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SUMMARY

The lattice Boltzmann method (LBM) has established itself as an alternative approach to solve the fluid
flow equations. In this work we combine LBM with the conventional finite volume method (FVM),
and propose a non-iterative hybrid method for the simulation of compressible flows. LBM is used to
calculate the inter-cell face fluxes and FVM is used to calculate the node parameters. The hybrid method
is benchmarked for several one-dimensional and two-dimensional test cases. The results obtained by the
hybrid method show a steeper and more accurate shock profile as compared with the results obtained by
the widely used Godunov scheme or by a representative flux vector splitting scheme. Additional features of
the proposed scheme are that it can be implemented on a non-uniform grid, study of multi-fluid problems
is possible, and it is easily extendable to multi-dimensions. These features have been demonstrated in this
work. The proposed method is therefore robust and can possibly be applied to a variety of compressible
flow situations. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The finite volume method (FVM) [1, 2] is widely used to solve fluid flow equations, including
the compressible Euler equations. In FVM, volume integrals of the divergence terms in the
governing partial differential equations are converted into surface integrals using the Gauss diver-
gence theorem, which are then evaluated as surface fluxes. Several schemes have been proposed
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in the literature to obtain the surface fluxes (or inter-cell face parameters) from the given node
parameters. The Godunov approach [2, 3] has been widely used to calculate the inter-cell face
parameters, which are computed using the analytical solution of a localized Riemann problem.
The Godunov scheme can accurately simulate the discontinuous waves but this method has a
relatively higher computational cost. An analytical solution to the localized Riemann problem can
be obtained using iterative methods such as the Newton–Raphson method but this approach has a
still higher computational cost. In a practical computation, it may be required to solve the localized
Riemann problem a large number of times, highlighting the need for computationally efficient
solution schemes.

The computational efforts associated with an iterative method may not always be justified
and therefore non-iterative solvers have been developed. Approximate non-iterative solvers have
the potential to calculate the inter-cell face parameters for numerical purposes. Several approx-
imate Riemann solvers have been proposed for approximating the inter-cell face parameters,
and subsequently the physical fluxes at the inter-cell faces are calculated [4–7] from these
approximate inter-cell face parameters. Although these approximate solvers are relatively easy
to implement, they may not be sufficiently accurate. The solver proposed by Roe [4] is one
of the most well-known approximate Riemann solvers and has been applied to a large variety
of problems. Refinements to this approach were later introduced by Roe and Pike [5] and the
new methodology was simpler and more useful in solving the Riemann problem. Further correc-
tions to the basic Roe scheme have been proposed, but the solvers may fail to give the desired
accuracy in complicated cases. Harten et al. [6] proposed the HLL Riemann solver which can
directly approximate the inter-cell numerical fluxes without calculating the inter-cell parameters.
The central idea of this method is to assume a two-wave configuration, which separates three
constant states. This method is one of the more efficient and robust Riemann solvers, but the
limitation of this method is the assumption of a two-wave configuration. As a consequence of
this assumption, the resolution of physical features like the contact discontinuity may be inade-
quate. Some modifications to this solver have been proposed [7], but a number of limitations still
remain.

Flux vector splitting (FVS) schemes can also be categorized as non-iterative Riemann solvers.
The concept of FVS was first conceived by Steger and Warming [8]. Their scheme was based
on splitting of eigenvalues of the jacobian matrix of the conservative form of the Euler equa-
tions. In order to overcome the numerical difficulties associated with sonic points, van Leer
proposed a new FVS scheme [9]. Liou and Steffen [10] proposed the advection upstream split-
ting method (AUSM). Liou [11, 12] proposed sequels to AUSM: AUSM+ and AUSM+-up.
The AUSM family of schemes was designed to avoid numerical mass diffusion at stagnation
shown by the earlier FVS schemes. Zha and Bilgen [13] proposed another FVS scheme with
the same objective as the AUSM scheme, and it is simpler in implementation than the AUSM
scheme [13].

The lattice Boltzmann method (LBM) [14] is another numerical method that is often used to
simulate flow problems. This method models fluid as a collection of particles, which successively
undergo collision and propagation over a discrete lattice mesh. Several lattice Boltzmann models
have been proposed for the incompressible Navier–Stokes equations [14, 15]. However in the
author’s experience [16], the usual collision–propagation method employed by the LBM cannot
be used to solve the compressible Euler equations since this method is limited to flows with small
Mach numbers. Several compressible lattice Boltzmann models have, however, been proposed in
the literature [17–23]. Alexander et al. [17] proposed a lattice Boltzmann model with selectable
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sound speed to simulate compressible flows. In this model, the sound speed was set low by
appropriately selecting the parameters of the distribution function. Yu and Zhao [18] suggested
another model in which the sound speed is lowered by the introduction of an attractive force. Both
of the above models are isothermal models and cannot simulate temperature profiles, and therefore
cannot really be used as compressible flow solvers. Guangwu et al. [19] proposed a three-speed-
three-energy-level lattice Boltzmann model for the compressible Euler equations. The specific heat
ratio can be freely chosen in this 17 particle thermal model, but the method is computationally
expensive as it assumes three different levels of velocity and temperature. The model of Kataoka
and Tsutahara [20] is computationally less expensive than the three-speed-three-energy-level model,
and has been adopted in the present work.

Another area which has received a great deal of attention is the numerical simulation of compress-
ible multi-fluid flows. Such flows are relevant in nuclear power reactor safety analysis and find
applications in different streams of engineering as well. In general, compressible multi-fluid flows
are difficult to solve because additional parameters such as the ratio of specific heats (�) and
molecular mass (M) of the gases need to be appropriately modeled. The conventional ‘gamma’ and
‘thermodynamic’ models for multi-fluid flows fail to maintain the pressure equilibrium and result
in oscillations and computational inaccuracies near the discontinuities and the material interfaces
[24, 25]. One of the ways to tackle this issue is by introducing additional equations to describe
the transport of ratio of specific heats (�) and the molecular mass (M) of the gases along with
the original Euler equations. Among other methods, a thermodynamically consistent and fully
conservative method for multi-fluid flows is developed by Wang et al. [26]. The equations for
mass fractions of each species and the ratio of specific heats of the mixture, proposed by Wang
et al. [26], have been incorporated in this work.

The two numerical techniques, FVM and LBM, have some relative advantages over each other
and provide a motivation to develop a hybrid FVM–LBM method for compressible flows by
combining their relative strengths. It is desired that the new method should be computationally
efficient and should accurately simulate all compressible flow features including shock, contact
discontinuity and expansion wave. We show that the use of LBM for determining the inter-cell
face fluxes, along with FVM at the nodes, gives a more accurate and efficient solver. This approach
is first tested for a single-fluid flow and then extended to a multi-fluid problem by modifying
the model of Kataoka and Tsutahara [20] suitably. The proposed hybrid scheme for single and
multi-fluids is discussed in Sections 2 and 3, respectively. The numerical details pertinent to our
implementation are summarized in Section 4. Details of the test cases are given in Section 5.
A comparison between the results obtained from the hybrid method, the conventional Godunov
method and the FVS scheme by Zha and Bilgen [13] is presented in Section 6. Final comments
are presented in Section 7.

2. PROPOSED HYBRID FVM–LBM METHOD

The hybrid FVM–LBM method proposed here works on the fundamental idea that the LBM is
used to determine the inter-cell face parameters and the conventional finite volume method is then
used to calculate the node parameters.

The details of each of these steps in the hybrid method are now presented. The grid for the
hybrid method is shown in Figure 1. All variables and equations are expressed in non-dimensional
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Node Point

X inter-cell face point

Y inter-cell face point

Figure 1. Grid structure for a two-dimensional problem indicating the nodes and the inter-cell face points.

form for the convenience of numerical calculation and analysis. Let L , �̂R, and T̂R be the reference
length, density and temperature, respectively. Then the non-dimensional variables are defined as
follows [20]:

t = t̂
L√
RT̂R

, x= x̂

L
, y= ŷ

L

� = �̂

�̂R
, ux = ûx√

RT̂R
, uy = û y√

RT̂R
, T = T̂

T̂R
, p= p̂

�̂RRT̂R

(1)

The symbols with ‘ˆ’ indicate the parameters in their dimensional form and without ‘ˆ’ indicate the
same in their non-dimensional form. Furthermore, ‘t’ denotes time, ‘x’ and ‘y’ spatial coordinates,
‘T ’ temperature, ‘p’ pressure, ‘�’ density, ‘ux ’ velocity in x-direction, ‘uy’ velocity in y-direction
(all non-dimensional) and ‘R’ denotes specific gas constant.

FVM step: At the nodes, the two-dimensional time-dependent Euler equations in conservative
form

Ut +F(U )x +G(U )y =0 (2)

are solved using the standard finite volume approach. Here U is the vector of conserved variables,
and F(U ) and G(U ) are the flux vectors along the x- and y-directions, respectively. These vectors
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are given as

U =

⎡
⎢⎢⎢⎢⎢⎣

�

�ux

�uy

E

⎤
⎥⎥⎥⎥⎥⎦ , F(U )=

⎡
⎢⎢⎢⎢⎢⎢⎣

�ux

�u2x + p

�uxuy

ux (E+ p)

⎤
⎥⎥⎥⎥⎥⎥⎦

, G(U )=

⎡
⎢⎢⎢⎢⎢⎢⎣

�uy

�uyux

�u2y+ p

uy(E+ p)

⎤
⎥⎥⎥⎥⎥⎥⎦

(3)

where ‘E’ is the total energy per unit volume given by

E=�( 12 (u
2
x +u2y)+e) (4)

and ‘e’ denotes the specific internal energy. A conservative finite volume scheme for Equation (2)
is of the form

Un+1
i, j =Un

i, j +
�t

�x
(Fi−1/2, j −Fi+1/2, j )+ �t

�y
(Gi, j−1/2−Gi, j+1/2) (5)

where Un
i, j denote the parameters at the node (i, j) and at time level n. The equation of state (in

non-dimensional form) given by

p=�T (6)

is required to be solved, along with Equation (2). Note that the specific gas constant ‘R’ disappears
on non-dimensionalizing the equation of state. Calculation of numerical fluxes F and G required
in Equation (5) needs calculation of flow parameters at the inter-cell faces.

LBM step: The flow parameters at the inter-cell faces are calculated using the lattice Boltzmann
model by Kataoka and Tsutahara [20]. Details of this model are now presented. Here D is the total
number of significant spatial dimensions and I is the total number of discrete molecular velocities.

(1) One-dimensional model (D=1, I =5): The macroscopic variables, i.e., density, velocity and
temperature in a one-dimensional model are defined in terms of the particle velocity distribution
function ( fk) as

� =
I∑

k=1
fk

�u =
I∑

k=1
fkc1k

�(bT +u2) =
I∑

k=1
fk(c

2
1k+�2k)

(7)

where c1k is the molecular velocity of the kth particle in the only significant direction, and the
variable �k has been introduced to control the ratio of specific heats. The constant b is expressed
in terms of ratio of specific heats (�) as

b= 2

(�−1)
(8)
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The molecular velocity is given by

c1k =

⎧⎪⎨
⎪⎩
0 for k=1

v1 cos(�k) for k=2,3

v2 cos(�k) for k=4,5

(9)

and

�k =
{

�0 for k=1

0 for k=2,3,4,5
(10)

where v1, v2( �=v1) and �0 are given non-zero constants.
The local equilibrium particle velocity distribution function ( f eqk ) is defined as

f eqk =�(Ak+Bkuc1k) for k=1,2, . . . ,5 (11)

where

Ak =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(b−1)T

�20
for k=1

1

2(v21−v22)

[
−v22+

(
(b−1)

v22

�20
+1

)
T +u2

]
for k=2,3

1

2(v22−v21)

[
−v21+

(
(b−1)

v21

�20
+1

)
T +u2

]
for k=4,5

(12a)

Bk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−v22+(b+2)T +u2

2v21(v
2
1−v22)

for k=2,3

−v21+(b+2)T +u2

2v22(v
2
2−v21)

for k=4,5

(12b)

(2) Two-dimensional model (D=2, I =9): The macroscopic variables, i.e., density, velocity and
temperature in a two-dimensional model are defined in terms of the particle velocity distribution
function ( fk) as

� =
I∑

k=1
fk

�ux =
I∑

k=1
fkcxk

�uy =
I∑

k=1
fkcyk

�(bT +u2x +u2y) =
I∑

k=1
fk(c

2
xk+c2yk+�2k)

(13)
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where cxk and cyk are the molecular velocities of the kth particle in the x- and y-directions,
respectively. The molecular velocities are given by

(cxk,cyk)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(0,0) for k=1

v1

(
cos

�k

2
,sin

�k

2

)
for k=2,3,4,5

v2

(
cos

�(k+0.5)

2
,sin

�(k+0.5)

2

)
for k=6,7,8,9

(14)

and

�k =
{

�0 for k=1

0 for k=2,3, . . . ,9
(15)

where v1,v2( �=v1) and �0 are given non-zero constants.
The local equilibrium particle velocity distribution function ( f eqk ) is defined as

f eqk =�(Ak+Bk(uxcxk+uycyk)+Dk(uxcxk+uycyk)
2) for k=1,2, . . . ,9 (16)

where

Ak =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(b−2)T

�20
for k=1

1

4(v21−v22)

[
−v22+

(
(b−2)

v22

�20
+2

)
T + v22

v21

(u2x +u2y)

]
for k=2,3,4,5

1

4(v22−v21)

[
−v21+

(
(b−2)

v21

�20
+2

)
T + v21

v22

(u2x +u2y)

]
for k=6,7,8,9

(17a)

Bk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−v22+(b+2)T +u2x +u2y
2v21(v

2
1−v22)

for k=2,3,4,5

−v21+(b+2)T +u2x +u2y
2v22(v

2
2−v21)

for k=6,7,8,9

(17b)

Dk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2v41
for k=2,3,4,5

1

2v42
for k=6,7,8,9

(17c)

The particle kinetic equation used to solve for the particle velocity distribution function at the
new time level is given as

� fk
�t

+cxk
� fk
�x

+cyk
� fk
�y

= f eqk (�,ux ,uy,T )− fk
�

(18)
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Y inter-cell faces 

NodeNode  

X inter-cell faces (a) (b)

Figure 2. (a) Grid structure for obtaining the X inter-cell face parameter values by LBM and (b) grid
structure for obtaining the Y inter-cell face parameter values by LBM.

where � is the Knudsen number. The velocity distribution function at the old time step is obtained
from the equilibrium velocity distribution function ( f eqk ), i.e.,

f ok = f eqk (�o,uox ,u
o
y,T

o) (19)

where the superscript ‘o’ denotes the function at the previous time step.
This completes the description of the lattice Boltzmann model. Note that the particle kinetic

equation (Equation (18)) has been written for a two-dimensional model. For one-dimensional
case, only one of the convective terms corresponding to the only significant direction, is
considered.

Implementation details of the LBM are now presented. The grid used to solve the particle kinetic
equation is shown in Figure 2. The grid in Figure 2(a) is used to calculate the X inter-cell face
parameters, while the grid in Figure 2(b) is used to calculate the Y inter-cell face parameters.
LBM is applied separately on both these grids. Details are given for X inter-cell face parameters
calculation; Y inter-cell face parameters calculation follows the same steps. At the beginning
of every time step, velocity distribution function at the old time step is obtained by the use
of Equations (9)–(12) (for one-dimensional model) or Equations (14)–(17) (for two-dimensional
model) and Equation (19) at every point (both node and inter-cell face points) of the grid shown
in Figure 2(a). A discretized form of the particle kinetic equation (Equation (18)) is used at the
inter-cell face points to obtain the particle velocity distribution function at the new time step.
Macroscopic variables at the inter-cell faces are then obtained from this new particle velocity
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Obtain all parameters in their non-dimensional form 

Implement initial conditions at all nodes and inter-
cell face points 

Obtain the inter-cell parameters at the new time step 
by implementing LBM. 

(Equation 7-12 or equation 13-17 along with 
equation 18-19) 

Calculate inter-cell face fluxes using inter-cell 
parameters. (Equation 3) 

Obtain node parameters at the new time step using 
conservative FVM scheme. (Equation 5) 

is 
t > final 
time?

Yes Print Results 

No

Figure 3. Flowchart showing the basic steps in the proposed hybrid FVM–LBM method.

distribution function by the use of Equation (7) (for one-dimensional model) or Equation (13) (for
two-dimensional model).

The essential procedure in this hybrid method is now presented. This procedure is also summa-
rized in Figure 3.

1. Initial conditions, i.e., the velocity, pressure, density and temperature expressed in their
non-dimensional forms are assigned to the nodes and to the inter-cell faces (both X and Y
inter-cell faces).

2. The macroscopic parameter values are obtained for the X and Y inter-cell faces, at the next
time step by implementing the LBM model.

3. The inter-cell fluxes F and G are calculated at each inter-cell face from the flow parameter
values at that face, using Equation (3).

4. Equation (5) is used to update the node parameters from time level n to time level (n+1).

Steps 2–4 are repeated until the output time has reached.
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3. EXTENSION OF THE HYBRID FVM–LBM METHOD FOR MULTI-FLUID FLOWS

We use the hybrid FVM–LBM method, which was introduced in the previous section, for the
simulation of multi-fluid flows. A comparison with the FVM–Godunov scheme for multi-fluid
flows is presented in Section 6.4. As discussed earlier, an extended system with additional equations
besides the original Euler equations has been proposed by Wang et al. [26]. This system involves
two additional formulations for the calculation of the ratio of specific heat of the mixture and the
molecular mass of the mixture. These formulations are given by

�
�t

(
1

M
�

)
+∇ ·

(
1

M
�u

)
=0 (20)

and

�
�t

(��)+∇ ·(��u)=0 (21)

where ‘M’ is the molecular mass of the mixture and ‘�’ is the ratio of specific heats at constant
pressure to the specific gas constant and can be expressed in terms of the ratio of specific heats as

�= �

(�−1)
(22)

Therefore, the complete multi-fluid model involves modifying the vectors U,F(U ) and G(U ) in
Equation (3) to

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�

�ux

�uy

E

�/M

��

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, F(U )=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�ux

�u2x + p

�uxuy

ux (E+ p)

�ux/M

��ux

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, G(U )=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�uy

�uyux

�u2y+ p

uy(E+ p)

�uy/M

��uy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(23)

For a single gas, the required inter-cell fluxes were obtained using LBM; we maintain the same
approach for multi-fluid flows as well. The model of Kataoka and Tsutahara [20] is applicable
only for a single-gas flow. We modify the model suitably for multi-fluid problems.

We define a slightly modified set of non-dimensional variables in terms of the reference length
(L), reference density (�̂R), reference specific gas constant (R̂R) and reference temperature (T̂R).
The new set of non-dimensional variables for multi-fluid flows is

t = t̂
L√

R̂RT̂R

, x= x̂

L
, y= ŷ

L

� = �̂

�̂R
, ux = ûx√

R̂RT̂R
, uy = û y√

R̂RT̂R
, T = R̂T̂

R̂RT̂R
, p= p̂

�̂R R̂RT̂R

(24)
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It can be observed that an additional parameter (reference specific gas constant) is used for obtaining
the multi-fluid flow parameters in their non-dimensional form. In essence, the primary modification
incorporated in the new model, which seems to make it suitable for multi-fluid flows, is that the
variable T has been replaced by the variable RT in Equations (7)–(19). This modified model can
now be used to calculate the inter-cell face parameters from the node parameters as discussed
earlier.

In the multi-fluid problem solved here, the extended Euler equations (Equations (2) and (23)),
are solved at the nodes along with Equations (7)–(12) (for one-dimensional model) or Equations
(13)–(17) (for two-dimensional model) in their modified form, at the interfaces. While the �-
equation (Equation (21)) allows for the variation in the ratio of specific heats, the variation in the
total energy is taken into account through the energy equation. To calculate the temperature of
the gases, one needs to calculate the molecular mass using Equation (20), from where the specific
gas constant is obtained. Knowing the variation of both RT and R, the variation of T can be
calculated.

4. COMPUTATIONAL DETAILS

The computational details pertaining to the hybrid method are presented in this section. The
parameters in LBM equations are chosen to be �1=1, �2=3, �0=2. The discretized form of the
particle kinetic equation (Equation (18)) is obtained by assuming the RHS to be identically equal
to zero and assuming the derivative approximations to be first-order forward in time and first-order
upwind in space. The final form of the discretized kinetic equation used is

( fk)
n+1
i, j = ( fk)

n
i, j −�t

[
(cxk+|cxk |)

2

(
( fk)ni, j −( fk)ni−1, j

�X

)
− (cxk−|cxk |)

2

(
( fk)ni, j −( fk)ni+1, j

�X

)]

−�t

[
(cyk+|cyk |)

2

(
( fk)ni, j −( fk)ni, j−1

�Y

)
− (cyk−|cyk |)

2

(
( fk)ni, j −( fk)ni, j+1

�Y

)]
(25)

For the grid shown in Figure 2(a), �X =�x/2 and �Y =�y. For the grid shown in Figure 2(b),
�X =�x and �Y =�y/2. A transmissive boundary condition [2] has been implemented on all
domain boundaries for all test problems.

Choice of time step: Kataoka and Tsutahara [20] proved that the dimensionless mesh width
(�t,�x,�y) has to be much smaller than ε (Knudsen number) to assure the consistency of the finite
difference scheme with the original kinetic equation. This means that the time step is restricted to
a much smaller value in LBM. In FVM, the time step is restricted using the Courant–Friedrichs–
Lewy (CFL) criterion so that waves generated at any inter-cell face location do not reach the next
face location. In general, FVM can have much larger time steps than the LBM. In the hybrid
method we have utilized this advantage of the FVM. The time step is decided based on CFL
criterion given by [2]

�t=Ccfl×min

(
�xi, j
Sn,x
i, j

,
�yi, j
Sn,y
i, j

)
(26)
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where Ccfl is the CFL coefficient and Sn,	
i, j is the wave speed in the 	-direction. Here, Ccfl is chosen

as 0<Ccfl<0.5 since the grid spacing in Figure 2(a) is (�x/2) and in Figure 2(b) is (�y/2). Since
the wave speeds are not calculated explicitly in LBM, the most popular choice for wave speed [2],
which extends to multi-dimensions can be used

Sn,	
i, j =|V n

i, j |+ani, j (27)

where V n
i, j is the macroscopic velocity component in 	-direction and ani, j is the speed of sound

at time level n, in cell [i, j].
A grid independence test has been carried out to determine the appropriate grid spacing. Test

case 3 of Section 5.1 has been solved with three different grid spacings: 0.01, 0.02 and 0.04
(Figures 4–6). The grid spacing of 0.04 results in a significant numerical diffusion and a compar-
atively lesser steep shock and contact discontinuity waves (Figure 4). On the other hand, the grid
spacing of 0.01 produces accurate results (Figure 5), but it requires a large computational cost.
Therefore, the grid spacing (�x) has been chosen to be 0.02 (Figure 6) as reasonably accurate
results can be generated with this �x at an acceptable computational cost.

5. TEST CASES

A brief description of the test cases is presented in this section.

5.1. One-dimensional test cases

The hybrid method is benchmarked for several one-dimensional Riemann problems that have
exact solution. A Riemann problem consists of a conservation law together with a piecewise
constant initial data having a single discontinuity. The Riemann problem for one-dimensional
time-dependent Euler equations is represented as the conservation law

Ut +F(U )x =0 (28)

with the initial conditions given as

U (x,0)=
{
UL if x<0

UR if x>0
(29)

where U is the vector of conserved variables and F(U ) is the flux vector.
Table I shows the initial conditions on either side of the initial discontinuity for the four test

cases considered. The four test cases produce (i) two shock waves, (ii) two expansion waves, (iii)
a left shock wave and a right expansion wave, and (iv) a left expansion wave and a right shock
wave, respectively. The last column in Table I shows the non-dimensional output time at which
results are plotted for the test case. The grid spacing used for all four test cases, based on grid
independence study presented in Section 4, is 0.02.

5.2. Two-dimensional test cases

Two test cases are used for two-dimensional formulation.
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Figure 4. Results for Test case 3 (Section 5.1) after time t=1 (�x=0.04,�=1.4) for non-dimensional:
(a) velocity; (b) pressure; (c) density; and (d) temperature.

5.2.1. Two-dimensional Riemann problem. This is also called the four-quadrant problem. In the
Riemann problems for two-dimensional gas dynamics, the initial data are constant in each quadrant
and so restricted that only one elementary wave: a one-dimensional shock, a one-dimensional
rarefaction wave or a two-dimensional slip line (contact discontinuity) appears at each interface.
Lax and Liu [27] have shown that there are 19 genuinely different configurations of this problem for
a polytropic gas based on different combinations of elementary waves. Results for configurations
8 and 12 from Lax and Liu [27] are shown in Section 6.3.1. Other configurations (not presented)
also show satisfactory results. Initial conditions for above two configurations are given in Table II.

For the configuration-8, four elementary waves are as follows:

1. An expansion wave moving towards left appears at the interface between quadrants 1 and 2.
2. A negative slip line appears at the interface between quadrants 2 and 3.
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Figure 5. Results for Test case 3 (Section 5.1) after time t=1 (�x=0.01,�=1.4) for non-dimensional:
(a) velocity; (b) pressure; (c) density; and (d) temperature.

3. A negative slip line appears at the interface between quadrants 3 and 4.
4. An expansion wave moving downwards appears at the interface between quadrants 1 and 4.

For the configuration-12, four elementary waves are as follows:

1. A shock wave moving towards right appears at the interface between quadrants 1 and 2.
2. A positive slip line appears at the interface between quadrants 2 and 3.
3. A positive slip line appears at the interface between quadrants 3 and 4.
4. A shock wave moving upwards appears at the interface between quadrants 1 and 4.

The non-dimensional output time for both these configurations is 0.25. A grid spacing of �x=
�y=0.0025 is used for these problems.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:403–427
DOI: 10.1002/fld



A HYBRID FVM–LBM METHOD 417

X

V
el

o
ci

ty

-2 -1 0 1 2

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Hybrid FVM-LBM
Godunov
FVS
Exact Sol

X

P
re

ss
u

re

-2 -1 0 1 2
0.5

1.5

2.5

3.5

4.5

5.5

Hybrid FVM-LBM
Godunov
FVS
Exact Sol

(a) (b)

D
en

si
ty

X

-2 -1 0 1 2
0.5

1.5

2.5

3.5

4.5

5.5

Hybrid FVM-LBM
Godunov
FVS
Exact Sol

Te
m

p
er

at
u

re

X

-2 -1 0 1 2
0.7

0.8

0.9

1

1.1

1.2

1.3

Hybrid FVM-LBM
Godunov
FVS
Exact Sol

(c) (d)

Figure 6. Results for Test case 3 (Section 5.1) after time t=1 (�x=0.02,�=1.4) for non-dimensional:
(a) velocity; (b) pressure; (c) density; and (d) temperature.

Table I. Input data for one-dimensional test cases.

Test TL uL �L TR uR �R Output time

1 1.000 1.000 1.000 1.000 −1.000 1.000 1.000
2 1.800 −1.000 1.000 1.800 1.000 1.000 0.200
3 1.000 0.000 1.000 1.000 0.000 5.000 1.000
4 1.000 0.000 1.000 0.800 0.000 0.125 0.800
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Table II. Initial conditions for four-quadrant problem.

Configuration-8 Configuration-12

Quadrant � ux uy T � ux uy T

1st 0.5197 0.1 0.1 0.76968 0.5313 0 0 0.75287
2nd 1 −0.6259 0.1 1 1 0.7276 0 1
3rd 0.8 0.1 0.1 1.25 0.8 0 0 1.25
4th 1 0.1 −0.6259 1 1 0 0.7276 1

5.2.2. Shock- square cylinder interaction. In this problem a shock generated in the one-dimensional
Test case-4 is made to interact with a solid square cylinder. Reflection of the shock from the front
face and diffraction over the rear corners are studied as time progresses. The initial position of
the shock in the domain is taken at x=0.3. A solid square cylinder (of dimension L= B=0.1) is
placed at the centre of the computational domain. Grid spacing of �x=�y=0.01 is used for this
problem. Reflective boundary condition [2] by the use of fictitious cells is implemented on the
cylinder walls, whereas transmissive boundary condition [2] is used on the computational domain
boundaries.

5.3. Multi-fluid test problem

The hybrid scheme is benchmarked for a multi-fluid shock tube, which contains different gases in
the two sections of the shock tube, separated by a diaphragm. The initial parameters on the left
and right side of the diaphragm are:

(�L ,uL ,TL ,�L , RL =1,0,1, 75 ,1), x<0

(�R,uR,TR,�R, RR =5,0,1, 97 ,0.8), x>0

6. RESULTS AND DISCUSSION

The results obtained with the hybrid method have been compared with the results from the FVM–
Godunov scheme, the FVS scheme of Zha and Bilgen and the exact analytical solution for all
one-dimensional test cases with single-fluid compressible flows. The results for single-fluid flows
are first discussed in Sections 6.1–6.3. Section 6.4 includes the results for the two-gas shock
tube.

6.1. Results for one-dimensional single-fluid compressible flows

6.1.1. Test case 1. This Riemann problem generates a flow with steep variations. The wave
structure consists of two shock waves moving on the either side of the initial discontinuity. The
contact discontinuity wave is absent in this problem. The hybrid FVM–LBM method simulates
accurate shock profiles for this Riemann problem, which is evident by comparing against the
analytical results (Figure 7). Furthermore, comparison between the results obtained using the
FVM–Godunov method, the FVS scheme of Zha and Bilgen and the hybrid FVM–LBM method
with the exact solution shows that the hybrid method simulates the shock profiles more accurately.
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Figure 7. Results for Test case 1 (Section 5.1) after time t=1 (�x=0.02,�=1.4) for non-dimensional:
(a) velocity; (b) pressure; (c) density; and (d) temperature.

6.1.2. Test case 2. The solution to this test consists of two expansion waves moving on either
side of the initial discontinuity. The contact discontinuity wave is absent in this problem as well.
The results obtained using the FVM–Godunov method, the FVS scheme of Zha and Bilgen, the
hybrid FVM–LBM method and the exact solution are shown in Figure 8. The results indicate that
the hybrid method simulates the expansion wave profiles more accurately.

6.1.3. Test case 3. This is the shock tube test case. When the diaphragm is broken (t=0), a shock
wave propagates in the left section and an expansion wave propagates in the right. The results are
shown in Figure 6. The hybrid method simulates the shock wave, the contact discontinuity and
the expansion wave more accurately as compared with the FVM–Godunov method and the FVS
scheme of Zha and Bilgen.
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Figure 8. Results for Test case 2 (Section 5.1) after time t=0.2 (�x=0.02,�=1.4) for non-dimensional:
(a) velocity; (b) pressure; (c) density; and (d) temperature.

6.1.4. Test case 4. This test case is also a shock tube test case. When the diaphragm is broken
(t=0), a shock wave propagates in the right section and an expansion wave propagates in the
left. The results obtained are shown in Figure 9. Once again, it is clear from the results that
hybrid method simulates the shock wave, the contact discontinuity and the expansion wave more
accurately as compared with the FVM–Godunov method and the FVS scheme of Zha and Bilgen.

6.2. Shock tube problem on a non-uniform grid

The purpose of this section is to show that the hybrid method can also be used with non-uniform
grids. Although our formulation employs LBM, it does not require a uniform grid structure.
This is evident from the results shown in Figure 10, where Test case 4 of Section 5.1 has been
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Figure 9. Results for Test case 4 (Section 5.1) after time t=0.8 (�x=0.02,�=1.4) for non-dimensional:
(a) velocity; (b) pressure; (c) density; and (d) temperature.

re-solved on a non-uniform grid. The non-uniform grid is generated in the following manner: the
domain is discretized into 250 computational cells; 125 cells on each side of initial discontinuity
which is taken at x=0. The grid is symmetric on both sides of x=0. The first cell on either
side has �x=0.0076. The cell length then increases by 0.0002 with each cell, away from the
point of symmetry. The extreme left and extreme right cells have �x=0.0324. On comparing
Figures 9 and 10, it is clear that similar accuracy in results is obtained with non-uniform grids as
well. These results are significant because generally LBM has been applied with uniform grids.

6.3. Results for two-dimensional single-fluid compressible flows

6.3.1. Two-dimensional Riemann problem. The density contours after time t=0.25 obtained using
the hybrid method for configuration-8 are shown in Figure 11(a). Two expansion waves can be
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Figure 10. Results for Test case 4 (Section 5.1) on non-uniform grid (t=0.8,�=1.4) for non-dimensional:
(a) velocity; (b) pressure; (c) density; and (d) temperature.

seen in the second and fourth quadrants and two slip lines are also visible in the domain. The
density contours for this configuration obtained by Lax and Liu [27] are shown in Figure 11(b)
for comparison. The density contours after time t=0.25 obtained using the hybrid method for
configuration-12 are shown in Figure 11(c). Two shock waves can be seen in the first quadrant. One
slip line is seen along the interface between the second and the third quadrant and the other slip line
along the interface between the third and the fourth quadrant. The corresponding results obtained
by Lax and Liu [27] are shown in Figure 11(d) for comparison. From the comparison presented
in Figure 11, it is evident that the hybrid method works well for a two-dimensional problem.

6.3.2. Shock-square cylinder interaction. The results for the shock-square cylinder are presented
in terms of density contours in Figure 12. Figure 12(a) shows the initial condition in the domain.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:403–427
DOI: 10.1002/fld



A HYBRID FVM–LBM METHOD 423

X

Y

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

X

Y

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

(a)

(c)

(b)

(d)

Figure 11. Density contours for two-dimensional Riemann problem after time t=0.25
(�x=0.0025,�y=0.0025): (a) configuration-8, hybrid method; (b) configuration-8, Lax and
Liu [27]; (c) configuration-12, hybrid method; and (d) configuration-12, Lax and Liu [27].

Figure 12(b) gives density variation after time t=0.1. At this time, the incident shock is completely
reflected from the front face of the cylinder. Figure 12(c) shows density contours at time t=0.14,
when the reflected shock has moved upstream from the front face of the cylinder and the incident
shock has moved to the back face. Figure 12(d) shows the density contours at time t=0.178. The
incident shock has just started to move over right top and right bottom corner of the cylinder.
Figure 12(e) shows the density contour at time t=0.188, when the shock has completely passed
over the cylinder. Generation of vortices can be seen near the right top and right bottom corners
of the cylinder. A comparison with the results obtained for a similar shock diffraction problem by
Hillier [28] shows that the hybrid scheme has captured the essential flow features in this interaction.
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Figure 12. Density contours for shock-square cylinder interaction at times: (a) t=0; (b) t=0.1;
(c) t=0.14; (d) t=0.178; and (e) t=0.188.
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Figure 13. Results for multi-fluid problem after time t=1 (�x=0.02) for non-dimensional: (a) velocity;
(b) pressure; (c) density; (d) internal energy; (e) specific heat ratio ‘�’; and (f) � (zoomed).
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6.4. Results for multi-fluid compressible flows

The results obtained for a two-gas shock tube are shown in Figure 13. It can be observed that the
hybrid method is capable of simulating the shock and contact discontinuity profiles for multi-fluid
flows. Furthermore, the hybrid method performs marginally better than the FVM–Godunov method
employed for this problem.

7. CONCLUDING REMARKS

A hybrid FVM–LBM method for solving the compressible Euler equations has been proposed in
this work. The basic discretization procedure used in this method is the FVM employed on the
conservative form of the Euler equations, thus satisfying conservation of mass, momentum and
energy. The LBM is used to obtain the inter-cell face fluxes. The hybrid method has been tested on
several test cases, both one-dimensional and two-dimensional. The test cases are chosen such that
together they have all features of compressible flows: shock, expansion and contact discontinuity.
Since satisfactory results have been obtained for all test cases, the proposed hybrid method seems
to be sufficiently robust. The hybrid method has been found to typically perform better than the
FVM–Godunov scheme and the FVS scheme of Zha and Bilgen. Several important features of
the hybrid approach are now outlined. The available LBM models for compressible flows are
limited to single fluids. An extension of an earlier LBM model has been proposed and successfully
demonstrated on a multi-fluid shock tube problem. The hybrid method has also been applied to
non-uniform grids. It is noted that the requirement of a uniform grid is generally cited as an
important drawback with LBM. The method has been successfully extended to multi-dimensions.
Finally, we propose that using a standard interpolation procedure such as ENO, the variables
distribution within a cell can be obtained and the convective derivatives in the particle kinetic
equation may be evaluated using a higher-order approximation to ultimately make the scheme
higher-order accurate. We note that the current formulation requires that the local Mach number be
less than unity—this limitation stems from the use of Kataoka and Tsutahara model. We, however,
do not believe that this is a major issue, as the implementation can be improved by choosing a
different model. In conclusion, we propose the hybrid scheme as an alternative to the available
numerical techniques for simulating a variety of compressible flow problems.
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