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This paper describes a second-order projection method for variable- 
density incompressible flows. The method is suitable for both finite 
amplitude density variations and for fluids that are modeled using a 
Boussinesq approximation. It is based on a second-order fractional step 
scheme in which diffusion-convection terms are advanced without 
enforcing the incompressibility condition and the resulting intermediate 
velocity field is then projected onto the space of discretely divergence- 
free vector fields. The nonlinear convection terms are treated using a 
Godunov-type procedure that is second order for smooth flow and 
remain stable and non-oscillatory for nonsmooth flows with low 
fluid viscosities. The method is described for finite-amplitude density 
variation and the simplifications for a Boussinesq approximation are 
sketched. Numerical results are presented that validate the convergence 
properties of the method and demonstrate its performance on more 
realistic problems. 0 1992 Academic Press, Inc. 

1. INTRODUCTION 

Flows in which spatial density variation plays an impor- 
tant role are ubiquitous in nature and technology. The 
generation of baroclinic vorticity by the interaction of non- 
parallel pressure and density gradients leads to a richness of 
structure and scale that presents a formidable computa- 
tional challenge. Most work in this field has made use of the 
Boussinesq approximation, in which momentum effects due 
to density variation are ignored, and the temperature 
dependence on the density is accounted for via a linearized 
forcing term coupling the energy and momentum equations. 
This is a small amplitude approximation, however, and it 
introduces a symmetry to the equations that is non-physi- 
cal. The method described herein uses no such approxima- 
tion. In this paper we develop a high-resolution com- 
putational tool for solving the full, variable density 
Navier-Stokes equations. The method is a straightforward 
extension of the second-order projection method developed 
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by Bell et al. [l] (hereafter referred to as BCG) for the 
incompressible Navier-Stokes equations. BCG is a higher- 
order extension of Chorin’s projection algorithm [2], based 
on a discrete form of the Hodge decomposition, which states 
that a vector field I’ defined on a region 52 can be decom- 
posed into the gradient of a scalar potential d and a 
divergence-free component I@, subject to some type of 
boundary condition. 

In its most basic form, the projection method requires the 
solution of advection-diffusion equations, which are then 
projected onto the space of divergence-free vector fields. 
The projection exploits the orthogonality of the pressure 
gradient with divergence-free velocity fields that is manifest 
in the Hodge decomposition and, in BCG, is accomplished 
via a discrete-Galerkin finite difference formulation using 
a local basis for discretely divergence-free vector fields 
developed by Stephens et al. [3] and Solomon and 
Szymczak [4] for the steady Navier-Stokes equations. 
(Equivalently, the incompressibility constraint can be 
enforced by computing the gradient component and sub- 
tracting it from the intermediate solution to the advection- 
diffusion equations). BCG extends the algorithm to higher 
order by introducing more coupling between the advection-- 
diffusion step and the projection and by incorporating a 
variant of the unsplit second-order Godunov methodology 
developed by Colella [S] for inviscid, compressible flows 
into the evaluation of the nonlinear advection terms in the 
momentum equations. This provides a temporal discretiza- 
tion that is second order for smooth flows and stable in 
regions with steep gradients, even for singular initial data 
and in the limit of vanishing viscosity. These properties 
make the method extremely well suited for application to 
strongly-forced buoyancy-driven flows which are charac- 
terized by tine structure and a wide range of length scales. 

In this paper, we consider only the two-dimensional case; 
the ideas and methodologies can be easily extended to three- 
dimensional problems. In the next section we describe the 
method, reviewing the key ideas in BCG and stressing those 
elements that characterize its extension to variable-density 
flows. In Section 3, in order to validate the second-order 
accuracy of the method, we study a model problem in a 
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square cavity with smooth initial data. In Section 4, exam- 
ples are presented that serve to illustrate the wide range of 
applicability of the method. Calculations are carried out in 
planar and axisymmetric geometries, for both Boussinesq 
and “real” variable density flows. 

2. DESCRIPTION OF THE METHOD 

We solve the incompressible Navier-Stokes equations for 
flows with finite-amplitude density variation. Conservation 
of mass is described by an advection equation. The 
equations take the form 

u,+(u.v)+Lu-Vp+F) (2.1) 

p,+(U.V)p=O 
v. u=o, 

where U = (z) is the velocity vector, 
pressure, and F is a forcing term. 
defined by 

(2.2) 

(2.3) 

p is the density, p is the 
Here, the operator L, 

LU = v . p(VU + (VU)‘), 

represents the viscous terms where p is the viscosity of the 
fluid which we allow to depend on density. 

2.1. Basic Methodology 

Our strategy for solving the system (2.1 k(2.3) is a frac- 
tional step scheme having two parts: first we solve the 
advection-diffusion equations (2.1)-(2.2) without strictly 
enforcing the incompressibility constraint, then, we project 
the resulting velocity field onto the space of discretely 
divergence-free vector fields. The algorithm will only be 
sketched here for a uniform spatial grid; the reader is 
referred to [ 1, 61 for a more detailed description. For the 
diffusion-convection step we solve for the intermediate 
velocity and the new density field using 

u*-U” 
At 

+ [(u.v)u]“+“* 

=~[Lh(un~u*)-vp~~~~*+F”+2”““] 
P 

(2.4) 

P 
n+l 

-P”+ [(u.v)p]“+“*=o, 
At (2.5 1 

where Lh is a standard finite-difference approximation to 
the L and p” + ‘I2 on the right-hand side of (2.4) is the 
average of p” and p”+ ‘. The pressure gradient is evaluated 
at t nP ‘/’ and is treated as a source term in (2.4). (The 
pressure gradient is only computed at the l/2-time levels.) 

The advection terms in (2.4)-(2.5), namely (U .V)U and 
(U . V)p, are approximated at time t”+ “* to second-order 
in space and time using an explicit predictor-corrector 
scheme. This scheme uses only the available data at t”; 
thus, the implicit part of (2.4)-(2.5) corresponds to two 
decoupled heat equation solvers. 

The convection algorithm is a second-order upwind 
method based on ideas first introduced by Colella [S]. The 
discretization is based on a staggered grid system indicated 
in Fig. 1. Here, U, p, and Vp are given at the primary grid 
points denoted by a l . Other quantities, such as V. U, p, 
and a stream function, Ic/, will be defined on the dual grid 
points denoted by a x . Typically, the primary grid points 
will lie on the boundary of the domain for imposing viscous 
boundary conditions; however, in axisymmetric coor- 
dinates we stagger the grid and use reflection symmetry at 
the boundary. In the predictor we extrapolate the velocity 
and density to the cell edges of the dual grid at t”+ 1’2 using 
a second-order Taylor series expansion. For edge-i + 1/2,j 
this gives 

when extrapolating from i, j and 

FIG. 1. Staggered grid system. U, p, and Vp are defined at i, j; V. U, p, 
and $ are defined at i+ f, j+ i. 
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when extrapolating from i + 1, j with analogous formulae Finally, we use these upwind values to form an approxima- 
for the other edges. The differential equations (2.1) and (2.2) tion to the convective derivates in (2.1) and (2.2) 
are then used to eliminate the time derivatives to obtain 

1 
MU, + VU,. “z (Ui+ 1j2.j + U, (CT,+ 1/z,,- u, I/Z,,) 

I :2. , 1 Ax 

I (U LJ + Ii2 -u,,, 12) 

+~~(L”U~-Vp;~“‘+F;) (2.6a) 
+2(v,,,+I;2+u,.,~~I:.?) 

AJ 

‘I (2.9a) 

UP.* + UP.” 

1 
+~(v’.‘+l:2+v,,,~1!2) 

(Pi,j+112-Pi,, I:21 

Al? 

At At 1 (2.9b) 
--uu.v,z+l,j+-- 2 2 p:+,., 

x WhU7+ *,, -VP;,,“; + F:‘, ,,,) (2.6~) 
The velocity field computed in the first step is not, in 

general, divergence-free. The projection step of the algo- 
rithm decomposes the result of the first step into a discrete 

(~+~~)P:,l+l,, 

gradient of a scalar potential and a discretely divergence- 
py;X,,!,=py+,,j- free vector field which correspond, respectively, to the new 

approximation to the pressure gradient and an update for 
At the velocity. In particular, if P represents the projection then 

----vPy.,+l.,~ 2 
(2.6d) 

Equation (2.6) represents the final form of the predictor. In 
evaluating these terms the first-order derivatives normal to 
the edge (in this case U, and p,) are evaluated using a 
monotonicity-limited centered difference slope approxima- 
tion; the transverse derivative terms (U, and p,,) are 
evaluated using an upwind difference. 

U n+l-p u*-U” 1 
At 

=P At +p”+‘i2 - Vp” - iI2 (2.10a) 

u*-un 1 \ 
n+l/Z=(I-p) 

At +p”+“2 -VP 
n l/2 

(2.10b) 

In the corrector we first resolve the ambiguity in the edges 
values. The convective part of (2.1) corresponding to the 
velocity normal to the edge is of the form U, + UU, = source 
terms. This suggests the following upwind determination of 
the normal velocity component: 

uL if u~~O,U~+U~>O 

ui+ l/2., = 0 if uL<O, uR>O (2.7) 
UR otherwise. 

(We suppress the i + l/2, j spatial indices on left and right 
states here and in the next equation.) We now upwind p and 
U based on ui+ ,,2,,i: 

ui+ 112,~’ Pi+ l/2, j 

if ui+ l/2, j > 0 

if ui+1/2,j<” (2.8) 
l/2( UL + U”), 1/2(pL + pR) if ui+ 1,2,,i= 0. 

(Note that the vector field we project is not U*; it is an 
approximation to U, + p ~ ’ Vp. This distinction is impor- 
tant in formulating the outflow boundary conditions.) The 
vector field decomposition described by (2.10) can be cast 
into the framework of the more conventional projection (see 
[ 11) by changing from the standard inner product to a 
p-based inner product. In particular, we define the inner 
product of two vector fields V, and I’, to be 

.cT VI . V2p dm, 

where dm is a volume measure (dx dy in Cartesian coor- 
dinates and r dr dz in axisymmetric coordinates). In this 
inner product, divergence-free vector fields with zero nor- 
mal components are orthogonal to vector fields of the form 
p - ’ VqJ. Consequently, the projection for variable density 
flow is simply the standard projection with respect to a 
density-weighted inner product. 

To define the discrete approximation of the projection we 
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must first define discrete divergence and gradient operators 
and a discrete p-weighted inner product. We have used 

toWi+ l/2,,+ l/2 

1 
= 25i+ li?,J+ lj2 

(5i+ l,j+l”i+l,~+l -~r,j+l”,.j+l) 

+(t 
X 

r+l,j”i+l,,-~ijUv) 

Ax 

vitl/2,jt1/2-VitI,j 1 

+ <it l/2.,+ 112 
+(“i,jtl-vij) 

AY 
(2.1 la) 

for the gradient, and 

(Vl? V2), = 11 Vl,, . V2,,P,Lj 

for the inner product. Here rti is a metric coefficient defined 
by 

for Cartesian coordinates 
for axisymmetric coordinates. 

Note that the divergence operator defines the divergence at 
the zone centers (i+ 1/2,j+ l/2) (denoted x in Fig. 1) in 
terms of the velocities at the neighboring corners; the 
gradient uses scalar data at zone centers to compute 
gradients at grid points. This choice of the discretization 
corresponds to the bilinear velocity and piecewise constant 
pressure finite element basis of Fortin [7]. With these 
definitions of D and G, the discrete operators are skew 
adjoint, i.e., G = -DT, and satisfy a discrete analog of 
integration by parts 

= -cc VW. rt Il2,jt 112 4 it Il2,jt 112 

x ti + 1,2, j + ,,2 + boundary terms. (2.12) 

Equation (2.12) shows that discretely divergence-free vector 

fields are orthogonal to vector fields of the form pPIGd 
(subject to suitable boundary conditions); consequently, we 
can define a discrete projection so that any discrete vector 
field can be uniquely decomposed into the discrete gradient 
divided by density (as defined by (2.11)) and a component 
in the null space of D. 

Several approaches are possible for computing this 
decomposition. We have used the discrete Galerkin 
approach first introduced by Stephens er al. [3]. This 
approach is based on the observation that the local vector 
fields defined by 

(,y’((-1)‘~‘, (-,)k-i+‘) 
s$+ I/2,1+ 112 = for i=k, k+ l;j=l, I+ 1 

(09 0) for all other i, j 

from a local basis for the kernel of D so that any divergence- 
free vector field, in particular, (U”+ ’ - V)/At, can be 
written as 

u ntl 

- un~~~i+,,2,~i+l,2~t’~~.~+‘~2. 
At 

The coefficients in the expansion can be determined from 
the Galerkin projection 

u*-U” 
= 

At 
+Vp”- , l/2 Ski l/2,1+ l/2 . (2.13) 

0 

The system of equations defined by (2.13) is symmetric and 
positive-definite with spectral properties equivalent to dis- 
cretizations of the elliptic operator V. pV. In fact, the S’s 
correspond to discrete curls; hence (2.13) corresponds to a 
discrete stream-function vorticity equation (except that the 
right-hand side is the angular momentum rather than 
the vorticity). We solve the system by means of a con- 
jugate-gradient algorithm preconditioned with a modified 
incomplete Cholesky factorization. 

2.2. Outflow Boundary Conditions 

There are two basic components to the outflow boundary 
treatment. For the first step of the algorithm, namely, the 
diffusion<onvection step, the density and velocity fields are 
simply extrapolated beyond the outflow edge. This has the 
effect of characteristic outflow for the convection with a 
natural boundary condition for the diffusion. The treatment 
of outflow in the projection requires more care. The choice 
of the outflow boundary condition in the projection has the 
effect of completing the specification of the Hodge decom- 
position. Our basic approach is to use a “natural” boundary 
condition in the projection as discussed by Bell et al. [6] 
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with a modification to weakly impose hydrostatic equi- 
librium at the outflow. 

The boundary condition can be derived by focusing on 
either the gradient component or the divergencefree compo- 
nent of the vector field; we will use the latter because it more 
closely reflects the discrete-Galerkin method. We introduce 
a stream function $ such that (U”+’ - U’)/At =V x $, 
where + explicitly satisfies the computable boundary condi- 
tions on Dirichlet boundaries. To motivate the boundary 
condition treatment we first consider the projection without 
a boundary correction at the outflow. In this case the 
projection is defined by requiring 

~j(vxII/)~(Vxx)pdm=jj V.(Vxx)pdm (2.14) 

for all x that vanish on the Dirichlet boundaries. (Equation 
(2.14) is the continuous analog of (2.13), where the curl 
terms correspond to the Y’s.) If we integrate (2.14) by parts 
and rearrange terms we obtain 

or 

-V.(pVIl/)=VxpV 

with 

a* - -v.t an- 

on the outflow boundary, where t is the unit tangent at the 
boundary. From the definition of V in (2.10) we see that 
(2.14) weakly associates the tangential component of V with 
the update for the tangential velocity or, equivalently, 
weakly enforces ap/at = 0 on the outflow face. However, 
fromEq. (2.4) Vz:p-‘(LU-(U.V) U+F)which,nearan 
outflow boundary, is typically dominated by F, particularly 
for strongly forced problems. Thus, (2.14) leads to a large 
acceleration term for the tangential velocity at an outflow 
boundary. This difficulty arises because the force should be 
balanced by the pressure gradient; i.e., at the outflow we 
want to enforce 

ap c=F.t 

which effectively says that the fluid exiting the domain is in 

hydrostatic equilibrium. To weakly impose this condition to 
the right-hand side of (2.14) we add the integral correction 

! ’ F.tdS. 
,- 

2.3. Time Step Strategy 

Since the Godunov scheme is explicit, a CFL condition 
must be satisfied in order to ensure stability. However, in 
many situations, such as having the fluids initially at rest, 
the gravitational forcing term is sufficiently stiff to require a 
more restrictive time step than a standard CFL estimate 
would predict. We have augmented the standard CFL 
estimate by setting 

At “+‘=cmin 
i( 1 

(2.15) 

with the additional constraint that At”+’ 6 1.1 At”. The 
constant, c, is a safety factor to be determined experimen- 
tally. In all of the computations described in Section 4 we 
have taken c = l/2. 

2.4. Boussinesq Flows 

A broad range of variable density flows have small den- 
sity variations that can be modeled using a Boussinesq 
approximation. In the Boussinesq approximation density 
variations are assumed to be sufficiently small so that the 
density variation can be ignored in the momentum equa- 
tion. The equations are only coupled through a gravita- 
tional forcing term. With these approximations the equa- 
tions reduce to 

U,+(U.V)U= -Vp+&AU+yjQ (2.16) 

o,+(u.v)e=Kde (2.17) 

v.u=o, (2.18) 

where 0 is the temperature. In these equations E, K, and y are 
the kinematic viscosity, thermal diffusivity, and a gravita- 
tional constant that incorporates the coefficient of volume 
expansion, and j is the unit vector in the vertical direction. 
(See Chandrasekhar [8] for a detailed discussion of 
the Boussinesq approximation.) When the equations are 
suitably nondimensionalized these parameters collapse into 
the dimensionless groups appropriate to the particular flow 
regime. 

The methodology presented above can be directly applied 
to the Boussinesq equations by removing the density 
weighting in the projection and accounting for thermal 
diffusion in (2.17). 
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TABLE I 

Convergence Results-Velocity 

Case 32-64 Rate 

Euler 2.819e-03 2.21 

R=100 7.886e-04 1.95 

64-128 Rate 

5.845e-04 2.22 

2.044e-04 1.88 

128-256 

1.256e-04 

5.539e-05 

3. CONVERGENCE STUDY 

In this section, results are given that demonstrate the rate 
of convergence of the method discussed in the previous 
section. For this purpose, we define a smooth initial stream 
function and density field inside the unit square: 

$O(x, y) = 7r’ sin*(7cy) sin2(7cx) 

p”(y) = 1 - i tanh( y - i), 

(3.1) 

(3.2) 

where the initial velocities u(x, y) and u(x, y) are given, in 
the usual way, by u = a$/ay and v = -8$/3x. The velocity 
satisfies homogeneous Dirichlet boundary conditions; 
boundary conditions on the density are determined by 
second-order extrapolation from the outermost interior 
cells. For the purposes of this convergence study, the body 
force term was omitted from the momentum equations. 

We will consider two specific cases: inviscid flow (the 
incompressible Euler equations) and a viscous case with a 
Reynolds number of 100. For each case, the solution is com- 
puted on uniform grids, Ax = Ay = l/2” for 2” time steps, for 
n = 4, 5, ,..) 7. For the purpose of establishing a convergence 
rate, a uniform time step is desired. In each of the three cases 
we set At = l/2 Ax which gives an effective CFL of 0.5. We 
measure the difference in both the density and velocity for 
grids of adjacent resolution. In the viscous case, we measure 
pointwise differences summed (1*) over points where coarse 
and fine grids coincide. In our formulation of the method for 
the Euler equations a staggered grid is used; hence, we com- 
pare the coarse grid answer with the average of the line grid 
cells covering it. In either case, the 1* norm of these differen- 
ces is proportional to the error on the coarser grid and is 
used to compute the numerical convergence rates. The 
results for velocity and density are summarized in the 
Tables I and II. 

Case 

Euler 

R=lOO 

TABLE II 

Convergence Results-Density 

32-64 Rate 64-128 Rate 128-256 

5.855e-04 2.31 1.132-04 2.34 2.23Oe-05 

3.926e-04 2.23 8.330-05 2.21 1.795-05 

Second-order accuracy is apparent for velocity and den- 
sity fields in the Euler case and for the density field for the 
R = 100 case. We observe a slight deterioration in accuracy 
in the velocity in the R = 100 case. A more detailed analysis 
of the error indicates that the regions of high error are 
clustered in irregular blotches in the interior of the domain, 
suggesting that the deterioration is most likely related to 
limiting effects. 

4. EXAMPLES 

To illustrate the performance of the method on problems 
modeled under the Boussinesq approximation, we consider 
the evolution of an axisymmetric thermal at high Rayleigh 
number and two-dimensional channel flow past a heated 
strip. As examples of flows with finite-amplitude density 
variation, we show the evolution of both single and complex 
modes of a Rayleigh-Taylor instability and the interaction 
of an axisymmetric vortex ring with a density interface. 

4.1. Axisymmetric Thermal 

A thermal is a region of self-convecting buoyant fluid 
which, as it moves, deforms due to vorticity generated 
by the interaction between the gravitational pressure 
gradient and the density gradient at the interface with the 
surrounding fluid. This can be observed, for example, in the 
formation of cumulus clouds [9], in the flow that results 
when a volume of fluid is heated by a sudden release of 
energy [lo], or at the onset of motion in Rayleigh-Benard 
convection, in which thermals are ejected from the conduc- 
tion layer into the surrounding fluid [ 111. 

Numerical simulations of thermals have been carried out 
by several investigators (e.g., Anderson [ 12]), but these 
have been limited to relatively early times and Cartesian 
geometry. 

The initial data are zero velocity everywhere, and 

H(r,~,O)=B,((r,L)=~[l+tanh(~)l, (4.1) 

which represents a sphere of hot fluid in cold surroundings. 
The interface has been desingularized to minimize grid 
effects. Homogeneous Dirichlet boundary conditions and 
axial symmetry were imposed. 

For this calculation, the Grashof number, defined as 
Gr =g/?d368/K2, is 8 x 109, and the Prandtl number, 
Pr = E/K, is 0.71, where K is the thermal diffusivity, v is the 
kinematic viscosity, d is the initial diameter of the hot 
sphere, 68 is the scale of temperature variation, b is the ther- 
mal expansion coefficient, and g is the acceleration due to 
gravity. The calculations are carried out on a 200 x 600 grid. 
Numerical experiments have shown that the evolution of 
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i 3 
! 

C 8.19825 

b 

d 11.8873 

FIG. 2. (a)-(d) Axisymmetric thermal. Vorticity contours are shown on the left, temperature contours on the right. Grashof number = 8 x 109, 
Prandtl number = 0.71. 

the flow is relatively insensitive to boundary effects except 
for the generation of thin boundary layers at the edge of the 
domain due to the “no-slip” condition there. We have 
plotted only the interior of the computational domain to 
suppress the plotting of these boundary layers. Results 
are shown in Figs. 2a-h. The left half-plane shows vorticity 
contours; temperature contours are shown on the right. 

In the first frame, we see that the effect of baroclinicity is 
to create a vortex sheet at the interface between hot and cold 
fluids. Next, the vortex sheet curls up, causing the mass of 

hot fluid to assume its characteristic mushroom shape. At 
the crown of the thermal, a small ringlet of countersign vor- 
ticity is observed, “notching” the temperature contours and 
signifying the onset of a topological change in the main 
body of the thermal from a mushroom to a ring conligura- 
tion. A thermal wake trails the main mass of hot fluid. In the 
next frame, most of the hot fluid has been pulled into the 
shoulders of the thermal. The crown has separated, resulting 
in a layering of opposite-signed vorticity across the inter- 
face, and there is a large countersign vertical structure in the 
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1 

FIG. 2. (e)-(h) Axisymmetric thermal (continued). Vorticity contours are shown on the left, temperature contours on the right. Grashof number 
8 x 109, Prandtl number = 0.71. 

core. The next two frames show the crown separating 
further with the expansion of the vortex ringlet at the top 
and convective mixing in the core manifest as folding of the 
temperature and vorticity contours. Discrete vortices of 
both signs are observed in the core. In the last three frames, 
the thermal continues to rise and expand due to the entrain- 
ment of the surrounding fluid. The ringlet at the top has 
been absorbed, and wispy spiral arms are thrown out from 
the main body. There are still several persistent vortices of 
both signs in the core, and a thermal wake several diameters 

long trails the thermal. A more detailed study of this flow 
has been undertaken [ 131. 

4.2. Two-Dimensional Poise&e Flow Past a Heated Strip 

This configuration can be regarded as an idealized model 
of the fluid mechanics associated with a chemical vapor 
deposition reactor. Reactants are passed over a substrate 
heated to a temperature at which a desired chemical 
reaction will occur, and products are deposited in a thin 

581/101/2-8 
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FIG. 3. (at(b) Poiseuille flow past a heated strip. Vorticity contours above, temperature contours below. Reynolds number = 50, Peclet 
number = 7.5, Richardson number = 750. 

layer on the substrate. An understanding of the thermal and 
fluid transport properties of this system is essential to the 
development of a consistent process. 

The imposition of an external velocity scale U introduces 
an additional dimensionless group into the specification of 
the problem. If Eqs. (2.16~(2.18) are nondimensionalized 
by the inertial time d/U, the problem can be described in 
terms of the Reynolds, Richardson, and Peclet numbers, 
given by Re = Udfv, Ri = gdfi6tJf U 2, and Pe = Ud/lc. In this 
calculation, the Reynolds number is 50, the Peclet number 

is 7.5, and the Richardson number is 750. The length scale 
is taken to be the length of the heated substrate. The initial 
condition is that of plane Poiseuille flow, with the heater 
“turned on” at r = 0. The boundary conditions are no-slip 
walls, Poiseuille flow at the inlet, and conditions at the out- 
flow plane are implemented in the manner discussed earlier 
in this paper. 

The calculations are shown in Figs. 3a-d. Initially, 
plumes rise from the surface of the substrate, are pulled 
downstream, and breap up into discrete vertical structures. 
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FIG. 3. (c)-(d) Poiseuille flow past a heated strip (continued). Vorticity contours above, temperature contours below. Reynolds number = 50, Peclet 
number = 7.5, Richardson number = 750. 

After the initial perturbation is swept downstream, the flow 
relaxes to a quasi-steady state in which vortices are shed 
continually by the substrate, are pulled and stretched 
downstream, and pass out the outflow boundary. Numeri- 
cal experiments have shown that the frequency of oscillation 
is dependent on the Peclet number. Qualitatively similar 
structures have been observed experimentally [14], where 
the buoyancy was introduced by the passive injection of 
small quantities of weak alcohol solution. 

4.3. Rayleigh-Taylor Instability 

The Rayleigh-Taylor instability, associated with the 
acceleration of heavy fluid into light under the action of a 
gravitational field, is generic to a wide range of physical 
phenomena, and many numerical simulations have been 
performed [15-171. The importance of the Rayleigh- 
Taylor instability in the physics of stratified flows has also 
led to its wide use as a test case for numerical methods 
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FIG. 4. (at(d) Density contours of a Rayleigh-Taylor instability, single-mode initial perturbation, 7: 1 density ratio. 

applied to such problems. What is most noteworthy about 
the performance of this method in the context of 
the Rayleigh-Taylor problem (and, indeed, any sharply 
stratified flow configuration), is that, in the absence of 
curvature-dependent physical effects, no interface tracking 
scheme is required, the interface is captured in the course of 
solving the mass conservation equation, using higher-order 
Godunov methodology. Two calculations are shown: the 
growth of a single wavelength initial perturbation and the 
growth of complex initial perturbation, both with periodic 
boundary conditions horizontally and Dirichlet conditions 
on the top and bottom. 

In the first case, the initial perturbation is given by 

where d is the width of the computational domain. The 
interface has been desingularized by a tanh profile of width 
O.Old to minimize anomalous grid effects. The dimensionless 
viscosity, vg -‘.‘d - 1.5, is 1 x 10P3, and the density ratio is 
7: 1, with an Atwood number of 0.875. A uniform 200 x 800 
grid is used. Figures 4a-g show density contours. As the 
heavy fluid penetrates the light fluid, the interface begins to 
roll up into two counter-rotating vortices with the charac- 
teristic mushroom shape. At this high Atwood number, the 
rollup is not pronounced, but as the heavy fluid continues to 
fall, a rich structure develops in the interior of the head. 

The complex initial perturbation consisted of a superposi- 
tion of eight waves of arbitrary wavelength, 

q(x)=O.Oldcos ; , 
( > 

q(x) =O.O0125d t cos 
i=l 
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FIG. 4. (e)-(h) Density contours of a Rayleigh-Taylor instability, single-mode initial perturbation (continued), 7: 1 density ratio. 

where 1L = (4, 14, 23, 28, 33, 42, 51, 59). The interface has 
been desingularized as for the single mode case and the 
viscosity and density ratio are the same. A uniform 
250 x 500 grid is used. Figures 5a-d shows density contours 
for this case. As Tryggvason has observed in an inviscid, 
Boussinesq calculation [17], the waves grow almost inde- 
pendently of one another at early times and then begin to 
interact strongly. Vortex dipoles with length scales much 
larger than that of any of the initial perturbations are 
formed and, in some cases, are ejected from the well-mixed 
region. 

4.4. Interaction of a Vortex Ring with a Density Interface 

When a vortex ring collides with a density interface, the 
dynamics are characterized by the interaction of baroclini- 

tally generated vorticity with the already existing vorticity 
field. Examples where this situation can be found are the 
interaction of a ship or submarine wake with a thermocline 
and the collision of a buoyant thermal with a temperature 
inversion. The interaction between vortices and a free 
surface, which corresponds to the case where the density 
jump is very large, has been studied fairly extensively, 
both experimentally [ 18) and computationally [ 19-22 J. 
Experiments and numerical studies (the latter in the 
inviscid, Boussinesq limit) have also been performed for the 
more general case of vortex pairs and rings interacting with 
density interfaces [23]. 

In this example, we calculate the evolution of the vorticity 
and density fields as a relatively weak axisymmetric vortex 
ring rising through a viscous, incompressible fluid interacts 
with a sharp density interface. The Reynolds number (T/v) 
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d 9.35273 

FIG. 5. (at(d) Density contours of a Rayleigh-Taylor instability, 
complex initial perturbation, 7: 1 density ratio. 

is 3750, the inverse Froude number (a3g/r2) is 52.7, the 
Atwood number if 0.8, with a 5 : 1 density ratio and a stable 
stratification. Here, r is the strenth of the vortex ring, v is 
the kinematic viscosity, a is the initial diameter of the ring, 
and g is the acceleration due to gravity. An Oseen model is 

used to initialize the vorticity distribution in the core. 
and the ratio of core diameter to ring diameter is 0.16. 
A 250 x 500 grid is used in the calculation. The results are 
shown in Fig. 6. Vorticity contours are shown on the left 
and density contours on the right. 

Initially, the vortex ring was placed 1.5 diameters below 
the horizontal interface. It rises under self-advection and the 
interface deforms, generating baroclinic vorticity along 
itself. As the vortex becomes closer to the interface, the 
baroclinically generated vorticity and the already existing 
vorticity in the ring begin to interact. The ring appears to 
peel the countersign vorticity from the interface, wrapping it 
around itself and injecting it back into the heavy fluid 
below. In the course of doing so, it is almost completely 
annihilated, and the interface begins to collapse back upon 
itself. The flow is now quite complex. The main features are 
the jet penetrating downward into the heavy fluid, and the 
waves on the interface generated by the collapse of the 
bubble. 

5. CONCLUSION 

We have presented a generalization of a second-order 
projection method for the incompressible Navier-Stokes 
equations to finite amplitude variable density flows. The use 
of higher-order Godunov methodology for the nonlinear 
advection terms in the Navier-Stokes equations provides 
resolution that permits close study of the fine vertical struc- 
ture that is characteristic of such flows. Additionally, robust 
treatment of advection in the mass conservation equation 
precludes the necessity of coupling a front-tracking algo- 
rithm to the solution of the fluid dynamic equations (if 
properties that depend on interfacial curvature are taken to 
be small). The method has been shown to be second-order 
in space and time, and examples have been presented that 
demonstrate its wide range of applicability. Ongoing and 
future work include coupling this technology with adaptive 
mesh refinement [24], so that resolution will be placed in 
the computational domain only where it is demanded by the 
evolving flow structure, and developing a front-tracking 
algorithm to account for curvature-dependent interfacial 
effects. By combining the basic integration methodology 
described in this paper with these types of adaptive 
methodologies, we will be able to perform computations in 
three dimensions that are comparable in resolution to the 
results presented here. 
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FIG. 6. (aHd) Interaction of an axisymmetric vortex ring with a density interface, 5: 1 density ratio, Reynolds number = 3750, inverse Froude 
number = 52.7. 
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