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Summary. Lattice Boltzmann Method (LBM) as a relatively new numerical method has re-
cently achieved considerable success in simulating compressible fluid flows. A hybrid method,
which is a combination of the usual Finite Volume Method (FVM) and the LBM, is proposed
here to solve the Euler Equations. The inter-cell parameters are obtained by solving the local
Riemann problem for each inter-cell using LBM. LBM is a non-iterative process and is thus
numerically inexpensive as compared to the Godunov scheme. The proposed scheme is bench-
marked for several 1-D problems such as the shock tube problem, the Roe test and the Riemann
problem. The results obtained using this hybrid method are compared with those obtained using
the Godunov scheme.

1 Introduction

Lattice Boltzmann Method (LBM) has developed as an alternative and promising numer-
ical technique for simulating fluid flows, e.g., [1],[2],[3]. Boltzmann equation is solved to
simulate the fluid flow using collision models such as the Bhatnagar-Gross-Krook (BGK)
model [4]. The method is computationally less expensive and the boundary conditions
can be easily implemented to get high accuracy [5]. It is very effective even with complex
boundaries [6] and can also simulate steep shock and contact discontinuity profiles. One
of the biggest disadvantages of LBM is that it cannot be used with a non-uniform mesh.
FVM along with the use of the Godunov scheme to obtain the interface parameters has
been widely used to simulate Euler equations [7]. The key ingredient of this scheme is
the solution of a Riemann problem. There is no closed-form solution to the Riemann
problem and iterative methods such as the Newton Raphson method are used to obtain
the solution. FVM can be used with non-uniform mesh but the use of iterative schemes to
obtain the solution of Riemann problem makes the method computationally expensive.

The proposed hybrid method in the present work solves the Euler equations using
FVM with the solution to the Riemann problem being obtained by LBM. We employ the
compressible perfect gas LB model proposed by Kataoka and Tsutahara [8]. This model
allows for the free choice of specific heat ratio. LBM is a non-iterative solver for the
Riemann problem and is therefore expected to be more efficient than Godunov scheme.
Thus the hybrid method is expectecd to incorporate the advantages of both FVM and
LBM.

2 Non-dimensional form of the Euler equations

All variables and equations are expressed in their non-dimensional form for the conve-
nience of numerical calculations and analysis. Let L, pro, and Tro respectively be the
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reference length, density and temperature. Then the other non-dimensional variables are
defined as

t:ﬁ,x:%,y:% (1)
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The symbol (") indicates a parameter in its dimensional form.
The two-dimensional time-dependent Euler equations in differential form are
Uy +FU),+GU), =0, (3)
where U, F(U) and G(U) are the vectors of conserved variables and fluxes given by
M o 1 p i
U= pu: , F(U) = p’lfzcuy , GU) = o +yp . (4)
E uz(E + p) uy(E + p)
E (total internal energy per unit volume) is given by
E = p[0.5(uj + uj) + €] (5)
Equation of state is given by
p=pT. (6)
A conservative scheme for Eq. 3 is of the form
Uity =Uiy+ j—;[Fi—lm — Fipap2] + j_;[Gi—lﬂ — Gyl (7)

where U(T;’ j)denotes the parameters at the node (4, j) and at time interval n. The inter-cell
numerical fluxes F' and G are computed using the solution of local Riemann problem.
Instead of solving the local Riemann problem in an iterative manner, the LBM scheme
is used to calculate inter-cell parameters.

3 LBM scheme for compressible Euler equations

LBM proposed by Kataoka and Tsutahara is used to simulate the inter-cell parameters
at the new time step from the known cell and inter-cell parameters at the earlier time
step. The solution procedure is non-iterative and is expected to be more efficient than the
Godunov scheme where the analytical solution of the local Riemann problem is obtained
by iterative procedure.

We now present a synopsis of the LB model developed by Kataoka and Tsutahara. In
the Lattice Boltzmann model, the macroscopic variables density, velocity and tempera-
ture are defined in terms of a particle velocity distribution function (f;) as:
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Here, c;; and cy; are the molecular velocities of the particle moving in i*® direction (i
=1,2,..., I =9) and 5; is another variable which has been introduced to control the
specific heat ratio. b is a constant which is expressed in terms of specific heat ratio (vy)

as 5
= 9
b= ©)
The kinetic equation of the non-dimensional form is
Ofi 0f; Ofi _ [ (p,us,uy, T) — fi
ot TCrigy Tig, = ¢ )

where € is the Knudsen number and the distribution function at the old time step is
obtained from the equilibrium distribution function, i.e.,

£ = F0(0% ug,ug, T°). (11)
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(10)

The two-dimensional Lattice Boltzmann Model is now presented:

(0,0) (1=1)
(Caiycyi) = { vi(cos B, sin TP (i =2,3,4,5) (12)

va(cos ””;5) ,sin ’T(i;s)) (1=6,7,8,9)

and

0 (i=2,3,..9)

where v, v2 (v1 # v2) and 7o are non-zero constants.

The local equilibrium velocity distribution function is defined as
£ = p(Ai + Bi(ugCei + uycyi) + Di(ugce; +uycyi)®) (i =1,2,3,...9) (14)

where

A; = mgl_—vgj[—vg +((b-2)% +2)T + Z—%(ui +ul)] (i = 2,3,4,5) (15)

A 2 (0-2% + DT + G2 +u2)] (i = 6,7,8,9)
4(vZ—v%) 1 vI\Tw Y L e
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—v3+(b+2)T+ul+ul .
2 va(vf—vg) (1’ = 2, 37 47 5)
.2 2., 2
St (i =6,7.8,9)
s (0 =2,3,4,5)

7o (i =6,7,8,9)

The parameters in Eq. 12 and Eq. 13 are chosen to be v; = 1, v9 = 3, 179 = 2. Discretized
form of Eq. 10 is used to determine the new inter-cell parameters from the old node
and inter-cell parameters in a single time step. In the present work the discretization
employed is first order forward in time and first order upwind in space.

4 Results

The hybrid method has been numerically benchmarked against several test cases. These
include several one-dimensional initial value problems (IVP) in gas dynamics, demon-
strating the generation and propagation of shock waves, rarefaction waves and contact
discontinuity waves. Specific heat ratio of the gas in all cases is 1.4 (or b = 5) and the
time step is set at At = €/4. All results from this hybrid scheme have been compared
with the exact solutions and the results obtained from Godunov scheme.

4.1 The shock tube problem

The rupture of a diaphragm which separates two stationary gases generates a wave system
that typically consists of a rarefaction wave, a contact discontinuity and a shock wave.
The initial variables of shock tube problem are given by

(pLauL:TL) = (1a071) (:E < 0)7

(pr;ur,Tr) = (5,0,1) (x> 0).
The pressure and the density profiles within the shock tube at a non-dimensionalized
time, ¢ = 1, are shown in Fig. 1. It can be noted that the hybrid scheme is able to
capture the wave structure more accurately as compared with the FVM with Godunov
scheme.

4.2 The Riemann problem

The Riemann problem is a slight generalization of the shock tube problem in the sense
that the two gases on either side of the diaphragm may not be stationary. The given
initial conditions generates a centered wave function which consists of two shock waves.
The initial variables of Riemann problem are given by

(pLauLaTL) = (17 ]-7 1) (.73 < 0)7

(pR;uRaTR) = (17 _17 1) (.CL' > 0)
The pressure and the density profiles within the one-dimensional domain at a non-
dimensionalized time, t = 1, are shown in Fig. 2. It can again be noted that the hybrid
scheme is able to capture the wave structure more accurately as compared with the FVM
with Godunov scheme.
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Fig. 2. Riemann problem: pressure and density profile at t =1 (Az = 0.02 ; ¢ = 0.001)

4.3 The Roe test

The given initial condition generates a centered wave function which consists of rarefac-
tion waves. The initial variables of Roe test are given by

(pr,ur,Tr) = (1,-1,1.8) (z <0),

(pR,uR,TR) = (1, 1, 1.8) (.’L’ > 0).

The pressure and density profiles within the one-dimensional domain at a non-dimensionalized
time, ¢t = 0.2, are shown in Fig. 3. Once again it is seen that the hybrid scheme is able to
capture the wave structure more accurately as compared with the FVM with Godunov
scheme.

5 Conclusion

A hybrid method which is a combination of FVM and LBM is presented. The bench-
marking tests show that the hybrid FVM-LBM scheme simulates the shock and con-
tact discontinuity profile more accurately as compared to the profiles simulated by the
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Fig. 3. Roe test: pressure and density profile at t = 0.2 (Az = 0.02 ; ¢ = 0.001)

Godunov scheme. The new scheme is computationally very efficient and this is clearly
indicated by the reduced processing times as shown in the Table 1. In order to clearly
determine the computational efficiency and accuracy, the hybrid scheme is required to
be employed to simulate multidimensional problems; such efforts are underway.

Table 1. Comparison of processing times for the FVM-LBM scheme and the Godunov scheme

Benchmarking tests |FVM-LBM hybrid scheme|Godunov scheme
Shock tube problem 33.63 seconds 45.71 seconds
Riemann problem 34.78 seconds 46.44 seconds
Roe test (time = 0.2) 7.19 seconds 8.50 seconds
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