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Numerical experiments of internal wave generation by strong 
tidal flow across a finite amplitude bank edge 

Kevin G. Lamb 

•ment of Physics, Memorial University of Newfoundland, St. John's, Newfoundland, Canada 

Results of some idealized numerical experiments of strong tidal flow of a stratified fluid across a finite 
amplitude bank edge are presented. These experiments were motivated by a need to develop an understanding 
of some of the complex intemal wave phenomena observed on Georges Bank (Loder et al., 1992) and at other 
locations where tidal forcing is strong. The numerical model solves the fully nonlinear, nonhydrostatic 
Boussinesq equations on an f plane. The model is two-dimensional, with spatial variation in the vertical and 
cross-bank directions only. Model forcings are based on the Georges Bank observations. A horizontally 
uniform stratification is used. The model successfully reproduces some observed features including the 
formation of a large depression and a hydraulic jump over the bank edge during off-bank flow and two on-bank 
propagating depressions every tidal period. An undular bore propagating away from the bank is in agreement 
with other observations (La Violette et al., 1990). Rotational effects are shown to be responsible for the 
formation of the second of the on-bank propagating depressions. Sensitivity of the results to the topographic 
slope, tidal current strength, stratification, and model initialization is explored. 

1. INTRODUCTION 

The generation of internal gravity waves by tidal flow over 
topography in the ocean occurs in a variety of topographic regimes 
such as shelf-breaks, bank edges, and fjord sills [e.g., Farmer and 
Smith, 1980; Pingree et al., 1983; Holloway, 1987; Loder et al., 
1992]. These waves have been suggested as an important source 
of vertical mixing for nutrients, sediments, and other water mass 
properties and materials [Sandstrom and Elliott, 1984; Brickman 
and Loder, 1993; Huthnance, 1989]. The northern edge of 
Georges Bank in the Gulf of Maine has recently been identified as 
a location of complex internal waves of potential significance to 
the Bank's high biological productivity [Loder et al., 1992; see 
also Marsden, 1986; La Violette et al., 1990]. Significant 
nonlinear current interactions associated with the strong tidal 
currents on Georges Bank have been identified [Loder, 1980; 
Loder and Horne, 1991]. Observations of internal waves 
generated by tidal flow in numerous localities illustrate the 
importance of understanding this phenomenon (see Huthnance 
[1989] for an exhaustive list). 

The generation of internal gravity waves in the ocean can be 
complicated by many interrelated factors including nonlinearities 
in the governing equations, finite amplitude topography, 
spatially-varying tidal current strength and phase, spatially and 
temporally varying stratification, boundary-layer and turbulent 
effects, overturning waves and associated mixing, and background 
residual currents. In order to develop an understanding of the 
wave generation process in general, some idealized numerical 
experiments are being carried out with the northern side of 
Georges Bank as a focus. The goal of the first set of these is to 
develop an understanding of the fundamentals of the general 
problem of nonlinear internal wave generation due to strong tidal 
flow across a finite-amplitude bank edge without frictional effects. 
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The results of these experiments for the case of a 
horizontally-uniform density field are contained in this paper. The 
model forcings are chosen appropriate to the northern Georges 
Bank regime, and the results are discussed in relation to the 
observations described by Loder et al. [1992] and Brickman and 
Loder [ 1993]. 

Laboratory and numerical experiments investigating stratified 
tidal flow over finite amplitude topography have been carried out 
[e.g., Maxworthy, 1979; Hibiya, 1988; Matsuura and Hibiya, 1990; 
Willmott and Edwards, 1987. The numerical work in Hibiya 
[ 1988] and Matsuura and Hibiya [ 1990], being fully nonlinear and 
nonhydrostatic calculations, come closest to the calculations 
presented here. All these studies used different topographies from 
that considered here and did not include rotation. Theoretical 

work has been restricted to the linearized, inviscid equations of 
motion [e.g., Baines, 1982; Craig, 1988; Hibiya, 1986]. Of these 
only Hibiya [1986] included advection of the waves by the tidal 
flow, something of crucial importance in the Georges Bank 
situation, but his study was in the small-obstacle hydrostatic limit 
and excluded rotational effects. 

The outline of the paper is as follows. In section 2 the 
numerical method used is outlined. In section 3 the model 

initialization is described. The results for a base case run are 

described in detail in section 4. In section 5 results of other model 

runs are briefly described which test the effects of the Coriolis 
tertn and the model sensitivity to the tidal strength, topography, 
stratification and initialization of the along-bank flow. A summary 
and discussion of the results are found in section 6. 

2. NUMERICAL MODEL 

The model equations are the two-dimensional inviscid, 
incompressible Boussinesq equations on a rotating f plane: 

U t + U'VU-f•- -Vp- pg (la) 

v•+ U'W +fu-0 (lb) 
843 
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Pt + U'•'p -0 (lc) Next the vector 

v.u-o. (la) 2 
•g +f v "+• * v • i (4) 

2 

U = (u,w) is the velocity vector in the cross-bank plane with u the 
horizontal (positive off-bank) velocity and w the vertical velocity, 
(x,z) are the corresponding spatial coordinates (Figure 1), V is the 
gradient operator (3/3x, 3/3z) and t is time. The along-bank 
velocity v is included in the model, but no variation with the 
along-bank coordinate y is allowed. The fluid density is 1 + p 
and gz + p is the pressure (henceforth p and p will be called the 
pressure and density, respectively), g is the vector (O,g), where g 
is the gravitational acceleration, and i is the unit vector in the 
positive x direction. The Coriolis parameter f is taken as 104 s 4. 

The equations are solved on a domain bounded below by the 
topography at z = h(z) and above by a rigid lid at z = H (see 
Figure 1). H is the deep-water depth. The inviscid boundary 
conditions include no normal flow at the upper and lower 
boundaries. The boundary conditions at the left and fight open 
boundaries are described below. 

The model used is essentially the same as that described in Lamb 
[1993], the only differences being the forcing method, the Coriolis 
term and the additional equation for v. The model uses the 
second-order projection method developed for a homogeneous fluid 
by Bell et al. [1989a] and extended to a fully stratified fluid by 
Bell and Marcus [1992] and to general structured quadrilateral 
grids by Bell et al. [1989b]. The advantages of this method are 
that it works well for inviscid flows and has the ability to capture 
large gradients. No mixing/frictional terms are required for 
numerical stability. A very brief overview of the method will now 
be given. 

The time stepping in the model is done as follows. First v and 
p are updated via 

and 

V n+l - V n 
- (2) 

o"+' - P" -- (3) 

is computed. Finally the vector field U and the pressure gradients 
are updated via 

Un+I_u n 

(5) 

Here P is the projection operator which projects a vector field onto 
its divergence free part and I is the identity operator. The flow is 
forced by specifying U t at the left boundary. The right boundary 
condition requires the specification of a vector to which the 
vertical pressure gradient along the right boundary is weakly 
associated [Bell and Marcus, 1992]. A good choice of this vector 
was not found for the physical situation considered here. To 
circumvent this, the model domain was taken large enough to 
ensure that no waves hit either boundary. The convective terms 
and fu at the half time step n + 1/2 are calculated using an 
upwinding extrapolation procedure [Bell et al., 1989b]. 

The time step is restricted by two things. First, a Courant- 
Friedrichs-Lewy condition must be satisfied. It requires that a 
fluid particle cannot travel the length of a grid cell in one time 
step. The maximum allowable time step is further restricted by the 
stiffness of the gravitational forcing [Bell and Marcus, 1992]. For 
the base case run described in section 4 a time step of 5 s was 
used. For the lower resolution sensitivity studies, time steps of 20 
s were used. 

The equations are not solved exactly as shown above. They are 
first transformed to a terrain following coordinate system with 
higher horizontal resolution over the bank edge (Figure 1), making 
the governing equations somewhat more complicated [Bell et al., 
1989b]. The values of U, v, p and Vp are specified at the cell 
centers and at the midpoints of cell edges lying along the 
boundaries. The latter are used to apply the boundary conditions. 

3. MODEL INITIALIZATION 

The model topography approximates the northern side of 
Georges Bank at about 42.1øN, 66.8øW, which is the location of 
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Fig. 1. A schematic of the computational grid showing the interior and boundary vector points (solid and open circles) and the 
scalar vector points (crosses). The horizontal stretching of the grid away from the bank edge is exaggerated. 
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the observations discussed by Loder et al. [1992] and Brickman 
and Loder [1993]. It is given by 

z- h(x) - 97.SO - (6) 

x and z are in meters. The water depth varies from 65 m on top 
of the bank to 260 m off the bank, with the latter being an 
idealization of the depths of up to 350 m found in Georges Basin. 
This has little influence on the results. Indeed, increasing the deep 
water depth to 320 m showed very little change in the model 
results (see section 5.2). The width parameter d has a value of 
0.000225 m 4, giving a steepest slope of-0.022. In order to 
investigate the influence of the slope of the topography some 
model runs were done by varying d so that the slope ranged 
between half and double this value. Figure 2 compares the actual 
topography taken along the observational cross section with the 
basic model topography given above and with the two extreme 
topographies used. 

The model was initialized with a horizontally uniform density 
field. Observations show a substantial horizontal variation in the 

stratification, ranging from weakly stratified on top of the bank to 
strongly stratified off the bank [Loder et al., 1992]. From the 
point of view of the wave generation the stratification of the fluid 
over the bank edge, where the waves are generated, is most 
relevant. This stratification varies with time due to tidal advection. 

A stratification based on tidally averaged observations close to the 
bank edge is the most appropriate for model studies with a 
horizontally uniform stratification. 

Two density profries have been used. The base density profile 
is a fit to the averaged density profile on top of the bank dose to 
the edge at 42.130øN. It is given by 

The second density profile is 

0.02453, 250•z•260; 
), (8) 

This profile approximates the observed density profile just off the 
bank edge at 42.235øN. 

In Figure 3, density profiles p• and P2 are shown along with the 
observed density profiles which they approximate. Note that for 
p z(z) the data extend over the upper 65 m only. The density 
profile was arbitrarily chosen to approach a constant value of 
0.02573 exponentially. As discussed in section 5, results obtained 
using p2(z) show that the effects of stratification at depth can be 
very significant. The dynamically significant difference between 
the two density profiles is illustrated by their buoyancy frequency 
profiles N(z), which are shown in Figure 4. The differences in N 
result in changes in wave propagation speeds and in the slope of 
the paths followed by wave packets. The maximum value of the 
horizontal group velocity of vertically trapped waves is close to the 
linear long-wave, nonrotating phase speed, the values of which for 
mode one and two waves are plotted in Figure 5 as a function of 
water depth. 

The final problem regarding the model initialization is to choose 
the initial velocity fields. Consider an inviscid, unstratified flow. 
If the forcing at the boundaries is sinusoidal and independent of z 
then u and v are very nearly independent of z throughout the 
domain. Assuming this, u is given by 

u= Q sin(or +•) (9) 
r(x) 

where 

If(z) + 0.•5 (z-250) 2, 250 • z • 260; 
If(z), if z <250, 

f(z) = 0.02573 - 0.002 exp ( z-1:•60 ) 
0.00017 O.{llgl 

-i- -- 
ß 

, 8.5 ! 

(7a) 

(7b) 

where Q is the maximum cross-bank volume flux, r(x) = 260 - 
h(x) is the local fluid depth, and to is the tidal frequency. 
Continuity gives 

w-Q r/(x) (z- 260)sin(•t +•}). 
rZ(x) 

(10) 

If the fluid depth was constant u would be independent of x. 
Assuming v was as well, with a tidal average of zero and zero 
along-bank pressure gradient, we have 

_ %. ',,.• 1.5 _- • Observed topography 
100 _-- ............. Base Model topography '•, 

--', _ ........ Half Slope •..x, _7 .•x 
..c - _ ........ Slope doubled •'., 'x 1.0 J 

50 •- ..... Lu/LT 
/. --. \ "•. _ ".,.. • . . '•. 

0 _ 
- / \ 

-50 ......... J ....... • ,'7• ......... , .... ,'" .... ,•, 0.0 
-30 -20 -10 0 10 20 

cross bank position (km) 
Fig. 2. The model topography is compared with the observed topography. Included are two extreme model topographies used, 
with the slope halved and doubled. Also plotted is the nonlinear parameter L•t/l.,r, the ratio of the tidal excursion distance to the 
horizontal topographic length scale. 
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Fig. 3. The two density profiles used in model runs along with the obsel•ed density profiles which they approximate. 
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Fig. 5. Linear, nonrotating phase speeds in the long-wave limit as a function of water depth. These approxhnate the maximum 
group velocity in the rotating frame. 

v-/0 cos(et +½). (•) u- q sin(C) 
(or r(x) 

This yields clockwise tidal ellipses aligned in the cross-bank 
direction with ellipticity factor co/f. 

Following the above, the velocity fields are initialized via 

v- fo cos(•) 
•r(x) 

w ' Q r/ (x) r-•x) (z-260) sin(•b) 

(12) 
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The value of c0 was chosen to give a 12.4-hour tidal period (x), 
giving c0 = 1.4075 x 10 -4 s -• = 1.4f. The base value of Q is 59.8 
m 2 s -1, approximating observed values. Usually the phase q) was 
set to zero, so that the model runs start at the beginning of 
off-bank flow. While somewhat arbitrary, it can be justified on the 
basis that observations show that the isopycnals are relatively flat 
at the start of off-bank flow [Brickman and Loder, 1993]. Other 
values of Q and q) were used to test the sensitivity of the results. 

The initialization (12) means that far from the bank edge v varies 
sinusoidally with a mean value of zero (prior to the arrival of any 
waves). Integrating equation (lb) over the computational domain 
and averaging shows that the nonlinear advective term results in 
a tidally averaged along-bank tidal Eulerian transport 

The tidally averaged along-bank Lagrangian transport is 

(13) 

(14) 

where r L and r R are the water depths_at the left and right 
boundaries, respectively. The difference L - E is positive in this 
case and is consistent with previous results [e.g., Loder, 1980], 
which indicate that the Stokes transport depends only on the tidal 
ellipses and not on friction. 

The nondimensional parameter Lst/L v where Lst is the tidal 
excursion distance 

<2 
r(x)o 

and L r is the horizontal length scale 

Lr - r(x) (16) 
/(x) ' 

is an indicator of the nonlinearity of the problem. Its value for the 
base case run is plotted in Figure 2 with the topography. The 
location of its peak value (about 0.55 at x -- -3 kin) is where the 
strongest forcing of the internal wave motion is expected [Baines, 
1982]. 

The value of E is positive if q• = 0, implying a mean along-bank 
jet in the positive y direction. Observations show the presence of 
an along-bank jet in the opposite direction. This jet arises from a 
number of related factors including the influence of friction on 
tidal rectification and the presence of a tidal front over the bank 
edge [Loder, 1980]. Because the physical processes which drive 
this along-bank jet are not present in the model, runs with more 
realistic along-bank flow will be left for future work when correct 
horizontal density structure and frictional effects will be included. 
The model results are not very sensitive to the initialization of v 
(section 5.5). 

4. BASE CASE RUN: RESULTS AND DISCUSSION 

The base case uses density profile Pt and topography (6) with 
d = 0.000225. The velocity fields are initialized using (12) with 
q) = 0 and Q = 59.8 m 2 s '•. This results in a maximum horizontal 
velocity Um• of 0.92 m s -• on top of the bank. Thus at t = 0 the 
density field is horizontally homogeneous and the fluid is starting 

to move off-bank from its maximum on-bank position. Contour 
plots of the density field every eighth of a tidal period during the 
first two periods are shown in Figure 6. For this run the grid 
resolution is 40 evenly spaced grid points in the vertical, giving 
1.625 m and 6.5 m vertical resolution in the shallow and deep 
water, respectively. The horizontal resolution ranges from 74 m 
at x = +30 km to 20 m over the bank edge. Some of the 
sensitivity runs had half this horizontal resolution. The 
computational domain extends between x = +64 km. No waves 
reached either boundary during the model runs. 

In sections 4.1 and 4.2, an overview of the first and second tidal 

period depicted in Figure 6 is presented. The results of the base 
case run are discussed in more detail in section 4.3. 

4.1. First Tidal Period 

During the off-bank flow, the net volume flux into the 
computational domain below any isopycnal is negative (except for 
the isopycnal at the surface) since, below a given isopycnal, more 
fluid leaves the domain at the right boundary (at x = 64 km) than 
enters at the left boundary (at x = -64 km) because of the 
vertically uniform velocities at these boundaries. Hence during the 
early stages of off-bank flow a depression forms over the bank 
edge. From this depression two depressions are generated, one 
propagating in either direction. This is first apparent at t = 0.25 
'c (although they have not yet completely separated). After t = 
0.375 'c the on-bank and off-bank propagating waves are clearly 
identifiable (labelled A• and C•, respectively, in Figure 6). The 
off-bank propagating wave is advected away from the bank and 
hence has little chance to grow in amplitude through the 
superposition of waves which are continually being generated. 

The on-bank propagating depression A• propagates against the 
flow and hence moves much more slowly away from the 
generation region. The flow on top of the bank quickly becomes 
supercritical, so that depression A• is trapped, resulting in a large, 
narrow wave. The faster flow and slower group velocities in the 
shallow water on top of the bank both act to strengthen the 
asymmetry between the on and off-bank propagating depressions 
(and weaken it when the flow is on-bank). Table 1 gives the 
mode-n Froude numbers Fr• at various times of the tidal period for 
the first two modes in the deep and shallow water. Fr, is defined 
as the ratio of the flow speed (vertically averaged) to the 
maximum horizontal group velocity for a mode-n wave using the 
undisturbed density profile. The maximum group velocity is 
approximated by the linear nonrotating long-wave phase speed 
with a small error (see section 4.3). Table 1 shows that the 
shallow water flow becomes supercritical (Fr > 1) to mode 1 
waves sometime between t = x/32 and t = x/16, where 'c is the 
tidal period. Thus, in all of the contour plots in Figure 6 the 
off-bank flow on top of the bank is supercritical to all waves. In 
contrast, the deep-water flow is subcritical to mode-one waves 
throughout the tidal period, and is barely supercritical to mode-two 
waves at peak flow. Table 1 gives the critical water depths where 
the Froude number is equal to 1 for various shallow-water speeds. 
Waves cannot propagate against the flow into shallower water and 
hence are arrested at locations with these depths. The values in 
the table were computed assuming that the density profile at a 
position x is the same as the original and that the horizontal 
velocity is vertically uniform. Because the fluid is vertically 
stretched as it moves off-bank, weaker stratification and lower 

linear phase speeds would be expected. Thus, the true critical 
depths are slightly deeper (barring shear effects). At t = 0.375 'c 
the flow speed on top of the bank is about 0.65 ms -• and the 
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Fig. 6. Contour plots of the density fields for the base case. Only part of the computational domain is shown. See text for 
discussion of labeled features. 

critical depth is about 108 m (at about x = -2.8 km). Figure 6c 
shows the on-bank propagating wave at approximately this location 
(see also Figure 11). During the on-bank portion of the tidal 
period, the leading edge of the depression steepens due to 
nonlinearities. 

At t = 0.5 'r the off-bank flow has ended and an upward bulge 
in the isopycnals can clearly be seen developing slightly to the left 
of the center of the bank edge (Figure 6d). Its growth is coupled 
with downwelling and a further deepening of depression A½ over 
the bank edge. Vertical velocities have peak values of about -0.57 
and 0.48 cm s -• in the downwelling and upwelling regions. The 
elevation tilts up to the left (Figures 6d and 6e). Between t = 0.5 
'r and 0.625 % it grows. It then broadens as it is advected onto 
the bank (Figures 6e-6h). Concurrently, it splits into two 
elevations, one propagating in either direction. Trailing the 
on-bank propagating elevation (E½) is an on-bank propagating, near 
surface depression (labelled Be) below which the isopycnals are 
displaced upward. By t = 0.875 % E½ is clearly a mode-one 

wave. Following it, the surface depression Be is now clearly a 
mode-two wave. Whether this distinction can be made at an 

earlier stage is unclear, as the changes in the vertical structure are 
affected by vertical shear. E½ and B½ gradually separate. 

As the on-bank flow increases, a broad elevation of the 

isopycnals develops over the bank edge (F½). It is largely due to 
the upwelling associated with the on-bank flow but includes the 
off-bank propagating wave mentioned above. 

4.2. Second Tidal Period 

The second tidal period can be regarded as a sensitivity study, 
with the initial conditions given by the velocity and density fields 
at t = 'r. The most relevant feature is the elevated isopycnals F½ 
centered at about x = -5 km (Figure 6h) and the associated 
velocity fields (Figure 7). Depressions A½ and C½ are too far from 
the bank edge to play a role in the second tidal period. The 
mode-two wave B• is advected back over the bank edge and 
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presumably influences the wave generation during the second tidal 
period. The horizontal and vertical velocity fields show the 
presence of a vortex of negative vorticity g = uz - wx (i.e., 
anticlockwise rotation around the negative y axis) on the off-bank 
side of Ft. A vortex of opposite sign on the other side of the 
elevation overlaps the vortex associated with features E• and B•. 

In the center of elevation F•, w has a minimum of about -0.1 cm 
s -• at approximately middepth; w is over twice as large farther 
off-bank at the bottom, where it goes as low as -0.26 cm s -•. For 
comparison, the minimum value of the vertical velocity associated 
with the barotropic flow, the flow in the absence of stratification, 
during peak off-bank flow is about -0.90 cm s 4. It occurs in about 
the same location, which is farther off-bank than the location of 

the maximum of L•/L r (see Figure 2). The maximum value in the 
upwelling region off the bank is about 0.1 cm s -• 60 m below the 
surface. The downwelling associated with depression B• has a 
minimum of about-0.27 cm s -•. Over the bank edge, u ranges 
from -0.29 m s 4 at the surface to 0.17 m s -• at the bottom. Thus, 

the baroclinic velocities are a significant fraction of the peak 
barotropic velocities. 

The negative vortex plays a key role in the evolving wave field 
because its presence results in a much stronger response in the 
second tidal period. This is clearly indicated by the results of a 
model run with no tidal forcing initialized with the flow state of 
the base case run at t = 'c. An elevation propagates away from 
the bank, and a large depression develops over the bank edge. The 
depression attains a maximum size of about one third that of the 
depression seen in the base case run at t = 0.5 'c. In the 
upwelling region further off-bank the isopycnals rise by about 15 
m at x = 5 km. There is not a corresponding rise on the on-bank 
side of the depression. 

During the second tidal period the sequence of events seen in the 
first tidal period is repeated. The depression formed over the bank 
edge during the off-bank flow is approximately twice as deep as 
that formed during the first tidal period, because of the strong 
downwelling over the bank edge at the start of the second tidal 
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Fig. 6. (continued) 

period. Conservation of volume implies that this must be 
accotnpanied by a raising of the isopycnals relative to their 
displacement one period earlier. This occurs farther off-bank. For 
example, in Figure 6b the isopycnals are depressed out as far as x 
= 5 km, whereas one period later (Figure 6j) the depression 
extended only to about 2 km. The isopycnals are in fact above 
their rest position between about 2 and 15 km in the latter case, 
with a peak rise of about 6 m at x = 7 km. The larger depression 
formed over the bank edge results in larger, steeper depressions 
(labelled A 2 and C2) propagating onto and away from the bank. 

As in the first tidal period, a sudden rise of the isopycnals occurs 
almost halfway into the tidal period at x = 0 (Figures 6k and 6/). 
This is again coupled with downwelling. The result is the 
formation of very steep isopycnals near the bottom over the bank 
edge. The upward sloping isopycnals are referred to as a hydraulic 
jump. This is the location where overturning first occurs. 
Overturning has occurred in this case deeper down in a very 
weakly stratified region at the bottom between depths of about 140 

and 200 m centered at x = 3 km. It appears to be a result of a 
shear instability. At t = 1.25 q: the Richardson number, Ri = - 
gpz/u• 2, is less than 0.25 in a region approximately 4 km long at 
the bottom centered at x = -0.5 km. Minimum values of Ri are 

about 0.07. In the numerical model nothing special is done to 
handle the overturning. When overturning occurs, the fluid is 
locally unstable. The developing instability results in rising and 
falling fingers of fluid. These result in the high-frequency short 
waves with horizontal wavelengths of 0(300 m) first seen at t = 
1.625 q: between x = 0 and 3 km. These short waves are well 

resolved in the model. 

During the off-bank flow phase of the second tidal period, 
elevation E• and the mode-two wave B• continue to separate while 
being advected back to the bank edge. The latter disappears into 
the large depression formed over the bank edge. Between E• and 
B•, a mode-one depression forms. This also occurs in the model 
run with the tidal forcing turned off after the first tidal period. 
The mode-one depression (to which B• now refers) is barely 
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TABLE 1. Froude Numbers and Critical Depths 

Time U Fr• Fr 2 U Fr I Fr 2 Mode 1 Mode 2 
(Shallow) (Shallow) (Shallow) (Deep) (Deep) (Deep) Critical Critical 

Depth Depth 

1/32 'r 0.179 0.532 1.193 0.045 0.100 0.214 
1/16 'r 0.352 1.043 2.340 0.088 0.197 0.420 67 
3/32 'r 0.511 1.514 3.397 0.128 0.286 0.609 89 
1/8 'r 0.651 1.927 4.324 0.163 0.364 0.776 108 
5/32 'r 0.765 2.266 5.085 0.191 0.428 0.912 124 
3/16 'r 0.850 2.518 5.650 0.212 0.475 1.013 135 
7/32 'r 0.902 2.673 5.998 0.226 0.505 1.076 142 
1/4 'r 0.920 2.726 6.115 0.230 0.514 1.097 144 

73 

121 

166 

206 

239 
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Fig. 7. Contour plots of the velocity fields after one tidal period. (d) Difference between v and the initial Vo. Solid (short dashed) 
lines are positive (negative) values. The long dashed lines are the zero contours. The minimums of w associated with depressions 
Az and Cz are -0.015 m s -• and -0.0018 m s -j, respectively. 

distinguishable from the initial on-bank propagating depression (A2) 
formed during the second tidal period. The two combined form a 
long depression B;A 2. At its tail end there is some overturning. 
After two tidal periods, B/A 2 has a sharp leading front which is 
about 1.5 km farther from the bank edge than depression A/was 
a period earlier (the A 2 part of the depression is at the same 
location). Depression B;A 2 with jumps at both ends of it is similar 
to the large depressions with leading and trailing jumps observed 
by Holloway [ 1987] in shallow water on the Australian North West 
Shelf, although the generating mechanism may be different. In 
Holloway's observations the trailing jump showed no signs of 
overturning and a single depression was believed to have been 
generated far away in deeper water. Smyth and Holloway [1988] 
explained the jumps in front and behind the shoreward propagating 
depressions as being due to second-order nonlinear processes 
which become important as the depression enters shallower water. 

This nonlinear mechanism could also explain this aspect of the 
numerical results. 

At the end of the second on-bank flow stage a broad region 
(about 10 km long) of flat, slightly elevated near surface 
isopycnals (E2) trails depression A 2. Following it, a sharp 
depression (B2) is seen in the upper half of the water column. It 
is much more pronounced than the corresponding feature (B;) 
formed in the first tidal period, and its leading edge is very steep. 
Depression B 2 is first noticeable at t = 1.625 q:, one period after 
the first appearance of depression B•. A mode-two structure is 
evident, but not as apparent at t = 2q:. Since a mode-two wave 
has larger isopycnal displacements near the bottom where the 
stratification is weakest, it appears that B 2 is the combination of a 
large mode-one depression and a small mode-two wave. A period 
earlier, Bz was a more even mixture of these two types of waves. 
Depression B 2 lags depression B; a tidal period earlier by about 5 
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km, indicating some variability in the location of the second 
depression. 

The off-bank propagating depression C 2 formed during the 
second tidal period is large enough for nonlinearities to steepen it, 
after which it disperses into an undular bore, as predicted by 
solutions of nonlinear equations of the KdV type [e.g., Fornberg 
and Whitham, 1977]. Space shuttle photographs of the Gulf of 
Maine show a group of four to six internal waves consistent with 
an undular bore, propagating away from the edge of Georges Bank 
once every tidal period [Violette et al., 1990]. 

At the end of the second tidal period there is a broad elevation 
of the isopycnals, similar in strength to the corresponding feature 
seen after one tidal period. The model run was continued into the 
third tidal period. Early in the off-bank flow the steep front at the 
leading (on-bank) edge of depression B 2 overturned. The result 
was very high velocities and considerable mixing in the depression 
formed over the bank edge. The ensuing large velocities and 
small-scale features necessitated the termination of the model run. 

This indicates that the response after two tidal periods is not 
quasi-periodic. 

4.3. Discussion of the Base Case Results 

While the interaction with the waves generated in the first tidal 
period results in a significantly stronger response in the second 
tidal period, the essential features are the same. In both tidal 
periods the appearance of the second on-bank propagating 
depression just as the tide turns on-bank is in agreement with the 
observations [Loder et al., 1992; Brickman and Loder, 1993], in 
which the first on-bank propagating depression A,, was seen every 
tidal period and the second was seen in 19 of the 26 tidal periods 
analyzed, or 73% of the time. In the real physical situation there 
are many factors which complicate the evolution of the flow field, 
such as strong mixing and the horizontally varying stratification. 
Variations in the phase of the tide with depth would also effect the 
evolving wave field. Wave dissipation could do two things. First, 
it could weaken the response in the second tidal period, giving a 
result somewhere in between the two seen here. In addition, the 
second of the two on-bank propagating depressions could dissipate 
due to the strong turbulent mixing on top of the bank and the 
mixing resulting from its propagation into a more weakly stratified 
region. Thus, it would no longer exist to get advected back over 
the bank edge. 

In the following the first tidal period is used for a more detailed 
examination. The reasons for using the first tidal period are 
twofold. First, the basic internal wave generation mechanisms are 
clearest in the first tidal period, as interactions with waves 
generated in earlier tidal periods are absent. Second, for 
comparisons with observations the initial density field is closest to 
the observed state (i.e., relatively flat isopycnals over the bank 
edge), there is no influence from depressions generated in previous 
tidal periods (as appears to be the case in the observations) and 
also the vortex over the bank edge would presumably be weakened 
by frictional and turbulent effects. Thus, the interactions between 
different tidal periods is minimized. Any close quantitative 
agreement may be a result of this, but may also be fortuitous. 

1. Significance of dispersion. Many features of the results, 
including the two on-bank propagating depressions, are a result of 
long-wave dispersion on a rotating f plane. For a constant depth 
r the vertical structure q)(z) of the vertical velocity of long waves 
is determined by the eigenvalue problem 

•n + .NZ(z) •--0, (17a) 

•(0)- •(r)- 0. (17b) 

In terms of the eigenvalue a, the dispersion relation is 

where c• and k are the frequency and horizontal wave number of 
the wave. The phase and group velocities c and cg are given by 

(19) 

For density Pt, the first two eigenvalues are a t = 0.1156 and a2 
= 0.0225 in the shallow water and a t = 0.1999 and a2 = 0.0440 
in the deep water. Dispersive effects are significant only if f/k is 
similar in size to at/2, i.e., if the horizontal wavelength is 
comparable to the internal Rossby radius a//2/f, which is 3.4 and 
4.5 km in the shallow and deep water, respectively. Since the 
width of the initial depression is about 10-15 km, dispersive effects 
are an important factor in the evolution of the wave field. Figure 
8 compares the nonhydrostatic rotating and nonrotating phase 
speeds for small k. Also shown is the group velocity for the 
rotating case. Note that for the mode-one wave in deep water, 
either rotational effects or nonhydrostatic effects are important 
except possibly in a narrow region around k = 0.002 m -•. 

To illustrate the importance of dispersion, the numerical model 
was used to calculate the adjustment of an initial state consisting 
of a depression of the isopycnals with all the velocity fields set to 
zero. The depression was initially about 10 km wide with an 
amplitude of 30 m in water 130 m deep. Figure 9 shows the 
initial state along with the result after one tidal period for the 
nonrotating case. The adjustment is hydrostatic with two 
depressions (labelled A and C) propagating away in either 
direction. Significant nonlinear steepening is apparent. Trailing 
each depression by about 15 km is a mode-two wave. In Figure 
10 the adjustment of the same initial depression is shown for the 
rotating case (f = 10-4). The two leading depressions A and C 
propagating away from the center are followed by a second pair of 
depressions (labelled B and D) separated by an elevation 
approximately 10 km long. 

In the case of tidal flow across a bank edge the depression 
formed during the off-bank flow undergoes a similar adjustment. 
This can be seen most clearly by considering the difference 
between the base case run and a repetition of it with the 
gravitational term g set to zero. Setting g = 0 is equivalent to 
using an unstratified fluid, with the isopycnals now being thought 
of as material curves. It gives the barotropic flow. When this is 
done, a strong depression develops over the bank edge during the 
off-bank phase of the tidal period. This depression is much larger 
than in the nonzero g case because internal waves can no longer 
propagate away from the bank edge. It reaches a maximum size 
after half a tidal period and diminishes after the tide tums. After 
a complete tidal period, the isopycnals are essentially flat, and the 
flow state is almost identical to the state at t = 0 (no differences 
in the contour plots can be seen). This is expected, since for an 
unstratified, constant-depth fluid on an f plane, the dispersion 
relation is 

fm (20) 
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where k and m are the horizontal and vertical wave numbers. 

Only waves with a frequency less than f can occur. Since the 
frequency of the forcing is about 1.4 f, none of these waves are 
significantly excited after one tidal period. Furthermore, the 
maximum propagation distance of these waves is about 8/n and 
32/n meters in one tidal period for a mode n wave in the shallow 
and deep water, respectively. The net result is the negligible 
isopycnal displacements after one tidal period. 

The solution for g = 0 is now subtracted from the original 
solution. The difference in the density fields •ip(x,z,t) is 
vertically integrated to find the potential energy anomaly 

t,e(x,O -- 9.s f y a p(x,z, Ozdz (21) 

due to the waves. Plots of pe as a function of x are given at 
various times in Figure 11. The picture that emerges from these 
plots is the following. 

Immediately after the depression over the bank edge is formed 
at the start of the off-bank flow, gravitational restoring forces in 
the nonzero g case result in an upward movement of the center of 
the depression relative to the g = 0 case. This is apparent as early 
as t = 0.125 x, as indicated by the positive pe. Meanwhile two 

depressions propagate away, one in either direction. The peak in 
pe centered at about x = 0 reaches its maximum between about 0.5 
x and 0.625 x. Thereafter it collapses to about one sixth of its 
peak value by t = x and two elevations start propagating away, 
one in either direction. This is further evidence that part of the 
elevation F• seen over the bank edge at t = x is partially 
comprised of an off-bank propagating wave generated by the 
continual dispersive adjustment of the initial depression formed 
during the off-bank flow. Note that during the on-bank flow, the 
off-bank propagating wave is propagating against the current and 
hence does not travel very far. Parts of it are in fact advected 
back onto the bank. 

In Figure 12, results of a model run for which the tidal forcing 
was turned off at t = 0.5 x (the end of off-bank flow) are shown. 
Two depressions (A•,B•) separated by an elevation (E•) can be seen 
propagating onto the bank. A mode-two wave partially 
superimposed on the second depression can be seen. This shows 
that on-bank flow is not responsible for the generation of these 
features. 

2o Propagation speeds. Estimates of the wave propagation 
speeds relative to the vertically averaged flow are computed in the 
following manner. First the horizontal change in position z5oc of a 
wave crest or trough (or of an isopycnal displacement of a 
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Fig. 12. Contour plot of the density field at t = 0.875 'r for the base case but with the tidal forcing switched off at the end of the 
off-bank flow (t = 0.5 'r). 

specified amount) between times t t and t t + õt is measured. The 
contribution to the displacement by the vertically averaged flow 
u(x,t) is computed using 

___.& =•-= 12 sin(tot+•). (22) 
dt H-h(x) 

This is easily integrated using (6) to give 

F(x,O = 162.5x + 97'5 ln(cosh(dx)) + Q•(ot+•)=const. (23) 
d to 

Thus the change in position fix in time õt of a wave which was 
at position x t at time t t due to advection by the vertically averaged 
flow is given by solving 

The propagation speed of the wave relative to the water is then 
given by 

Ax-t•x 

•t 

At the end of the first tidal period, depression A t has a maximum 
isopycnal displacement of about 5 m. Its propagation speed, 
relative to the barotropic flow, is about -0.40 m s -1. The minimum 
of the depression propagates somewhat faster, at about-0.45 m s -1, 
due to nonlinearities. For comparison, the nonrotating long-wave 
linear phase speed is about 0.34 m s -•. It is well known that 
nonlinearities can increase propagation speeds by this amount (see 
Gear and Grimshaw [1983] or Sandstrom and Elliott [1984] for 
specific examples). 

The broad elevation propagating onto the bank behind depression 
At has a maximum isopycnal displacement of about 8 m at 
middepth. Estimating its propagation speed is difficult. Its peak 
displacement occurs at its tail-end, where it appears to have a 
mode-two structure. Indeed the peak and depression B• are 
propagating with a speed of about -0.17 m s -1, close to the 
mode-two phase speed of about -0.15 m s -•. The forward portion 
of the wave is propagating much more rapidly, with estimates 
ranging from about -0.34 m s -• for the part of the wave just in 
front of the peak to about -0.45 m s -• as depression At is 
approached. The elevation of the isopycnals over the bank edge 
is continually being modified due to upwelling during the on-bank 
flow, so it is meaningless to discuss its phase speed. 

Finally, well off the bank a weak depression C• is propagating 
away from the bank edge at about 0.44 m s -1, in good agreement 

with the linear phase speed of about 0.447 m s 4. The bottom of 
the depression is moving considerably faster at about 0.64 m s -1, 
indicating that the wave is steepening due to nonlinearities. 

At the end of the second tidal period, depression B t, now taken 
as the mode-one depression which has separated from the 
mode-two wave, is propagating at about-0.43 m s -1, similar to the 
speed of the mode-one depression A t a period earlier. Immediately 
following is depression A 2 propagating at about -0.48 m s -•. The 
propagation speed of depression B 2 is about -0.14 m s -1, indicating 
it is a mode-two wave at this time. The large undular bore, in the 
deep water (C2) has a propagation speed of about 0.69 m s -1. 

3. Potential and kinetic energies. The energy associated with the 
depressions propagating away from the generation region is of 
considerable interest. _The vertically integrated available potential 
energy (APE), is computed using the linear approximation [Gill, 
1982] 

(24) 

p' is the perturbation from the reference state and N is the 
buoyancy frequency of the reference state. In this case the 
reference state is the initial density field. Hence this formula is 
used only at t = 'r and t = 2'r. 

Figure 13a shows APE as a function of x for t = 'r and t = 2'r. 
In Figure 13b the cumulative horizontal integration of APE from 
the left boundary 

is plotted. The latter plot is used to determine the total energy 
(per unit length along the bank) in a feature lying between xt and 
x 2 by taking the difference in values at the two end points. After 
one period depression At, at x = -28 km, contains about 2.5 MJ 
m -• of available potential energy. Brickman and Loder [1993] 
estimate the first on-bank propagating depression seen in the 
observations to be about 2 km wide with an average available 
potential energy of 23 J m -3 over a 60 m depth, giving a total 
energy of 2.8 MJ m 4. This compares well with the model result 
after one tidal period. The total available potential energy in 
depression Bt is considerably smaller, being slightly less than 1 MJ 
m-lo This is also in reasonable agreement with the observations in 
which the second depression was estimated to have about half the 
APE of the first. The elevation between depressions At and Bt has 
about 4 MJ m 4. Depression Ct contains about 1 MJ m -1. 

The larger response in the second period is evident in the much 
larger energy values. After two tidal periods the model results 
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show that the combined depressions BzA 2 have a peak value in 
APE which is twice as large as the peak value in A t one period 
earlier. This depression is much wider and contains a total of 
about 15 MJ m 4. Depression B 2 contains about 2.5 MJ m -•. The 
undular bore propagating away from the bank edge contains about 
11 MJ m -•. 

UWKE and KE, the vertically integrated perturbation uw-kinetic 
energy (u 2 + w2)/2 and kinetic energy (u 2 + (v- v(x,z,O)) 2 + w2)/2, 

are plotted in Figure 14a as a function of x. They are computed 
relative to the initial state for which u = w = 0. Figure 14b shows 
the cumulative horizontal integration of UWKE and KE. Since w 
is typically much smaller in magnitude than w, u 2 + w 2 = u 2. 
Note that except for the long wave features, the kinetic energy in 
the along-bank velocity component is insignificant compared to 
that in the cross-bank component. In particular, UWKE and KE 
are the same at depressions A, B, and C, except at their trailing 
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edges. This suggests that the kinetic energy available for mixing 
is dominated by the cross-bank and vertical components. 

After the first tidal period the kinetic energy in depressions At 
and C• is about 0.5 and 0.2 MJ m -•, respectively. Both values are 
roughly one fifth of the APE. KE is larger than the APE in 
elevations Er and F• by factors of about 2 and 12, respectively. 
The total KE over the whole domain is almost 3 times the total 

APE. 

After two tidal periods the total UWKE and APE are about the 
same, approximately 42 MJ m -•, while the total KE is close to 70 
MJ m -•. APE is again much larger than KE in the depressions, 
being about 3 times larger in the depression BtA 2 and about twice 
as large in the undular bore. 

bank edge formed during the on-bank flow is much bigger (the 
fluid volume under a given isopycnal is the same in both cases). 

5.2. Sensitivity to Topography and Tidal Strength 

The size of the depression formed over the bank edge during the 
off-bank flow is largely governed by the net change in fluid 
volume (in the computational domain) under a given isopycnal. 
During the off-bank flow the fluid volume below an isopycnal 
which has an undisturbed height z decreases by 

2150-z b A V-- 2z ljm•x• if z<zt• (25a) to 260 ' 

5. COMPARISON RUNS: MODEL SENSITIVITY and 

In this section, results from comparison runs are presented. 
These runs were done in order to evaluate the importance of the 
Coriolis terms in the wave generation process (section 5.1) and to 
test the sensitivity of the results described in section 4 to the 
topography and tidal strength (section 5.2), the stratification (5.3), 
the initial phase {• (5.4), and the initialization of the along-bank 
flow (5.5). 

5.1. Wave Generation in the Absence of Rotation 

2zt, 260-z (25b) A V- U••, •f z>zt,. 
to 260 

where z b is the z level of the bank top. When z = zb, AV has its 
maximum value 

AV -- . (26) 
•a• •o 260 

We first consider the effects of the Coriolis term by rerunning 
the base case with f set to zero. After one tidal cycle there are 
three pronounced features (Figure 15). Two depressions, one on 
top of the bank (A) and one in the deep water off the bank (C), are 
propagating away from the bank edge. There is also a broad 
elevation of the isopycnals over the bank edge (E). Superimposed 
on the broad elevation is a small mode-two wave at x = -10 km, 

the same location of the corresponding feature in the rotational 
case. It is difficult to classify the wave structure between about 
-20 and -10 km. The relatively flat region of the upper level 
isopycnals was formed at about t = 0.5 q: and has simply been 
getting longer as the leading depression propagates away, showing 
the nondispersive nature of the wave. 

The differences between the nonrotating and rotating (Figures 15 
and 6h) cases are striking. In the nonrotating case, depression B• 
is missing due to the nondispersive nature of the response. The 
response in the nonrotating case is much stronger, due to the fact 
that rotational effects inhibit the conversion of the potential energy 
into kinetic energy. That is, if f ;e 0, an unforced initial 
depression evolves to a final state comprised of a smaller 
depression in geostrophic balance with the along-bank velocity 
field (see Figures 9 and 10). This results in strong depressions A 
and C in the nonrotating case, and hence the elevation over the 

An estimate of the effects of changing Um• , and the topography 
on the size of the initial depression formed during the off-bank 
flow can be obtained as follows. Suppose the depression, as 
measured by the isopycnal at z = zo, formed during the off-bank 
flow has a characteristic length L and depth D. Then its 
characteristic volume LD is given by (26). The width of the 
depression is determined by the width of the bank edge and hence 
is inversely proportional to the width parameter d. Thus we expect 
that 

D ~ Uma,,d (27) 

and the slopes of the sides of the depression to behave like 

.-D- D ~ Um•d 2. (28) 
L 

Thus the depth of the depression is expected to scale with both 
Um• , and d, the width is independent of Um• and scales with 1/d 
and the tendency to break, or for waves to steepen into jumps, is 
expected to scale like Um• , and d e. 

As an example, consider the lowest contour in Figure 6. Its rest 
height is at z = 216 m. At t = 0.25 q: the lowest point on this 
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Fig. 15. Contour plot of the density field after one tidal cycle for a case with f = 0. All other parameters as for the base case. 
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contourisatz--188m, soithasgonedownbyabout28m. In [ 02_ja ) It2. (29b) model sensitivity runs with d increased by factors of 1.5 and 2 the rs(z)- /V•z•- •2 
displacement of this contour increased by factors of 1.46 and 2, 
respectively. Holding d fixed at its base value and increasing Umax When the absolute value of the slope of the topography, denoted 
by factors of 1.5 and 2 increases the displacement by factors of by ts(z), is close to rs(z), overturning can result because an 
about 1.53 and 2, respectively. At t = 0.5 x the contour is 
displaced by about 46 m in the base run. Increasing Umax by 
factors of 1.5 and 2 results in an increase in the displacement by 
factors of 1.48 and 1.87, respectively. When d is increased by a 
factor of 1.5, the displacement increases by a factor of about 1.43. 
When d is increased by a factor of 2, a hydraulic jump forms just 
off the bank edge and overturning occurs. This verifies the 
increased sensitivity of the slope of the isopycnals to d compared 
to U,,,•, as in (28). 

Equation (26) can also be used to estimate the effects of 
changing the deep-water depth. Changing the deep water depth 
from 260 m to 320 m increases AVm• by a factor of 
(260/320)(255/195) = 1.0625. This small change explains the 
insensitivity of the results to the increase in the deep-water depth 
from 260 m to 320 m referred to in section 3. 

5.3. Sensitivity to the Stratification 

One stratification similar to Pt was used with no significant 
differences in the results. It had slightly slower wave propagation 
speeds, so that the second depression formed during the first tidal 
period was advected right back over the bank edge and 
disappeared into the initial depression formed during the off-bank 
flow of the second tidal period. In this section we concentrate on 
the model results obtained using the deep-water stratification p2(z) 
given by (8) (see Figures 3, 4 and 5). In this case a very different 
behavior occurred. 

Using P2 as the initial density field and the base topography and 
tidal strength, overturning occurs before the end of the off-bank 
flow at t = 0.5 x. This is a result of the fact that the topography 
has a critical slope at tidal frequency for this buoyancy profile 
(i.e., the rays of internal waves with frequency c0 are tangent to 
the slope at some depth). In a motionless fluid, linear theory says 
that wave energy of frequency • propagates along rays given by 

----& = •rs(z) (29a) 

where 

incident beam of low-amplitude waves is reflected into a narrow 
beam of high-amplitude waves. The amplitude of the reflected 
waves approaches infinity as the boundary becomes parallel to the 
rays, i.e., as ts --> rs. In Figure 16, ts(z) is plotted along with rs(z). 
The wave frequency is taken as the tidal frequency c0. The ray 
slopes are shown for the base density profile Pt and for the deep- 
water density P2- It can be seen that for the base density the 
topography is far from being critical (the slope would have to be 
increased by nearly a factor of 4 to become critical). For P2 the 
topography is critical at depths of about 173 m and 88.5 m (z = 87 
and 171.5, respectively). It is quite clear then, that the base 
topography and the P2 density would result in overturning due to 
critical reflection. Also plotted in Figure 16 is the topographic 
slope when the width parameter d is reduced to 0.0001575, 70% 
of the base value. The topographic slope is now barely subcritical. 
On the basis of this, we may expect that for d less than about 
0.0001575, overturning will be greatly reduced. Significant 
overturning occurs for values well below this, as low as 60% of 
the base value. This can be shown to be a result of advection of 

waves by the tidal flow, as on-bank flow reduces the ray slope of 
on-bank propagating waves. 

5.4. Sensitivity to the Initial Phase 

Next we turn to a consideration of the sensitivity of the results 
to the initial phase of the tidal flow. We begin with a model run 
which is identical to the base case run except that the run 
commences at the start of the on-bank flow (• = -n in (12)). 
Figure 17 shows contour plots of the density field at t = x, 1.5 x, 
2x, and 2.5 x. They should be compared to Figures 6d, 6h, 6l 
and 6p, respectively. The difference in the two cases is striking. 

The wave fields over the bank edge at the end of off-bank flow 
at t = x and 2x are qualitatively very similar to each other: there 
is a small elevation separating two depressions, one propagating in 
either direction. The waves are a bit larger at the end of the 
second tidal period, but otherwise there is little change. In contrast 
there is a very large change in the wave fields at the end of 
off-bank flow between times 0.5 x and 1.5 x of the base run 

(Figures 6d and 6/). 
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Fig. 16. Topographic slope (rs) and the ray slops (rs) for the two density profiles. 
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Fig. 17. Density contours using p• for case initialized at start of on-bank flow (0 = -re). Other parameter values unchanged from 
base case. (a and c) At the end of off-bank flow. (b and d) At the end of on-bank flow. 

The wave states at t = 1.5 'r and t = 2.5 'r (Figures 17b and 
17d) are also similar. In contrast, in the base case run there was 
a significant change in the strength of the response between the 
ends of the first and second tidal periods (Figures 6h and 6p; wave 
B• versus B 2 in particular). Another difference between the two 
cases is the formation (Figure 17) of only one on-bank propagating 
depression every tidal period, in contrast to the two depressions 
formed in the base case run. 

The differences can be explained in terms of the time varying 
Froude numbers of the flow and in the differences in the shallow- 

and deep-water phase speeds. In the present case a large elevation 
is formed during the on-bank flow. It is farther on-bank than the 
corresponding depression formed during the off-bank flow in the 
base run (Figure 6d). Because of the slower propagation speeds 
in the shallow water, the adjustment of this elevation is slower 
than the adjustment of the depression in the base run. Hence the 
on- and off-bank propagating elevations generated from this initial 

elevation have not separated at t = 0.5 'c to form a depression 
corresponding to the elevation E• in the base run (Figure 6d). For 
over half of the on-bank flow the Froude number is greater than 
1 in water depths of less than 90 m (Table 1), i.e., for x _< -4.2 km, 
so the off-bank propagating elevation is effectively trapped over 
the bank edge. During the off-bank flow it is advected off-bank 
where it partially cancels any depression which might have 
formed. The advection of the on-bank propagating elevation to the 
bank edge during the off-bank flow also contributes to this. The 
asymmetry, whereby the on-bank propagating elevation cannot 
propagate away from the bank edge but both depressions formed 
during the off-bank flow in the base case mn can, accounts for the 
qualitative differences between these two cases. Um• would have 
to be greatly reduced to modify this behavior, as the flow in the 
shallow water is supercritical when u > 0.34 m s 4. 

An intermediate case initiated at maximum on-bank flow (q• = - 
•r/2) was also run. As expected, the elevation formed at the end 
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of the on-bank flow (t = 0.25 x) is not as large as for the case 
initialized at the beginning of the on-bank flow. It again is 
advected back over the bank edge during the off-bank flow. 
Because of its smaller size, it does not completely cancel the 
depression formed during the off-bank flow. The result is a 
depression which is smaller than in the base case run. Because a 
depression is formed, two on-bank propagating depressions are 
generated every tidal period. 

These cases also differ in that the barotropic component of the 
along-bank flow over the bank edge differs at the start of the 
off-bank flow. The results of the next section indicate that this 

difference is insignificant. 

5.5. Sensitivity to Initialization of the Along-Bank Flow 

Finally, we consider the sensitivity of the results to the 
initialization of the along-bank flow v. In particular, if v(x,z,O) is 
changed, how are p(x,z,t), u(x,z,t) and w(x,z,t) affected? Consider 
one solution of the governing equations, say, the base run, and 
suppose that v(x,z,O) is changed by adding V(x,z,O) to it. If u, w, 
and p are unchanged at all times, then the pressure will change by 
an amount P. The changes in v and p satisfy 

-fV- -Px (30a) 

V t + U'•-0 (30b) 

(30c) 

The first and third of these equations show that we can have a 
solution if and only if Vz = 0. Differentiating (30b) gives 

v, + v.w- (31) 

Thus Vz can remain zero only if u•V•, is zero. If V•, is nonzero in 
regions where u• is nonzero (near the bank edge) then there is no 
solution satisfying (30). That is u, w, and p will be modified. In 
the early stages of the flow, u• << 1, so that changes in the 
initialization of v do not affect the early evolution of the wave 
field. Only after significant vertical shear in u develops will the 
flow evolution be modified as nonzero u• tilts vertical vorticity into 
the x direction. This nonlinear process results in the generation of 
vertical shear in the along-bank velocity, which tilts planetary 
vorticity into the along-bank direction and hence modifies u, w, 
and consequently, p. The governing equation for g = uz - %, is 

•, + U'?• -fvz+ g@ x' (32) 

The first term on the right represents the production of vorticity 
through the tilting of planetary vorticity. 

The results of some model runs for different initial v are shown 

in Figure 18. In these cases, v was changed by multiplying the 
initialization of the base case run by a constant value. Thus initial 
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Fig. 18. Density contours at t = 0.5 'c using different initializations for the along-bank velocity v. Other parameter values 
unchanged from base case. Here the initial v was obtained by multiplying the initialization used in t he base nm by (a) -1, (b) 2, 
and (c) 8. 
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differences in v•, occur only over the bank edge at t = 0. At t = 
0.25 'r (not shown) there was little change in the model response. 
Significant u z have not yet formed to lead to a modification of the 
wave field. By t = 0.5 'r the wave field has been modified. The 
fluid for which the initial v•, was changed has been advected 
off-bank. Fluid initially between -6 km and 6 km is now between 
1.08 km and 9.35 km. As the large initial values of v•, are 
contained in this region, we should expect the initial changes in 
the wave field to occur between about 1 and 10 km at t = 0.5 'r; 

uz is positive in this region with a peak vertically averaged value 
of about .001 s -• at x = 1 km. For positive u•, (31) predicts that 
decreasing v•, results in an increase in v• and consequently, (32) 
shows that g increases as well. The model results corroborate this 
picture. The largest changes occur between 1 and 10 km and are 
appropriate for the mechanism described. In Figure 18a the base 
run initialization was multiplied by -1. Thus v•, has been increased 
from the negative values of the base run to positive values and g 
is decreased. This results in downwelling at the left side of the 
modified region. Indeed, for x between about 0 and 4 km the 
isopycnals are lower than in the base run, resulting in a more 
pronounced elevation of the isopycnals centred on x = 0. In 
Figure 18b the base run v initialization was multiplied by 2. Thus 
the initial v,• was decreased, resulting in an increase in g and 
upwelling. The isopycnals between x = 0 and x = 12.5 km have 
been raised slightly. In Figure 18c the multiplying factor was 8, 
resulting in a very large rise in the isopycnals between x = 0 and 
x = 7 km and a large drop between x = 7 and x = 12.5 km. 

At the end of one tidal period the major difference between the 
base run and the case with the initial v multiplied by -1 was that 
the elevation over the bank edge was much smaller and was 
centered at about 2.5 km versus -5 km for the base run. When the 

initial v was multiplied by 2, the only significant difference was 
that the elevation was a bit larger and centered slightly farther on 
the bank. In both these cases, depressions A t, B•, and C• differ 
only slightly in size and position. This indicates that the base run 
is one which is insensitive to quite large changes in the 
initialization of v (i.e., by 100% of the base value). The model run 
with the initial v multiplied by 8 resulted in strong overturning by 
t = 0.625 'r. The short waves seen in Figure 18c at about x = 0 
show that overturning has already commenced at greater depths. 

6. SUMMARY AND DISCUSSION 

In this paper a detailed description of the nonlinear evolution of 
the internal wave field generated by tidal flow across a bank edge 
has been presented. This description was obtained from 
high-resolution runs of a nonlinear, nonhydrostatic, inviscid 
numerical model which uses a recently developed method [Bell et 
al., 1989a, b; Bell and Marcus, 1992]. These idealized simulations 
are a first step towards understanding the complex phenomena 
observed in strongly forced regions such as the northern edge of 
Georges Bank. The model successfully reproduced a number of 
the observed features, including a large depression resulting in a 
hydraulic jump during off-bank flow and two on-bank propagating 
depressions every tidal period. The model also predicts an undular 
bore propagating away from the bank, a feature which has been 
inferred from photographs taken from the space shuttle [La Violette 
et al., 1990]. 

The base run was started at the beginning of the off-bank flow. 
During the off-bank flow a large depression is formed over the 
bank edge, which then undergoes a dispersive adjustment because 
of rotational effects. The first stage of the adjustment is the 
generation of two depressions, one propagating in either direction. 

Because the flow on top of the bank is supercritical during most 
of the off-bank portion of the tidal period, the on-bank propagating 
depression is trapped at the bank edge and becomes narrow and 
deep. The off-bank propagating depression is much broader and 
weaker. Following the depressions are elevations. After the tide 
turns on-bank, a second on-bank propagating depression is formed 
over the bank edge. It initially appears to be a mode-two wave 
about 8 km behind the first on-bank propagating depression. It 
eventually evolves into a mode-one depression followed by a 
mode-two wave. The second mode-one depression is about 15 km 
behind the first. Horizontal stretching as the fluid is advected onto 
the bank accounts for about 25% of the increase in the separation 
distance. The observations are more difficult to interpret, in part 
because of sampling difficulties (synopticity, resolution) in the 
more cmnplex physical situation. Figure 9 of Loder et al. [1992] 
shows the formation of the second near-surface depression over the 
bank edge about 5 km behind the first (after correcting for ship 
steaming time (J. Loder, personal communication, 1993)). It is 
first seen when the tide tums on-bank (or perhaps slightly earlier), 
as in the model results. After it is advected onto the bank, it is 
about 8 km behind the first depression. The difference in the 
separation distances could be attributed to the fact that the 
observed depressions are propagating into water of reduced 
stratification, so that the first depression is propagating slower than 
the first. In both the observations and in the model results the 

distance separating the two depressions just after the second is 
formed is about half the final separation distance. It is difficult to 
determine from the observations whether the second depression 
evolves from an initial mode-two wave as in the model results. 

The uncertainty of the separation distances and propagation speeds 
makes this hard to determine; horizontal stretching, rather than 
differing propagation speeds, could account for all of the increase. 

The model results illustrate the importance of rotational effects. 
Rotation inhibits the conversion of potential energy stored in the 
large depressions (or elevations) formed over the bank edge into 
kinetic energy. This greatly influences the size of the waves 
propagating away from the bank edge (making them much smaller 
than in the nonrotating case). In addition, long-wave dispersion on 
a rotating f plane is the cause of the second on-bank propagating 
depression seen every tidal period. Rotational effects will be 
important in other locations if the Rossby radius is comparable to, 
or smaller than, the width of the region of significant topographic 
slope, and the flow is not restricted by sidewalls. This can be 
expected to be the case in many open-shelf locations in middle to 
high-latitudes. 

At the end of the first tidal period an elevation over the bank 
edge is seen. Associated with it is downwelling over the bank 
edge and upwelling further out. This results in a deeper initial 
depression during the second period of off-bank flow and 
consequently in a much stronger response in the second tidal 
period. In other words, the tidal forcing is almost in resonance 
with the adjustment of the initial depression formed early in the 
first off-bank flow period. As a consequence, early in the second 
off-bank flow period the flow becomes unstable (Ri < 0.25) over 
the bank edge at about x = 0 at the bottom. Overturning results 
in the formation of high-frequency, short waves with horizontal 
wavelengths on the order of 300 m (Figures 6m-6p). The 
instability would be substantially altered if frictional effects were 
included; however, it is possible that the observed high-frequency 
waves were produced by a similar instability. The stronger 
response in the second tidal period also resulted in the nonlinear 
steepening of the off-bank propagating depression and the 
formation of an undular bore propagating away from the bank edge 
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approximately 50% faster than the maximum linear group velocity. 
The velocity fields associated with the waves are significant 
fractions of the peak barotropic speeds, confirming the nonlinear 
nature of the flow field. 

The sensitivity studies further elucidate the underlying dynamics. 
The depth of the initial depression formed during the off-bank flow 
scales linearly with the topographic slope and with the tidal 
strength. Increasing the slope results in a narrower deeper 
depression while increasing the tidal strength results in a deeper 
depression of the same width. Thus the formation of hydraulic 
jumps is more sensitive to changes in the topography than to 
changes in the tidal strength. 

The above model runs were carried out using a density profile 
obtained by averaging data collected just on top of the bank. The 
density profile was extrapolated into the deeper water in a way 
which resulted in a very weakly stratified fluid at depths below the 
top of the bank. For a second density profile, which approximates 
the observed profile in the off-bank region, the stratification is 
much stronger at depth and the topography is supercritical to 
internal waves of tidal frequency between depths of about 173 and 
88.5 m. The result is wave breaking by the end of the first 
off-bank flow period. In model runs with gentler sloping 
topography, tidal advection results in breaking for slopes well 
below the critical value. This phenomenon may play a role in 
maintaining density fronts near bank edges, particularly in 
situations where the tidal flow is very large, such as Georges 
Bank. Marsden [ 1986] noted a mixed pocket of fluid at the top of 
the bank edge (along a different transect) in the location where the 
topographic slope was critical to the mean density field at tidal 
frequency. 

This study has clarified some of the basic mechanisms 
responsible for the internal wave field observed at the northern 
edge of Georges Bank. It is interesting that so many of the 
parameters are close to critical. Increasing the topographic slope 
by a factor of 2 results in a hydraulic jump and overturning in the 
first off-bank flow period. Changing the density field from the 
mean observations just on top of the bank to one from the deep 
off-bank water also results in early breaking due to critical 
reflection of internal waves. 

Many physical effects are missing in these idealized calculations. 
The most important of these are bottom friction, turbulent mixing 
and the resulting horizontally varying mean density field. A 
quasi-periodic state also needs to be attained to eliminate the 
dependence of the response on, for example, the initial tidal phase. 
Three-dimensional effects could also be important. Frictional 
effects also result in vertical shear in the barotropic flow and in a 
vertically varying tidal phase. A more quantitative comparison 
with the observations is left until these effects have been added to 

the model. 

The physical processes which are included in the model generate 
internal waves which bear a qualitative and quantitative 
resemblance to observed ocean featureso This illustrates the central 

role that nonlinear dynamics and rotation can play in the internal 
wave generation process over finite amplitude topography. 
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