Maskell et al., 1992) but its role is still to be
investigated. The fluctuation of atmospheric pressure or wind stress has also been speculated
to be a cause, based on the observation that intermittent events generally happen on two
time scales, 10 days and 2-5 days, which have apparent correspondences in the atmospheric
motion (see Willebrand and Meincke, 1980, and the references therein). In 1975, this spec-
ulation motivated a field experiment, the MONA project (Monitoring Overflow in the North
Atlantic). Ironically, the coherence between the atmospheric fluctuation and the current is not

as significant as expected. The available potential energy conversion calculated by Willebrand

317



CHAPTER 6. APPLICATION OF MS-EVA TO THE IFF STUDY 318

and Meincke is at least one order of magnitude larger than that from the wind effect. This
fact is also seen in the analysis of Allen et al. (1994), which is based on the data set collected
from Charles Darwin Cruise 51, and is consistent with their quantitative estimation with the
simple two-layer model of Killworth et al. (1984). The intermittent events thus seem to be
forced intrinsically by frontal instabilities, particularly baroclinic instabilities by Willebrand

and Meincke (1980), rather than by external forcing.

The intrinsic mechanism assertion has been further supported by early EVA investigations.
In 1995, Miller et al. made the first real-time forecast of the IFF variability with a quasi-
geostrophic (QG) model of the Harvard Ocean Prediction System (HOPS), driven by data
acquired during the 1992 SACLANTCEN-Harvard survey (19-26 October). The forecast out-
put was then diagnosed with the QG-EVA developed by Pinardi and Robinson (1986). They
found, from their EVA maps, that there is clearly a significant energy conversion, and at mid-
depths the conversion is from APE to KE. The converted energy is removed by the vertical
pressure work, forcing the motion at the top and bottom boundaries. The whole scenario is in
nice agreement with the process identified in an unstable Eady model, which, as they argue,
must be an expression of baroclinic instability. In contrast, the Reynolds stress effect, which

extracts energy from the mean velocity shear, is found to be inconsequential in their case.

Recall that our purpose of this chapter is to understand the dynamics of the IFF variability.
Particularly, we want to know what gives rise to the deep-sock meandering intrusion observed
in the PE forecast conducted before. The previous results, though supported by different
diagnoses, are problem-specific in themselves. We are not sure at this moment whether they
are applicable to our study or not. Besides, it is questionable whether the process identifiers
used before can faithfully represent the IFF variability, which occurs on multiple scales and
is highly localized in nature. These concerns motivate us to diagnose the forecast output
with our newly developed MS-EVA, in the hope of gaining an understanding of the observed
event in an objective and relatively quantitative approach. The diagnosis begins with a scale
analysis of the IFF variability, and the results are used to determine the time and scale window
bounds needed for the process decomposition. The application of MS-EVA is set up in §6.3.1,
which is followed by a description of results that are related to the deep-sock meandering.

Processes are identified, analyzed, and further verified in this section. In §6.4, we test what
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we have obtained against parametric change. This chapter is concluded in §6.5.

6.2 IFF variability and scale window bound determination

6.2.1 Time scales

Time variability determines time scale windowing. We study the IFF time variability through
wavelet spectral analysis. By a wavelet spectrum (time), or simply spectrum, we mean the

?1 of a time series unfolded on the time-scale level plane. To perform the spectral

“energy
analysis, fifteen series have been extracted from five points within the model domain. These
points, labeled as 1 through 5 on the temperature map of Fig. 6.1, are located at places
representative of the frontal activities under study. In terms of the series extracted, point 3 is
to a large extent similar to point 4, for all depths available in the water column, while point 1
bears some resemblance to point 2. (But features are not as significant as point 2, probably
due to the proximity to the western open boundary.) It is thus enough to show the results
for points 2, 4, and 5. These signals are 1024 in length (jo is hence 10), with a time interval
At = 1800 s. (They are obtained by sampling the filtered forecast output. See §6.3.1.) The
whole time span is thence 1024 x 0.5 hour = 21.3 day, from day 0 to day 21.3. Recall the
deep-sock meander is observed on day 8. We limit our discussion to the period from day 2
through day 10. The initialization stage (before day 2) and the period after day 10 are not

under consideration.

Look at the temperature signals first. They are similar to the density evolution (not shown)
for these locations on the wavelet spectrum, but with features much enhanced. Graphed
in Fig. 6.2 are the natural logarithm of energy as a function of time and scale level, for
point 2 at depths 25 m, 125 m, and 300 m, which are typical of the upper, middle, and deep
layers as named in the preceding chapter. We plot the logarithm of energy instead of energy
itself in order to distinguish locations of interest and make feature identification easier. For

comparison, attached to each spectrum is the corresponding time series.

From Fig. 6.2, the scale windowing is apparent. A gap exists between the duration scale

'Here the term “energy” refers to the square of the wavelet transform coefficients with the basis built in

Chapter 2. The factor 272 is not multiplied for simplicity.
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and smaller scales. The three spikes, which are located at days 2, 4 and 5, mark the instances
when data are assimilated. (Recall the zigzag data assimilation is ramped up from day 4 to
day 5.) Clearly, the data assimilation affects processes with scale level higher than or equal to 5
(approximately 21.3/2° ~ 0.7 day), but its influence does not have significance outside the sub-
mesoscale window. For the series at 25 m, there is an obvious peak at j = 2 from beginning
to day 10 and beyond, which corresponds approximately to a scale of 21.3/2? = 5.3 days.
This peak is seen on the spectra for all the depths in the water column, albeit a little blurred
for deep-layer signals (e.g., the 300-m level). On about day 5.3, a new scale emerges on
the spectrum in the upper and middle layers, which has a scale level j = 3 (~2.7 days).
Correspondingly the magnitude on scale level j = 2 decreases, implying some energy transfer
at this juncture. This phenomenon is also seen in Fig. 6.3, the spectra for point 4, and is
particularly significant at the 300-m depth. In that case, the peak shifts from j = 2 (5.3 days)
to j = 3 (2.7 days), then dominates the spectrum until day 10.7, though after day 8 it clearly
becomes weakened. The whole scenario is reminiscent of the meandering event we captured in
the forecast, and the identified scales (2.7 days-5.3 days) are in agreement with the estimates
by Willebrand and Meincke (1980) and Hansen and Meincke (1979) (2-5 days), but a little

larger than Allen’s observation (2-4 days).

While the spectrum for temperature directs attention to potential energy transfer, the
spectrum for velocity may unravel the multiscale kinetic energy information. Figs. 6.4-6.6
show a selection of spectra for the fields v and v at points 2, 4, and 5, respectively. A
conspicuous feature on these maps is the maxima of the variability (above the duration scale
level) at j=1 and j=3 (or sometimes j=4), which corresponds to a scale of 10.7 days, and
2.7 days (or 1.3 days). (See Figs. 6.4a,b, 6.5a,b,c, and 6.6a,c. Similar phenomena can also
be found on the temperature spectrum Fig. 6.3b.) This double peak structure has been
documented in literature. For example, Willebrand and Meincke (1980) identified a 2-5-day
event and a 10-day fluctuation, and Hansen and Meincke (1979) found that the eddies vary

on a scale of 2-5 days and 8-11 days. Their results agree with our estimation very well.

Different from that of temperature, the velocity field is very energetic in the sub-mesoscale
window. This feature is especially conspicuous on the spectrum of v at point 5 (Fig. 6.6),

where an apparent peak exist at j = 6 (0.33 day) virtually all the time within the duration.
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The corresponding one-third-day process is also evident on the time series attached below.

Another difference between temperature and velocity is that, in a velocity spectrum, the
energy maximum at 7 = 3 generally exists before day 5.3. It is not a new emergence at that
time, though it does get enhanced during the meandering period, as is shown in Figs. 6.4a,b,
Figs. 6.5a,b, and Figs. 6.6b,c. The new emergence happens at depth 300 m, for v at point 4
(Fig. 6.4c) and v at point 2 (Fig. 6.5¢). In Fig. 6.4c, a significant part of energy goes to j = 4
during day 6.7-9.3, making it an apparent peak. This process spans right over the intrusion
event, lasting for about 2.7 days, but it is much weakened after day 8, the day when the

meandering intrusion is observed.

Consequently, the time variability of the IFF observed in the 1993 cruise occurs mainly on
two scales: One is of 10.3 days, and the other includes a range from 1.3 days to 5.3 days. While
the former process is more or less uniformly distributed over the event span in the region of
concern, the latter generally varies from time to time and from location to location. During
day 2 through day 10, a peak has been identified at 7 = 2 (5.3 days) and j = 3 (2.7 days),
and sometimes j = 4 (1.3 days), on the spectra for both temperature and velocity. In general,
within this range the variability is characterized by a combination of processes on all the three

scales.
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Figure 6.1: Locations of the point time series for spectral analysis overlaid on the forecast temperature
(in °C) map for day 8 at depth 25 m. The coordinates are grid indices I and J, and in (I, J) pair,
these points are located at
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6.2.2 Spatial scales

The spatial spectrum differs from its temporal counterpart in that more than just one di-
mension needs to be considered. Here we use the 2-D basis developed in §2.7 to examine the
horizontal variability of the Iceland-Faeroe Front. We continue to use j to denote the scale
level. But in order to avoid confusion with the usage adopted previously for the time scale
analysis, a superscript “sp” is added so as to make it appear like j°°. Remember that the
model domain is a 140 km x 190 km rectangle which is discretized into 56 x 76 meshes (57 x 77
grid lines). We first interpolate the data on a 64x64 square, which implies a maximal scale
level j5P = 12 (because 212/2 = 64), then re-map the results back to the original grid. Given
a scale level 7%, the scale then ranges from 140/v/27 km to 190/v/2/® km. For simplicity,
we pick the average, 165/ V2I P km, for our description. Recall the wavelet transform has a
resolution problem. In order for the energy obtained to be comparable point by point on the
horizontal plane, we replace the the wavelet transform for level 7P by the multiscale window
transform with bounds j°P and j% + 1 (cf., the 2-D multi-resolution analysis). As in the pre-
ceding subsection, it is the natural logarithm of energy instead of energy itself that is graphed

for the spectrum.

We examine the variability for the eighth forecast day only. The deep-sock meander has
been fully developed as of that time. Shown in Fig. 6.7 is the spectrum for the forecast
temperature at depth 125 m. A first observation is that the variability is concentrated in an
area in the proximity of the front. Away from the axis (>40-50 km), the basin scale (5°? = 0)
dominates the spectrum. A second observation is that significantly energetic spots can still be
identified at a scale level as high as j°P = 8 (~10 km). What we are interested lies in between
these two extremes. By examining the maps for every scale level, there is an apparent peak
at 7P = 3 in the west (I=1-25, J=10-50), which corresponds to a scale of 60 km, and another
peak at jP=4 (~40 km) in the east (I=20-50, J=15-45). More peaks can be identified at
higher levels. Around point (20,40), for instance, there is one at 7°°=6 (20 km). At the same
scale level, local maxima, though not globally maximized in energy, can also be identified in

regions in the east.

The temperature variability therefore occurs generally on two spatial scales, though these

scales may vary from location to location. To see this scenario more clearly, the logarithm
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of energy is unfolded on the I-5°P plane for the zonal section J = 35, and the plot is drawn
beneath the spectrum maps of Fig. 6.7. On the section map, above the basin scale level
is the variability. The maximum at j°°=3-4 is clearly seen from I=10-27, and 35-27. A
second maximum exists at jP=6 from /=15 to I=23. These two maxima form for the frontal
variability the double-peak structure we have described above. Similar structure is also seen

around /=45 on the same section.

In comparison to Fig. 6.7, the spectra for v and v are different in the following two ways.
Firstly, the energy is no longer concentrated on the basin scale, even in areas far away from
the frontal axis. Secondly, u and v series are much more energetic than that of temperature.
The energy is significant on virtually all the scales over the spectrum. The spectral pattern is
complicated, and it is not our intention to give a characterization for the whole model domain.

We focus only on the central region where the cold tongue intrusion takes place.

Figure 6.8 shows the spectrum for the zonal velocity of day 8 at vertical level 5 (125 m).
Energy maxima happen mainly at j°? = 3, 5, 6, and are identifiable at j°? = 7 in the intrusion
region. An apparent gap exists between j? = 3 and j* = 5 around (25, 40), reminiscent
of the double-peak structure we have observed on the temperature spectrum. If the J=35
section map (Fig. 6.8, bottom) is examined, this structure becomes especially clear. The two
maxima run from /=10 across the intrusion area all the way to the right until /=35, where the

pattern undergoes some change. Over that area, two new peaks appear at j°°=4 and jP=6.

A similar scenario happens on the spectrum for v. In Fig. 6.9, the scale level j5P=4 divides
the spectrum into two halves. Energy is concentrated at j7°?=3 on one side, and at j5?=5
and 6 on the other. This structure is also evident on the J=35 section map attached below

between =25 and =40. But from =36 - 47, energy becomes accumulated on j°°=3 only.

To summarize, the IFF variability in the intrusion region occurs mainly at two spatial
scale levels: One is 7P = 5 or 6, and another is j°? = 3 for v and v and j°? = 3 or 4 for
the temperature. The spatial scales are approximately 20-30 km, and 60 km (40-60 km for
temperature), respectively. This double-peak structure agrees well with the observation by
Allen et al. (1994), but the gap obtained is smaller than their estimates, which give 15-17 km
and 60-70 km for the two scales.
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6.2.3 Scale window bound determination

With the spectral analysis, we are now able to determine the window bounds for the multiscale
decomposition. The decomposition is not arbitrary. It depends on the process of interest. In
this chapter we feel particularly interested in the formation of the sudden meandering on
day 8, and accordingly the bounds should be set up in accordance with this event. In the
following we first examine the time windows, and then switch to the spatial variability for the

local averaging purpose.

On the time spectrum, the highest scale level is 10, as the signals are output at 1024 = 210
time points. The value of jo hence must be 10. The setting of j; is also easy. We have
identified two ranges of scales, one peaked at j = 1 (10.3 days), another varying from j = 2
to j = 4 (1.3-5.3 days). Level j; may be then set to be 5 to take in the event j = 4 (1.3 days).
Note here we have used the fact that, in a multi-resolution analysis, the function space formed
with a scaling basis with level j contains features with scale levels up to j but not including
j-

For another bound index, jy, the setting is a little problematic. On the spectrum, clearly
j = 1 is not what we want for the short-term intrusion event. It should be put into the
“large-scale” window, though its length is typical of a synoptic scale. But what about the
other peak, which may occur either on j = 2, or on j = 3 and j = 47 A natural and reasonable
choice is to put them together to make a “meso-scale” window. In that case, we have a jp = 2.
The problem is, however, jo = 2 corresponds to a scale of 5.3 days, which might be a little
too long if we want to focus just on the deep-sock intrusion. In order to give it an illustration,
we draw in Fig. 6.10 a sequence of plots for the 125-m (Level 5) temperature from day 2 to
day 10. Observe that the meandering intrusion begins to emerge roughly on day 6, and has
been fully developed as of day 8. So it is of a scale less than 5 days, and 57 = 2 should be

separated from the window of interest.

But from the time spectrum j = 2 has been identified as a level with significant energy, so
what is it if it does not account for the meandering intrusion? Look at Fig. 6.10 again. In
the western part, beginning day 2, the frontal axis is getting more and more depressed until
it is straightened toward the southeast on day 5. After that, it starts to crest, and a pattern

similar to that of day 2 resumes on day 7. This whole cycle takes about 5 days to complete, in
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agreement to the observed peak at j = 2 on the spectrum. Therefore, if only the meandered
intrusion is focused on, this scale (i.e. the one corresponding to j = 2) should be ruled out,
otherwise the MS-EVA analysis obtained will not yield the correct information. We will get

back to this issue later in §6.4.

In addition to the time scale windows, we also need to determine the bounds for the spatial
variation in order to set up the local averages. As clarified in the previous subsection, the
highest spatial scale level is j5° = 12. For the remaining two parameters, j;° and ji°, they
are determined by the spectral structure. As in the temporal case, we have also identified two
peaks in the intrusion region on the space spectrum. One is at j°? = 3, and another at 7P =5
or 6. The latter corresponds to a scale of 20-30 km, which we claim to be the right window
for the deep-sock meander (cf. Fig. 6.10). So we may choose j3°’ =5 or 4, and j;* = 7. In
order to include more smaller features in the meso-scale window, j;” may also be relaxed a

little to 8, or even 9.

Another peak, j°P = 3, which has a scale of 60 km for v and v, is believed not relevant for
the deep-sock meandering. By an inspection of the temperature sequence, it could correspond
to the 5.3-day oscillation as in the time spectrum. But since on a temperature spectrum, there
is also a j°P = 4 peak somewhere around the meander, things are more complex here. As we
are not attempting to interpret processes other than the intrusion, this identified scale is left

for future work.

In a brief summary, the time window bounds for the deep-sock intrusion study may be set
as jo = 3, j1 = 5, and j3 = 10, though there is still some ambiguity in making the parametric
combination. For the space windows, a reasonable setting is jo© = 5, 5i° = 7, j3° = 12. But
other choices, such as ji° = 4, ji" = 8 or 9, are not ruled out. A most appropriate choice
will not be set until these candidates have been tested against sensitivity, which is deferred to

§6.4.
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Figure 6.7: Space spectrum for the 125-m temperature on day 8. Each map corresponds to one
particular scale level as indicated in the subplot title. The x and y axes for these maps are grid indices

I and J, respectively. Graphed in the maps are the logarithm of energy instead of energy itself. Shown
at the bottom is the spectrum along I on section J=35.
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Figure 6.8: Same as Fig. 6.7, except for u.
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Figure 6.9: Same as Fig. 6.7, except for v.
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Figure 6.10: A time sequence of the forecast middle-depth temperature (125 m) on day 2 through
day 10. The z and y axes are the grid indices I and J, respectively. The units for temperature are
degrees Celsius.
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6.3 MS-EVA study of the IFF variability

We now apply the MS-EVA to study the IFF deep-sock meandering. With the scale window
bounds in hand, the application set-up becomes straightforward. What one needs to do is
to get the MS-EVA ready and configure it with the forecast. The remaining task is then to
visualize and read the outputs. In §6.3.2, energetics on are described on three vertical levels
which are typical of three different layers in the water column. The purpose of this description
is to find the corresponding dynamical process behind the observed meandering event, and
the result is further substantiated in the subsection that follows (§6.3.3). In the last part of
this section, we show that the energy gained from the identified process is indeed used to fuel

the growth of the meandering cold intrusion.

6.3.1 MS-EVA set-up

The MS-EVA set-up begins with the determination of the time and space window bounds,
which was already done in the preceding section. The remaining issues concern (1) the sta-
tionary density profile construction, (2) the hybrid vertical coordinate-to-z-coordinate inter-

polation, and (3) the time direction sampling.

We first need to build a background density p, which is invariant in time and z and y. This
is needed for both the pressure computation (cf. §A5.7) and the multiscale potential energy
analysis. In the forecast, density anomaly p is computed from temperature 7" and salinity S
using the 1980 UNESCO International Equation of State (IES’80) for seawater (see Fofonoff,
1985). We already have for T' and S each typical vertical distributions both south and north
of the front, as shown in Fig. 5.6. With the IES’80, the corresponding density distributions
across the front are obtained accordingly. We take the arithmetic average of the two, then
interpolate with cubic splines the obtained values, denoted as p*, onto 1024 equi-distant z
points. The resulting p*(z) is inputted into a low-pass filter, which is a scaling transform
followed by a synthesis with a scale level j = 2. The output is taken as the stationary density
p = p(z). In Fig. 6.11, p (left), s = —% (right, solid) and %g—s (right, dashed) are plotted as
functions of z. The profiles s = s(z) is related to the Brunt-Viisila frequency which is needed

in calculating the buoyancy conversion, and % is needed for the transfer term 7S 4a in the
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Figure 6.11: The stationary density anomaly and its derived properties, s = —% and d—szg—s, as

functions of z. The circles (and stars) mark the nine z-levels where the MS-EVA is to be applied.

APE equation. The circles and stars mark the nine horizontal levels where the MS-EVA is to

be applied.

We also need to transform the hybrid vertical coordinate of the forecast model into a z-
coordinate, as the MS-EVA is developed on horizontal levels. (A curved coordinate would
introduce unphysical terms in the energetics.) The transformation is achieved through some
appropriate interpolation. We have tried both linear and cubic-spline schemes, and found
that the linear interpolation handles this case better (because of the few levels in the vertical
direction). For simplicity, only nine levels are considered. They are located at the following

depths: 7.5 m, 25 m, 47.5 m, 80 m, 125 m, 190 m, 300 m, 500 m, 780 m.

The third issue, time sampling, is determined by computational concerns. It is impractical
to deal with huge files for energetics because of memory limits and computational efficiency.
On an ULTRA-10 Sun microsystem, an IFF forecast with a length more than 1024 points
in time will generate a file using too much storage and make the computation intolerably
expensive. To maximize the yield within the machine capacity, we set the series length to

be 1024 (jo is hence log;1024=10). Recall that the time step adopted in the simulation is
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180 s (refer to Table 5.2). If the HOPS output were directly taken as the MS-EVA input,
the series would span only 1024 x 180 s = 2.13 days, which is apparently too short for our
purpose. To solve this problem, we sample the available sequences every ten time steps. This
yields a time span of 21.3 days. But, again, this sampling cannot be performed directly on the
HOPS output. The modes with time scales smaller than ten step sizes must be filtered out
or aliasing could arise. The filtering is done with the scaling transform introduced before. To
be specific, given a data series with 1024 x 16 time points, we perform on it, again, a scaling
transform followed by a synthesis with scale level 5 = 10. The output is the filtered series,
and what we need to do is to sample the first 10240 time points (every 10 steps) to obtain the
MS-EVA-ready data file.

Once the above issues are resolved, the MS-EVA set-up is completed. For reference, the
related parameters adopted in this application are tabulated in Table 6.1. Notice again the
nine “vertical levels” in this chapter are not those used in the forecast model in Chapter 5 any

more. When they are referred to, what they mean are the z-levels listed in Table 6.1.

6.3.2 MS-EVA diagnosis of the IFF meandering intrusion

An application of the MS-EVA is bound to open a Pandora’s box. The feature-rich energy
maps reveal to us a colorful set of fingerprints underlining the complex dynamics. For simplic-
ity, only the meso-scale energetics are studied here (but with interactions with other windows
included), as it is (by construction) the meso-scale window that is essential for elucidating the
formation of the deep-sock intrusion. In this section, we describe the standard experiment
with the time and space window bounds being jo = 3, j1 = 5, jg° = 5, and j}¥ = 9, as justified
in the preceding section. The sensitivity of the MS-EVA terms to these parameters will be

examined later.

Figures 6.12 and 6.13 are the 125-m meso-scale (in time) MS-EVA distributions for the
eighth forecast day, a day when the cold intrusion is observed. In each figure, the first eight
contour maps (a-h) show the energetic terms of a meso-scale energy equation (Eq. 3.72 or
3.63), while on the right-bottom corner is the total APE/KE transfer from the large-scale
window. Terms appearing in Eq. 3.72 (Eq. 3.63) but missing in Fig. 6.12a-h (Fig. 6.13a-h) are

not significant in comparison to their counterparts in the figure. The horizontal and vertical
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Table 6.1: Parameters for the application of MS-EVA.

Parameters Value
Time window bounds

Jos J1, J2 3, 5, 10
Space window bounds

jgp’ jipv ];p 5,9, 10
p(z), s, 4loas See Fig. 6.11
Grid 57T X 77 x 9
Time stepsize At 1800 s
Horizontal grid spacing Az, Ay 2.5 km
Vertical grid spacing Az

level 1  (at depth 7.5 m) 15 m

level 2 (25.0 m) 20 m

level 3 (47.5 m) 25 m

level 4 (80.0 m) 40 m

level 5 (125.0 m) 50 m

level 6 (190.0 m) 80 m

level 7 (300.0 m) 140 m

level 8  (500.0 m) 260 m

level 9 (780.0 m) 300 m
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diffusions are left for future work and not shown here, either. The BC and BTy graphed
respectively in Figs. 6.12i and 6.13i are of particular interest. Their spatial averages have
been justified to be indicators of the two types of instabilities (cf. Chapter 4). The other
instability-related quantity, BTy, is very small compared to BTy and hence is ignored in the

pictorial presentation.

A general observation about Figs. 6.12 and 6.13 is that the meso-scale event happens mainly
in a small region where the deep-sock meander is observed. Outside this region the density
and the current are much less energetic (almost negligible). Another observation is that these
quantities oscillate a lot on the horizontal plane. High and low centers usually appear in
pairs. The oscillation amplitudes can be easily identified from maps with features further
decomposed by spatial scales. Shown in Figs. 6.14 and 6.15 are such maps, but with only the
meso-scale (in space) features retained. They correspond to Figs. 6.12 and 6.13, respectively,
with a meso-scale window (in space) synthesis applied in the horizontal direction. These maps
tell the localities of the processes that are energetic on the meso-scale window, both in space

and in time.

Shown above is an example of the original meso-scale energetic terms. These maps, though
calculated directly from the MS-EVA equations, are usually not helpful in process identifica-
tion. The large-amplitude oscillation, as shown in Figs. 6.14 and 6.15, tends to disguise the
features which are essential to the process, though it is not impossible in some special cases
to distinguish from them spots of interest. (For example, one may see a positive baroclinic
transfer and a negative buoyancy conversion on a larger scale from the distributions of BC and
bM.) Recall what we have done in the highly idealized examples in Chapter 4. It is the residual
of the oscillation that counts. In the following we then focus only on the energetic residuals,
which are obtained through local averaging, i.e., a spatially large-scale synthesis (with jg"
pre-set). The local averaging basically eliminates the oscillation with levels 55 > 4P, while
allowing the residual to vary at a spatial scale just a little larger than the size of the deep-
sock meander. From now on to the end of this chapter, all terms referred to are supposed
to have been locally averaged, though for convenience the same symbols as before will be used

throughout. No further clarification will be made unless otherwise needed.
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The 125-m level

We first look at the 125-m meso-scale potential energetics. Figs. 6.16-6.21 show the locally
averaged APE distributions for days 5 through 10. The layouts for these figures are the
same as that of Fig. 6.12, with the first eight maps from the APE equation, and the last one
being BC', the total transfer from the large-scale window. As shown in Chapter 4, BC' is the

baroclinic instability indicator. We begin the description with this quantity.

From day 5 to day 9, obviously there is a solitary positive spot on each of the BC' maps.
Recall that day 5 is the starting point of the F5 forecast after the model takes in all the
zigzag data, and day 8 the day when the cold intrusion is observed (refer to Chapter 5). We
have speculated that some process could be happening during this period. The BC maps
shown here strongly support this speculation. On day 5 (Fig. 6.16i), the hotspot is centered
around (20, 30), with an orientation toward the southeast. One day later, the location and
orientation are still the same, but the strength is significantly enhanced and the influence
area enlarged (Fig. 6.17i). On day 7, while its magnitude continues to grow, its alignment is
suddenly switched, from northwest-southeast to southwest-northeast (Fig. 6.181). This sudden
change of orientation is followed by a chain of morphogenesis and migration, and as of day 8,
the hotspot has moved to the south, with the influence region shrunk, marking the maturing
of the meander (Fig. 6.19i). After that day, the strength of the hotspot diminishes, and

eventually disappears from our focus (Fig. 6.20i-6.211i).

The migration and deformation of the BC hotspot correspond exactly to the formation and
evolution of the deep-sock intrusion. It is thus safe to claim that we have captured the right
dynamics for the event in study. The positive value of BC, as we have shown before, clearly
indicates that some interesting process is going on in the region of concern. Potential energy
is transferred from the large-scale window to fuel the perturbation growth, and the transfer
is getting stronger and stronger until day 8, when it reaches its maximum and goes downhill
afterwards. On day 10 there is also such a positive BC' center, but the position is away from

where we focus. Apparently, the intrusion event has been terminated as of that time.

In Figs. 6.16 through 6.21, the maps other than that of BC' present the distributions for the
meso-scale APE terms. The meaning for these symbols is referred to Table 3.2. For clarity, we

have omitted those terms, such as T'S 4»r, which are not significant in comparison to the ones
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shown here. The vertical and horizontal diffusions are not considered in this context, either.

On the balance of the available potential energetics, generally all terms are important, but
in many cases, we may identify the time rate of change of AM (5nAT]¥[ = Aﬁ/f ), the buoyancy
conversion (b}'), and the APE transfer due to the horizontal density gradient (Tyu g,, =
Tanmt g, p+Tam g, o), as larger in absolute value than the others. Among these three terms, A%
is the result, and the transfer and buoyancy conversion are the two causes. For the transfer,
the most important part is BC, which is from the interaction analysis and has been described

above. We hence look at the evolution of b} only.

Generally speaking, the buoyancy conversion evolves in the same way as BC does, except
that now the hotspot is a negative center, which indicates a conversion of energy from APE
to KE. From Figs. 6.16e-Fig. 6.19e, the conversion is getting stronger and stronger, until the
meander matures on day 8. This increasing trend (in absolute value) agrees well with our
previous BC observation. In fact, the place of conversion coincides roughly with the place of
transfer. On day 7 and day 8 (Figs. 6.18e and 6.19e), the maximal conversion (maximum in
absolute value) happens approximately at the highest point on the BC map, though on days 5
and 6 (Figs. 6.16e and 6.17e)), it is located a little northwest. After day 8, the conversion

becomes less relevant to the meandering event.

Above is a brief characterization of the APE energetics. Now look at their kinetic coun-
terparts. Figures 6.22-6.27 show the locally averaged (in space) meso-scale (in time) kinetic
energetics for the 125-m level from days 5 to 10. Terms missing from the KE equation are not

significant in comparison to those shown here.

In contrast to the potential energetics, no hotspot such as the one seen on the BC map is
identified on the level-5 KE maps, except for the buoyancy term, which is merely brj‘{[ with an
opposite sign. For the barotropic indicator, BTy, the high and low centers usually appear in
pairs, and, within a pair, the negative center has an absolute value larger than the positive
center has (e.g., Figs 6.24i and 6.25i). This generally excludes the possibility of barotropic
instability, as the local average of BT over a region that covers the two centers will be less
than zero. In fact, these distributions, among many others, provide a good example of self-
similarity. On a larger scale, similar centers also appear in pairs, though with a different size

(figures not shown).
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But on day 6, there does exist a positive center on the BTy map. It is located, approxi-
mately, between I=10-30, J=30-50. Weak as it might be, the magnitude (1 x 1078 m?/s3) is
comparable to the one on the BC map for the same day (3 x 10~® m?/s®). From the balance
it should result mainly from Txwm .. One may thus expect something happening there due to

the evolution of vorticity.

In a brief summary, on the energetic maps for the mid-depth (125 m), there is an apparent
center of large-to-mesoscale potential energy transfer. Its location and evolution, both in
strength and in geometry, correspond well to the formation of the deep-sock meander. On the
buoyancy conversion maps, there is also a center corresponding to the one on the BC' maps,
but with a negative sign. In contrast to the potential energetics, the KE maps generally do
not exhibit a feature as conspicuous as the one on the APE maps, except on day 6, when a
weak center of positive KE transfer is identified. All these features observed so far are for the
125-m level. They don’t contain information about vertical variation. In order to see how
these features vary with depth, we next examine two other levels, one above the 125-m depth
and another below. We first look at the one above, which is characteristic of the surface layer

dynamics.

The 25-m level

Figures 6.28-6.35 show the potential and kinetic energetics for the 25-m level (vertical level 2)
on day 5 through day 8. In Figs. 6.28-6.31, the solitary BC hotspot still exists, but it is
located a little south of the location identified on the level-5 maps, and besides, no indication
of migration and re-orientation is observed. The isolation of a negative buoyancy conversion

center is not evidenced until day 6.

On the kinetic energy maps, the distribution and evolution of BT is similar to that of the
125-m level. A distinct feature is that, on day 6, there appears a solitary parallelogram between
I=10-30, J=30-50 where it is positively valued (Fig. 6.33). In terms of BTy magnitude, this
parallelogram is stronger than the one observed in Fig. 6.23. Clearly, BT} is mainly from the
transfer due to the rotating fluid, as the distribution of Tgw ( is very similar to BTy. Another
observation is that there is also a parallelogram on the map of A,Q -, located just a little bit

left to the BTy center (Fig. 6.33c). This is a negative center, with a maximal absolute value
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comparable to that of BTy (3.5 x 1078 m?/s3 versus 5 x 107® m?/s3). It is thence reasonable
to conjecture that a major part of energy transferred from the large-scale KE in the surface

layer is moved downward in the water column through advection.

Different from that of the 125-m level, one observes a solitary spot on the A,Q py maps
in Figs. 6.34 and 6.35. This hotspot is located at the intrusion area and seemingly evolves
in pace with the buoyancy conversion center, except with a much larger strength. From the
Eady model energetics, this is a good indicator for a baroclinic instability. But at this moment,
we are not sure whether it is from the mid-depth buoyancy conversion. In other words, its

physical implication is still not clear.

The 300-m level

We have seen in the energetics for both level 2 (25 m) and level 5 (125 m) that a conspicuous
feature is the significant transfer of potential energy from the large-scale window to the meso-
scale window, and an apparent conversion from meso-scale potential energy to meso-scale
kinetic energy. One may conjecture there is a baroclinic instability happening in the related
region. But the corresponding signatures are not significant on the maps of vertical pressure
work rate A,Qpn. Recall that in the Eady case, A,Qpwn carries the energy converted from
APE toward the two vertical boundaries. One hence expects a net gain of energy in the
surface and bottom layers and a net loss at the middle depths on the maps for A,Qpxr. In
Figs. 6.34 and 6.35, this seems to be the case, but on the level-5 energetic maps, the correlation
between A,Qpum and bM in the intrusion region is poor. We therefore should not expect an
Eady-like instability scenario there. In fact, if the total transfer from the large-scale window,
BC + BTy + BTy, is plotted, one cannot find a sole positive center as we did for the BC
distributions at the 25-m and 125-m levels, except that on day 6, a hotspot does exist, but at
the same place as the one identified from the BTy map (see Figs. 6.36 and 6.37). On days 7
and 8, the total transfer will be negative if averaged over a larger scale. By what we have

shown in §4.3.4, the system should be stable in this case.

We hence cannot say that there is a baroclinic instability in the surface and middle layers,
though both the BC distributions and buoyancy conversion suggest so. But, what about the

deep layers, i.e., the layers below 125-m in the water column? An examination of the 300-m
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energetics is expected to give this question a satisfactory answer.

Shown in Figs. 6.38-6.45 are the level-7 (300 m) potential and kinetic energetics for days 5
through 8. An immediate observation is that the APE transfer, BC (Figs. 6.38i-6.41i), is
significantly larger than BTy, the KE transfer (Figs. 6.42i-6.451). As a result, the distribution
of the total energy transferred from the large-scale window will not change much just because
of the addition of BT'. Fig. 6.46 confirms this assertion, and reveals clearly a positive transfer
center around the deep-sock intrusion area. The strength of the transfer increases from a
maximum of 1.25 x 10~7 m?/s® on day 5, to a maximum of 1.5 x 10" m?/s® on day 6,
then goes down a little to 0.9 x 10" m?/s® on day 7. The influence radius keeps increasing
until day 7, the day just before the meander matures. When time reaches day 8, the process

switches to something else.

The scenario shown in Fig. 6.46 reveals clearly that the system around the cold intrusion
area is unstable, and from Figs. 6.38i-6.41i, the instability is baroclinic. This assertion is not
only evidenced in the buoyancy conversion (Figs. 6.38¢e-6.41¢), as we have seen before for the
level-2 and level-5 cases, but also supported by the distribution of the vertical pressure work
A,Qpm. One may find that, in Figs. 6.42f-6.45f, there is a negative center whose location
roughly agrees with the hotspot on the —b} distribution. Its evolution also correlates highly
to the evolution of b». Both of them grow in (absolute) magnitude, from day 5 to day 7,
and then move downhill until the intrusion tongue forms. Apparently, a part of the energy
converted from the APE is being carried through A,Qpwv away from level-7, driving the
motions above and below. This scenario is exactly what we have seen for an unstable Eady

model, and therefore our previous assertion of baroclinic instability is convincingly verified.
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Figure 6.12: Meso-scale (in time) potential energetics (m?s™%) for day 8 at depth 125 m. The first
eight subplots [(a) through (h)] show terms from the meso-scale APE equation (cf. Table 3.2), and the
last one, BC, is the total APE transferred from the large-scale window.
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Meso-scale KE terms. (day=8, lev=5)
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Figure 6.13: Same as Fig. 6.12, but for kinetic energetics. Shown in subplot (i) is BTy, the part of
transfer Tgn o + T 49, contributed from the large-scale window.
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Hor. m.-s. synthesized meso-scale APE terms. (day=8, lev=5)
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Figure 6.14: Same as Fig. 6.12, but now all the fields are horizontally meso-scale synthesized.
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Hor. m.—s. synthesized meso-scale KE terms. (day=8, lev=5)
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Figure 6.15: Same as Fig. 6.13, but now all the fields are horizontally meso-scale synthesized.
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Hor. |.-s. synthesized meso-scale APE terms. (day=5, lev=5)
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Figure 6.16: Locally averaged meso-scale potential energetics (in m2s=2) for day 5 at depth 125 m.
The first eight subplots [(a) through (h)] show terms from the meso-scale APE equation (cf. Table 3.2),
and the last one, BC, is the total APE transferred from the large-scale window. All terms are supposed
to be locally averaged, which is a large-scale synthesis in the horizontal direction with j3* = 5.
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Hor. I.—s. synthesized meso-scale APE terms. (day=6, lev=5)
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Figure 6.17: Same as Fig. 6.16, but for day 6.
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Hor. |.—s. synthesized meso-scale APE terms. (day=7, lev=5)
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Figure 6.18: Same as Fig. 6.16, but for day 7.
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Hor. I.—s. synthesized meso-scale APE terms. (day=8, lev=5)
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Figure 6.19: Same as Fig. 6.16, but for day 8.
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Hor. |.—s. synthesized meso-scale APE terms. (day=9, lev=5)
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Figure 6.20: Same as Fig. 6.16, but for day 9.
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Hor. I.-s. synthesized meso-scale APE terms. (day=10, lev=5)
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Figure 6.21: Same as Fig. 6.16, but for day 10.
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Hor. |.-s. synthesized meso-scale KE terms. (day=5, lev=5)
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Figure 6.22: Locally averaged meso-scale kinetic energetics (in m?s—?) for day 5 at depth 125 m. The
first eight subplots [(a) through (h)] show terms from the meso-scale KE equation (cf. Table 3.2), and
the last one, BTy, is related to the barotropic instability (cf. §4.3.4). All terms are supposed to be
locally averaged, which is a large-scale synthesis in the horizontal direction with j3” = 5.
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Hor. I.-s. synthesized meso-scale KE terms. (day=6, lev=5)
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Figure 6.23: Same as Fig. 6.22, but for day 6.
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Hor. I.—s. synthesized meso-scale KE terms. (day=7, lev=5)
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Figure 6.24: Same as Fig. 6.22, but for day 7.
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Hor. I.-s. synthesized meso-scale KE terms. (day=8, lev=5)
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Figure 6.25: Same as Fig. 6.22, but for day 8.
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Hor. I.-s. synthesized meso-scale KE terms. (day=9, lev=5)
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Figure 6.26: Same as Fig. 6.22, but for day 9.
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Hor. I.—s. synthesized meso-scale KE terms. (day=10, lev=5)
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Figure 6.27: Same as Fig. 6.22, but for day 10.
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Hor. |.-s. synthesized meso—-scale APE terms. (day=5, lev=2)
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Figure 6.28: Same as Fig. 6.16, but for depth 25 m. Terms which are not significant are masked up.
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Hor. I.—s. synthesized meso-scale APE terms. (day=6, lev=2)
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Figure 6.29: Same as Fig. 6.28, but for day 6.
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Hor. I.-s. synthesized meso-scale APE terms. (day=7, lev=2)
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Figure 6.30: Same as Fig. 6.28, but for day 7.
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Hor. I.—s. synthesized meso-scale APE terms. (day=8, lev=2)
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Figure 6.31: Same as Fig. 6.28, but for day 8.
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Hor. I.-s. synthesized meso-scale KE terms. (day=5, lev=2)
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Figure 6.32: Same as Fig. 6.22, but for depth 25 m.
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Hor. I.-s. synthesized meso-scale KE terms. (day=6, lev=2)
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Figure 6.33: Same as Fig. 6.32, but for day 6.
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Hor. |.—s. synthesized meso—-scale KE terms. (day=7, lev=2)
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Figure 6.34: Same as Fig. 6.32, but for day 7.
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Hor. I.-s. synthesized meso-scale KE terms. (day=8, lev=2)
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Figure 6.35: Same as Fig. 6.32, but for day 8.
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BC + BT at Level 2
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Figure 6.36: Total meso-scale energy transfer from the large-scale window at depth 25 m.
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BC + BT at Level 5
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Figure 6.37: Total meso-scale energy transfer from the large-scale window at depth 125 m.



CHAPTER 6. APPLICATION OF MS-EVA TO THE IFF STUDY 372

Hor. I.—s. synthesized meso-scale APE terms. (day=5, lev=7)
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Figure 6.38: Same as Fig. 6.16, but for depth 300 m.
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Hor. I.—s. synthesized meso-scale APE terms. (day=6, lev=7)
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Figure 6.39: Same as Fig. 6.38, but for day 6.
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Hor. I.—s. synthesized meso-scale APE terms. (day=7, lev=7)
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Figure 6.40: Same as Fig. 6.38, but for day 7.
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Hor. |.—s. synthesized meso-scale APE terms. (day=8, lev=7)
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Figure 6.41: Same as Fig. 6.38, but for day 8.
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Hor. I.—s. synthesized meso-scale KE terms. (day=5, lev=7)
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Figure 6.42: Same as Fig. 6.22, but for depth 300 m.
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Hor. I.-s. synthesized meso-scale KE terms. (day=6, lev=7)
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Figure 6.43: Same as Fig. 6.42, but for day 6.



CHAPTER 6. APPLICATION OF MS-EVA TO THE IFF STUDY 378

Hor. I.-s. synthesized meso-scale KE terms. (day=7, lev=7)
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Figure 6.44: Same as Fig. 6.42, but for day 7.
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Hor. |.—s. synthesized meso-scale KE terms. (day=8, lev=7)
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Figure 6.45: Same as Fig. 6.42, but for day 8.
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BC + BT at Level 7
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Figure 6.46: Total meso-scale energy transfer from the large-scale window at depth 300 m.
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6.3.3 More about the baroclinic instability

A conspicuous feature identified from the above horizontal energetic maps is the solitary
center of potential energy transfer from the large-scale window to the meso-scale window. For
the deep layers, as we have shown, this means that the system is undergoing a baroclinic
instability. But for the surface layers, the scenario is complicated by the kinetic energetics,
and the MS-EVA expression as a whole does not support an Eady-like instability above some
depth. Apparently, many things, particularly the vertical structure of the process, are still
not clear. We need to find out the vertical extent of the baroclinic instability and collect more

evidence to substantiate our previous claim.

We use a sectional distribution to illuminate this problem. For the sake of convenience,
we want to make it comparable with the one we have done before for the Eady model. A
section for this purpose is generally hard to choose, however, as the front is not a straight one
here. We hence analyze a zonal section and a meridional section instead. These sections are
chosen so as to cross the positive transfer center on the BC maps. For simplicity, we pick
only day 7 for the study. A very strong signal of baroclinic instability has been identified on

the horizontal maps at that time.

Figure 6.47 is the distribution of a selected collection of energetics on the zonal section J=30.
The two instability indicators, BC and BT}, are drawn in subplots (b) and (d), respectively.
The other two are the buoyancy conversion b} (a) and the vertical pressure working rate
A,Qpwm (c). Clearly, the positive BC' is concentrated below 150 m (approximately), and
maximized at 300 m from the available calculation. In the upper layers (above 150 m), there
is a negative barotropic transfer center between I=15-25, and away from that the distribution
of BTy is rather plain. This vertical dichotomy is especially clear in Fig. 6.47c. A depth
roughly at 150 m separates the A,Q pa profile near the intrusion area into two regimes, with
the lower one negative in value, and the upper one in the opposite. Unfolded on horizontal

maps, the negative regime corresponds to the b} center, as well as the the BC' hotspot.

On the meridional section /=20 (Fig. 6.48) the distribution is similar to that of Fig. 6.47:
The surface regime is occupied by a center with negative BTy and positive A,(Q) pa, while the
lower regime is characterized by a larger positive BC pool with negative b and A,Qpum. By

the Eady model results, this scenario implies strongly the existence of a baroclinic instability.
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Recall that the Eady model also shows a vertically uniform distribution for the horizontally
averaged BC (see Fig. 4.11d). The upward extent of the BC here then tells that the baroclinic
instability is limited below a depth of approximately 150 m.

More evidence can be found for the baroclinic instability from the tilting pattern of b
and A,Qpn. By the Eady energetics, an unstable system has a buoyancy conversion and
a vertical pressure work both distributed in a way tilting with height toward the left on a
vertical section with the density gradient directing toward the paper (see Fig. 4.6). In the IFF
region, the density field has a horizontal pattern which evolves generally as the temperature
does (cf. Fig. 6.10), with the water from the north a little heavier than that from the south.
This structure implies, if the system is baroclinically unstable, one should see a pattern of
bM and A,Qpu tilting with height toward the west on a zonal section. This scenario has
been reproduced exactly as expected in Figs. 6.47(a) and (c), between the grid lines =15
and I=35. On a meridional section, no general conclusion can be drawn for the pattern, as
the background density distribution varies from location to location and from time to time.
On day 7, the grid line I=20 happens to be near the western flank of the cold (and dense)
tongue intrusion (see Fig. 6.10), the density gradient is thence outgoing from the paper. The
corresponding tilting structure of buoyancy conversion and vertical pressure work then should
be the opposite of that on section J=30, if a baroclinic instability really happens. Again, this
is indeed the case, as shown in Figs. 6.48(a) and (c). Both of b and A,Qpu slope to the
right (north) with height.

For a baroclinic instability dominated process, its signature will also be exhibited on the
sectional distributions for perturbation fields. Here the term “perturbation” should be un-
derstood as the meso-scale feature, and until the end of this subsection, by the “meso-scale”
feature of a given field p we mean a meso-scale time synthesis of p followed by a meso-scale
space reconstruction. With this tacitly assumed, we perform a meso-scale decomposition for
the vertical velocity w and density anomaly p. The scale window indices used are the same as

the standard experiment: jo=3, j1=5, and j;"=5, j;*=9.

Figures. 6.49 and 6.50 are the distributions of the day-7 meso-scale w and p for the two
sections we have examined before. Given the background density structure, the perturbation

w is expected to have a pattern with phase lines sloping with height toward the west on the
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zonal section J=30, and toward the east on the meridional section I=20, for an Eady-like
baroclinically unstable process (cf. Fig. 4.2). And, on the same conditions, the corresponding
meso-scale density anomaly should also have a tilting pattern, but toward the opposite direc-
tion. This counter-tilting pattern is revealed on both the zonal section and the meridional
section. In Fig. 6.49, it is roughly located between /=25 and I=35, seemingly a little shifted to
the right compared to the center identified on the distribution of Fig. 6.47. But in Fig. 6.50,
where the tilting phenomenon is very conspicuous, the inferred unstable region agrees well

with its energetic counterpart, the one from Fig. 6.48.

The existence of a baroclinic instability is therefore substantiated, by a variety of signa-
tures from the MS-EVA distributions to the prognostic field perturbation on two sections for
a typical forecast day. Moreover, this instability happens mainly below the depth 150 m.
Signatures from the section distributions of other days also support this assertion. In fact,
results from other days before the meandering intrusion (day 8) show similar patterns for
both section =20 and section J=30. The only exception lies on day 6, when the barotropic
transfer BTy is significant in the west of the domain. In that case, the negative center on the

BTy distribution for the 1=20 section is replaced by a pool positive in value.

6.3.4 Other transfers from the interaction analysis

In an MS-EVA with more than two scale windows, a mere energy transfer between the large-
scale and meso-scale windows are still not sufficient to illustrate the growth of meso-scale
disturbances. Contributions from other windows, though usually small, could sometimes be
significant enough to alter the energy stream between scales. For example, we have seen a
significant part of energy residing in the sub-mesoscale window on the time spectrum of v
(e.g., Fig. 6.6). If this part of energy is from the meso-scale process, can we still expect some
energy from that gained from the unstable large-scale system left to power the meandering
intrusion? Apparently, the remaining transfers other than BC' and BT from the interaction

analysis also merit some examination.

We first write the total APE and KE transfers to the meso-scale window as Ty» and T,

respectively. In terms of the transfer terms defined before (see Table 3.2), they are

TAM = TAM,ahp +TAM,82P +TSAM, (61)
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TKM = TKM,( + TKM,IU&: + TKM,&:’U‘ (62)

With the technique developed in §3.7, these two transfers can be analyzed as:

Tyu = TG +T0t + T35 + Tt (6.3)
T = Tt +Tont + Trad 7+ i (6.4)

In the superscripts, the numbers 0, 1, and 2 represent respectively the large-, meso-, and
submeso-scale windows, and the arrow indicates the direction of energy flow. Particularly,
the superscript 062 —1 is used for the transfer to the meso-scale window due to the large-

submeso-scale interaction. We next draw plots for these interaction terms.

By definition, the first terms on the right hand sides of Eqgs. (6.3) and (6.4) are merely the
BC and BTy + BTy. They have already been shown in the above subsections (except BTy,
which is insignificant compared to BTy) but we re-draw them here for comparison. We pick
day 6 and depth 125 m for the study, as we find the interaction analysis terms other than BC'
and BT are most significant on this day at this depth. These terms are graphed in Fig. 6.51
and Fig. 6.52. Particularly, BC' and BT are plotted in Figs. 6.51a and 6.52a.

Look at T}J}l and T}jf first. A term with superscript 1—1 arises from the local analysis
representing the contribution from the same scale window. From Figs. 6.51d and 6.52d,
it could be large, and in some region such as the positive BT center, it even exceeds BT
(2.3 x 107® m?/s3 versus 1.0 x 107® m?/s?) and dominates the transfer. This fact elucidates
from one aspect that transfers without interaction analysis might not be useful in identifying
inter-scale processes.

Next look at the transfer from the large-sub-mesoscale interaction, Tg?f_’l and Tlo(e]?fﬁl.
This part is usually negligible, as we have estimated before in §3.7. Here it is at least one

order of magnitude smaller than the part from the large-scale window, both in Fig. 6.51 and

in Fig. 6.52.

Of most interest among the interaction terms beside T93" (Th3t) is Tht (Taar'). In
Fig. 6.51b, there is a negative core located close to where the BC hotspot lies (Fig. 6.51a),
implying a significant part of energy transferred from the background field has been passed to
the sub-mesoscale window. Our issue is, if this transfer cancels out the amount shown on the

BC hotspot, then the energy gained from the baroclinic instability will not do anything for
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the meso-scale window, and hence can not account for the cause of the meso-scale meandering
intrusion. Fortunately, the negative center of Ti}}l is far from significant in comparison
to hotspot on the BC map. Consequently, the baroclinic instability does cause the growth
of meso-scale disturbances, though some sub-mesoscale processes might share a part of its

contribution.

In Fig. 6.52b, there is also a negative region lying where the positive BT sits. But this time
it is significant in strength (—4x107° to —7x107% m?/s? vs. +0.1x10~7 m?/s® on the BT
map), and the energy from the large-scale window through barotropic transfer is reduced by

more than a half because of T27;!

woar - The reduced part of the transfer goes to the sub-mesoscale

window, leading to the high-frequency oscillation which has been identified as a conspicuous
feature on the time spectrum of v. In this sense, the barotropic instability occurred in the

upper layers might not contribute much to the meso-scale deep-sock intrusion.

Described above are the meso-scale energetics of the standard experiment. For all that have
been observed, the IFF system is undergoing a baroclinic instability around the meandering
cold intrusion, and moreover, the instability is believed to occur below a certain depth of
roughly 150 m. The energy gained from this process goes to the sub-mesoscale disturbances
as well as the meso-scale processes, but most of it stays in the meso-scale window, serving to

fuel the growth of the intrusion event.
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Hor. l.—s. synthesized meso—scale energetic terms. (day=7,J=30 )
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Figure 6.47: Horizontally (local) averaged meso-scale energetics for day 7 on the zonal section J=30.
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Hor. l.—s. synthesized meso-scale energetic terms. (day=7, 1=20)
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Figure 6.48: Horizontally (local) averaged meso-scale energetics for day 7 on the meridional section
I1=20.
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Figure 6.49: The meso-scale features of vertical velocity (top) and density anomaly (bottom) on the
zonal section J=30 for day 7. In this figure by the “meso-scale” feature of a field we mean its time
meso-scale synthesis with window bounds jp=3 and j; =5 followed by a horizontal meso-scale synthesis

with bounds j"=5 and j;*=9.
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Figure 6.50: Same as Fig. 6.49, except for the meridional section I=20.
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Meso-scale transfers (Day 6, Lev 5)
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Figure 6.51: Interaction analysis of the total APE transfers, Tym = Tym 5, , + Tast 5., + TS gm
(cf. Table 3.2), to the meso-scale window for day 6 at the 125-m level. The integers 0, 1, and 2 in the
superscripts represent the large-, meso-, and submeso-scale windows, respectively. (Refer to Eq. (6.3)
for the interaction analysis) Contoured in subplot (a) is simply the BC shown before.
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Meso-scale transfers (Day 6, Lev 5)
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Figure 6.52: Interaction analysis of the total KE transfers, Tpn = Txum o + Tgnr o, + T g,
(cf. Table 3.2), to the meso-scale window for day 6 at the 125-m level. The integers 0, 1, and 2 in the
superscripts represent the large-, meso-, and submeso-scale windows, respectively. (Refer to Eq. (6.4)
for the interaction analysis) Contoured in subplot (a) is simply the BT = BTy + BTy shown before.
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6.4 Sensitivity study

So far all we have done concerns the standard experiment with a certain combination of
window bounds. As we mentioned in §6.2.3, there could be some ambiguity in setting these
bounds. This section presents experiments with different parametric combinations, in the
hope of getting rid of the ambiguity. Since in the standard experiment, it is mainly the APE
mechanism that accounts for the formation of the meandering cold intrusion, we focus our
attention on the sensitivity of the potential energetics, particularly the meso-scale buoyancy
conversion b and the baroclinic instability indicator BC, to the parametric change. We
choose day 7 and depth 125 m to address this issue. For reference, the related experiments

are listed in Table 6.2.

6.4.1 Time window bounds

For the time window, we have adopted a jo=3 and a j; =5 for the standard experiment (Exp. 1
in Table 6.2) described in the preceding section. This choice makes a meso-scale window with
scale levels j=3 and j=4. While these two levels are for sure what we want for the intrusion
event based on the spectral analysis, the reason to rule out other possibilities is still not
sufficient. For example, it is not impossible to have a j; exceeding 5, while jg could be made

smaller than 3. In the following we wish to eliminate the ambiguity by experiments.

We first examine the effect of an extension of j; beyond j=5. Given jo=3, j;"=5, we have
tried all the possibilities with j;=6-10 (Exp. 2). The resulting energetics are basically the
same as those obtained in the standard experiment. If no local average is performed, the
result is still similar to its counterpart in Figs. 6.12-6.13, except for some small-scale features
coming in. In a word, the choice of j; is not sensitive provided that the process with j=3-4 is

included.

The real problem of the time parametric study comes from the choice of j3. In addition to
the standard experiment setting, we have three more options: jo=0, jo=1, jo=2. Fig. 6.53
shows the bM and BC of Exp. 3, with jo = 0 and other parameters the same as the standard
experiment, for the seventh forecast day at the 125-m depth. In comparison to its counterpart

in Fig 6.18, the buoyancy conversion b} turns positive in the cold intrusion region, and a
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negative tongue appears between J=35 and J=>50 right to the western boundary. On the BC
map, the solitary hotspot is replaced by a relatively weak transfer pair with opposite signs,
and a strong positive region at a location roughly corresponding to the negative tongue on the
bM map. By location the correlation between the processes identified here and the intrusion
event observed in the forecast is far from significant. Apparently, The addition of processes

with 7=0, 1, and 2 have compounded the features of interest.

Similar result can be obtained with jo=1 (Exp. 4), which forms a meso-scale window with
the level 7 = 1 or scale 10.7 days included. The new features in the above observation with

respect to Fig. 6.18 are therefore mainly from events with j=1 and 2.

Most of the jy; ambiguity arises in the case jo=2, as we have mentioned before in §6.2.3.
While j=0 and 1 can be easily excluded from the meso-scale window because of the gap
observed on the time spectrum, the peak at j=2 is in general mixed together with features at
higher levels and hence it is a little subjective to decide whether to take it in or not. We have
seen the meso-scale energetics in the standard experiment without j=2. In the following we

show what will happen if it is taken into account.

Figure 6.54a shows the result of Exp. 5, which has a jy=2, and other parameters the same
as the standard experiment. Compared to its counterpart in Fig 6.18e, clearly the negative
bM center is still there. Its strength is also not changed. Both Fig. 6.54a and Fig. 6.18e have

a maximal APE-to-KE conversion 9 x 1078 m?/s3.

The difference between the two maps is
the appearance of a positive center immediately to the east. This comparison tells us that the
APE-to-KE conversion on day 7 at depth 125 m in the deep-sock intrusion region happens
at scale levels >3 only. The addition of j=2 only introduces on the right hand side of the
intrusion a positive area, which implies a conversion from KE to APE. Similar observations
can be made from the buoyancy conversion maps for other days at different depths. By all
that accounts for, we may safely conclude that j=2 is not relevant to the intrusion event in
which we are interested.

While the addition of scale level =2 to the meso-scale window still keeps the negative

bM

center, it totally changes the pattern of the BC distribution. The conspicuous hotspot
in Fig. 6.18i finds no counterpart on the BC map in this experiment. Replaced at the same

location in Fig. 6.54b is a negative core peripheral with some positive BC bands. In comparison
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Table 6.2: MS-EVA experiments for the IFF variability study. Other parameters include j» = 10 and
JoP =12, and j;® =9 is not essential here.

Experiment | Time W. Space
bounds W. B. Remarks
Type | No. | Jj, J, i
1 3 5 5 The standard experiment
2 = 2 3 6-10 5 Almost the same as Exp. 1.
= QO
g E
S M . . . .
o 8 3 0 5 5 bn turns positive in the intrusion region. A new
,E 5 negative tongue appears.
4 1 5 5 Similar to Exp. 3.
5 2 5 5 A new positive bnM region appears, and the
transfer information is disguised on the BC map.
6 3 5 3 Similar to Exp. 1 except that the hotspot is
2 smeared.
S e
=R
§ g 7 3 5 4 Same as above.
s 2
3 %
& ° 8 0 5 3 Some conspicuous features in Exp. 3 disappear.

to the standard experiment, a different process apparently has edged in, with an energy transfer

pattern quite unexpected for our purpose. The scale level j=2 thus does not characterize the

cold intrusion event, and hence a time window bound must be chosen such that jo>2.

6.4.2 Space window bounds

Besides the time window bounds, we also have space window bounds as parameters in the

application of MS-EVA. The purpose of a space decomposition is to perform a local average

for the obtained energetics. We hence only need to consider j;°. Other bounds, such as j}’,

are irrelevant in this sense.
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Figure 6.53: Meso-scale buoyancy conversion (a) and baroclinic instability indicator (b) for the seventh
day at depth 125 m, with time window bounds jo=0, j; =5, and space window bound j;*=>5. All the
energetics are in m?/s3.
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Figure 6.54: Same as Fig. 6.53, but for jo=2.
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In the present study, we care about only the meso-scale dynamics. An ideal j;” should be
such that it helps average out all the meso-scale oscillations so as to unravel the residual of the
MS-EVA terms, while retaining as many as possible the features for the meso-scale energetics.
We have chosen j;"=5 in the standard experiment. We here try options other than this scale

level.

Shown in Fig. 6.55 are the meso-scale buoyancy conversion and large-to-meso-scale transfer
(day 7, depth 125 m) for Exp. 6, where j3;°=3, and all other parameters are the same as Exp. 1.
Clearly, they are very similar to their counterparts in Fig. 6.18. Both the negative b center
and the BC' hotspot are there, though in the present experiment they have been smeared
horizontally. This remarkable feature still exists when j3” is switched to 5 = 4 (Exp. 7), a
conspicuous peak as well as j = 3 identified on the space spectrum. Consequently, for the

standard experiment, the meso-scale MS-EVA result is insensitive to the choice of j(sjp.

But when the time window bound jj is not correctly set, the effect of ji* does show its
significance. In Fig. 6.56 we re-graph the b} and BC obtained in Exp. 3 (Fig. 6.53), but with
a low jo"=3. Apparently, the negative b} (positive BC) region near the western boundary is
made much more clear, but the positive/negative BC' pair in the middle area has been totally

eliminated.

Consequently, the key to the success of the IFF MS-EVA analysis is to choose a jy which
correctly reflects the deep-sock meandering. Addition of any processes with scale level below
j=3 into the meso-scale window will disguise the dynamics of interest, making the obtained
energetics not useful for our purpose. When a correct time window is set, the resulting meso-

scale MS-EVA terms are not sensitive to the choice of space window bounds.
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Figure 6.55: Meso-scale potential energetics (in m?/s®) for day 7 at the 125-m level with time window
bounds set as the standard experiment (jo=3, j1=5), but the space window bound j3” = 3.
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6.5 Summary

We have performed an application of MS-EVA to study the IFF variability, with the results
obtained in the preceding chapter as the input. The meandering cold intrusion observed in
the forecast has been faithfully represented in a meso-scale window, and the dynamics behind

it pinpointed and substantiated.

The application begins with a determination of the scale window bounds, which is achieved
through a one-dimensional time wavelet spectral analysis and a two-dimensional space wavelet
spectral analysis. A general observation from the spectra is that the IFF variability occurs
mainly on two scales, either in time or in space. Energy is maximized at the time scales
10.3 days and 1.3-5.3 days, and the space scales 20-30 km and 40-60 km. This double-peak
spectral structure allows us to pick for the meandering intrusion a reasonable window bound
combination, which is, in the present configuration (cf. Table 6.1), (jo, J1,J2; Jo »d1 579 ) =

(3,5,10; 5,9,12).

With the window bounds determined, the MS-EVA is set up and the output visualized. We
have given a detailed description of the meso-scale energetics for the intrusion event. Generally
speaking, the meso-scale activities are concentrated in a small region where the cold tongue
is observed. The locally averaged energetics as a whole is characterized by a solitary positive
hotspot of BC, the potential energy transfer from the large-scale window, and a negative
center of b} | the meso-scale buoyancy conversion, for all the depths in the water column. The
hotspot coincides approximately with the negative center in locality. In a general trend both
of them get stronger and stronger in terms of absolute magnitude and coverage, from day 5
until the meander is fully developed on day 8. This pattern and evolutionary trend is also
reflected on the deep-layer maps of the total large-to-mesoscale transfer, BC + BT, where BC'
dominates the distribution. By what we have shown in Chapter 4, this means that, in the
area of concern, the system is undergoing an instability, and moreover, a baroclinic instability.
But this process is operative below a certain depth. Above 150 m, the map of BC + BT shows
no solitary center of positive transfer as that of BC' does, or even there is such a center (on

day 6), the transfer is dominated by the barotropic instability indicator, BT

The identified baroclinic instability and its vertical structure are also evidenced on the dis-
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tributions of other energetics. The negative b mentioned above indicates clearly a conversion
from APE to KE within the meso-scale window. In deep layers, a large part of the converted
energy is brought upward/downward through the vertical pressure work, A,Qpy. But in
surface layers (above 150 m), A,Q pn functions quite differently. The whole scenario confirms
the existence of the vertically limited baroclinic instability, which is further verified by the

tilting patterns of the perturbation fields on related sections.

It should be pointed out that our deep-layer unstable structure is consistent with the
“surface-intensified baroclinic instability” identified by Miller et al. (1995). Apparently, they
have assigned to the words “surface” and “deep” a meaning different from what we have
here. In their study, only depths below 200 m are considered, which obviously fall within our

unstable regime.

We have also shown that the energy gained from the baroclinic instability is indeed used to
power the meso-scale meandering. An interaction analysis indicates that the energy leaving
the meso-scale window to sub-mesoscale processes is inconsequential in comparison to the part

obtained through the instability.

To test the robustness of our application against the parametric change, we have tried a
series of experiments with different combinations of window bounds. In the time direction, we
find, the choice of jj is crucial. Failure to set a jy characteristic of the meandering event will
result in energetics being totally misleading. When jj is correctly set (i.e., jo = 3), the result

is insensitive to space window bound change.

The moral of the sensitivity study is that, in order to pinpoint the right dynamics for a
process, we need to capture the right scale characteristic of that process. A fixed jy cannot be
expected to handle all the situations which are different in general. Recall that the classical
multiscale energetic analysis (i.e., Harrison and Robinson, 1978) is equivalent to our MS-EVA
with jp = 0 and a periodic extension. If a classical analysis is performed for the IFF variability,
our sensitivity study shows it will lead to nowhere for the meandering event. This is a good

example that illustrates from one perspective the advantage of our MS-EVA.
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Chapter 7

Summary and conclusions

A new methodology, Multiscale Energy and Vorticity Analysis (MS-EVA), has been devel-
oped, validated, and applied to a real ocean problem. In Chapter 1, the research issues were
addressed and the solution strategy presented. The development began in Chapter 2, with the
construction of a functional analysis tool, the multiscale window transform, in the framework
of multi-resolution analysis. Specifically, we have defined and built three scale windows, which
are bounded by three scale levels jg, 71, and jo, and constructed a transform and a synthesis
with respect to each window. Cases with a one-dimensional field and a two-dimensional field
have been investigated. Either of them gives an orthonormal, local, and self-similar trans-
form, which is windowed on scales. We first worked on the real line, then moved to a finite
domain, extended with either a periodic or a symmetric scheme. We have proved that both
schemes will yield a transform without energy leakage, so long as a symmetric scaling function
is adopted. Such an energy-conserving transform has many properties. A most important one
is the property of marginalization, which relates a phase space representation of the product
of two signals to its physical space expression. More precisely, marginalization of the product
of two multiscale window transforms results in a duration/domain average of the product of
the corresponding multiscale window syntheses. A realization of this kind of transform was
made with the aid of cubic splines. A fast algorithm was presented and the computational

procedure outlined.

The multiscale window transform thus obtained was then exploited to formulate the MS-

EVA. In Chapter 3, the large-, meso-, and submeso-scale potential and kinetic energy and

402
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enstrophy equations were derived and interpreted. Energetic processes represented by the
terms of these equations are classified into four categories: transport, transfer, conversion,
and dissipation/diffusion, and we have studied in detail the first three processes. Buoyancy
conversions occur on each scale window without inter-scale energy transfer involved. The
major issue in this process decomposition was the separation of transports and transfers
from the nonlinear terms in the multiscale energy equations. We introduced the concept of
perfect transfer and showed that all these terms can be split as expected. The transfer terms
obtained include, by governing mechanism, the transfer due to vorticity evolution, the transfer
due to vertical advection, the transfer due to the vertical shear of horizontal velocities, and
the transfer due to density gradient evolution. These terms were further decomposed with
interaction analysis to distinguish the inter-scale energy transfer from transfers from other
sources. The whole formulation has been connected to the classical energetics analysis. We
proved, with the aid of the property of marginalization, that the classical formulation is a very
particular case of our MS-EVA. They are identical in a two-scale decomposition when jy = 0

and a periodic extension scheme is adopted.

The developed MS-EVA was validated with the stability problem for a zonal jet stream. In
the first part of Chapter 4, we proved that the stability of a system in the classical sense is
entirely dependent on the transfer terms from the MS-EVA analysis. For a two-scale window
decomposition, let BC' denote the sum of the large-to-meso-scale transfers (obtained through
an interaction analysis) from the APE equation, and BT signify the same sum but from the KE
equation, then their local averages, (BC)" and (BT)", proved to be two indicators of system
instability. When (BC + BT}Q > 0, the system is unstable and vice versa. Particularly, if it is
(BC)* that makes (BC + BT)% positive, then there exists a baroclinic instability; otherwise
if it is (BT)" that dominates a positive (BC + BT)%, the instability must be barotropic.
With these points the MS-EVA was put to test with the well-known Eady and Kuo models,
each admitting only one of the two types of instability. In each case, a positive residual results
from the instability indicator for any chosen unstable mode. Specifically, the Eady model
gives a positive horizontally averaged BC while its BT sums to zero over the space domain;
the Kuo model results in the opposite, just as expected for a barotropically unstable system.

The MS-EVA is thereby validated.
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Chapter 4 also presented spatial structures that characterize the Eady- and Kuo-like un-
stable systems. With an Eady-like instability, the meso-scale buoyancy conversion is always
negative—that is to say, corresponding to a baroclinic instability there is a buoyancy conver-
sion on the meso-scale window, and the conversion is from available potential energy (APE)
to kinetic energy (KE). Vertically, the conversion is maximized in the middle of the water
column and minimized at the surface and the bottom. The energy converted from APE is
drained upward and downward by the vertical pressure work, leading to an accumulation of
velocity disturbances close to the two vertical boundaries. At the same time, the perturbation
APE is also intensified toward the bottom and the surface, as the transfer is uniform through
the water column while the largest conversion happens in the middle. The surface and bot-
tom intensification is evident on the meso-scale feature maps for both density and horizontal

velocity components (u or v).

While the Eady unstable system is characterized by a conspicuous pattern in the vertical
direction, the transfer in the Kuo model is structured horizontally. The zonally averaged MS-
EVA shows that the energy transfer is limited within two latitudes, and becomes negligible
beyond that limit. In general the transfer is greater than zero (i.e., from the large-scale window
to the meso-scale window), but near the two latitudes there exist two narrow strips where
BTy (a dominant part of BT due to rotation and vertical advection) is negative. These strips
provide regions for the transferred energy to feedback to the large-scale window, functioning
like two walls that bar the energy transfer from happening further in the north and south.
These MS-EVA scenarios, both with the Eady model and the Kuo model, appear consistent

with what we have already known. In this sense, the MS-EVA is validated again.

With the validated MS-EVA, we set up an application to a real ocean problem, the Iceland-
Faeroe Frontal (IFF) variability study. We first conducted a forecasting in Chapter 5 with a
dataset gathered during the 1993 NRV Alliance cruise, which is composed of an initialization
survey, a zigzag survey, and a validation survey. The forecasting was set in a real-time oper-
ational mode, with fields sequentially updated as data come in. For regions not covered by
the survey, a feature model was used to facilitate the initialization. The whole procedure was
then completely data-driven. With this we have launched two major forecasts, labeled as F2

and F5 respectively. The former made the prediction with the initialization data only, while
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the latter started from the former and further took in the zigzag survey information. The
zigzag data assimilation was basically through optimal interpolation, but with an ingredient
of multiscale treatment. The forecasts were verified with the validation survey data. The
feature reproduced proved to be highly correlated with the observations, both in terms of the
defined forecast skill and by visual inspection. The Fb5 forecast was found to be especially

successful.

From the observations and the forecast, a conspicuous event identified for the 1993 IFF
variability is the intrusion of a cold tongue, or the formation of a deep-sock meander, on
August 22. An application of the MS-EVA was set up in Chapter 6 in the hope of nailing
down the dynamics behind this phenomenon. The application began with a wavelet spectral
analysis, in order to determine the time and space window bounds needed in the MS-EVA set-
up. The variability was observed mainly to be happening on two scales, both in time and in
space. The cold meandering intrusion was shown to be characterized by a 2.7-day peak on the
time spectrum, and by a 20-30-km maximum on the space spectrum. The spectral structure
sets a rule for the scale decomposition and the window bounds were chosen accordingly. An
MS-EVA diagnosis with these bounds was launched and the output visualized. From the
energetics, meso-scale activities are accumulated in a small area around the deep-sock meander.
The locally averaged energetics (achieved through a horizontal large-scale synthesis) reveals
a clear baroclinic instability during August 19 through August 21 around the cold intrusion,
and shows that the instability is limited to the region beneath depth 150 m (approximately).
This observation is consistent with the fingerprints on the related vertical energetics, and was
further verified by the counter-tilting patterns of perturbation density and vertical velocity. We
showed, through an interaction analysis, that the energy gained from this baroclinic instability
is indeed used to power the meandering intrusion. The leakage to the sub-mesoscale processes
is negligible in comparison to portion retained for meso-scale perturbation growth. All these
results have been tested against change of MS-EVA parameters. In this example, we found, a

correct large-meso-scale decomposition is the key to a successful MS-EVA application.

Summarized above are the major results from this thesis. The MS-EVA study is still in
progress, however. At this stage, many research issues are still open. Firstly, the missing

vertical and horizontal diffusion/dissipation need to be considered. They could be significant,
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especially in cases where mixing is important. Secondly, a more appropriate APE equation
might be necessary to be commensurate with the Harvard Ocean Prediction System (HOPS).
The HOPS computes temperature and salinity, and uses the UNESCO equation of state to
obtain density. The advection-diffusion equations of temperature and salinity together with
a nonlinear equation of state does not in general result in an APE equation exactly as we
obtained in Chapter 3. Thirdly, the interpolation of a o-level system to a z-level coordinate
could invoke inaccuracies. These three issues are the main problems that may cause imbalances
on the energetics computed, particularly in dealing with real problems where all kinds of
processes could be present. For this reason, they may also referred to as computational issues.
Another computational issue is that the differencing scheme for MS-EVA equations cannot be
made exactly the same as the one used for forecast, as energy/vorticity evolution is different
from momentum integration, anyhow. This accounts for a certain amount of error in the
diagnostic fields, though theoretically it can be made as small as one wants by increasing the

resolution of the mesh grid.

The last and most important issue regards the dynamic fingerprinting. More research on
fundamental processes is desired to build up the library of fingerprints. For MS-EVA | a larger
library of dynamical fingerprints implies more power. It will doubtlessly broaden the horizon
of application. As a short-term goal, one may feel interested in problems such as how energy
is accumulated from seemingly irrelevant processes to form a coherent structure of weather
importance (e.g., a two-dimensional turbulence), how a wave loses its stability and how its
energetic structures evolve with the change of propagation properties, how waves and currents
coexist whereas strong interactions are present, to name but a few. Besides, we have not yet
touched the cascade and inverse cascade (i.e., transfer in the phase space) of “vorticity energy”
with the enstrophy equations developed. Because of the importance of vorticity in geophysical
fluid dynamics (as we have introduced in Chapter 1), a large pool of related problems are to

be investigated.

Ultimately, the capabilities of the MS-EVA can only be demonstrated through applications.
This is not just because of the importance of application per se. The complexity of real
problems in turn gives the impetus for fundamental process research. We have examined the

frontal variability for the Iceland-Faeroe region. Studies with other regions with benchmark
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results are needed for our purposes. In a word, while continuing to improve what we already
have with the methodology, we need to look for more and more applications with real problems.

This forms the major research direction of MS-EVA for the near future.
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