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Abstract

A fundamental requirement in realistic computational geophysical fluid dy-
namics is the optimal estimation of gridded fields directly from the spatially
irregular and multivariate data sets that are collected by varied instruments
and sampling schemes. In this work, we derive and utilize new schemes for
the mapping and dynamical inference of ocean fields in complex multiply-
connected domains and study the computational properties of our new map-
ping schemes. Objective Analysis (OA) is the statistical estimation of fields
using the Bayesian-based Gauss-Markov theorem, i.e. the update step of
the Kalman Filter. The existing multi-scale OA approach of the Multidisci-
plinary Simulation, Estimation and Assimilation System consists of the suc-
cessive utilization of Kalman update steps, one for each scale and for each cor-
relation across scales. In the present work, the approach is extended to field
mapping in complex, multiply-connected, coastal regions and archipelagos.
A reasonably accurate correlation function often requires an estimate of the
distance between data and model points, without going across complex land-
forms. New methods for OA based on estimating the length of optimal short-
est sea paths using the Level Set Method (LSM) and Fast Marching Method
(FMM) are derived, implemented and utilized in general idealized and real-
istic ocean cases. Our new methodologies could improve widely-used gridded
databases such as the climatological gridded fields of the World Ocean Atlas
(WOA) since these oceanic maps were computed without accounting for the
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coastline constraints. A new FMM-based methodology for the estimation of
absolute velocity under geostrophic balance in complicated domains is also
discussed. Our new schemes are compared with other approaches, includ-
ing the use of stochastically forced partial differential equations (SPDE). We
find that our FMM-based scheme for complex, multiply-connected, coastal
regions is more efficient and accurate than the SPDE approach. We also
show that the field maps obtained using our FMM-based scheme do not re-
quire postprocessing (smoothing) of fields. The computational properties of
our new mapping schemes are studied in detail. We find that higher-order
schemes improve the accuracy of distance estimates. We also show that the
covariance matrices we estimate are not necessarily positive definite because
the Weiner Khinchin and Bochner relationships for positive definiteness are
only valid for convex simply-connected domains. Several approaches to over-
come this issue are discussed and qualitatively evaluated. The solutions we
propose include introducing a small process noise or reducing the covariance
matrix based on the dominant singular value decomposition.

Key words:
Field Mapping, Objective Analysis, Levitus Climatology, Fast Marching
Method, Level Set Method, Gauss-Markov Estimation, Geostrophy

1. Introduction and Motivation

The statistical estimation theory of Objective Analysis (OA) was intro-
duced by Gandin (1965) to the field of meteorology and was extended to
oceanography by Bretherton et al. (1976). The theory is based on the Gauss-
Markov theorem (Plackett, 1950), and it provides a sound basis for interpo-
lating irregularly spaced data onto a computational grid. Upto details of
the set-up, which are specific to the oceanic and atmospheric fields, the OA
scheme is equivalent to utilize the Kalman update steps of the Kalman Filter
to grid the irregularly-spaced data. Specifically, the data is gridded based
on the specified prior field estimate and error covariance matrices. The OA
methodology has been well formulated for open oceans without any landforms
(convex simply-connected domains), but the OA in complex coastal regions
(multiply-connected domains) is one of the ‘last’ mapping problems which
remains to be studied in detail. This is one of the main research question of
the present work.

Our OA research is carried out within the Multidisciplinary Simulation,
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Estimation and Assimilation System (MSEAS: http://mseas.mit.edu) group.
MSEAS consists of a set of mathematical models and computational meth-
ods for ocean predictions and dynamical diagnostics, for optimization and
control of autonomous ocean observation systems, and for data assimilation
and data-model comparisons. It is used for basic and fundamental research
and for realistic simulations and predictions in varied regions of the world’s
ocean, recently including monitoring (Lermusiaux, 2007), naval exercises in-
cluding real-time acoustic-ocean predictions (Xu et al., 2008) and environ-
mental management (Cossarini et al., 2009). Several different models are
included in the MSEAS, including a new free-surface primitive-equation dy-
namical model which uses two-way nesting free-surface and open boundary
condition schemes (Haley et al., 2008). This new free-surface code is based
on the primitive-equation model of the Harvard Ocean Prediction System
(HOPS). Additionally, barotropic tides are calculated from an inverse tidal
model (Logoutov, 2008).

In MSEAS, the Kalman updates for data gridding are carried out suc-
cessively, from the largest scale (uniform mean prior) to the smallest scale,
using a sequential processing of observations and scale separation. In a two-
scale version, a two-staged OA approach (Lermusiaux, 1997, 1999) maps the
scarcely available data onto oceanic fields in two steps: the larger and the
smaller scale steps. The two main requirements for the Objective Analysis
based on a Kalman update (also called the Gauss Markov estimation theory)
are the statistical description of the field being estimated and the observa-
tional noise covariance. While observational noise statistics is dependent on
the measurement sensor, the knowledge of the field statistics does not come
easily in oceanography due to the scarcity of observations. A description of
field statistics is often provided by a simple analytical correlation function
which depends on the spatial separation distance and the spatial-temporal
scales (Carter and Robinson, 1987). Other schemes also utilize dynamical
models to construct covariances.

Our research study on Objective Analysis for coastal regions has been
motivated by the Philippines Straits Dynamics Experiment (PhilEx) spon-
sored by the Office of Naval Research. The goal of PhilEx is to enhance
understanding of the oceanographic processes and features arising in and
around straits, and to improve the capability to predict the inherent spatial
and temporal variability of these regions using models and advanced data
assimilation techniques. There are several examples of Objective Analysis
in coastal regions (Hessler, 1984; Stacey et al., 1988; Paris et al., 2002), but
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the methodologies employed in these examples do not satisfy the coastline
constraints (e.g. there should be no direct relationship across landforms).

New methodologies for field (e.g. temperature, salinity, biology, and ve-
locity) mapping in complex multiply-connected coastal domains and archipela-
gos are derived and demonstrated in this paper. These methodologies will
likely be very useful in improving the World Ocean Atlas (WOA) clima-
tologies in complex multiply-connected domains. The WOA provides global
ocean climatology containing monthly, seasonal and annual means of tem-
perature (T) and salinity (S) fields at standard ocean depths. The tem-
perature and salinity climatologies presented as part of the WOA (Levitus,
1982), which is also termed as ‘Levitus Climatology’ and its atlas updates in
1994 (Levitus and Boyer, 1994; Levitus et al., 1994), 1998 (Antonov et al.,
1998a,b,c; Boyer et al., 1998a,b,c), 2001 (Stephens et al., 2002; Boyer et al.,
2002) and 2005 (Locarnini et al., 2006; Antonov et al., 2006; Garcia et al.,
2006a,b) have proven to be valuable tools for studying the hydrographic
structures of the World’s oceans. The WOA climatologies have been very
useful for providing initial and boundary conditions to ocean circulation mod-
els. As its MSEAS counterpart, the OA procedure for ‘Levitus Climatology’
requires the use of an analytical correlation function to determine the covari-
ance (or weight function, as described by Levitus (1982)). If the “straight
Euclidean distance” (the straight line distance between two points) is used
in such analytical correlation functions, the distance estimate is inappro-
priate for complex multiply-connected domains, as this “straight Euclidean
distance” goes across land and so violate the coastline constraints. The aim
of the new methodologies proposed in this paper is to satisfy the coastline
constraints in complex multiply-connected domains.

The paper is organized as follows: The problems addressed in this paper
are described in Section 2. In Section 3, we review the two staged multi-
scale static field mapping approach from MSEAS. In Section 4, we introduce
the new OA methodologies based on the Level Set Method and the Fast
Marching Method. An optimization approach for computing the transport
streamfunction and absolute velocity under geostrophic balance by minimiz-
ing the inter-island transport is also discussed. The OA approach based on
the stochastically forced partial differential equations (SPDE) is introduced
in Section 5. In Section 6, applications of our new methodologies, for the
complex regions of Dabob Bay and Philippines Archipelago are presented.
In Section 7, we study the computational properties of our new mapping
schemes. Section 8 consists of a summary and conclusions.
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2. Problem Statement

We begin by introducing the definitions of convex domains, simply and
multiply connected domains. A domain is said to be convex if for every
pair of points within the domain, every point on the straight line segment
that joins them is also within the domain. A domain is said to be simply-
connected if any closed curve within it can be continuously shrunk to a point
without leaving the domain. A domain which is not simply-connected is
called multiply-connected.

The main research question of this work is field mapping in complex
multiply-connected coastal domains. As discussed in Section 1, this is one of
the ‘last’ mapping problems which remains to be studied in detail. Objective
Analysis requires a description of field statistics which is often provided by
analytical correlation functions (Carter and Robinson, 1987). Such analyti-
cal correlation functions are dependent on the spatial separation distance.
We have also discussed in Section 1 that the use of “straight Euclidean
distance” in complex multiply-connected domains is not appropriate since
there is no direct relationship across landforms. An appropriate measure
of distance to be used in the correlation function for OA in such complex
multiply-connected regions should be longer. It is nonetheless the length of
the optimal shortest sea path i.e., the shortest path without going across
complex landforms. Examples of the optimal path length in sub-domains of
Monterey Bay, Massachusetts Bay, Dabob Bay and Philippines Archipelago
are illustrated in Figure 1. Here, we have considered the optimal shortest sea
path, but in future we would like to investigate the selection of paths which
governs the dynamics in the ocean.

Such an optimal shortest sea path in complex multiply-connected re-
gions can be obtained using the following numerical techniques: the Level
set method (LSM) (Osher and Sethian, 1988; Sethian, 1999b) and the Fast
Marching Method (FMM) (Sethian, 1996, 1999b). These methods model
the propagation of evolving boundaries using appropriate PDE’s. They have
been applied in both the Philippines Archipelago and Dabob Bay (WA, USA)
regions. Other optimization methods for path planning, for example Dijk-
stra’s algorithm (Bertsimas and Tsitsiklis, 1997) and Bresenham-based line
algorithm (Bresenham, 1965) could also be used for mapping in complex do-
mains, but FMM and LSM schemes are shown to be computationally more
efficient and more accurate. These methods are also compared to the OA ap-
proach based on using the stochastically forced partial differential equations
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(Balgovind et al., 1983; Lynch and McGillicuddy, 2001).
The FMM and LSM can also be utilized for estimating the minimum

vertical area along any path between two islands. Vertical areas across land-
forms are needed to compute the transport streamfunction along the island
coastlines, which minimizes the inter island transport. Such estimates of the
transport streamfunction will aid in the computation of absolute velocity
under geostrophic balance (Wunsch, 1996) in complex domains with islands.

Computational properties of the new mapping schemes are also investi-
gated in detail. To reduce the computational cost and to understand the
impact of individual data, sequential processing of observations (Parrish and
Cohn, 1985; Cho et al., 1996) is utilized. By definition, the prior covari-
ance matrix should be positive definite. According to the Wiener-Khinchin
and Bochner theorem (Papoulis, 1991; Yaglom, 2004; Dolloff et al., 2006),
the covariance matrix based on analytical correlation function will be pos-
itive definite if the Fourier transform (or the spectral density of the cor-
relation function) is non-negative for all frequencies. These theorems are
valid only for convex simply-connected domains. In our complex multiply-
connected domains, the covariance matrix may become negative due to: a.
Numerical error in the computation of the optimal path length using our
new FMM/LSM based schemes b. The presence of landforms. These is-
sues may lead to divergence problems (Brown and Hwang, 1997) in the field
mapping schemes. Therefore, the following two questions were resolved and
investigated: a). What are the computational errors in optimal path lengths
computed using the FMM/LSM and how can they be reduced? b). What
are the computational issues including non-positive definite covariances that
arise in a multiply-connected coastal domain and how can they be remedied?
These computational studies were indispensable for the development of our
novel FMM/LSM based scheme for complex multiply-connected domains.

3. MSEAS Objective Analysis Approach

The multi-scale OA approach from MSEAS, which require the compu-
tation of Euclidean distance, is well established for mapping heterogeneous,
multivariate, irregular data (Gandin, 1965; Bretherton et al., 1976; Carter
and Robinson, 1987; Daley, 1993) in open oceans without islands or archipela-
gos as well as in atmospheric sciences. The two staged OA approach (Lermu-
siaux, 1997, 1999) in MSEAS, utilizes the Gauss-Markov or minimum error
variance criterion (Plackett, 1950) to map observations to the numerical grid.
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Let us denote the vector of numerical grid point locations as x and the vec-
tor of measurement locations as X, then the OA estimate of the field (ψOA)
based on the background field (ψ̄,d̄) is given by:

ψOA = ψ̄ + Cor(x,X)[Cor(X,X) + R]−1[d− d̄]

= ψ̄ + K[d− d̄] (1)

where, d̄ = Hψ̄, H is the observation matrix, d is the sensor data vector, R
is the observational error covariance matrix, and Gain (K) is given by:

K = Cor(x,X)[Cor(X,X) + R]−1 (2)

The error covariance of the estimated field is given by:

POA = E[(x− E[x])(x− E[x])T ]

= Cor(x,x)−KCor(X,x). (3)

A comparison between the MSEAS update equations (OA) and the Kalman
filter (KF) update equations is made in Table 1.

KF Update Equations MSEAS Update equations
Kalman gain: OA estimator:
Kt=Pt|t−1Ht

T×[HtPt|t−1Ht
T+Rt ]−1 Gain = Cor(x,X)×[Cor(X,X) + R]−1

State estimate update: State estimate update:
x̂t = x̂t|t−1 +Kt(yt −Htx̂t|t−1) ψOA = ψ̄ +Gain[d− d̄].
Error Covariance equation: Error Covariance equation:
Pt = (I −KtHt)Pt|t−1 POA = Cor(x,x)−Gain× Cor(X,x)

Table 1: Comparison between the Kalman Filter and the MSEAS OA update
equations.

Thus, the update equations of OA are equivalent to the update equations
of the discrete Kalman filter algorithm where the background error correla-
tion matrix for the field-to-data points, Cor(x,X), and the background corre-
lation matrix at the data points, Cor(X,X), are directly related to the KF a
priori error covariance matrix Pt|t−1 i.e. Cor(x,X) = Pt|t−1H

T
t and Cor(X,X)

= HtPt|t−1H
T
t (Ht is the observation matrix). The matrix R represents the

error covariance for the sensor data d at the data points. This matrix is
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often chosen diagonal with a uniform non-dimensional error variance ε2, i.e.
R = ε2I. In MSEAS, the correlation matrices are often generated from the
following isotropic function:

Cor(r) =

(
1− r2

L2
0

)
exp

[
−0.5× (

r2

L2
e

+
∆t2

τ 2
)

]
(4)

Here, ∆t is the difference between the observation and the estimation time
and τ is the decorrelation time scale. The parameters L0 and Le are the zero-
crossing and the e-folding length scales. The scalar r is the spatial separation
distance.

The MSEAS OA is carried out in two stages. In the first stage, the largest
dynamical scales are mapped onto computational grid using the parameters
(τ , L0, Le)LS. The background field for this stage is often chosen to be con-
stant and equal to the horizontal mean of all the observations. In the second
stage, the smaller scales are mapped using the coefficients (τ , L0, Le)ME often
corresponding to the most energetic (meso) scales. The background field for
this stage is the first stage OA. A major assumption in this OA approach
is that the errors in the largest and the most energetic stages are statisti-
cally independent. The accuracy of the field estimates obtained using OA
also depends on the spatial and time scale parameters used in the analytical
correlation function, as well as the correlation function itself. The MSEAS
OA approach has many similarities with the approach used for ‘Levitus Cli-
matology’ (Levitus, 1982; Locarnini et al., 2006; Antonov et al., 2006; Garcia
et al., 2006a,b), which is described in Appendix A.

The above approach for the MSEAS OA and ‘Levitus Climatology’, which
are based on computing the covariance or the weight factors by providing the
Euclidean distance as an input to the correlation function, are valid only for
open oceans. So, the use of the optimal distance (the minimum distance
between two points without going across complex landforms) is proposed
to satisfy the coastline constraints. LSM or FMM, which are discussed in
Section 4, can be utilized to obtain such optimal distance between any two
points in a complex (e.g. multi-island) multiply-connected coastal region.

4. Methodologies for estimating the optimal path length in com-
plex coastal regions and archipelagos

This Section describes the new methodologies for Objective Analysis,
which are based on estimating the optimal path length (shortest path between
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two points without going across landforms), in complex multiply-connected
coastal regions. The new methodologies are based on finding the length
of the optimal path using the Level Set Method and the Fast Marching
Method. These methods are more accurate and computationally inexpensive
as compared to the conventional Bresenham-based line algorithm (Bresen-
ham, 1965) and Dijkstra’s algorithm (Bertsimas and Tsitsiklis, 1997).

4.1. Objective Analysis using the Level Set Method (LSM)

A level set of a real-valued function φ of n variables is a set of the form:

{(x1, ..., xn)|φ(x1, ..., xn) = c} (5)

where, c is a constant. That is, a level set is the set where the function φ
takes on a given constant value c.

Osher and Sethian (1988) proposed a numerical technique, which is called
the Level Set Method, to implicitly represent and model the propagation of
evolving interfaces under the influence of a given velocity field using ap-
propriate partial differential equations (PDE’s). An initial value formulation
describing the interface motion is now discussed. The initial position of inter-
faces are given by level sets of the function φ. The evolution of this function φ
is linked to the propagation of the interface through a time-dependent level
set equation. Interfaces can be represented explicitly (parametrized inter-
faces i.e. interfaces given by x = x(s), where s is the parameter) or implicitly
(interfaces given by zero level set i.e. φ(x) = 0). Using the implicit repre-
sentation φ(x), where x is the position vector, the convection equation can
be solved to propagate level sets by a velocity field v:

φt + v.∇φ = 0 (6)

In many cases, one is interested only in the motion normal to the boundary.
Therefore, the velocity v can be represented using the scalar speed function
F and the normal direction n. Thus.

v = Fn = F
∇φ
|∇φ|

(7)

The hyperbolic, non-linear (Hamilton-Jacobi equation) level set equation,
obtained from Equations 6 and 7, is given by:

φt + F |∇φ| = 0 (8)
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The following first order upwinded finite difference approximation can be
used to numerically solve the level set equation (2-dimensional in space)
(Osher and Sethian, 1988; Sethian, 1999b):

φn+1
i,j = φni,j −∆t[max(F, 0)∇+

i,j +min(F, 0)∇−i,j]

where,

∇+
i,j = [max(D−xφni,j, 0)2 +min(D+xφni,j, 0)2 +

max(D−yφni,j, 0)2 +min(D+yφni,j, 0)2]1/2

∇−i,j = [min(D−xφni,j, 0)2 +max(D+xφni,j, 0)2 +

min(D−yφni,j, 0)2 +max(D+yφni,j, 0)2]1/2 (9)

Here, D−x is the first order backward difference operator in the x-direction;
D+x is the first order forward difference operator in the x-direction, etc.
Mathematically, these operators are given by:

D−xφi,j =
φi,j − φi−1,j

∆x
; D+xφi,j =

φi+1,j − φi,j
∆x

(10)

The level set equation is an initial value problem which tracks the evolution of
the level sets φ=constant assuming F is given by the specifics of the evolution
of the φ for a particular problem.

If the scalar speed function of the front F is non-negative, then the steady
state boundary value problem, known as the Eikonal equation, can be for-
mulated to evaluate the arrival time function T(x). The Eikonal equation
representing the time T(x) for the “frontal interface” to reach the position
x from its initial position is given by:

F |∇T | = 1 (11)

The Eikonal equation simply states that the gradient of the arrival time
function is inversely proportional to the speed of the front. To solve the
Eikonal equation, a time dependent problem is proposed. The time evolved
steady state solution of the resultant Hamilton-Jacobi equation is the Eikonal
equation. Mathematically, this is written as:

Tt + F |∇T | = 1
steady−→ F |∇T | = 1 (12)

This Hamilton-Jacobi equation (Equation 12 (Left)) can be discretized using
the numerical scheme for the Level Set equation. The steady state solution
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of this Hamilton-Jacobi equation will be the solution of the Eikonal equation
(Equation 12 (Right)).

The Level Set Method has been used in a wide variety of applications
which include the arrival time problems in the control theory, generation of
minimal surfaces, flame propagation, fluid interfaces, shape reconstruction
etc. In the oceanic context, the method can be used to determine the optimal
path length.
Numerics and operation count for the LSM: MATLAB code has been
developed for Objective Analysis using the Level Set Method. For estimating
the optimal distance, the scalar speed function F is set to 0 for the grid points
on land and 1 for the grid points on water. The level set T(x), which is the
arrival time function, also represents the optimal distance from the starting
position to the position vector x for the above speed function F . The above
OA approach, which is based on computing the evolution of all the level
sets and not simply the zero level set corresponding to the front itself, has
an operation count of O(N3) in two dimensions for N2 grid points (Sethian,
1999b). Thus, it is a computationally expensive technique since an extra
dimension has been added to the problem.

A modified approach named ‘Fast Marching level set method’, which sig-
nificantly reduces the operation count, is described next. Roughly speaking,
the two possible ways to view these solution techniques are either iteration
towards the solution, or direct construction of the stationary solution T.
While LSM constructs the solution to the Eikonal equation (Equation 11) by
iterating towards the solution, FMM is based on direct construction of the
stationary solution T.

4.2. Objective Analysis using the Fast Marching Method (FMM)

The Fast Marching Method (FMM) for monotonically advancing fronts,
which has been proposed by Sethian (1996, 1999b), is described. This method
leads to an extremely fast scheme for solving the Eikonal equation (Equation
11). The Level set method relies on computing the evolution of all the level
sets by solving an initial value partial differential equation using numerical
techniques from hyperbolic conservation laws. As an alternative, an efficient
modification is to perform the work only in the neighborhood of the zero
level set, as this is known as the ‘narrow band approach’. The basic idea
of this alternative approach is to tag the grid points as either “alive”, “land
mines” or “far away” depending on whether they are inside the band, near
its boundary, or outside the band, respectively. The work is performed only
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on alive points, and the band is reconstructed once the land mine points are
reached.

FMM, which allows boundary value problems to be solved without itera-
tions, is now discussed in detail. The method is applicable to monotonically
advancing fronts (i.e. the front speed (F ≥ 0 or F ≤ 0 ) which are governed
by the level set equation (Equation 12). The steady state form of the level
set equation is the Eikonal equation (Equation 11) which says that the gra-
dient of the arrival time surface is inversely proportional to the speed of the
front. For the two dimensional case, the stationary boundary value problem
is given by:

|∇T |F (x, y) = 1 s.t. Γ = {(x, y)|T (x, y) = 0} (13)

where Γ is the starting position of the interface. The first order finite differ-
ence discretization form of the Eikonal equation (Sethian, 1999b) at the grid
point (i,j) is given by:

[max(D−xij T, 0)2 +min(D+x
ij T, 0)2 +

max(D−yij T, 0)2 +min(D+y
ij T, 0)2]1/2 =

1

Fij

or,

[max(max(D−xij T, 0),−min(D+x
ij T, 0))2 +

max(max(D−yij T, 0),−min(D+y
ij T, 0))2] =

1

F 2
ij

(14)

Equation 14 is essentially a quadratic equation for the value at each grid
point (assuming that values at the neighboring nodes are known). An itera-
tive algorithm for computing the solution to Equation 14 was introduced by
Ruoy and Tourin (1992). FMM is based on the observation that the upwind
difference structure of Equation 14 means that the information propagates
“one way”, i.e. from the smaller values of T to the larger values. Therefore,
FMM rests on solving Equation 14 by building the solution outward from
the smallest time value T. The front is swept ahead in an upwind manner
by considering a set of points in a narrow band around the existing front
and bringing new points into the narrow band structure. The fast marching
algorithm is discussed in detail in Appendix B.

The use of higher order FMM to reduce the error in the estimation of
optimal path length is discussed in Section 7.2. Higher order FMM can
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be useful in solving the divergence problems associated with our new OA
scheme, but it is computationally expensive. These issues are discussed later
in Sections 7.2 and 7.3.
Numerics and operation count for the FMM: MATLAB code has been
developed for Objective Analysis using the Fast Marching Method. Once
again, for estimating the optimal distance, the scalar speed function F is set
to 0 for the grid points on land and 1 for the grid points on water. FMM
has a significantly lower operation count of O(N2 Log N) for N2 grid points
(Sethian, 1999b). Thus, it is a computationally inexpensive technique as
compared to the Level Set Method.

The Fast Marching Method, as discussed above, is an efficient way to
obtain the correlation between two locations by selecting the optimal path.
The length of the optimal path computed using FMM or LSM can then be
used for setting up the covariance matrix using the analytical correlation
function (Equation 4).

4.3. Absolute velocity under geostrophic balance: Estimating the minimum
vertical area in complex coastal regions and archipelagos

The optimization methodology for estimating the inter-island transport,
proposed by Haley et al. (2009) is discussed in Appendix C. The objective of
this methodology is to find a set of constant values for the transport stream-
function (Ψ) along the island coastlines that produce a suitably smooth ini-
tialization velocity field, e.g. with the fewest large velocity hot-spots, i.e.
minimize the maximum absolute velocity in the initialized geostrophic flow
field. Fortran-90 code from MSEAS (Haley, personal communication) has
been modified to utilize the weight function based on the minimum vertical
area between islands, which can be computed using the FMM/LSM. For ob-
taining the minimum vertical area, the scalar speed function in the Eikonal
Equation (Equation 11) is chosen to be F(x,y) = 1/H(x,y).

5. Objective Analysis using stochastically forced partial differential
equations (SPDE’s)

The use of Euclidean distance in the field covariance computed from the
isotropic correlation function is not applicable in coastal regions since the
complex the coastline constraints, e.g. there should be no direct relation-
ship across landforms (islands, peninsulas etc.), need to be accounted. The
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approach discussed in this section represents the field and its coastline con-
straints by a partial differential equation subject to stochastic forcing. The
central idea of this approach, which is based on using stochastically forced
partial differential equations (SPDE), is the numerical construction of a field
covariance such that it accounts for the coastal constraints. The underlying
field variability is represented as an outcome of a stochastic process using
a SPDE and the stochasticity represents the uncertainty in this differential
equation. For example, the stochastically forced Helmholtz equations in 1-D
and 2-D in space for the field ψ in an unbounded domain (Balgovind et al.,
1983) are associated with the following covariance functions respectively:

∂2ψ

∂x2
− k2ψ = ε(x) ⇔ Cψψ(r) = (1 + kr)e(−kr)

∇2ψ − k2ψ = ε(x, y) ⇔ Cψψ(r) = krK1(kr) '
(π

2
kr
)1/2

(
1 +

3

8kr

)
e−kr

, kr →∞ (15)

where, K1 is the Bessel function of the second kind. The process noise ε is
a random disturbance with mean 0, standard deviation 1 and has no spatial
correlation. Also, the length scale corresponds to the inverse of the SPDE
parameter (k). Denman and Freeland (1985) have proposed other correlation
functions which can also be linked to the appropriate SPDE’s.

A major advantage of this SPDE approach is that the field-to-field co-
variance Cor(x,x) can be computed numerically from the discretized SPDE
along with appropriate boundary conditions (i.e. no flux boundary condition
across islands) to directly account for the coastline constraints (Lynch and
McGillicuddy, 2001). The discretization of SPDE (Equation 15) or any other
differential operator on a finite element grid leads to the matrix form:

[A]{ψ} = {e} (16)

All the coastline constraints are then incorporated automatically in this ma-
trix form (16). Since [Cee] = [I], the covariance matrices for field-to-field
points and field-to-data points are directly obtained from Equation 16:

Cor(x,x) = [A]−1[Cee][A]−T = ([A]T [A])−1

Cor(x,X) = [A]−1[Cee][A]−T [H]T = ([A]T [A])−1[H]T (17)

The covariance matrix (17) obtained using the SPDE approach can be used
along with Gauss-Markov Estimation theory to perform Objective Analyses
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in coastal regions. A limitation of this approach is that the resulting fields can
be affected by the discretization error associated with the discretized form of
the SPDE. In fact, we found that we often need to postprocess (smooth out)
the SPDE-gridded fields to remove spurious field gradients. Such gradients,
even when small, can lead to spurious velocities by aggregate integration in
the vertical for the estimation of absolute velocity under geostrophic balance.
It has also been verified that that the SPDE approach is computationally
expensive when compared to our new FMM-based methodology.

A similar variant of the above methodology represents the covariance
(Cψψ), instead of the field (ψ), by a SPDE like Helmholtz equation (Lo-
goutov, personal communication). Spatial variation in the resulting OA field
are found to be more prominent with this new scheme (Agarwal, 2009). An
heuristic reason is that this new representation corresponds to carrying out
“smoothing” using the Helmholtz equation only once as compared to twice
in the original representation. Both of these methods, the SPDE specified
for the field (ψ) and the SPDE specified for the covariance (Cψψ) were im-
plemented in MATLAB (Logoutov personal communication).

Even though many different SPDE’s could be utilized for mapping a field,
in the example that follows, we selected the stochastically forced Helmholtz
equation. First, the dynamics of the atmosphere can be approximately gov-
erned on the time scale of a few days by a Helmholtz-like equation, which is
the equation for the conservation of potential vorticity under the assumptions
of a quasi-geostrophic, frictionless, shallow water model without topography
(Balgovind et al., 1983; Pedlosky, 1987). Second, the Helmholtz equation can
be reduced from the diffusion or wave equations. In these linear PDE’s, if
the solution is assumed separable in time and space, one obtains for the time
variation an ordinary differential equation of the first order. For the spatial
variations, one always obtains the Helmholtz equation (Selvadurai, 2000),
which is the equation that would be used for spatial mapping. Thirdly, the
Helmholtz equation is equivalent to the steady diffusion-reaction equation.

In our examples in Equation 15, the SPDE parameter (k) is chosen
such that the correlation function corresponding to the stochastically forced
Helmholtz equation best fits the analytical correlation function used by the
standard OA scheme and the LSM or FMM-based schemes (Section 4).
These methods are compared to each other and to the LSM and FMM-
based schemes in Section 6.2 using the World Ocean Atlas, 2005 data in the
sub-domain of Philippines Archipelago.
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6. Applications illustrating the novel OA methodologies

New methodologies for Objective Analysis in complex multiply-connected
coastal regions were described in Section 4. These new methodologies are
based on computing the optimal path lengths using the Level Set Method
and the Fast Marching Method. These methods efficiently incorporate the
coastline constraints (e.g. there is no direct relationship across landforms).
The above methodologies are utilized to map the temperature, salinity and
biological (chlorophyll) fields using a 2-staged mapping scheme in subsets of
the following regions: Dabob Bay and Philippines Archipelago.

Section 6.1 evaluates the use of our new OA methodology in Dabob Bay
and shows that it is more effective over other classic distance optimizing
algorithms like Bresenham-based line algorithm (Bresenham, 1965). Section
6.2 shows a comparison of the different methodologies introduced in Section
4 and 5 for Objective Analysis in a subdomain of Philippines Archipelago.
The estimation of absolute velocity under geostrophic balance by minimizing
the inter-island transport is also illustrated.

6.1. Objective Analysis in Dabob Bay

Dabob Bay data are used to illustrate the effectiveness of the Fast March-
ing Method over other distance optimizing algorithms like Bresenham-based
line algorithm (Bresenham, 1965). Maps for the temperature and salinity
fields in a subdomain of Dabob Bay corresponding to the spatially irregu-
lar data in Figure 2 (Top) are obtained using the a. Bresenham-based line
algorithm, b. Fast Marching Method. The limitation of Bresenham-based
line algorithm is that the optimal distance computed using this method is
discontinuous. This results in discontinuities in the covariance and also in
the resultant field maps (Agarwal, 2009).

Figure 2 shows the temperature and salinity field maps in Dabob bay
obtained using large length scales (L0 = 60, Le = 30)LS, most energetic
length scales (L0 = 30, Le = 15)ME and observational error (R = 0.25I).
Temperature and salinity have higher magnitudes in the northern part of the
western arm of Dabob bay. The eastern arm of Dabob bay has relatively
low temperature and salinity. Effects due to the discontinuity in distance
obtained from Bresenham-based line algorithm is clearly evident in Figure
2 (Middle). Numerical fronts having high temperature and salinity gradi-
ents exist at the intersection of the two arms. Such fronts lead to numerical
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problems in dynamical simulations. The geostrophic velocity obtained us-
ing these field maps will be unrealistic and will have high magnitudes along
these fronts. A possible remedy, which reduces the discontinuity effects, is
to smooth the distance by averaging distances of neighboring points (Haley,
personal communication). The above averaging technique becomes numeri-
cally very expensive. The intensity of erroneous fronts are reduced in the field
maps obtained using the averaged Bresenham-based line algorithm, but they
still exist. Finally, the Fast Marching Method is used to compute distances
and the Objective Analysis field maps obtained from our FMM-based scheme
are clearly devoid of any numerical fronts (Figure 2 (bottom)). Along with
that, FMM accurately satisfies the coastline constraints and it is computa-
tionally inexpensive compared to using the Bresenham-based line algorithm.

6.2. Objective Analysis in the Philippines Archipelago

This research study is motivated by the Philippines Straits Dynamics
Experiment (PhilEx) sponsored by the Office of Naval Research. Novel OA
techniques for such complex coastal regions are an important requirement to
map very irregular datasets and initialize simulations. A comparison of the
different OA methodologies will be illustrated in this region. We compare
our new OA methods which are based on using a. Level Set Method and
b. Fast Marching Method, to the a. Standard OA Method which ignores
islands and uses the direct Euclidean distance and b. Stochastically forced
partial differential equation approach (SPDE specified for the field).

A comparison of these methods using the World Ocean Atlas, 2005 (Lo-
carnini et al., 2006; Antonov et al., 2006) data for the temperature and salin-
ity field maps is discussed in this Section. WOA-05 data are data mapped
using ‘Levitus climatology’ scheme (see Appendix A) and is regularly spaced.
Regularly spaced WOA-05 data is used here primarily to illustrate and dis-
cuss the comparison of the different methodologies. Subsequently, synoptic
in situ data is used. These real direct ocean data are the spatially irregular
temperature, salinity and biology (chlorophyll) data.

6.2.1. Objective Analysis using WOA-05 data: Comparison of the different
OA methodologies

Two-dimensional horizontal OA field maps, which correspond to the WOA-
05 data in Figures 3-8 (Top-Left), are computed using methodologies pro-
posed in Section 4 and 5. Figures 3, 4 and 5 show the temperature field
maps at the depth of 0m, 200m and 1000m, respectively. Figures 6, 7 and
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8 show the salinity field maps at the depth of 0m, 200m and 1000m, respec-
tively. Large length scales (L0 = 540, Le = 180)LS and most energetic length
scales (L0 = 180, Le = 60)ME are used with an observational error covari-
ance R = 0.25I. For the SPDE approach, SPDE parameter k = 1/200 and
observational error (R = 0.25I) are used.

The OA field maps from all the methods (Figure 3 and 4) indicate that
the Philippines Sea and the region near Palawan island is warmer than the
rest of the region near the surface (0m, 200m). The region south of the Sulu
sea around the Sulu Archipelago has relatively lower temperature. At levels
below 500m (see Figure 5), there is a significant difference in the temperature
of the Sulu sea (warm) as compared to the rest of the region (cold) (Gamo
et al., 2007; Gordon, 2009). These temperature fields clearly show that direct
correlation across landforms are weak. Similar observations can be made for
Salinity. Salinity in the Sulu Sea and South China Sea (Figure 6 and 7) is
lower than the salinity in the rest of the region near the surface (0m, 200m).
At levels below 500m, the salinity in the Sulu sea (Figure 8) is significantly
lower as compared to the rest of the region. These salinity fields further
support the hypothesis that direct correlation across landforms are weak.

The field maps obtained using LSM and FMM are identical, but the
FMM has a significantly lower computational cost. While LSM constructs
the solution by iterating towards the solution, FMM is based on the direct
construction of the stationary solution as described in Section 4. There is
a very small difference in the field obtained using LSM and FMM because
FMM exactly constructs the solution of the discretized Eikonal equation
whereas LSM computes the solution within a desired tolerance limit. Thus,
our OA methodology based on FMM should clearly be preferred, as it is more
accurate and less expensive compared to OA methodology based on LSM.

The comparison of the temperature field maps and the salinity field maps
obtained using different methods at level 1000m is shown in Figures 5 and
8, respectively. The methods based on FMM (Figures 3-8 (Bottom-Left))
and SPDE (Figures 3-8 (Bottom-Right)) clearly satisfy the coastline con-
straints. The data in the Sulu Sea, which has high temperature and low
salinity compared to the remaining region, does not have any influence on
the field outside the Sulu Sea since the two regions are not connected by
water. On the other hand, the standard OA (Figures 3-8 (Top-Right)) does
not satisfy the coastline constraints. Thus the data outside the Sulu Sea,
where the temperature is low and salinity is high, is correlated to the field
inside the Sulu Sea. This is undesirable since the direct relationship across
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landforms is at best very weak. This leads to spurious high temperature and
salinity gradients in the Sulu Sea, which will lead to problems for the esti-
mation of geostrophic flow. Differences between temperature field maps and
salinity field maps obtained using the FMM and using other OA methods at
level 1000m are shown in Figure 9. There are small differences between field
maps obtained using the FMM and SPDE approach because the analytical
correlation function corresponding to the Helmholtz equation, which is used
in the SPDE approach, is different from the analytical correlation function in
the FMM. The differences between the field maps obtained using the FMM
and standard OA are significantly large because the standard OA does not
incorporate the coastline constraints.

The SPDE approach satisfies the coastline constraints, but the discretiza-
tion errors in SPDE are significant and this results in prominent spatial
variations in the temperature and salinity fields. The impact of such huge
spatial variations on the geostrophic flow velocity is not good, and often ad-
ditional smoothing has to be employed (post-processing) after obtaining the
OA fields using the SPDE approach. Such post-processing is not required
for our FMM-based scheme. The SPDE approach can be implemented by
specifying the SPDE for the field or by specifying it for the covariance (Lo-
goutov, personal communication). If the SPDE is specified for the field as
opposed to the covariance, spatial variation in the field will be less prominent.
Specifying the SPDE for the field will be more expensive than specifying the
SPDE for the covariance, but this will make the spatial variation in the field
less prominent and it will reduce the need for post-processing. Finally, we
confirmed that the computational time required by the SPDE approach is
higher than that of FMM. Thus, FMM appears to be the best among all the
methodologies discussed in Section 4 and 5 for Objective Analysis in coastal
regions. For mapping the spatially irregular data in the examples that follow,
we will discuss the results of our FMM-based Objective Analysis scheme.

We now illustrate the estimation of absolute velocity under geostrophic
balance in the Philippines Archipelago using the OA field maps. The algo-
rithm for minimizing the inter-island transport (Appendix C) is utilized for
computing a smooth geostrophic velocity flow field. We have utilized weight
functions based on the minimum vertical area along each pair of islands in
the algorithm for minimizing the inter-island transport. The estimation of
the minimum vertical area has been carried out using the FMM by specifying
the scalar speed function in the Eikonal equation (Equation 11) as F(x,y) =
1/H(x,y), where H is the ocean depth. The temperature and salinity data are

19



from the World Ocean Atlas 2005. They are mapped using our FMM-based
OA scheme (Figures 3-8 (Bottom-Left)) and the SPDE approach (Figures
3-8 (Bottom-Right)), with the Helmholtz equation employed for the field.
The streamfunction and velocity fields (at depths 0m, 100m) are shown in
Figure 10. These streamfunction velocity plots obtained from the temper-
ature and salinity field maps based on our FMM-scheme (Figure 10 (Left))
show a very good comparison with the streamfunction and velocity obtained
using the temperature and salinity field maps based on the stochastically
forced Helmholtz equation (Figure 10 (Right)). These maps suggest that the
velocity is maximum in the Mindoro strait, near the Mindanao island and in
the Balabac strait. The maximum absolute velocity, which is in the Balabac
strait, is 79.7 cm/s. At lower depths, the velocity remain high in the Mindoro
strait and near the Mindanao island. There is a large inter-island transport
across the Mindoro strait since the vertical area between the Mindoro and
Palawan island is very large.

Weight functions based on the minimum inter-island distance, which can
be obtained using the FMM by specifying the scalar speed function in the
Eikonal equation (Equation 11) as 1 for sea points and 0 for land points,
were also used (Haley, personal communication). The velocity fields ob-
tained using the weight functions based on the minimum inter-island dis-
tance has significantly large magnitudes, particularly in the Balabac strait
(Agarwal, 2009). The maximum absolute velocity is 140.9 cm/s, which is sig-
nificantly larger than the maximum absolute velocity obtained using weight
functions based on the minimum vertical area (79.7 cm/s). Such high ve-
locity magnitudes, which are obtained due to the inaccurate computation of
inter-island transport, are clearly not acceptable. These results show that the
weight functions based on the minimum vertical area will produce smooth
geostrophic flow field with the least velocity hot spots.

6.2.2. Objective Analysis for Summer 2007: Melville exploratory cruise, sg122
and sg126 glider data

The data used in this example is collected from the Melville exploratory
cruise, sg122 and sg126 gliders for the June-July’07 period. The data location
plot is shown in Figure 11 (Top). Since the data is available only in a
small region of the Philippines Archipelago near islands, Objective Analysis
maps are computed in a portion of the regular Philex domain. Large length
scales (L0 = 1080, Le = 360)LS, most energetic length scales (L0 = 270,
Le = 90)ME and observational error (R = 0.2I) are used. The temperature
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and salinity field maps obtained using the methodology based on the Fast
Marching Method are shown in Figures 12 (Top) and 13 (Top), respectively
at depths of 0m, 200m. Once again, these maps clearly indicate that the
coastline constraints are appropriately satisfied. At depth of 0m, the warm
region in the west of Luzon island is uncorrelated with the region on the east
of Luzon island. The warm Sibuyan and Visayan Seas can be distinguished
from the relatively cold Bohol Sea. At depths of 450m and 1000m, the
data in the warm Sulu sea and Bohol Sea does not have any impact on
the remaining regions, clearly suggesting that there is no direct relationship
across landforms. Similar observations are made for the salinity. At depth of
0m, the low salinity region in the west of Luzon island is uncorrelated with
the region on the east of Luzon island.

6.2.3. Objective Analysis for Winter 2008: Melville joint cruise data

The data used in this example is obtained from the joint Melville cruise
for the Nov’07-Jan’08 period. The data location plot is shown in Figure
11 (Bottom). Large length scales (L0 = 1080, Le = 360)LS, most energetic
length scales (L0 = 270, Le = 90)ME and observational error (R = 0.2I)
are used for the OA field maps. The temperature and salinity field maps
obtained using the FMM-based scheme are shown in Figures 12 (Bottom)
and 13 (Bottom), respectively. Depths shown are 0m, 200m. Once again,
at depth of 0m, the warm region in the west of Luzon island is uncorrelated
with the region on the east of Luzon island. At depths of 450m and 1000m,
the data in the warm Bohol Sea does not have any impact on the remaining
regions, clearly suggesting that there is no direct relationship across land-
forms. Similar observations are made for salinity. At depth of 0m, the low
salinity region in the west of Luzon island is uncorrelated with the region in
the east of Luzon island.

We now compare fields in Winter 2008 from Melville joint cruise data with
fields in Summer 20007 from Melville exploratory cruise, sg122 and sg126
glider data. It is clearly evident that the difference in temperature during
Winter 2008 and Summer 2007 is more near the ocean surface. Beyond the
depth of 200m, the difference is significantly less and the same inference
is valid for salinity as well. At surface (0m), the temperature in the Sulu
sea is nearly the same for both Summer 2007 and Winter 2008. But the
temperature near Luzon island is significantly lower during Winter 2007 than
the temperature during Summer 2007.
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6.2.4. Objective Analysis for biological field (chlorophyll)

Application of our new FMM-based scheme for the biological field (chloro-
phyll) is illustrated here using Exploratory cruise Summer 2007 data. The
biological OA field map obtained can be utilized in the initialization for cou-
pled physics-biology modeling studies (Burton, 2009). Large length scales
(L0 = 1080, Le = 360)LS, most energetic length scales (L0 = 270, Le = 90)ME

and observational error (R = 0.2I) are used for the OA field maps. The
chlorophyll maps computed using our FMM-based scheme are shown in Fig-
ure 14 at depths of 0m, 10m, 50m, 160m. The concentration of biological
fields like chlorophyll, phytoplankton and zooplankton is substantial only
near the surface due to the presence of sunlight. Therefore, the coupled
physics-biology modeling studies are usually carried up to the depth of 200m.

The chlorophyll concentration is maximum near islands. Away from is-
lands, it approaches the mean data value. At depth of 0m and 10m, the
maximum chlorophyll concentration is observed in the south of the Visayan
sea and in the Bohol Sea. At a depth of 50m, the chlorophyll concentration
in the south of the Visayan sea and in the Bohol Sea remains significant.
The maximum chlorophyll concentration is observed in the north of Palawan
island. The biological concentration at lower depths decreases very rapidly.

This concludes the demonstration of the new OA methodologies and the
methodology for obtaining the geostrophic flow velocities in complex coastal
regions. The computational details of the OA methodologies will be discussed
in Section 7.

7. Computational Analysis

Computational studies of properties of new mapping schemes are carried
out in this Section. The sequential processing of observations (see Parrish and
Cohn (1985); Cho et al. (1996)) is employed for mapping irregular data using
our new OA schemes. Sequential processing reduces computational costs and
it also allows to estimate the impact of individual data. The comparison of
computational costs for the OA schemes is made in Section 7.1.

It is known that the Kalman Filter encounters divergence problems if the
covariance matrix is negative (Brown and Hwang, 1997). Analytical corre-
lation functions, which are used to generate covariance matrix, are termed
“positive definite correlation functions” if they generate positive definite co-
variance matrix using the Euclidean distance for a simply-connected con-
vex domain. It has been well established using the Wiener-Khinchin and
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Bochner’s theorems that if a Fourier transform (or the spectral density of a
correlation function) is non-negative for all frequencies then the correlation
function is positive definite (Yaglom, 1987; Papoulis, 1991; Yaglom, 2004;
Dolloff et al., 2006). For complex coastal regions, Cor(x,x) generated from
“positive definite correlation functions” may not necessarily be positive defi-
nite due to: a. numerical error in the computation of the optimal path length
using FMM/LSM b. the presence of landforms (Agarwal, 2009). This may
lead to divergence problems for the field mapping based on the FMM/LSM
scheme in complex coastal regions. Such divergence problems are illustrated
using the WOA-05 data (Spliced February and Winter Climatology) shown
in Figure 15 (Top-Left). The field maps obtained using our FMM-based
scheme (one-scale) with length scales (L0 = 540, Le = 180) and length scales
(L0 = 1080, Le = 360) are shown in Figure 15. Fields obtained using the
larger scales (Figure 15 (Bottom-Left)) clearly show divergence problems near
the Palawan island. Such problems are not encountered when the smaller
length scales are used (Figure 15 (Top-Right)). Specifically, questions which
motivate our research in Section 7.2 and 7.3 are: a. What are the com-
putational errors in optimal path lengths computed using the FMM/LSM
and how can they be reduced? b. What are the computational issues in-
cluding non-positive definite covariances that arise in a multiply-connected
coastal domain and how can they be remedied? A higher-order Fast March-
ing Method than the first-order one (Section 4.2) is discussed in Section 7.2.
Higher-order FMM results in a significant reduction of errors in the distance
estimates, i.e. the difference between the numerically computed and the true
optimal distances and helps in dealing with the divergence problems to some
extent. In Section 7.3, methods to deal with negative covariances arising due
to the presence of islands and due to the numerical error in computing the
optimal path length are discussed.

7.1. Comparison of Computational Costs

For a 2-dimensional domain with N points in each direction, a compari-
son of the operation count for computing the optimal distance from a data
location to all other grid points in the domain using different Methods is
given in Table 2.

There are a total of N2 grid points at each level and the operation count
for LSM is obtained from an optimistic guess that LSM will take roughly N
steps to converge. In reality, the iterations can take much longer to converge,
and therefore LSM is not a very efficient method for computing the optimal
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Method Operation Count
Level Set Method O(N3)
Fast Marching Method O(N2logN)
Dijkstra’s Method O(N3)

Table 2: Comparison of the operation count for the optimal distance obtained
using LSM, FMM and Dijkstra’s Method.

distance to perform OA. On the other hand, FMM is an efficient technique
which requires a fast method to locate the smallest value grid point in the
narrow band. The Min-Heap data structure with backpointers (Sedgewick,
1988) is employed to efficiently locate the grid point with the minimum value.
The total work done in the DownHeap and UpHeap operations, which ensure
that the updated quantities do not violate the heap properties, is O(log
N). Thus 2-dimensional FMM with N grid points in each direction has an
operation count of N2logN , which is a significant improvement over LSM.
We also observe that the FMM-based OA requires less computational time
(approximately 15 %) than the OA based on SPDE approach. Thus, the
FMM-based OA is computationally the most efficient technique for mapping
in complex multiply-connected domains.

7.2. Higher order Fast Marching Method

In a domain with no islands or landforms, the optimal path length ob-
tained using the FMM/LSM should ideally be equal to the Euclidean dis-
tance. But the numerical estimation of the optimal path length using the
FMM/LSM has discretization errors and this leads to an inaccurate estima-
tion of the optimal path length. The Weiner Khinchin and Bochner theorems
are valid for covariances computed using the Euclidean distance in a simply-
connected convex domain. The covariance matrix may no longer be positive
definite due to the inaccurate computation of the optimal path length by
FMM/LSM or due to the presence of islands. This may lead to divergence
problems in the resultant field maps. Specifically, the question which mo-
tivates this Section is: What are the computational errors in the optimal
path lengths computed using the FMM/LSM and how can they be reduced?
Here, we introduce the higher order Fast Marching Method which will reduce
errors in the estimation of the optimal path length.
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The Fast Marching Method presented in Section 4.2 is a first order scheme,
since the first order discretization form (Equation 14) of the Eikonal equa-
tion (Equation 11) was used. A different implementation of FMM with higher
accuracy (Sethian, 1999a,b) is discussed here. Note that the second order
backward approximation to the first derivative Tx is given by:

Tx ≈
3Ti − 4Ti−1 + Ti−2

2∆x
⇔ Tx ≈ D−xT +

∆x

2
D−x−xT

(18)

Similarly, the second order forward approximation to the first derivative Tx
is given by:

Tx ≈
3Ti − 4Ti+1 + Ti+2

2∆x
⇔ Tx ≈ D+xT − ∆x

2
D+x+xT

(19)

Here D−x and D+x are the first order forward and backward approximations
for the first derivative, respectively (Equation 10), D−x−x ≡ D−xD−xand
D+x+x ≡ D+xD+x.

Consider the switch functions defined by:

switch−xij =

 1 if Ti−2,j and Ti−1,j are known (‘Alive’)
and Ti−2,j ≤ Ti−1,j

0 otherwise


switch+x

ij =

 1 if Ti+2,j and Ti+1,j are known (‘Alive’)
and Ti+2,j ≤ Ti+1,j

0 otherwise


(20)

Similar functions are defined in the y-direction. The higher accuracy scheme
attempts to use a second order approximation for the derivative whenever
the points are tagged as ‘alive’ (the points inside the band where the value
of the arrival time function is frozen: see Section 4.2) but reverts to the first
order scheme otherwise.

The modified discretization equation for the higher accuracy FMM is
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given by: 
max([D−xij T + switch−xij

∆x
2
D−x−xij T ],

−[D+x
ij T − switch+x

ij
∆x
2
D+x+x
ij T ], 0)2

+

max([D−yij T + switch−yij
∆y
2
D−y−yij T ],

−[D+y
ij T − switch

+y
ij

∆y
2
D+y+y
ij T ], 0)2

 =
1

F 2
ij

(21)

It should be noted that the above scheme is not necessarily a second order
scheme. The accuracy of the above scheme depends on how often the switches
evaluate to zero and how the number of points where the first order method
is applied changes as the mesh is refined. When the number of points where
the first order method is applied is relatively small (occurs only near the
coastlines), the error is reduced considerably by using the higher accuracy
FMM. It should also be noted that a third or higher-order approximations
for the derivative Tx can similarly be used to construct more accurate FMM
schemes, but this will increase the computational cost. Also, the error per-
centage in the optimal distance computed using FMM is higher near the data
point and it reduces as the distance increases. To keep the computational
cost low and a uniform error percentage, one can use higher accuracy FMM
near the data point and then progressively shift to the lower order schemes
as the distance increases.

The higher order Fast Marching Method has been used to minimize errors
in the estimation of the optimal path length in Philippines Archipelago.
Figure 15 (Bottom-Right) clearly shows that the use of higher order Fast
Marching Method has attenuated the divergence problems compared to the
first order FMM. The divergence problems do not vanish completely because
of the presence of landforms and due to discretization errors associated with
higher order FMM. We introduce other methods to deal with such divergence
problems for multiply-connected coastal domains in Section 7.3.

7.3. Positive Definite covariance matrix for complex multiply-connected coastal
regions

Apart from the inaccurate optimal path length, the covariance matrix
may also become negative due to the presence of islands and coastlines.
Specifically, the question which motivates this Section is: What are the com-
putational issues including non-positive definite covariances that arise in a
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multiply-connected coastal domain and how can they be remedied? The
presence of islands and archipelagos results in stretching of the Euclidean
path, which can potentially make the covariance matrix negative. Exam-
ples of this will be shown next. Possible remedies to deal with the negative
covariance matrix, which lead to divergence problems, are then discussed
(Agarwal, 2009).

Consider the idealized multiply-connected domain having an island, shown
in Figure 16. This domain has 12 grid points which are marked as ocean
points and 4 grid points which are marked as land points. The length of the
optimal path is computed exactly to form the covariance matrix to keep it
untouched from effects due to discretization errors in the FMM/LSM. The

positive-definite correlation function Cor(r) = exp
[
− r2

2L2

]
with L=2 is used

to form the covariance matrix. We find that the covariance matrix is not
positive definite. The maximum eigen value for the covariance matrix is
6.3345 while the minimum is -0.0504. This idealized example clearly shows
that the covariance matrix based on the optimal path length for a complex
multiply-connected region may not necessarily be positive definite.

Methods that can be used to remove the divergence problems (Figure 17
(Top-Left)) due to the negative covariance matrix are:
a. Discarding the problematic data: One method to deal with the prob-
lem of a negative covariance matrix is to discard the data corresponding to
the negative values of HjCor(x,x)j−1H

T
j . Even though, this will ensure that

there are no divergence issues in the resultant OA, this method is a not the
most acceptable one since the information in the data is discarded entirely.
The field map obtained by discarding the problematic data is shown in Figure
17 (Top-Right). Clearly, the divergence problems are removed but loosing
all the information in the data is not acceptable.
b. Introducing process noise: Adding a small process noise to the diag-
onal elements of the covariance matrix helps in dealing with the divergence
problems associated with a negative covariance matrix (Brown and Hwang,
1997). The disadvantage is that the process noise introduced will lead to a
degree of sub-optimality. It is often a more acceptable method compared to
discarding the data. Once again, the field map obtained by introducing the
process noise is free from the divergence problems and the resulting field is
shown in Figure 17 (Bottom-Left).
c. Dominant Singular Value Decomposition (SVD) of a-priori co-
variance: To construct the OA field maps, the full covariance matrix is not
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required. The computation of the full covariance matrix (Cor(x,x)) is expen-
sive and it is therefore rarely done for the OA in complex coastal regions. The
necessary requirement to obtain the field maps is the matrix corresponding
to the grid and the data point covariance (Cor(x,X)). The divergence prob-
lems in the Kalman update or in the sequential processing of observations
can be removed by first obtaining the singular value decomposition (SVD)
of Cor(x,X) and then reconstructing the new covariance matrix by retaining
only the dominant singular values and setting the smaller singular values
(less than 1 percent of the maximum singular value) to zero. The above
procedure will make the covariance positive definite. It has been verified
that the magnitude of the negative eigen values in the covariance matrix is
very small compared to the magnitude of the maximum eigen value. This
verification establishes that the use of the dominant singular value decom-
position method is the most acceptable method to remove the divergence
problems in the update because it looses the least information contained in
the data. Once again, the field map obtained by dominant singular value
decomposition (SVD) of a-priori covariance is free from divergence problems
and the plot is shown in Figure 17 (Bottom-Right). It has also been verified
that the fields obtained by introducing the process noise and the fields ob-
tained by applying the dominant singular value decomposition of the a-priori
covariance are similar.

8. Summary and Conclusions

Our research consisted of the following related investigations: a. new
methodologies for the mapping and dynamical inference of ocean fields from
irregular data in complex multiply-connected domains, and b. computational
studies of properties of the new mapping schemes. Results, findings and
future work are summarized next.

New methods for efficient field mapping, i.e. Objective Analysis, in com-
plex coastal regions were researched, implemented and utilized. These new
OA methods, which satisfy the coastline constraints (e.g. there is no direct
relationship across landforms), are based on estimating the length of the op-
timal path using either the Level Set Method (LSM) or the Fast Marching
Method (FMM). These novel methods were applied and studied in com-
plex domains of the Philippines Archipelago and Dabob Bay using realistic
datasets to obtain field estimates such as temperature, salinity and biology
(chlorophyll). Results were compared with those of a standard OA scheme
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(using across-landforms Euclidean distance in the analytical correlation func-
tion) and of OA schemes based on the use of stochastically forced partial
differential equations (SPDE). We have shown that our new FMM-based
scheme is computationally inexpensive compared to our LSM-based scheme
and the SPDE approach. Our illustrations and studies show that the field
maps obtained using our FMM-based scheme do not require postprocessing
(smoothing) of fields e.g. they are devoid of any spurious hydrographic field
gradients which are unacceptable for flow computation. The use of FMM
is the most appropriate method for the optimal distance estimation among
the distance estimation methodologies like Dijkstra’s optimization algorithm
and the classic Bresenham-based line algorithm. The optimal distance com-
puted using Dijkstra’s algorithm is computationally expensive and inaccu-
rate. Apart from being computationally expensive, the optimal distance
computed using the Bresenham line algorithm is discontinuous. This results
in the formation of fronts with high field gradients. Such high gradient fronts
do not occur when our FMM-based scheme is utilized.

Computational studies of properties of the new mapping schemes were
carried out. The sequential processing of observations reduces the compu-
tational cost and also helps in understanding the impact of individual data.
Wiener-Khinchin and Bochner theorem are valid only for the correlation
functions based on the Euclidean distance for convex simply-connected do-
mains. It was found that the covariance matrix is no longer positive definite
when the optimal path length is computed using FMM. Therefore, the use
of high order FMM was discussed and implemented to obtain more accurate
length of shortest sea paths. However, we found that the covariance matrix
also becomes negative due to the presence of islands and other non-convex
landforms. Several approaches to overcome this issue were discussed. These
include discarding problematic data points, introducing process noise, and
reducing the covariance matrix by applying the dominant singular value de-
composition (SVD). Among these, we argue that introducing process noise
and reducing the covariance matrix by applying the dominant SVD are the
best solutions.

We have also discussed our new FMM based methodology for the esti-
mation of absolute velocity under geostrophic balance in complex multiply-
connected domains. FMM is used for the computation of the minimum verti-
cal area between all pairs of islands. The minimum area is required for obtain-
ing the transport streamfunction which minimizes the inter-island transport
and produces a smooth velocity flow field. The transport streamfunction
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can then be utilized to estimate the geostrophic flow velocity from the tem-
perature and salinity field maps alone. We have illustrated this method by
applying it in a subdomain of the Philippines Archipelago.

One of the things we have started to investigate is to utilize our FMM-
based OA scheme for incorporating the non-homogeneous dynamical effects,
but much work remains to be done. We have appropriately modified the
scalar speed function in the Eikonal equation. In particular, we may have a
bathymetry-dependent scalar speed function to include bathymetric effects
at lower depth levels. We also propose to use the smallest length scale on the
optimal path to include the non-homogeneous effects due to the existence of
fronts in a continental shelf. Analogous modification of the scalar speed func-
tion or the length scale can be used to incorporate other dynamical effects
(e.g. conservation of potential vorticity). The optimal path length obtained
using our FMM/LSM-based scheme can also be used to extend the method-
ology proposed by Lermusiaux et al. for three-dimensional, multivariate and
multi-scale spatial mapping of geophysical fields and their dominant errors
(Lermusiaux et al., 1998, 2000; Lermusiaux, 2002) to complex coastal regions.
This method reduces the dimension of the error covariance matrices by fo-
cusing on the error subspace formed by dominant eigen-decomposition of the
a-priori covariance (Lermusiaux and Robinson, 1999). Three-dimensional,
multivariate and multi-scale spatial mapping using our FMM based scheme
is also a subject of further research.

A. Objective Analysis approach for ‘Levitus Climatology’

The objective analysis scheme used for ‘Levitus Climatology’ (Levitus,
1982; Locarnini et al., 2006; Antonov et al., 2006; Garcia et al., 2006a,b) has
its origins in the work of Cressman (1959) and Barnes (1964). This scheme
is based on adding “corrections”, which are computed as a distance-weighted
mean of all grid point difference values, to the first-guess field. Initially, the
World Ocean Atlas 1994 (WOA94) used the Barnes (1973) scheme which
requires only a single “correction” to the first-guess field at each grid point
in comparison to the successive correction method of Cressman (1959) and
Barnes (1964). This was done to reduce the computing time. Barnes (1994)
suggests using the multi-pass analysis when computing time is not an is-
sue. The analysis scheme used in WOA98, WOA01 and WOA05 is a three-
pass “correction” scheme. The inputs to this analysis scheme are one-degree
square means of the observed data values, and a first-guess field. The differ-
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ence between the observed mean and the first-guess field is then computed.
An influence radius is specified next and a correction to the first-guess value
at all the grid points is computed as a distance-weighted mean of all the grid
point difference values that lie within the area around the grid point defined
by the influence radius. Mathematically, the correction factor derived by
Barnes (1964) is given by:

Ci,j =

∑d
s=1WsQs∑d
s=1Ws

(22)

where,
(i, j) - coordinates of a grid point in east-west and north-south directions
respectively;
Ci,j - correction factor at the grid point coordinates (i, j);
d - the number of data points that fall within the area around point (i, j)
defined by the influence radius;
Qs - difference between the observed mean and the first-guess at the Sth data
point in the influence area;
Ws = exp(−Er2/R2) (for r ≤ R; Ws = 0 for r > R) ≡ Correlation weight;
r - distance of observation from the grid point;
R - influence radius;
E = 4.
At each grid point, the analyzed value Gi,j is the sum of the first guess Fi,j
and the correction Ci,j. The expression is:

Gi,j = Fi,j + Ci,j (23)

If there is no data within the area defined by the influence radius, the correc-
tion is zero and the analyzed value of the field is the same as the first-guess.
The analysis scheme is set up such that the inference radius can be var-
ied in each iteration. To progressively analyze the smaller scale phenomena
with each iteration, the analysis begins with a large inference radius which
is decreased gradually with each iteration.

Equation 23 can also be expressed in the matrix form, which is given by

G = F + [diag(Wed)]
−1WQ (24)

Here n is the number of model points, the analyzed field G and the first guess
F are n-by-1 vectors, the correlation weight matrix W is a n-by-d matrix,
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the difference between the observed mean and the first-guess at the data
point Q is a d-by-1 vector and ed is a d-by-1 vector with unit entities. The
operation diag(v) creates a diagonal matrix i.e. it puts the vector v on the
main diagonal.

Analogous to the Kalman Gain (K) from the Gauss Markov criterion
(K = Cor(x,X)[Cor(X,X) + R]−1), Equations 24 and 1 show that a sim-
ilar Gain matrix (KL = [diag(Wed)]

−1W) can be defined for the Levitus
methodology. While the multi-scale OA approach in MSEAS is based on
Gauss Markov estimation theory, the Levitus OA is based on estimating the
field by computing the distance-weighted mean of all grid point difference
values (between the mean and first-guess field) in the inference radius and
then adding it to the first-guess field. Thus, the choice of the first guess-field
is very important in the ‘Levitus OA’ analysis. On the other hand, in Gauss
Markov estimation, the first-guess field is often the mean of the data values
and the correction is made in the Kalman update step by computing the
difference between the data and the interpolated value of the first-guess on
the data location. The Gauss Markov estimation theory also requires the
knowledge of the observation noise or error covariance of the data (R).

B. Fast Marching Algorithm

The fast marching algorithm (Sethian, 1996, 1999b) is:

1. Initialize

(a) Alive points: Let A be the set of all grid points (i,j) on the starting
position of the interface Γ; set Tij = 0 for all points in A.

(b) Narrow Band points: Let the Narrow Band be the set of all grid
points (i,j) in the immediate neighborhood of A; set Tij = d

Fij

for all points in the Narrow Band where, d is the grid separation
distance.

(c) Far Away points: Let the Far Away region be the set of all re-
maining grid points (i,j); set Tij = ∞ for all points in the Far
Away region.

2. Marching Forward

(a) Begin Loop: Let (imin,jmin) be the point in the Narrow Band with
the smallest value for T.

(b) Add the point (imin,jmin) to A; remove it from the Narrow Band.
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(c) Tag as neighbors any points (imin−1,jmin), (imin+1,jmin), (imin,jmin−
1), (imin,jmin + 1) that are either in the Narrow Band or the Far
Away region. If the neighbor is in the Far Away region, remove it
from that list and add it to the Narrow Band.

(d) Recompute values of T at all neighbors in accordance with Equa-
tion 14. Select the largest possible solution to the quadratic equa-
tion.

(e) Return to the top of the loop.

Here are some properties of the fast marching algorithm. The smallest
value in the Narrow Band is always correct. Other Narrow Band or Far
Away points with larger values of T cannot affect the smallest value. Also,
the process of recomputing T values at the neighboring points cannot give a
value smaller than any of the accepted value at Alive points, since the correct
solution is obtained by selecting the largest possible solution to the quadratic
equation (Equation 14). Thus the algorithm marches forward by selecting
the minimal T value in the Narrow Band and recomputing the values of T
at all neighbors in accordance with Equation 14.

The key to an efficient version of the algorithm lies in finding a fast way
to locate the grid point in the Narrow Band with the minimum value for
T. To do so, the heapsort algorithm (Williams, 1964; Sedgewick, 1988) with
backpointers is often implemented and it is the algorithm we used here. This
sorting algorithm generates a “complete binary tree” with the property that
the value at any given parent node is less than or equal to the value at its
child node. Heap is represented sequentially by storing a parent node at the
location k and its child at locations 2k and 2k + 1. The member having the
smallest value is stored at the location k = 1.

All Narrow Band points are initially sorted in a heapsort. The fast march-
ing algorithm works by first finding, and then removing, the member corre-
sponding to the smallest T value from the Narrow Band which is followed by
one sweep of DownHeap to ensure that the remaining elements satisfy the
heap property. The DownHeap operation moves the element downwards in
the heap till the new heap satisfies the heap properties. Far Away neighbors
are added to the heap using the Insert operation which increases the heap
size by one and brings the new element to its correct heap location using the
UpHeap operation. The UpHeap operation moves the element upwards in
the heap till the new heap satisfies the heap properties. The updated values
at the neighbor points obtained from Equation 14 are also brought to the
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correct heap location by performing the UpHeap operation.

C. Estimation of the absolute velocity under geostrophic balance
by minimizing the inter-island transport

For ocean flows, which evolve over long spatial-time scales and away from
the immediate vicinity of the sea-surface, the dominant terms in the horizon-
tal momentum equations are the terms corresponding to the Coriolis force
and the pressure gradient. Such a flow field, where a balance is struck be-
tween the Coriolis and the pressure forces, is called geostrophic. The thermal
wind equations are obtained for geostrophic flow by assuming that the verti-
cal momentum equation is approximately given by hydrostatic balance. The
thermal wind equations are:

−f ∂(ρv)

∂z
= g

∂ρ

∂x
and f

∂(ρu)

∂z
= g

∂ρ

∂y
(25)

where, ρ is the density, u and v are the horizontal fluid velocity in the zonal
(x) and meridional (y) directions respectively, and f = 2Ω sinφ is the Coriolis
parameter for the spherical earth rotating at a rate of Ω at latitude φ. The
thermal wind equations (Equation 25) when integrated in the vertical give:

ρv(x, y, z, t) =
−g
f

∫ z

z0

∂ρ

∂x
dz + ρv0

ρu(x, y, z, t) =
g

f

∫ z

z0

∂ρ

∂y
dz + ρu0 (26)

where, z0 or the level of no motion for v0, u0 = 0 or a level of reference for
v0, u0 6= 0.

Flow estimation based on thermal wind balance (Equation 26), is a clas-
sical problem in physical oceanography (Wunsch, 1996). Historically, the
only significant routine measurements possible were the temperature, T , and
salinity, S, of the water at various depths. The equation of state for seawater
then permits the estimation of density at a given pressure from the tempera-
ture and salinity measurements. Thus the geostrophic flow can be computed
using the above method (Equation 26) from the shipboard measurements of
T and S alone. The formulation has been well defined for the open oceans
without any landforms. For complex coastal regions having landforms such
as islands and peninsulas, estimation of the inter-island transport is first re-
quired before proceeding with the geostrophic formulation discussed above.
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The optimization methodology for estimating the inter-island transport,
proposed by Haley et al. (2009) is utilized and discussed below. The objec-
tive of this methodology is to find a set of constant values for the trans-
port streamfunction (Ψ) along the island coastlines that produce a suit-
ably smooth initialization velocity field, e.g. with the fewest large velocity
hot-spots, i.e. minimize the maximum absolute velocity in the initialized
geostrophic flow field. The working assumptions for Haley’s methodology
are listed below:
1. Coastlines in the given domain can be divided into two distinct subsets:

(a). Set A: N coastlines along which the transport streamfunction is
unknown, N 6= 0.

(b). Set B: M coastlines along which the transport streamfunction is
known.
2. The solution for the transport streamfunction Ψ0 exists for the case which
includes coasts in set B, but coasts in set A, along with the corresponding
interiors, are replaced by open ocean (e.g. island sunk to 10m depth).
3. The difference between the initial solution Ψ0 and the final solution Ψ
is not extremely large. Otherwise, the information from Ψ0 would not be
accurate enough.

Ψ0 contains useful information like the relative position of major currents
to various coastlines and the effects of topography on the flow. Thus, the in-
formation in Ψ0 can be utilized to estimate the constant value of the transport
streamfunction along the island coastlines by constructing an optimization
functional for minimizing the inter-island transport subject to weak con-
straints. Haley’s methodology for constructing the optimization functional
is now discussed.

The problem is divided into three parts to construct the optimization
functional. The optimization functional (E) in the general form, which is a
summation of three terms, is given by:

E = E1 + E2 + E3 (27)

where, E1 is the minimizing target for the transport between all pairs of
the unknown (Set A) coasts, E2 is the minimizing target for the transport
between all pairs of unknown (Set A) and known (Set B) coasts and E3 is the
minimizing target for the transport between all pairs of the unknown (Set A)
coasts and the open boundaries of the domain. Detailed expressions for E1,
E2 and E3, which also requires the use of appropriate weight functions (wnm
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for the pair of islands denoted here by subscripts n and m), are provided by
Haley et al. (2009). The minimum of E is computed by solving the standard
least square problem i.e by setting gradients with respect to the unknowns
variables (transport streamfunction values along the island coastlines) equal
to zero. These streamfunction values, which smooth the velocity field, will
be used as Dirichlet boundary conditions while solving the geostrophic flow
equations using the Temperature and Salinity OA maps. The illustration
of this methodology in the complex domain of Philippines Archipelago is
discussed in Section 6.2.

Suitable weight functions are required to construct the optimization func-
tion (E). Consider the stream function (Ψ) for a two-dimensional horizontal
flow. It is defined such that the flow velocity can be expressed as:

~u = (u, v) =
1

H
∇×Ψk̂ ⇒ u =

1

H

∂Ψ

∂y
, v = − 1

H

∂Ψ

∂x
(28)

Here, H is the ocean depth. The transport between a pair of islands having
streamfunction ψ1 and ψ2 is given by:

ψ2 − ψ1 =

∫
A

~u.n̂dA (29)

where, A is the vertical area between the two islands and n̂ is the unit vector
normal to the vertical area. Equation 28 and 29 suggests that the appropriate
weight function to smooth the velocity field should be wnm = 1/A2

nm, where,
Anm is the minimum vertical area along any path between the two islands
(denoted here by subscripts n and m). Another heuristic choice of weight
function can be wnm = 1/d2

nm, but this will be appropriate when the ocean
depth is uniform in between all pairs of islands. Since the ocean depth is
not uniform, a new methodology is required to compute the minimum area
along any path between a pair of islands. Using the Fast Marching Method
(FMM), which was described in Section 4.2, is a very convenient and efficient
way to compute Anm. Simulations have been performed with several other
weight functions to confirm that the proposed weight function based on the
minimum vertical area (Anm) is the most appropriate for smooth velocity
flow field with minimum hot-spots.
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Figure 1: Optimal distances and path in: (Top - Left) Monterey Bay; (Top
- Right) Massachusetts Bay; (Bottom - Left) Dabob Bay; (Bottom - Right)
Philippines Archipelago.

44



Figure 2: Temperature (oC) (Top - Left) and Salinity (PSU) (Top-Right)
data in Dabob Bay; Temperature (oC) (Left) and Salinity (PSU) (Right) OA
Fields in Dabob Bay from the optimal path length computed using: (Middle)
Bresenham-based line Algorithm; (Bottom) Fast Marching Method.
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Figure 3: (Top - Left) World Ocean Atlas 2005 Climatology in situ tem-
perature (oC) at 0m; Temperature (oC) OA Fields obtained using: (Top
- Right) Standard OA without taking islands into account; (Bottom - Left)
Fast Marching Method; (Bottom - Right) SPDE approach (representing field
by a stochastically forced Helmholtz Equation).

46



Figure 4: (Top - Left) World Ocean Atlas 2005 Climatology in situ temper-
ature (oC) at 200.0m; Temperature (oC) OA Fields obtained using: (Top
- Right) Standard OA without taking islands into account; (Bottom - Left)
Fast Marching Method; (Bottom - Right) SPDE approach (representing field
by a stochastically forced Helmholtz Equation).
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Figure 5: (Top - Left) World Ocean Atlas 2005 Climatology in situ temper-
ature (oC) at 1000.0m; Temperature (oC) OA Fields obtained using: (Top
- Right) Standard OA without taking islands into account; (Bottom - Left)
Fast Marching Method; (Bottom - Right) SPDE approach (representing field
by a stochastically forced Helmholtz Equation).
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Figure 6: (Top - Left) World Ocean Atlas 2005 Climatology in situ Salinity
(PSU) at 0m; Salinity (PSU) OA Fields obtained using: (Top - Right) Stan-
dard OA without taking islands into account; (Bottom - Left) Fast Marching
Method; (Bottom - Right) SPDE approach (representing field by a stochas-
tically forced Helmholtz Equation).
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Figure 7: (Top - Left) World Ocean Atlas 2005 Climatology in situ Salinity
(PSU) at 200.0m; Salinity (PSU) OA Fields obtained using: (Top - Right)
Standard OA without taking islands into account; (Bottom - Left) Fast
Marching Method; (Bottom - Right) SPDE approach (representing field by
a stochastically forced Helmholtz Equation).
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Figure 8: (Top - Left) World Ocean Atlas 2005 Climatology in situ Salin-
ity (PSU) at 1000.0m; Salinity (PSU) OA Fields obtained using: (Top -
Right) Standard OA without taking islands into account; (Bottom - Left)
Fast Marching Method; (Bottom - Right) SPDE approach (representing field
by a stochastically forced Helmholtz Equation).
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Figure 9: Difference between Temperature (oC) field at Level = 1000m ob-
tained using Fast Marching Method and using: (Top - Left) Standard OA;
(Top - Right) SPDE (representing field by Helmholtz equation). Difference
between Salinity (PSU) field at Level = 1000m obtained using Fast Marching
Method and using: (Bottom - Left) Standard OA; (Bottom - Right) SPDE
(representing field by Helmholtz equation).
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Figure 10: Velocity estimation under geostrophic balance (weight functions
based on the minimum vertical area) from field maps (WOA05) obtained us-
ing the FMM (Left) and using the SPDE Approach (Right): (Top) Stream-
function, Velocity at depths: (Middle) 0m; (Bottom) 100m.
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Summer 2007

Winter 2008

Figure 11: (Top) Melville exploratory cruise and glider data (Summer 2007)
in Philippines Archipelago; (Bottom) Philippines Archipelago - Melville joint
cruise Data (Winter 2008).
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Summer 2007

Winter 2008

Figure 12: Temperature (oC) OA Fields at 0m (Left) and 200m (Right)
using the: (Top) Melville exploratory cruise and glider data (Summer 2007);
(Bottom) Melville joint cruise data (Winter 2008).
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Summer 2007

Winter 2008

Figure 13: Salinity (PSU) OA Fields at 0m (Left) and 200m (Right) us-
ing the: (Top) Melville exploratory cruise and glider data (Summer 2007);
(Bottom) Melville joint cruise data (Winter 2008).
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Figure 14: Chlorophyll (µmol/Kg) OA Fields using the FMM at Level: (Top
- Left) 0m; (Top - Right) 10m; (Bottom - Left) 50m; (Bottom - Right) 160m.
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Figure 15: (Top - Left) World Ocean Atlas 2005 (Spliced February and Win-
ter Climatology) in situ temperature (oC) at 0.0m; Temperature (oC) OA
Fields using the Fast Marching Method at the surface (0m) using the follow-
ing scheme and scales: (Top - Right) First order FMM and L0 = 540Km,
Le = 180Km; (Bottom - Left) First order FMM and L0 = 1080Km,
Le = 360Km; (Bottom - Right) Higher order FMM and L0 = 1080Km,
Le = 360Km.
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Figure 16: Example of an idealized (multiply-connected) domain having an
island.
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Figure 17: Temperature (oC) OA Fields at the surface (0m) (scales L0 =
1080Km, Le = 360Km) using the : (Top - Left) FMM; (Top - Right) FMM
and removal of problematic data; (Bottom - Left) FMM and introducing
process noise; (Bottom - Right) FMM and applying dominant singular value
decomposition (SVD) of a-priori covariance.
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