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ABSTRACT

A laterally averaged nonhydrostatic model for stratified flow in dynamically narrow domains is presented.
Averaging laterally yields the computational efficiency of a two-dimensional model, while retaining some effects
associated with variable domain width, such as flow acceleration through contracting channels. The model may
be run in both hydrostatic and nonhydrostatic modes, and in the latter case it converges rapidly if the flow is
approximately hydrostatic. The model’s strengths and weaknesses are illustrated with a series of test cases of
increasing complexity. Side-by-side comparisons with laboratory observations show the ability of the model to
simulate the structures of nonhydrostatic flows, including shear instabilities and overturning internal waves, with
discrepancies becoming apparent mainly for transition to three-dimensional turbulence. Similar results are dem-
onstrated in an application to the stratified sill flow in Knight Inlet, British Columbia. The model reproduces
nonhydrostatic features thought to be dynamically important to this system, including the generation of large-
amplitude lee waves and shear instabilities.

1. Introduction

The dynamics of narrow coastal systems, such as es-
tuaries and fjords, may be approximated with laterally
averaged governing equations if the domain width is
much smaller than the internal Rossby radius of defor-
mation and if the cross-channel flow is small compared
to the along-channel flow. Accordingly, many models
have been based on laterally averaged equations of mo-
tion (Hamilton 1975; Blumberg 1977; Wang and Kravitz
1980; Ford et al. 1990; Lavelle et al. 1991; Gillibrand
et al. 1995; Stacey et al. 1995; Wang 1998). Even though
the lateral average approach is not much more com-
putationally demanding than a strictly two-dimensional
approach, it yields considerable benefits. For example,
contracting channels cause flow accelerations, and ne-
glecting this effect may yield incorrect internal Froude
numbers, perhaps leading to large errors in the rate at
which fluid can be exchanged through contractions
(Armi and Farmer 1986, 1987; Farmer and Armi 1986).

A common characteristic of most laterally averaged
models is that they employ the hydrostatic assumption.
This has the advantage of greatly simplifying the nu-
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merics (Marshall et al. 1997a). The hydrostatic as-
sumption requires that (Gill 1982, p. 259)

v
O K 1, (1)1 2N

or equivalently that

H
O K 1, (2)1 2L

where v is the internal-wave oscillation frequency, N
is the buoyancy frequency, and H and L are the char-
acteristics vertical and horizontal scale of the flow, re-
spectively. The above is identical to the long-wave or
‘‘shallow-water’’ approximation (Gill 1982, p. 159).
Consequently, hydrostatic models cannot simulate
small-scale (i.e., scale comparable to or smaller than the
water depth) physical processes, including important
cases such as shear instabilities, high-frequency internal
waves, and wave breaking (Farmer and Freeland 1983).
So far, these nonhydrostatic geophysical problems have
been studied mostly using pure two-dimensional models
(e.g., Lamb 1994; Hibiya et al. 1998; Afanasyev and
Peltier 2001; Cummins et al. 2003). We are not aware
of models that combine the lateral-averaged approach
with nonhydrostatic physics.

With this motivation, we present in this paper the
details of a model based on the laterally averaged non-
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FIG. 1. Definition sketch of model geometry.

hydrostatic equations of motion (section 2). Through a
series of process-oriented test cases (section 3) and an
oceanographic application (section 4) we show that this
new model achieves an efficient compromise for appli-
cations in limited domains, such as estuaries, narrow
embayments, and lakes, where nonhydrostatic phenom-
ena may be important.

2. Model description

a. Governing equations

The model solves the laterally averaged momentum
equations (see Fig. 1 for the geometry)
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along with the continuity equation
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the depth-integrated continuity equation
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and the tracer equation
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The notation follows that in other laterally averaged
models, t is time; x is the horizontal coordinate along

the channel; z is the vertical coordinate with its origin
at the undisturbed sea surface and positive downward;
u(x, z, t) is the horizontal velocity component; w(x, z,
t) is the vertical velocity (positive downward); h(x, t)
is the surface elevation relative to the local mean sea
level (positive upward); H(x) is the water depth; p(x, z,
t) is the pressure; r0 is a constant reference density; r(x,
z, t) is the density given by the United Nations Edu-
cational, Scientific and Cultural Organization
(UNESCO) equation of state of seawater (Gill 1982, p.
599); C(x, z, t) is the concentration of any scalar (e.g.,
density r, temperature T, salinity S, or any other passive
tracer); B(x, z) is the width; g is gravity; AH(x, z, t),
AV(x, z, t), KH(x, z, t) and KV(x, z, t) are coefficients of
eddy viscosity and diffusivity; and S f (x, z) is a drag
coefficient for quadratic bottom friction along the
stepped channel cross sections given by

dB
S 5 S 1 1 ,f 01 ) )2dz

where S0 is a tunable parameter (Lavelle et al. 1991).
Depending on the model application, the eddy viscosity
is either taken as constant or parameterized as in Sma-
gorinsky (1963), or in term of the Richardson number
as in Pacanowski and Philander (1981). The term d in
(4) indicates a computational switch that permits the
model to be run in either hydrostatic or nonhydrostatic
mode.

The horizontal pressure gradient in (3) is expressed as

z]p ]h da ]r ]p905 g r 1 r 1 dz 1 , (8)0 0 E1 2]x ]x dx ]x ]x
2h

where the terms inside the parentheses represent the
hydrostatic contributions from tilting of the free surface
h, from variations of the mean water level a0(x) with
respect to the geoid (Dronkers 1964), and from longi-
tudinal density variations. The final term in (8) is the
nonhydrostatic deviation, indicated with a prime. An
analogous term appears in the formulation for the ver-
tical pressure variation, that is,

]p ]p ]p9h5 1 , (9)
]z ]z ]z

with the first term being the hydrostatic pressure gra-
dient, equal to rg, and the second being the nonhydro-
static component. These nonhydrostatic deviations are
calculated with the pressure-projection method (Jan-
kowski 1999), a numerical technique explained in the
next section.

b. Numerical scheme

A finite-difference scheme is used, with the governing
equations discretized on a variable-mesh z-coordinate C
grid (Arakawa 1966) as in Wang and Kravitz (1980)
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without the implementation of partial (e.g., Lu et al.
2001) or shaved cells (Adcroft et al. 1997) at the bottom.
The topography is thus represented by discrete steps
that must fit the vertical grid. The vertical grid is fixed
except for the surface grid points, which adjust every
time step to the position of the free surface. The surface
vertical grid spacing must thus be larger than the max-
imum expected tidal amplitude, which precludes the rep-
resentation of processes occurring within thin surface
layers. Numerical techniques to resolve thin surface lay-
ers subject to large vertical variations on z-coordinate
models have been developed by Hamilton (1975) and
Stacey et al. (1995) but are not implemented here.

Centered differences are used for the spatial deriva-
tives in the momentum and continuity equations, (3),
(4), and (5), as well as diffusion terms in the scalar
equation (7). A second-order limited upstream differ-
encing scheme is used for the advection of scalar quan-
tities, in order to reduce the numerical dispersion as-
sociated with the centered advection scheme and to re-
duce the excessive smoothing associated with the first-
order upstream advection scheme; see Pietrzak (1998)
and Roache (1998) for detailed descriptions of this
method. For all simulations presented in this paper the
van Leer ‘‘flux limiter’’ was used.

All advective and diffusive terms are treated implic-
itly using the second-order Crank–Nicholson scheme
(Ferziger and Perić 1996). To simplify the two-dimen-
sional implicit problem, a two-step fractional method is
used with equations being split into their x and z com-
ponents (Ferziger and Perić 1996). This reduces the two-
dimensional implicit problem to a sequence of one-di-
mensional problems involving the solution of a tridi-
agonal matrix by a compact LU decomposition (Press
et al. 1992).

In order to relax the Courant–Friedrich–Levy con-
dition for long surface waves, so that larger time steps
can be used, the barotropic pressure gradient term in
(8) is treated semi-implicitly following Wang and Krav-
itz (1980). The baroclinic pressure gradient term in (8)
is, however, treated explicitly from the known density
field and so the time step is limited by the phase speed
of long internal waves—that is,

Dx
Dt , , (10)

NH

where N is the buoyancy frequency.
The nonhydrostatic pressure gradient terms in (8) and

(9) are computed using the pressure-projection method.
Since a detailed description and derivation of this meth-
od is given in Jankowski (1999), only an overview of
the algorithm will be given here, focusing on peculiar-
ities associated with the lateral averaging. To solve for
the nonhydrostatic pressure p9, the integration is carried
out in two stages. In the first stage, intermediate velocity
fields (ũ, w̃) are calculated by solving (3) and (4) with
the nonhydrostatic pressure gradient terms, the last

terms in (8) and (9), taken from the previous time step.
At this first stage of the calculation, the flow field may
be divergent; that is, ũ and w̃ may not satisfy the con-
tinuity equation. In the second stage, a ‘‘pressure-cor-
rection’’ is applied to the flow field, making it diver-
gence-free, by writing

n11u 2 ũ 1 ]p̃9
5 2 , (11)

Dt r ]x0

n11w 2 w̃ 1 ]p̃9
5 2 , (12)

Dt r ]z0

where the superscript n 1 1 indicates the desired value
for the (n 1 1)-th time step and p̃9 is the nonhydrostatic
pressure correction field needed to obtain a divergence-
free solution. It remains to calculate p̃9. An equation for
p̃9 is obtained by multiplying (11) and (12) by B and
by applying the divergence operator. Taking into con-
sideration that the resulting velocity field (un11, wn11)
must fulfill the continuity equation (5), the following
elliptic equation for p̃9 is obtained:

] ]p̃9 ] ]p̃9 r ]Bũ ]Bw̃0B 1 B 5 1 . (13)1 2 1 2 1 2]x ]x ]z ]z Dt ]x ]z

Solving (13) at every time step represents the main com-
putational challenge in the model algorithm. After some
experimentation with alternate techniques, we chose to
solve (13) with the preconditioned conjugate gradient
method (Press et al. 1992) as in Marshall et al. (1997a,
b). This method converges rapidly if the flow is ap-
proximately hydrostatic. We refer readers to Marshall
et al. (1997b) for a detailed description of this algorithm.
As an indication on the convergence property of the
algorithm we noted that for the nonhydrostatic simu-
lations presented in the following sections it took rough-
ly 1022 M iterations to reduce the error by a factor of
1027, where here N is the total number of grid points.
Once (13) is solved, the nonhydrostatic pressure can be
updated—that is, p9n11 5 p9n 1 p̃9.

c. Boundary conditions

At solid boundaries, no-flux (advective and diffusive)
boundary conditions are imposed except for bottom and
wall shear stress that are imposed following

]u
A 5 2C |u |u , (14)V D b b)]z z5H

]w
A 5 2C |w |w , (15)H D w w)]x x5wall

where ub and ww are the bottom cell horizontal velocity
and vertical velocity in a cell next to a perpendicular
solid boundary, respectively, and CD is a drag coefficient
given by the law of the wall (Kundu 1990, p. 454),

2C 5 [k/ln(l/l )] ,D 0 (16)
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where k 5 0.41 is the von Kármán’s constant, l is either
the height above the bottom [Eq. (14)] or the horizontal
distance from the wall [Eq. (15)], and l0 is the roughness
length. The surface shear stress from the wind action is
given by

]u
A 5 2C |W | (W 2 u | ), (17)V w z52h)]z z52h

where ra is the air density, W is the along-channel com-
ponent of the wind velocity, and Cw 5 f ( | W | ) is a drag
coefficient (Gill 1982, p. 29). For the nonhydrostatic
pressure,

]p9 ]p9
5 0, 5 0, p9| 5 0. (18)z52h) )]x ]zx5wall z5H

At open boundaries, the horizontal velocity u and
scalar concentration C (e.g., density) are either imposed
or calculated using the following radiation condition
(e.g., Stacey et al. 1995),

]u ]u
1 u 5 0, (19)

]t ]x

]C ]C
1 u 5 0. (20)

]t ]x

Surface elevation at open boundaries are either imposed
or computed using a gravity-wave radiation condition
(Chapman 1985); that is,

]h ]h
1 c 5 0, (21)

]t ]x

where c 5 is the phase speed of long surfaceÏgH
waves. The nonhydrostatic pressure at open boundaries
is set to 0—that is, the pressure there is assumed to be
purely hydrostatic.

As a measure of the efficiency of the code, we note
that each of the simulations presented in the following
sections can be done overnight on a typical desktop
workstation. It is also worth noting that a typical non-
hydrostatic run may take 10 to 100 times longer than
an hydrostatic run.

3. Test cases

In order to test the model code and the accuracy of
its algorithms, we have undertaken a series of test cases
of increasing complexity in terms of the forcing and of
the domain geometry. These are described in the fol-
lowing subsections.

a. Lock-exchange flow

The main driving force of estuarine overturning cir-
culation is the baroclinic pressure gradient induced by
the density difference between fresh river water on one
end and salty oceanic water on the other end. A sim-

plication of this situation, the gravitational adjustment
of two water masses of different densities initially sep-
arated by a vertical gate, has come to be called the lock-
exchange problem. It has become a standard case for
testing the baroclinic dynamics component of models,
and it is also used to assess scalar advection schemes
(Haidvogel and Beckmann 1999, p. 221). In addition
we will use this case for illustration of the differences
between hydrostatic and nonhydrostatic responses.

The model configuration is set to match that of Jan-
kowski (1999) with channel length L 5 30 m, width B
5 3 m, and depth H 5 4 m. The horizontal and vertical
resolutions are Dx 5 Dz 5 0.2 m and the time step is
Dt 5 1 s. At t 5 0 the left and right halves of the basin
are occupied by water of density r2 5 1000.722 kg m23

and r1 5 999.972 kg m23, respectively.
During the adjustment process, waves and shear in-

stabilities develop at the interface. These can be handled
by the nonhydrostatic model, given sufficient resolution
(as will be illustrated in more detail in the following
subsection) but cause numerical instabilities in the hy-
drostatic model. In order to stabilize the hydrostatic run
and to make comparable hydrostatic and nonhydrostatic
solutions, viscosity and diffusivity were set to AH 5 KH

5 6.5 3 1023 m2 s21 and AV 5 KV 5 1026 m2 s21 as
minimum values for a stable hydrostatic solution. The
side and bottom friction are both set to CD 5 S0 5 0,
which is equivalent to using a free slip condition as
done in Jankowski (1999).

Figure 2 compares the hydrostatic and nonhydrostatic
solution. As a check on the numerical scheme and on
the two-dimensionality of the flow at this stage, we note
that the fields are visually identical to the results of the
three-dimensional model of Jankowski (1999, his Figs.
5.12 and 5.13, p. 143).

There are notable differences in the interface shapes
and velocity fields for the hydrostatic and nonhydro-
static cases. The nonhydrostatic case better reproduces
the shape of the head of the intrusion. According to
laboratory observations (Turner 1973, p. 70), the char-
acteristic nose angle at the stagnation point is a 5 608,
which is matched to within 3% in the nonhydrostatic
case but only within 40% for the hydrostatic case.

The theoretical frictionless, steady-state solution for
the horizontal velocity magnitude in each layer is (Turn-
er 1973),

r 2 r2 1 22 21U 5 0.5 g H 5 8.6 3 10 m s . (22)! r2

Figure 3 shows the time series of | u | in the middle of
the channel (x 5 15 m) at the surface (z 5 0) and at
the bottom (z 5 4 m). In both layers | u | converges to
1.02 U in the hydrostatic case and to 0.988 U in the
nonhydrostatic case. Both cases thus converge toward
a phase velocity comparable to the theoretical value.

We performed several consistency checks in the mod-
el. For example, over the course of the simulation, the
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FIG. 2. Numerical results for the lock-exchange flow problem comparing the (left) hydrostatic and (right) nonhy-
drostatic case at t 5 100 s. (top) Density (kg m23 2 1000), (middle) horizontal velocity (cm s21), and (bottom) vertical
velocity (cm s21).

FIG. 3. Time series of the magnitude of the horizontal velocity at
surface (thick) and bottom (thin) for the hydrostatic (solid) and non-
hydrostatic (dashed) cases. The dotted line is the theoretical value
from Eq. (22). FIG. 4. Horizontal resolution Dx for the shear instability test case.

total mass was conserved to within 1025% (note that
calculations are done in double precision). Also, the
scalar advection scheme did not produce unphysical lo-
calized extrema in the density field like the centered
advection scheme would do (see Haidvogel and Beck-
mann 1999, p. 221). These tests, and the agreement with
other modeling studies, lend confidence in the model
formulation and coding, so the next test cases compare
with laboratory experiments, not with other models.

b. Shear instability

In stratified shear flows, such as those observed in
estuaries and fjords, shear instability is an important
mechanism for enhancing turbulent mixing (Geyer and
Smith 1987; Farmer and Armi 1999b). To test the ability
of the model to simulate such nonhydrostatic phenom-
ena, we start with an idealized test case: Thorpe’s (1968)
laboratory experiment on shear instabilities in a two-
layer fluid.

Thorpe (1968) raised one end of a long closed rect-

angular tank containing a two-layer fluid. This produces
an accelerating shear flow which may destabilize the
density interface if the Richardson number

g ]r/]z
Ri 5 (23)

2r (]u /]z)

falls below a threshold value close to 0.25 at the inter-
face (Miles 1961; Thorpe 1968).

We have reproduced this experimental setting nu-
merically. The tank, closed at both ends, has length L
5 1.83 m, height H 5 0.03 m, and width B 5 0.1 m.
For computational efficiency, we have used a nonuni-
form horizontal resolution (Fig. 4), with Dx 5 1023 m
near the tank center (i.e., where Thorpe 1968 made his
measurements) and larger values toward the ends, up to
Dx 5 1022 m at the walls. The vertical resolution is Dz
5 6 3 1024 m. The grid has 672 3 55 grid points. The
time step is Dt 5 1022 s. Coefficients of viscosity and
diffusivity are set to AH 5 AV 5 1026 m2 s21 and set
to KH 5 KV 5 1027 m2 s21, that is, roughly to the
molecular values.

Initially, the density is longitudinally uniform and its
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FIG. 5. Initial (left) density and (right) horizontal velocity profiles
for the shear instability test case.

vertical distribution is set to the convenient functional
form

Dr (z 2 z )ir 5 r 1 1 1 tanh , (24)1 5 6[ ]2 Dh

where r1 5 103 kg m23, Dr 5 15.6 kg m23, Dh 5 1.5
3 1023 m, zi 5 H/2. The initial vertical velocity was
set to w 5 0. The initial horizontal velocity was set to
be longitudinally uniform and its vertical distribution is
prescribed by first specifying Ri, constant throughout
the domain, and then solving (23) for u using the density
profile given by (24). For the simulation under discus-
sion, we used Ri 5 0.025. Figure 5 shows the initial
density and horizontal velocity profiles. The figure
shows that the thickness of the shear layer is h . 1 cm
so that the most unstable waves are expected to have
wavelengths l . 7 h . 7 cm (Kundu 1990). To trigger
instabilities, a white noise of amplitude 1025 m s21 was
added to the initial horizontal velocity. Using a noise
amplitude 1023 m s21 produces virtually the same re-
sults.

Figure 6 shows the comparison between model results
and Thorpe’s (1968) observations for the spatiotemporal
structure of the density field in the 50-cm-long central
section of the tank, away from both ends. Qualitatively,
the numerical results are similar to the observations for
the early stage of the development of instabilities. The
growth rate, amplitude, shape, wavelength (i.e., dis-
tances between consecutive rolls), and number of bil-
lows are comparable to the observations. The wave-
length of the modeled most unstable wave is l . 5 cm,
which compares well with the predicted value of 7 cm.
Pairing of billows is also well simulated, as seen for
example on the fifth and sixth panel between the seventh
and eighth billow.

Differences between model results and laboratory ob-
servations become noticeable after the complete for-
mation of the rolls. This coincides with the time were

Thorpe (1968) noted important three-dimensionality in
the flow structure, which is necessarily missing in the
present laterally averaged simulation. We surmise that
this explains why the density structure in the last panel
of Fig. 6 looks less turbulent than in Thorpe (1968).
The breaking of the rolls into highly turbulent motions
is less severe in the two-dimensional simulation.

Note that this setup leads to numerical instabilities
when the model is run in an hydrostatic mode (i.e., with
d 5 0 in 4). Billow formation and convective overturns
simply cannot be simulated with a hydrostatic model.
To avoid numerical instabilities when dynamically un-
stable conditions are met in hydrostatic models, extra
diffusion, generally parameterized in term of the local
Richardson number (e.g., Pacanowski and Philander
1981), must be used to prevent the instability from
growing.

c. Collision of an internal wave with sloping bottom

The breaking of high-frequency internal waves is an-
other important mechanism for turbulent mixing in
coastal systems (Farmer and Freeland 1983; Bourgault
and Kelley 2003). Because of strong tidal forcing and
steep topography, high-frequency internal waves in
coastal environments often take the form of large-am-
plitude, nonlinear internal solitary waves (ISW, Farmer
and Armi 1999a). Partly owing to a separate interest in
such phenomena (Bourgault and Kelley 2003), and part-
ly as a test of the model’s handling of bottom features,
we configured the model to simulate the shoaling of an
ISW on a linear slope.

Note that simulating ISW propagation on its own (i.e.,
without collisions with boundaries) represents a good
test to assess nonlinear, nonhydrostatic models since
ISW owe their existence to the balance between non-
hydrostatic effects and nonlinear steepening (see Lee
and Beardsley 1974 for a review). In a recent study we
examined, using this model, ISW propagation in a con-
tinuously stratified estuarine environment and we
showed a comparison between model results and the
Korteweg–deVries (KdV) theory for the relationship be-
tween ISW amplitude and length (Bourgault and Kelley
2003, their Fig. 11). The comparison shows that model
results and theory are almost identical in the KdV limit
(i.e., for small ISW amplitude compared to the surface-
layer thickness) indicating that nonlinear and nonhy-
drostatic physics are represented accurately in the mod-
el.

We set up a numerical simulation of the laboratory
experiment of Michallet and Ivey (1999), in a tank of
length L 5 1.72 m and width B 5 0.25 m. In the flat
bottom section of the tank the depth is H 5 0.15 m. A
linear slope s 5 0.214 starts at 0.7 m from the right end
of the tank. Figure 7 shows the horizontal resolution Dx
as function of the longitudinal axis. The resolution in
the flat bottom section is Dx 5 1022 m and steadily
increases to Dx 5 2.5 3 1023 m at the slope. The vertical
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FIG. 6. (top six panels) Model results for density and (bottom six panels) laboratory observations
for dye (after Thorpe 1968) showing a sequence of snapshots taken at half-second intervals showing
the growth of rolls at the interface between two fluids of equal depth in relative acceleration. The
density difference between the fluids is 15.6 kg m23 and the tube height is 3 cm.

FIG. 7. Horizontal resolution Dx for the internal wave shoaling
onto a slope test case.

resolution is set to Dz 5 1.25 3 1023 m throughout the
depth. The grid has 393 3 122 grid points. The time
step is Dt 5 1.2 3 1022 s.

Horizontal and vertical eddy viscosity and diffusivity

are parameterized as in Winters and Seim (2000) by
setting (AH, KH, AV, KV) 5 AS, where AS is a turbulent
viscosity of Smagorinsky (1963) type given by

2 2 2 2 2(C L) Ï2S 2 N if 2S . N ,SA 5 (25)S 26 2 21510 m s otherwise,

where CS is the Smagorinsky (1963) coefficient, here
choosen to be equal to CS 5 0.2 [values for CS are found
in the range 0.065–0.5 in the literature (see, e.g., reviews
in Porté-Agel et al. 2000; Winters and Seim 2000)], L
5 (DxDz)1/2 is a length scale of unresolved eddies, and
S 2 is the square of the laterally averaged strain rate
tensor (see the appendix for details). For simplicity, side
and bottom friction are set to CD 5 S0 5 0. Qualitatively,
we found the results not sensitive to bottom and side
friction.

The top panel of Fig. 8 shows the initial density field
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FIG. 8. Initial (top) density field used to generate (bottom) a
rightward-propagating internal solitary wave (t 5 6.5 s).

FIG. 9. Comparison between model results: (left) concentration of a passive tracer, and (right) laboratory dye
observations, (after Michallet and Ivey 1999) for the shoaling of an internal solitary wave on a linear slope.

used to initiate a rightward-propagating internal solitary
wave. The vertical distribution of the initial density is
given by (24) with r1 5 103 kg m23, Dr 5 47 kg m23,
Dh 5 1.4 3 1022 m, and zi 5 0.23H. The vertical
displacement of the initial isopycnals is given by

2z 5 2a sech [(x 2 x )/(2W)],0 0 (26)

where a0 5 3.1 3 1022 m, x0 5 21.72 m and the half-
width W is computed from the two-layer Korteweg–
deVries theory via (Bogucki and Garrett 1993)

24 (h h )1 22a W 5 , (27)0 3 h 2 h2 1

with h1 5 3.45 3 1022 m and h2 5 1.155 3 1021 m.
This initial condition produces the wave seen on the
bottom panel of Fig. 8. At the base of the slope (x 5
20.70 m) the wave has amplitude a 5 2.68 3 1022 m
and phase speed c 5 10.6 3 1021 m s21, which compare
well with observed values of 2.7 3 1022 m and 10.8

3 1021 m s21 (Michallet and Ivey 1999, their Table 1
and Experiment 15).

To mimic the flow visualization techniques used by
Michallet and Ivey (1999) and to facilitate the com-
parison with their observations, two thin layers of a
neutrally buoyant tracer D (dye was used in the labo-
ratory) with a normalized concentration of D 5 1 were
initially set at z 5 2.54 3 1022 m and z 5 3.66 3 1022

m, with (7) to track the evolution.
Figure 9 compares model results and the laboratory

observations of Michallet and Ivey (1999) before, dur-
ing, and after wave breaking. Some features are well
reproduced by the model, such as the internal-wave ar-
rival time, the depth of the breaking point, the vertical
and horizontal extents of the region of mixing, the limit
of run up of pycnocline fluid up the slope, and the time
scale of the run-up process.

Differences between model results and observations
are also noticeable. Perhaps the most striking is the lack
of production of a core of mixed fluid, around t 5 3.0 s,
ahead of the wave that, in the laboratory, runs up the
slope as a turbulent bolus. In the our simulation, it is
instead a stable nonturbulent wave of reverse polarity
(i.e., a wave of elevation) that is produced and that runs
up the slope. During and after wave breaking the nu-
merical simulation appears to be less turbulent and more
wavelike. This is attributed to the two-dimensional na-
ture of the model since Michallet and Ivey (1999) noted
important three-dimensionality during wave breaking
events.

Figure 10 shows a side-by-side comparison of model
results and laboratory observations of the velocity field
associated with the run-up process of an ISW on the
slope (for this case the model was set to mimic Exper-
iment 12 from Michallet and Ivey 1999). The model
reproduces reasonably well the intensity and direction
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FIG. 10. Comparison between (left) laboratory observations (after Michallet and Ivey 1999) and (right) model results
for the velocity field associated with the shoaling of an internal solitary wave on a linear slope.

FIG. 11. Horizontal resolution Dx for the contracting-channel test
case.

of the velocity field associated with the run-up process,
including the flow bottom separation below the wave
crest. The third panel of the figure, however, suggests
that the model produces a less turbulent velocity field
at the time of wave overturning.

d. Exchange flow through a contracting channel

In the introduction we emphasized that an advantage
of a laterally averaged model is that it can handle flows
through channels of variable width. This aspect of the
present model was assessed by means of a comparison

with laboratory observations of three-layer exchange
flow through a contracting channel done by Lane-Serff
et al. (2000). Again, we found that nonhydrostatic dy-
namics were required to simulate wave overturning.

The tank has length L 5 1.16 m, depth H 5 0.29 m
and width given by

B |x | . 0.29 m0B 5 (28)
2 25Ïr 2 x 1 r 2 B |x | # 0.29 m,c

where x 5 0 is in the middle of the tank, B0 5 0.13 m
is the width of the uncontracting channel, r 5 0.5775
is the radius of the curved contraction, and Bc 5 0.05
m is the reduced width in the middle of the tank. The
horizontal resolution Dx is shown as function of the
longitudinal axis on Fig. 11. The top of panel of Fig.
12 shows the width. The highest resolution of Dx 5
1023 m is put near the central portion of the tank and
decreases toward both ends, down to Dx 5 1022 m. The
vertical resolution is fixed at 2.9 3 1023 m. The grid
has 856 3 100 grid points. The time step is Dt 5 0.01 s.
Eddy diffusivity are parameterized as in the wave break-
ing test case [Eq. (25)].

Two simulations (cases A and B) were performed
with the initial density fields shown on Fig. 12. As time
evolves, the fluid of intermediate density (gray fluid in
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FIG. 12. Width of the (top) contracting channel. (middle and bot-
tom) Initial density fields used for the experiment of Lane-Serff et
al. (2000): (top) case A, (bottom) case B. [White: fluid 1 (1015 kg
m23), gray: fluid 2 (1007.5 kg m23); black: fluid 3 (1000 kg m23).]
The vertical lines are the countours of the contracting width (cm).

FIG. 14. Discretized depth of Knight Inlet and computational
domain.

FIG. 13. Comparison between (left) model results for density and (right) laboratory observations for fluid 2 dyed
(after Lane-Serff et al. 2000) for a three-layer exchange flow through a lateral constriction: (top) case A at t 5 7 s,
(bottom) case B at t 5 10 s.

the figure) will intrude between the other layers (black
and white fluids) and accelerate through the contracting
channel. The shear above and below the intrusion can
then lead to instabilities.

The model–laboratory comparison is shown in Fig.
13. Inspection reveals qualitative agreement in many
respects. In case A, unstable interfacial waves form on
both interfaces and propagate away from the constric-
tions. In case B, unstable interfacial waves form on the
upper interface only and propagate away from the con-
striction. These features are consistent with the obser-
vations of Lane-Serff et al. (2000).

However, the interfacial structures observed in the
laboratory have smaller scales and look more irregular
than the ones in the model simulation. This is reminis-
cent of the previously discussed cases.

4. Oceanographic application

In order to test the model under realistic oceano-
graphic conditions, we turn to a field application, in
which both the depth and the channel width vary along
the axis of the domain, and in which the forcing is
complex. We use Knight Inlet, British Columbia, as a
test case, since it displays strong nonhydrostatic sig-
natures that have been well-studied (Farmer and Armi
1999b). To make our test more stringent, we have cho-
sen not to ‘‘tune’’ the model in any way for this case.

The domain of integration includes the whole fjord.
The topography is taken from Table 2 of Stacey et al.
(1995) except for details around the sill, for which we
used a local navigation chart. Figures 14 and 15 show
the discretized along-channel depth and details of the
width around the sill, respectively. The resolution
around the sill is Dx 5 10 m and steadily decreases to
Dx 5 5000 m far away (Fig. 16). (This is a good il-
lustration of the need for a variable grid, since it would
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FIG. 15. Details of the width B(x, z) around the sill.

FIG. 16. Horizontal resolution for the Knight Inlet test case. The
highest resolution is Dx 5 10 m around the sill.

FIG. 17. Vertical resolution for the Knight Inlet test case.

be dynamically impossible to model nonhydrostatic re-
sponses at the sill without a fine grid, and needlessly
computationally expensive to handle the whole domain
at the fine resolution.) Figure 17 shows the vertical res-
olution used.

The simulation is initialized in a resting state with a
horizontally homogeneous stratification specified ac-
cording to the observed density profile given in Farmer
and Armi (1999b, leftmost profile on their Fig. 6). At
the landward open boundary a freshwater discharge rate
of 500 m3 s21 is prescribed (e.g., Farmer and Smith
1980). At the seaward open boundary, the free surface
hbnd is prescribed with

h 5 A cos(2pvt),bnd (29)

where A 5 1.75 m (infered visually from Farmer and
Armi 1999b) and v 5 1.9841 3 1025 Hz.

Horizontal viscosity and diffusivity are parameterized
following Smagorinsky (1963)

2 2A 5 K 5 (C L) Ï2S , (30)H H S h

where CS 5 0.2, is the square of the longitudinal2S h

laterally averaged strain rate tensor (see the appendix
for details), and L 5 (DxB)1/2 is a length scale of un-
resolved lateral eddies. Vertical viscosity and diffusivity
are parameterized following Pacanowski and Philander
(1981) as

A0A 5 K 5 , (31)V V n(1 1 aRi)

where A0 5 1024 m2 s21, a 5 5 and n 5 2. The side
friction is set to S0 5 0.003 as in Stacey et al. (1995)
and the bottom roughness length is set to l0 5 1.5 3
1024 m.

Figure 18 shows the comparison of model results and
field observations approximately halfway through the
ebb phase. This time period was choosen for comparison
because it illustrates at once the strengths and weak-
nesses of the model in this application.

The overall velocity field is reasonably well repro-
duced by the model. Qualitatively, the model results
compare well with observations for the quasi-uniform

vertical velocity structure at x , 0 and below 10-m
depth as well as for the timing, location and angle of
the plunging water on the lee side of the sill and the
existence of a nearly stagnant intermediate layer (i.e.,
the layer 19 # s t # 24).

The magnitude of the velocity field is underestimated
in the simulation. Just above the sill crest the observed
magnitudes are in the range 0.8–1.0 m s21, while the
model predicts 0.5 m s21. In the region 200 , x , 400 m
and 40 , z , 100 m, observed vertical velocities are
in the range 0.6–1.2 m s21, while the model predicts
0.25–0.5 m s21. We attribute some of these differences
to the fact that we are comparing laterally averaged
quantities (model) with data collected along a transect
in the middle of the channel where the velocities may
be expected to be larger than their lateral averages and
to aspects related to the three-dimensionality of the flow
(Klymak and Gregg 2001) that cannot be captured with
this model.

One feature of suspected importance to the dynamics
in this regime is the existence of flow separation. This
has been observed by Farmer and Armi (1999b) but
does not appear in all models of this system (Cummins
2000; Afanasyev and Peltier 2001; Farmer and Armi
2001). The present simulations do succeed in mimicking
the observed flow separation, and its location, 80 m,



DECEMBER 2004 1921B O U R G A U L T A N D K E L L E Y

FIG. 18. Comparison between (top) model results and (bottom) field observations (after Farmer and Armi 1999b) of
the currents (vectors) and density field (contour lines). The contour lines in top panel are at the same intervals as in
the bottom panel. The insets show the time of the (top) model output and (bottom) field measurements relative to the
tidal phase.
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FIG. 19. Same as the top panel of Fig. 18 but with the model ran in the hydrostatic mode (i.e., with d 5 0). Note
the absence of large-amplitude lee waves as compared with the nonhydrostatic run (Fig. 18).

compares well with the observed value reported by
Farmer and Armi (1999b).

The major features of the observed density field are
also reproduced reasonably well. Of particular interest
regarding the nonhydrostatic dynamics is the generation
of large-amplitude lee waves. The amplitude, wave-
length and locations of the waves are quite comparable
to those observed (to better appreciate the observed
waves see the color acoustic image from Fig. 7 in Farm-
er and Armi (1999b). One noticeable discrepancy be-
tween the modeled and observed density field is the
vertical and horizontal extent of the intermediate layer.
Farmer and Armi (1999b) have suggested that this in-
termediate layer results from small-scale entrainment
from shear instabilities that develop along the sheared
interface (see their schematic summary on their Fig. 9).
Some of those instabilities are reproduced by the model.
This may suggest that mixing is inadequately parame-
terized or that something else is missing in the model
implementation, such as longitudinal variation in the
density field which, as shown by Klymak and Gregg
(2003), may have a considerable influence in the flow
establishement.

For comparison, Fig. 19 shows the result obtained
using the hydrostatic approximation [i.e., with d 5 0 in
Eq. (4)]. Comparison with Fig. 18 reveals that the large-
amplitude lee waves observed and simulated with the

nonhydrostatic algorithm are absent from the hydro-
static simulation.

5. Concluding remarks
We have developed and tested a laterally averaged

nonhydrostatic ocean model. Our goal was to produce
a general tool to examine processes on a broad range
of scales, from laboratory (centimeters) up to oceanic
scales (kilometers). This has been illustrated in a series
of test cases that show the ability of the model to sim-
ulate stable nonhydrostatic phenomena, such as internal
solitary wave propagation, as well as the first stages of
flow instabilities, such as shear instabilities and internal
wave overturning. It should be kept in mind that the
model, being two-dimensional, is unable to reproduce
the transition of initially two-dimensional unstable flows
to three-dimensional turbulence. How this affects sim-
ulated mixing rates remains to be quantified.

The nonhydrostatic laterally averaged approach can
be a useful alternative to three-dimensional nonhydro-
static models when changes in channel geometry play
an important role in flow establishment but when the
full three-dimensionality of the flow need not be sim-
ulated.
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APPENDIX

Laterally Averaged Strain Rate Tensor

In order to incorporate the Smagorinsky (1963) eddy
viscosity scheme into the laterally averaged nonhydro-
static model, an expression for the laterally averaged
strain rate tensor must be derived.

Let us first define a laterally averaged operator
y21

L ( ) 5 ( ) dy, (A1)Ey 2 y2 1 y1

where y is the horizontal axis perpendicular to the along-
channel axis x, with y1 and y2 representing the position
of the lateral boundaries, that is, the width is B 5 y2 2
y1. Then, the laterally averaged strain rate tensor can
then be expressed as

S 5 LS9 ,ij ij (A2)

where

1 ]u9 ]u9jiS9 5 1 (A3)i j 1 22 ]x ]xj i

is the strain rate tensor (Kundu 1990, p. 56) and the
primes indicate that variables do not yet represent lateral
averages. Expanding (A2) gives

1 ]u9 ]u9 ]u
S 5 L 1 5 ,11 1 22 ]x ]x ]x

1 ]u9 ]y9 1 ] ]B ]B
S 5 L 1 5 u 1 w ,12 1 2 1 22 ]y ]x 2 ]x ]x ]z

1 ]u9 ]w9 1 ]u ]w
S 5 L 1 5 1 ,13 1 2 1 22 ]z ]x 2 ]z ]x

S 5 S ,21 12

1 ]y9 ]y9 1 ]B ]B
S 5 L 1 5 u 1 w ,22 1 2 1 22 ]y ]y B ]x ]z

1 ]y9 ]w9 1 ] ]B ]B
S 5 L 1 5 u 1 w ,23 1 2 1 22 ]z ]y 2 ]z ]x ]z

S 5 S ,31 13

S 5 S ,32 23

1 ]w9 ]w9 ]w
S 5 L 1 5 ,33 1 22 ]z ]z ]z

where (x1, x2, x3) 5 (x, y, z) and ( , , ) 5 (u9, y9,u9 u9 u91 2 3

w9).
Here we have used the following assumptions that

relate to the lateral homogeneity of the flow:

]u9 ]w9
5 0, 5 0, (A4)

]y ]y

L u9 5 u, L w9 5 w, and (A5)

]y9 Dy 1 ]B ]B
L 5 5 u 1 w . (A6)1 2]y B B ]x ]z

In the Smagorinsky scheme what is really needed is
the scalar quantity S 2 5 SijSij [see Eq. (25)]—that is,

2 2 2 2 2 2 2S 5 S 1 2S 1 2S 1 S 1 2S 1 S .11 12 13 22 23 33

(A7)

Longitudinal, laterally averaged strain rate tensor

For most practical oceanic model applications, Dx .
H so that even the largest eddies that scale ;H cannot
be resolved. In these cases, horizontal and vertical eddy
viscosities are commonly treated independently. In the
horizontal direction the Smagorinsky scheme can be ap-
plied when expressed in terms of the horizontal com-
ponents of the strain rate tensor (e.g., Haidvogel and
Beckmann 1999, p. 181). In a laterally averaged model
this will become the longitudinal strain rate given by

2 2 2 2S 5 S 1 2S 1 S ,h 11 12 22 (A8)

when B is constant reduces to (]u/]x)2.2S h

Referring to Smagorinsky, Stacey et al. (1995) used
an expression similar to Eq. (A8) for the horizontal
strain rate in their laterally averaged circulation model.
They used an expression equivalent to

1 ]Bu
2ÏS 5 . (A9)h ) )B ]x

Formally speaking, this formulation does not express
the laterally averaged strain rate if the width B varies
with x. This can be understood be imagining a steady
flow over a flat bottom but through a contracting chan-
nel. In this case the continuity equation reduces to ]Bu/]x
5 0 and Eq. (A9) would give 5 0. In fact, fluid2ÏS h

elements flowing steadily through a flat-bottom con-
tracting channel would be subject to some strain given,
in a laterally averaged sense, by Eq. (A8). Expressing

in a way similar to Stacey et al. (1995) yields2S h

1/22 2
]u u ]B

2ÏS 5 1 . (A10)h 1 2 1 2[ ]]x B ]x

Both terms on the right-end side of Eq. (A10) provide
strain that would enhance the longitudinal eddy viscos-
ity.
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