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Abstract

Computation of geostrophic flow velocity, which is done by integrating the
thermal wind equations, from shipboard measurements alone is a classical
problem in physical oceanography. Geostrophic flows have a balance struck
between the coriolis force and the pressure gradient. The computation of
geostrophic flow velocity has been well established for open oceans, with-
out any coastlines or islands. In this paper, we describe a novel optimiza-
tion methodology for computing the transport streamfunction along island
coastlines in complex coastal regions and archipelagos by minimizing the
inter-island transport. The objective of our optimization methodology, which
utilizes the Fast Marching Method (FMM) or Level Set Method (LSM) to
compute the minimum vertical area between all pairs of islands, is to mini-
mize the velocity hot-spots. The estimates of transport streamfunction from
this methodology can potentially be very useful for the initialization of veloc-
ity fields in the ocean models, by utilizing the temperature (T) and salinity
(S) field maps (Objective Analysis maps) for the computation of geostrophic
flow velocity. Application of this methodology has been illustrated in the
complex domain of Philippines Archipelago.
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1. Introduction

For ocean flows, which evolve over long spatial-time scales and away from
the immediate vicinity of the sea-surface, the dominant terms in the horizon-
tal momentum equations are the terms corresponding to the Coriolis force
and the pressure gradient. Such a flow field, where a balance is struck be-
tween the Coriolis and the pressure forces, is called geostrophic. The thermal
wind equations are obtained for geostrophic flow by assuming that the verti-
cal momentum equation is approximately given by hydrostatic balance. The
thermal wind relation (Equation 1) is a key theoretical relationship of the
observational oceanography as it provides a method by which observations
of temperature (T) and salinity (S) as a function of depth can be used to
infer ocean currents (Wunsch, 1996; Marshall and Plumb, 2008).
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Here, ρ is the density, u and v are the horizontal fluid velocity in the zonal (x)
and meridional (y) directions respectively, and f = 2Ω sinφ is the Coriolis
parameter for the spherical earth rotating at a rate of Ω at latitude φ. This
relation has proved to be extremely useful for initializing the velocity from
temperature and salinity Objective Analysis (OA) field maps in open oceans.

The OA methodology for the initialization of tracer fields (e.g. tem-
perature, salinity and biology) has been well formulated for open oceans
without any landforms (convex simply-connected domains), but the OA in
complex coastal regions (multiply-connected domains) is one of the ‘last’
mapping problems which remains to be studied in detail (Agarwal, 2009).
New methodology for Objective Analysis in complex coastal regions and
archipelagos using Fast Marching Method (FMM) and Level Set Method
(LSM) have been proposed by Agarwal and Lermusiaux (2009). These new
OA methodologies will likely be very useful in improving the World Ocean
Atlas (WOA) climatologies (Levitus, 1982; Locarnini et al., 2006; Antonov
et al., 2006; Garcia et al., 2006a,b) in complex domains and archipelagos.

In this paper, we describe a novel optimization methodology for comput-
ing the transport streamfunction along island coastlines in complex coastal
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regions and archipelagos. These transport streamfunction estimates will
be used for specifying the boundary conditions to compute velocity under
geostrophic balance from the temperature and salinity field maps (Agarwal
and Lermusiaux, 2009) alone. The objective function of this optimization
methodology is to minimize velocity hot-spots. To set up the objective func-
tion, we require the minimum vertical area between all pairs of islands, which
are computed using the Fast Marching Method (Sethian, 1996, 1999) or the
Level Set Method (Osher and Sethian, 1988). This new methodology can po-
tentially be very useful for the initialization of velocity in the ocean models.

Our research study for complex coastal regions and archipelagos has been
motivated by the Philippines Straits Dynamics Experiment (PhilEx) spon-
sored by the Office of Naval Research. The goal of PhilEx is to enhance
understanding of the oceanographic processes and features arising in and
around straits, and to improve the capability to predict the inherent spatial
and temporal variability of these regions using models and advanced data
assimilation techniques.

Our research is carried out within the Multidisciplinary Simulation, Es-
timation and Assimilation System (MSEAS: http://mseas.mit.edu) group.
MSEAS consists of a set of mathematical models and computational meth-
ods for ocean predictions and dynamical diagnostics, for optimization and
control of autonomous ocean observation systems, and for data assimilation
and data-model comparisons. It is used for basic and fundamental research
and for realistic simulations and predictions in varied regions of the world’s
ocean, recently including monitoring (Lermusiaux, 2007), naval exercises in-
cluding real-time acoustic-ocean predictions (Xu et al., 2008) and environ-
mental management (Cossarini et al., 2009). Several different models are
included in the MSEAS, including a new free-surface primitive-equation dy-
namical model which uses two-way nesting free-surface and open boundary
condition schemes (Haley et al., 2008). This new free-surface code is based
on the primitive-equation model of the Harvard Ocean Prediction System
(HOPS). Additionally, barotropic tides are calculated from an inverse tidal
model (Logoutov, 2008).

The paper is organized as follows: In Section 2, we introduce the new
optimization methodology for computing the transport streamfunction and
velocity under geostrophic balance by minimizing the inter-island transport.
In Section 3, application of our new methodology, for the complex region of
Philippines Archipelago is presented. Section 4 consists of a summary and
conclusions.
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2. New optimization methodology for estimating transport stream-
function along island coastlines and for computing velocity un-
der geostrophic balance

Flow estimation based on thermal wind balance (Equation 1), is a classi-
cal problem in physical oceanography (Wunsch, 1996; Marshall and Plumb,
2008). Historically, the only significant routine measurements possible were
the temperature, T , and salinity, S, of the water at various depths. The equa-
tion of state for seawater then permits the estimation of density at a given
pressure from the temperature and salinity measurements. The thermal wind
equations (Equation 1) when integrated in the vertical give:

ρv(x, y, z, t) =
−g
f

∫ z

z0

∂ρ

∂x
dz + ρv0

ρu(x, y, z, t) =
g

f

∫ z

z0

∂ρ

∂y
dz + ρu0 (2)

where, z0 is the level of no motion for v0, u0 = 0 or a level of reference for
v0, u0 6= 0. The formulation has been well defined for the open oceans without
any landforms. For complex coastal regions having landforms such as islands
and peninsulas, estimation of the inter-island transport is first required before
proceeding with the geostrophic formulation discussed above.

The optimization methodology for estimating the inter-island transport
is described by the flowchart in Figure 1 and is discussed below. The objec-
tive of this methodology is to find a set of constant values for the trans-
port streamfunction (Ψ) along the island coastlines that produce a suit-
ably smooth initialization velocity field, e.g. with the fewest large velocity
hot-spots, i.e. minimize the maximum absolute velocity in the initialized
geostrophic flow field. The working assumptions for the methodology are
listed below:
1. Coastlines in the given domain can be divided into two distinct subsets:

(a). Set A: N coastlines along which the transport streamfunction is
unknown, N 6= 0.

(b). Set B: M coastlines along which the transport streamfunction is
known.
2. The solution for the transport streamfunction Ψ0 exists for the case which
includes coasts in set B, but coasts in set A, along with the corresponding
interiors, are replaced by open ocean (e.g. island sunk to 10m depth).
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3. The difference between the initial solution Ψ0 and the final solution Ψ
is not extremely large. Otherwise, the information from Ψ0 would not be
accurate enough.

Ψ0 contains useful information like the relative position of major cur-
rents to various coastlines and the effects of topography on the flow. Thus,
the information in Ψ0 can be utilized to estimate the constant value of the
transport streamfunction along the island coastlines by constructing an opti-
mization functional for minimizing the inter-island transport subject to weak
constraints. The construction of the optimization functional is now discussed.

The problem is divided into three parts to construct the optimization
functional. The optimization functional (E) in the general form, which is a
summation of three terms, is given by:

E = E1 + E2 + E3 (3)

where, E1 is the minimizing target for the transport between all pairs of
the unknown (Set A) coasts, E2 is the minimizing target for the transport
between all pairs of unknown (Set A) and known (Set B) coasts and E3 is
the minimizing target for the transport between all pairs of the unknown
(Set A) coasts and the open boundaries of the domain. These three terms in
Equation 3 are:
1. Constructing the optimization functional for minimizing the transport
between all pairs of island coastlines with unknown (Set A) transport stream-
function: Let Cn and Cm be two of the coasts (coast n and coast m) in Set
A. Ψ0 is not constrained to be a constant along these coasts. Find the grid
point i0 on the coastline n and the grid point j0 on the coastline m such that
[i0, j0] = arg max

[i,j]

|Ψ0n(i) − Ψ0m(j)| and δΨn,m = Ψ0n(i0) − Ψ0m(j0). Here,

we denote Ψ0 at point b on coastline a by Ψ0a(b).
The optimization functional for minimizing the inter-island transport be-

tween islands n and m is given by (ΨCn −ΨCm − δΨn,m)2, where, ΨCa is the
unknown optimized, constant value of the transport streamfunction along
the coast a. This optimization function can be weighted by wnm = 1/d2

nm

where, dnm is the minimum distance between Cn and Cm. However, since
the objective is to smooth the resulting initialization velocity flow field, the
above weighting will be appropriate if the ocean depth is uniform in between
all pairs of islands. An alternative weighting along with its computational
methodology for non-uniform ocean depths will be proposed later in this
section.
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2. Constructing the optimization functional for minimizing the transport
between all pairs of island coastlines with known (Set B) and unknown (Set
A) transport streamfunction: Let C ′k be one of the coasts along which the
transport streamfunction ΨC′

k
is known (Set B) and Cn be the coast in Set A.

Ψ0 is not constrained to be a constant along Cn. Find the grid point i′ on the
coastline n such that [i′] = arg max

[i]

|Ψ0n(i)−ΨC′
k
| and δΨ′n,k = Ψ0n(i′)−ΨC′

k
.

The optimization functional for minimizing the inter-island transport be-
tween islands n and k is given by (ΨCn −ΨC′

k
− δΨ′n,k)2 = (ΨCn −Ψ0n(i′))2.

As before, we propose to weight these optimization function by w′nk = 1/d
′2
nk

where, d
′2
nk is the minimum distance between Cn and C ′k.

3. Constructing the optimization functional for minimizing the transport
between all pairs of island coastlines with unknown (Set A) transport stream-
function and the open boundaries of the domain: Let (C

′′

b ) be the open bound-
ary, {b} be the set of open boundary points and Cn be the coast in Set A.
Ψ0 is not constrained to be a constant along Cn. Find the grid point i′′

on the coastline n and the grid point b′′ on the open boundary such that
[i′′, b′′] = arg max

[i,b]

|Ψ0n(i)−ΨC
′′
b
(b)| and δΨ′′n,b = Ψ0n(i′′)−ΨC

′′
b
(b′′). Here, we

denote Ψ0 at the point b on the open boundary by ΨC
′′
b
(b).

The optimization functional for minimizing the inter-island transport be-
tween the island n and the open boundary is given by (ΨCn − ΨC

′′
b
(b′′) −

δΨ′′n,b)
2 = (ΨCn − Ψ0n(i′′))2. As before, we propose to weight this optimiza-

tion function by w′′nb = 1/d
′′2
nb where, d

′′2
nb is the minimum distance between

Cn and the open boundary C
′′

b .
The weighted average of the optimization functionals constructed from

the above three parts is given by:

E =
1

2

N∑
n=1

[
N∑

m=1,m6=n

wnm(ΨCn −ΨCm − δΨn,m)2 +

M∑
k=1

w′nk(ΨCn −Ψ0n(i′))2 + w′′nb(ΨCn −Ψ0n(i′′))2] (4)

The minimum of E is computed by solving the standard least square problem
i.e by setting gradients with respect to ΨCj

’s equal to zero. Therefore, the
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solution to the optimization problem in Equation 4 is given by:

ΨCj
[

N∑
m=1,m6=j

2wjm +
M∑

k=1

w′jk + w′′jb]−
N∑

m=1,m 6=j

2wjmΨCm

=
N∑

m=1,m6=j

2wjmδΨj,m +
M∑

k=1

w′jkΨ0j(i
′) + w′′jbΨ0j(i

′′)

(5)

Equation 5 represents a system of N equations which can be solved to obtain
the transport streamfunctions (ΨCj

) along coastlines in set A. These stream-
function values, which smooth the velocity field, will be used as Dirichlet
boundary conditions while solving the geostrophic flow equations using the
temperature and salinity field maps. The illustration of this methodology in
the complex domain of Philippines Archipelago is discussed in Section 3.

We now discuss new and more suitable weights to be used in Equation 5.
Consider the stream function (Ψ) for a two-dimensional horizontal flow. It
is defined such that the flow velocity can be expressed as:

~u = (u, v) =
1

H
∇×Ψk̂ ⇒ u =

1

H

∂Ψ

∂y
, v = − 1

H

∂Ψ

∂x
(6)

Here, H is the ocean depth. The transport between a pair of islands having
streamfunction ψ1 and ψ2 is given by:

ψ2 − ψ1 =

∫
A

~u.n̂dA (7)

where, A is the vertical area between the two islands and n̂ is the unit vector
normal to the vertical area. Equation 6 and 7 suggests that the appropriate
weight function to smooth the velocity field should be wnm = 1/A2

nm, where,
Anm is the minimum vertical area along any path between the two islands.
The weight function (wnm = 1/d2

nm) will be appropriate when the ocean
depth is uniform in between all pairs of islands. Since the ocean depth is
not uniform, a new methodology is required to compute the minimum area
along any path between a pair of islands. Using the Fast Marching Method
(FMM), which is described in Appendix A, is a very convenient and efficient
way to compute Anm. Simulations have been performed with several other
weight functions to confirm that the proposed weight function based on the
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minimum vertical area (Anm) is the most appropriate for smoothing the
velocity flow field.

Fortran-90 code have been written to utilize the weight function based
on the minimum vertical area between islands, which can be computed using
the FMM/LSM. For obtaining the minimum vertical area, the scalar speed
function in the Eikonal Equation (Equation 8) is chosen to be F(x,y) =
1/H(x,y). This completes the description of our new optimization method-
ology for obtaining the transport streamfunction along island coastlines and
the geostrophic flow velocities in complex coastal regions.

3. Estimation of the velocity under geostrophic balance in Philip-
pines Archipelago

Estimation of velocity under geostrophic balance in the Philippines Archipelago
is illustrated in this section. The methodology for minimizing the inter-island
transport, which is described in Section 2, is utilized for computing a smooth
geostrophic velocity flow field.

We have proposed to utilize weight functions based on the minimum ver-
tical area along each pair of islands in the algorithm for minimizing the
inter-island transport. The estimation of the minimum vertical area has
been carried out using the FMM by specifying the scalar speed function in
the Eikonal equation (Equation 8) as F(x,y) = 1/H(x,y), where H is the
ocean depth. The temperature and salinity data are from the World Ocean
Atlas 2005. They are mapped using FMM-based OA scheme (Agarwal and
Lermusiaux, 2009) and the SPDE (stochastically forced partial differential
equation) approach (Balgovind et al., 1983; Lynch and McGillicuddy, 2001),
with the Helmholtz equation employed for the field. The streamfunction and
velocity fields (at depths 0m, 100m) are shown in Figure 2. These streamfunc-
tion and velocity plots obtained using the temperature and salinity field maps
from FMM-based OA scheme (Figure 2 (Left)) show a very good comparison
with the streamfunction and velocity plots obtained using the temperature
and salinity field maps based on the stochastically forced Helmholtz equation
(Figure 2 (Right)). These maps suggest that the velocity is maximum in the
Mindoro strait, near the Mindanao island and in the Balabac strait. The
maximum absolute velocity, which is in the Balabac strait, is 79.7 cm/s. At
lower depths, the velocity remain high in the Mindoro strait and near the
Mindanao island. There is a large inter-island transport across the Mindoro
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strait since the vertical area between the Mindoro and Palawan island is very
large.

Minimum inter-island distance can be obtained using the FMM by spec-
ifying the scalar speed function in the Eikonal equation (Equation 8) as 1
for the sea points and 0 for the land points. The velocity fields obtained
using the weight functions based on the minimum inter-island distance has
significantly large magnitudes, particularly in the Balabac strait. The max-
imum absolute velocity is 140.9 cm/s, which is significantly larger than the
maximum absolute velocity obtained using weight functions based on the
minimum vertical area (79.7 cm/s). Such high velocity magnitudes, which
are obtained due to the inaccurate computation of inter-island transport, are
clearly not acceptable. These results clearly show that the weight functions
based on the minimum vertical area will produce smooth geostrophic flow
field with minimum velocity hot spots.

4. Summary and Conclusions

We have discussed our new optimization methodology for the estima-
tion of velocity under geostrophic balance in complex coastal regions and
archipelagos. This methodology utilizes FMM for the computation of the
minimum vertical area between all pairs of islands. The minimum area is re-
quired for specifying the weight functions in this new optimization methodol-
ogy to obtain the transport streamfunction which minimizes the inter-island
transport and produces a smooth velocity flow field. The transport stream-
function can then be utilized to estimate the geostrophic flow velocity from
the temperature and salinity field maps alone. We have illustrated this
method by applying it in a subdomain of the Philippines Archipelago. We
believe that this new method along with FMM-based OA scheme (Agarwal
and Lermusiaux, 2009; Agarwal, 2009) will be very useful for initialization of
ocean models in complex coastal regions and archipelagos.

A. Fast Marching Algorithm

The Fast Marching Method (FMM) for monotonically advancing fronts,
which has been proposed by Sethian (1996, 1999), is described. This method
leads to an extremely fast scheme for solving the Eikonal equation (Equation
8). The Level set method (Osher and Sethian, 1988) relies on computing the
evolution of all the level sets by solving an initial value partial differential
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equation using numerical techniques from hyperbolic conservation laws. As
an alternative, an efficient modification is to perform the work only in the
neighborhood of the zero level set, as this is known as the ‘narrow band
approach’. The basic idea of this approach is to tag the grid points as either
“alive”, “land mines” or “far away” depending on whether they are inside
the band, near its boundary, or outside the band, respectively. The work is
performed only on alive points, and the band is reconstructed once the land
mine points are reached.

FMM, which allows boundary value problems to be solved without itera-
tions, is now discussed in detail. The method is applicable to monotonically
advancing fronts (i.e. the front speed (F ≥ 0 or F ≤ 0 ) which are governed
by the level set equation. The steady state form of the level set equation is
the Eikonal equation (Equation 8) which says that the gradient of the arrival
time surface is inversely proportional to the speed of the front. For the two
dimensional case, the stationary boundary value problem is given by:

|∇T |F (x, y) = 1 s.t. Γ = {(x, y)|T (x, y) = 0} (8)

where Γ is the starting position of the interface. The first order finite differ-
ence discretization form of the Eikonal equation (Sethian, 1999) at the grid
point (i,j) is given by:

[max(D−x
ij T, 0)2 +min(D+x

ij T, 0)2 +

max(D−y
ij T, 0)2 +min(D+y

ij T, 0)2]1/2 =
1

Fij

or,

[max(max(D−x
ij T, 0),−min(D+x

ij T, 0))2 +

max(max(D−y
ij T, 0),−min(D+y

ij T, 0))2] =
1

F 2
ij

(9)

Equation 9 is essentially a quadratic equation for the value at each grid point
(assuming that values at the neighboring nodes are known). An iterative al-
gorithm for computing the solution to Equation 9 was introduced by Ruoy
and Tourin (1992). FMM is based on the observation that the upwind dif-
ference structure of Equation 9 means that the information propagates “one
way”, i.e. from the smaller values of T to the larger values. Therefore,
FMM rests on solving Equation 9 by building the solution outward from the
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smallest time value T. The front is swept ahead in an upwind manner by
considering a set of points in a narrow band around the existing front and
bringing new points into the narrow band structure.

The fast marching algorithm is:

1. Initialize

(a) Alive points: Let A be the set of all grid points (i,j) on the starting
position of the interface Γ; set Tij = 0 for all points in A.

(b) Narrow Band points: Let the Narrow Band be the set of all grid
points (i,j) in the immediate neighborhood of A; set Tij = d

Fij

for all points in the Narrow Band where, d is the grid separation
distance.

(c) Far Away points: Let the Far Away region be the set of all re-
maining grid points (i,j); set Tij = ∞ for all points in the Far
Away region.

2. Marching Forward

(a) Begin Loop: Let (imin,jmin) be the point in the Narrow Band with
the smallest value for T.

(b) Add the point (imin,jmin) to A; remove it from the Narrow Band.
(c) Tag as neighbors any points (imin−1,jmin), (imin+1,jmin), (imin,jmin−

1), (imin,jmin + 1) that are either in the Narrow Band or the Far
Away region. If the neighbor is in the Far Away region, remove it
from that list and add it to the Narrow Band.

(d) Recompute values of T at all neighbors in accordance with Equa-
tion 9. Select the largest possible solution to the quadratic equa-
tion.

(e) Return to the top of the loop.

Here are some properties of the fast marching algorithm. The smallest
value in the Narrow Band is always correct. Other Narrow Band or Far
Away points with larger values of T cannot affect the smallest value. Also,
the process of recomputing T values at the neighboring points cannot give a
value smaller than any of the accepted value at Alive points, since the correct
solution is obtained by selecting the largest possible solution to the quadratic
equation (Equation 9). Thus the algorithm marches forward by selecting the
minimal T value in the Narrow Band and recomputing the values of T at all
neighbors in accordance with Equation 9.

The key to an efficient version of the algorithm lies in finding a fast way
to locate the grid point in the Narrow Band with the minimum value for

11



T. To do so, the heapsort algorithm (Williams, 1964; Sedgewick, 1988) with
backpointers is often implemented and it is the algorithm we used here. This
sorting algorithm generates a “complete binary tree” with the property that
the value at any given parent node is less than or equal to the value at its
child node. Heap is represented sequentially by storing a parent node at the
location k and its child at locations 2k and 2k + 1. The member having the
smallest value is stored at the location k = 1.

All Narrow Band points are initially sorted in a heapsort. The fast march-
ing algorithm works by first finding, and then removing, the member corre-
sponding to the smallest T value from the Narrow Band which is followed by
one sweep of DownHeap to ensure that the remaining elements satisfy the
heap property. The DownHeap operation moves the element downwards in
the heap till the new heap satisfies the heap properties. Far Away neighbors
are added to the heap using the Insert operation which increases the heap
size by one and brings the new element to its correct heap location using
the UpHeap operation. The UpHeap operation moves the element upwards
in the heap till the new heap satisfies the heap properties. The updated
values at the neighbor points obtained from Equation 9 are also brought to
the correct heap location by performing the UpHeap operation.

B. Acknowledgments

We are very thankful to Oleg G. Logoutov for sharing his methods and
ideas about OA methodology based on using diffusion equation for specifying
the covariance function. We are sincerely thankful to Wayne G. Leslie for
providing us with data and very helpful inputs. We are very grateful to the
whole Philex and PLUSNet teams for their fruitful collaborations.

References

Agarwal, A., 2009. Statistical field estimation and scale estimation for com-
plex coastal regions and archipelagos. SM Thesis, Massachusetts Institute
of Technology.

Agarwal, A., Lermusiaux, P. F. J., 2009. Statistical field estimation for com-
plex coastal regions and archipelagos. Submitted to Ocean Modelling.

Antonov, J. I., Locarnini, R. A., Boyer, T. P., Mishonov, A. V., Garcia,
H. E., 2006. World ocean atlas 2005, volume 2: Salinity, s. levitus (ed.).

12



NOAA Atlas NESDIS 62. US Government Printing Office: Washington,
DC.

Balgovind, R., Dalcher, A., Ghil, M., Kalnay, E., 1983. A stochastic dynamic
model for the spatial structure of forecast error statistics. Monthly Weather
Review 111, 701–722.

Cossarini, G., Lermusiaux, P. F. J., Solidoro, C., 2009. The lagoon of venice
ecosystem: Seasonal dynamics and environmental guidance with uncer-
tainty analyses and error subspace data assimilation. Journal of Geophys-
ical Research.

Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., 2006a. World
ocean atlas 2005, volume 3: Dissolved oxygen, apparent oxygen utiliza-
tion, and oxygen saturation, s. levitus (ed.). NOAA Atlas NESDIS 63. US
Government Printing Office: Washington, DC.

Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., 2006b. World
ocean atlas 2005, volume 4: Nutrients (phosphate, nitrate, silicate), s.
levitus (ed.). NOAA Atlas NESDIS 64. US Government Printing Office:
Washington, DC.

Haley, P. J., Lermusiaux, P. F. J., Robinson, A. R., Leslie, W. G., Logoutov,
O. G., Cossarini, G., Liang, X. S., Moreno, P., Ramp, S. R., Doyle, J. D.,
Bellingham, J., Chavez, F., Johnston, S., 2008. Forecasting and reanalysis
in the monterey bay/california current region for the autonomous ocean
sampling network-ii experiment. Deep Sea Research II.

Lermusiaux, P. F. J., 2007. Adaptive modeling, adaptive data assimilation
and adaptive sampling. Physica D 230, 172–196.

Levitus, S., 1982. Climatological atlas of the world ocean. NOAA Professional
Paper 13. US. Government Printing Office: Washington,DC.

Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E.,
2006. World ocean atlas 2005, volume 1: Temperature, s. levitus (ed.).
NOAA Atlas NESDIS 61, U.S. Government Printing Office: Washington,
D.C.

Logoutov, O. G., 2008. A multigrid methodology for assimilation of measure-
ments into regional tidal models. Ocean Dynamics 58, 441–460.

13



Lynch, D. R., McGillicuddy, D. J., January 2001. Objective analysis for
coastal regimes. Continental Shelf Research 21, 1299–1315.

Marshall, J., Plumb, R. A., 2008. Atmosphere, Ocean and Climate Dynamics:
An Introductory Text. Elsevier Academic Press, London, United Kingdom.

Osher, S., Sethian, J. A., 1988. Fronts propagating with curvature-dependent
speed: algorithms based on hamilton-jacobi formulations. Journal of Com-
putational Physics 79 (1), 12–49.

Ruoy, E., Tourin, A., 1992. A viscosity solutions approach to shape from
shading. SIAM Journal on Numerical Analysis 29, 867–884.

Sedgewick, R., 1988. Algorithms. Addison-Wesley.

Sethian, J. A., 1996. A fast marching level set method for monotonically
advancing fronts. Proceedings of the National Academy of Sciences 93 (4),
1591–1595.

Sethian, J. A., 1999. Level Set Methods and Fast Marching Method. Cam-
bridge University Press, Cambridge, United Kingdom.

Williams, J. W. J., 1964. Algorithm 232 - heapsort. Communications of the
ACM 7 (6), 347348.

Wunsch, C., 1996. The Ocean Circulation Inverse Problem. Cambridge Uni-
versity Press, Cambridge, United Kingdom.

Xu, J., Lermusiaux, P. F. J., Haley, P. J., Leslie, W. G., Logoutov, O. G.,
2008. Spatial and temporal variations in acoustic propagation during the
plusnet07 exercise in dabob bay. Proceedings of Meetings on Acoustics
(POMA), 155th Meeting Acoustical Society of America 4.

14



Solve the system of N linear equations to obtain the transport streamfunction for the coasts in Set A.

Constructing E2
Transport between all pairs of

coasts in Set A and Set B
a. Find i’ on coastline n s.t.

b. Set

c. Functional for minimizing 
inter-island transport 
between island n and k:

d. Combine the functional for 
all pairs of islands using 
appropriate weight 
functions to obtain:

Constructing E1
Transport between all pairs of

coasts in Set A
a. Find i0, j0 on coastlines n

and m s.t.

b. Set

c. Functional for minimizing 
inter-island transport 
between island n and m:

d. Combine the functional for 
all pairs of islands using 
appropriate weight 
functions to obtain:

a. Divide coastlines in:
i. Set A: N coastlines with unknown transport streamfunction (      ).
ii. Set B: M coastlines with known transport streamfunction (        ).

b. Compute transport streamfunction by replacing the coasts in 
Set A with an open ocean.

0Ψ

Split the optimization functional into E1, E2, E3

Constructing E3
Transport between all pairs of

coasts in Set A and open 
boundaries (      )

a. Find i’’, b’’ on coastlines s.t.

b. Set 

c. Functional for minimizing 
transport between island n 
and open boundary:

d. Combine the functional for 
all pairs of island and open 
boundary using appropriate 
weight functions to obtain:

Combine the optimization functions

E = E1 + E2 + E3

Minimization: Standard Least Squares Problem
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Figure 1: Flowchart for constructing Optimization Function and computing
transport streamfunction.
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Figure 2: Velocity estimation under geostrophic balance (weight functions
based on the minimum vertical area) from field maps (WOA05) obtained us-
ing the FMM (Left) and using the SPDE Approach (Right): (Top) Stream-
function, Velocity at depths: (Middle) 0m; (Bottom) 100m.
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