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This paper reports results of numerical simulations of stratified tidal flow over the
Knight Inlet sill. A non-hydrostatic, two-dimensional model is used, which incor-
porates a no-slip bottom boundary condition through the use of a vertical eddy
viscosity/diffusivity parametrization that is non-zero only near the bottom. In invis-
cid model runs, a large lee wave is rapidly formed, which quickly breaks, leading to
the formation of a high-drag state and a strong downslope jet in the early stages of
the ebb tide. The use of a no-slip bottom boundary condition results in boundary-
layer separation from near the top of the sill. This significantly reduces the amplitude
of the lee wave during the initial stages of the flow development. For most model
runs, a large lee wave is ultimately formed and the separation point moves down
the lee of the sill to a position immediately downstream of the lee wave. The tran-
sition to this high-drag state is significantly delayed compared with inviscid model
runs. Weakened stratification immediately above the sill, inclusion of an eddy vis-
cosity/diffusivity above the bottom and a pool of dense water on the downstream
(seaward) side of the sill can all contribute to a delay in the transition to a high-
drag state, and can eliminate it entirely. For one model run using a vertical eddy
viscosity parametrization above the bottom, a reduction of the vertical diffusivity
eliminated the formation of a high-drag state. This suggests that at least in some
cases entrainment into the lee wave can cause its growth and result in the formation
of a high-drag state.

Keywords: boundary-layer separation; internal waves;
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1. Introduction

Stratified flow over topography has been a prominent problem in geophysical fluid
mechanics for over 50 years since Queney (1948) first investigated internal wave gen-
eration in stratified flow over a mountain. A particular problem that has received a
considerable amount of attention is that of stratified flow over a large obstacle and
the formation of a high-drag state. A high-drag state consists of a strong, supercrit-
ical downslope jet of fluid beneath a large breaking lee wave. The strong downslope
flow results in a low-pressure region along the lee of the obstacle and hence in a
net horizontal force (drag) on the obstacle. This flow phenomenon has a hydraulic
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interpretation. A control point near the top of the obstacle separates upstream sub-
critical flow from the supercritical downslope jet. The jet ends in a hydraulic jump
downstream of the obstacle. In the atmospheric context the jet is referred to as a
downslope windstorm. There are many atmospheric observations of strong downslope
windstorms (Baines 1995). Oceanic observations are much more recent and sparse
(Farmer & Armi 1999; Nash & Moum 2001).

Atmospheric observations of a downslope wind storm on 11 January 1972 in Boul-
der, CO, USA (Klemp & Lilly 1975) led to a series of papers reporting the results
of numerical simulations which explored various aspects of this event (e.g. Klemp &
Lilly 1975; Peltier & Clark 1979; Hoinka 1985; Scinocca & Peltier 1989). These numer-
ical simulations of the high-drag state agreed well in detail with the observations. As
the atmospheric observations of this event were limited to the final high-drag state,
our understanding of the formation of high-drag states has, until recently, been based
solely on the results of these, and other, numerical simulations.

In 1995 the Knight Inlet experiment provided field observations of tidal flow over
a large sill in Knight Inlet (Farmer & Armi 1999; Klymak & Gregg 2001, 2003; Armi
& Farmer 2002). This sill has been the site of previous field experiments (Farmer &
Smith 1980; Farmer & Freeland 1983). It provides a natural laboratory for studying
stratified flow over a large obstacle. At the location of the sill the inlet is approxi-
mately straight, and modelling studies have usually treated ebb flow as being two
dimensional. The flood tide is more three dimensional, due to a widening of the sill
on the seaward side. The three-dimensional (3D) nature of the flow over the sill has
been investigated by Klymak & Gregg (2001).

The highly resolved set of field observations reported by Farmer & Armi (1999)
(henceforth FA99) include observations of the formation of a high-drag state during
ebb flow over the sill. Their observations led them to suggest a new mechanism for the
formation of the high-drag state. This has led to a series of papers reporting results
of numerical simulations aimed at understanding the nature of the flow over the
Knight Inlet sill (Cummins 2000; Afanasyev & Peltier 2001a). The interpretation of
the numerical results and the observations has been somewhat controversial (Farmer
& Armi 2001; Afanasyev & Peltier 2001b).

FA99 reported observations of small-scale waves and mixing near the surface above
the sill during the early stages of ebb tide. In addition, flow separation from the top
of the sill was observed. Flow separation, which persisted for over half of ebb tide,
was also a common feature of earlier observations taken over the sill (Farmer & Smith
1980; Farmer & Freeland 1983). There was apparently no evidence of the generation
of a lee wave early in the tidal flow. FA99 argued that the small-scale waves above
the sill were the result of shear instabilities, a consequence of a shear flow induced
by the mode-1 response to the subcritical flow over the sill. They further argue that
the associated mixing led to the formation of a wedge of slow-moving fluid above the
lee of the sill. Shear instabilities on the interface between this intermediate layer and
the rapidly moving fluid below persist throughout ebb tide. Using observations of the
density and velocity fields, FA99 estimate that the volume of fluid entrained across
the interface can account completely for the increase in volume of the intermediate
layer. The high pressure associated with the growing wedge of slowly moving fluid
pushes the separation point down the lee of the sill, resulting in the formation of a
high-drag state late in ebb tide. This mechanism for the formation of a high-drag
state is novel and very different from that seen in the inviscid numerical simulations of
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the downslope windstorm in Boulder, CO. These simulations showed the generation
of a large internal lee wave which rapidly grows in amplitude until it overturns. As
a consequence, a large region of nearly stagnant, mixed fluid is created, below which
a downslope jet is formed.

Cummins (2000) used the Princeton Ocean Model (POM), run as a two-
dimensional model, to simulate tidal flow over the Knight Inlet sill. The POM is
hydrostatic and incorporates a sophisticated turbulence model. A quadratic drag
law is used as a bottom boundary condition for the velocity field. Cummins used
realistic topography and a density field based on observations 1.2 km inland of the
sill. Afanasyev & Peltier (2001a), on the other hand, used a non-hydrostatic inviscid
model with idealized topography.

Both these modelling studies showed the early formation of a large lee wave which
formed a patch of slowly moving fluid above the lee slope. Below the wave, a strong
downslope jet was formed. The simulations reported by Cummins did not have a
breaking lee wave, due to the strong mixing invoked by the turbulence model. The
flow did not separate, and the downslope jet was formed much earlier than in the
observations. Cummins attributed the earlier formation of the high-drag state to
the absence of flow separation. To test this idea he did a simulation using modified
topography in which the lower boundary was raised downstream of the sill in order to
mimic some of the expected effects of boundary-layer separation. This had the effect
of significantly reducing the amplitude of the lee wave and delayed the formation
of the high-drag state. The simulations of Afanasyev & Peltier also did not have
boundary-layer separation, this being impossible in an inviscid model. The lee wave
formed in their simulations overturned rapidly and quickly led to the formation of a
high-drag state. In essence, their results duplicated those of the simulations of the
Boulder, CO, windstorm reported earlier.

Gheusi et al . (2000) have done some low-Reynolds-number (Re = 200), two- and
three-dimensional direct numerical simulation calculations of stratified flow over an
obstacle. They used a non-hydrostatic model with a no-slip bottom boundary con-
dition and considered flow of a uniformly stratified fluid of depth large compared
with the obstacle amplitude. They found that boundary-layer separation significantly
modified the evolution of the flow. Their 3D simulations also showed that 3D effects
are important after the wave breaks. The three-dimensionalization of the flow in
breaking internal gravity waves is well known (e.g. Klaasen & Peltier 1985; Caulfield
& Peltier 1994; Winters & D’Asaro 1994). Two mechanisms have been identified:
shear instabilities and convective instabilities (Winters & D’Asaro 1994).

Klymak & Gregg (2003) have suggested that a density difference across the sill
is responsible for the flow separation. The water on the seaward side of the sill is
denser, with the largest density differences, ca. 0.5 kg m−3, occurring below the sill
crest. They argue that during ebb flow, water flowing over the sill encounters the
slightly denser water below the sill crest and is forced to separate.

In this paper the results of some numerical simulations of tidal flow over the Knight
Inlet sill are reported. A two-dimensional, non-hydrostatic model (Lamb 1994) is
used. An important difference between these simulations and those of Cummins
(2000) and of Afanasyev & Peltier (2001a) is the use of vertical eddy viscosity and
diffusion, which allows the incorporation of a no-slip bottom boundary condition.
The resulting formation of a bottom boundary layer enables flow separation to occur,
which is a significant step towards the goal of accurate numerical simulations of the
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flow over the sill in Knight Inlet. In the model simulations with vertical viscosity,
the flow separates during the early part of the ebb tide. A lee wave is formed which
breaks and a pool of near-surface slow-moving fluid is formed. In most cases this
nearly stagnant patch of fluid grows and as a consequence the separation point moves
down the lee slope of the sill. The final high-drag state which is formed consists of a
strong downslope jet beneath a large lee wave. Post-wave separation (Baines 1995)
occurs, in which the downslope flow leaves the sill just downstream of the large lee
wave. The results reported herein largely confirm the mechanism for the generation
of a high-drag state first put forth by Peltier & Clark (1979). That is, it appears to
be tied to the generation of a large amplitude lee wave directly created by flow over
the sill. However, it is also demonstrated that the results are sensitive to some of
the details of the stratification, the background currents and the form of the vertical
viscosity. Such a sensitivity has been observed. For example, Farmer & Smith (1980)
report a wide variety of responses to flow over the sill. Results of a model run using
a reduced stratification immediately above the sill and a Richardson-based eddy
viscosity/diffusivity parametrization show that under some circumstances a high-
drag state is never reached. It is furthermore shown that, by increasing the vertical
eddy diffusivity, a large lee wave is generated, and transition to a high-drag state
does occur. This shows that mixing can play an important role in the formation of
a high-drag state, as argued by FA99.

In § 2 the numerical model is described. In § 3, unstratified flow over the sill is
discussed. Both inviscid and viscous flows are considered. The inviscid, unstratified
flow over the sill is potential flow. This provides the outer flow used in boundary-layer
theory to predict the time and location of flow separation. Predictions of a simple
theory due to Blasius (1908) are compared with numerical model results. These
unstratified model simulations aid the interpretation of the stratified simulations.

Four model runs, discussed in § 4, compare the flow evolution with and without
vertical diffusion/viscosity and with and without a deep water density pool. These
simulations show that the use of a vertical viscosity and a no-slip bottom bound-
ary condition is essential to trigger separation of the bottom boundary layer. The
observed density difference across the sill enhances flow separation, but cannot by
itself force the flow to separate. Thus, the cross-sill density jump is of secondary
importance. In § 5 the sensitivity of the results to the stratification and to the verti-
cal viscosity/diffusion parametrization is explored. The majority of the model runs
were started from a state of rest at the beginning of ebb tide. Results of a couple
of longer model runs are also discussed. Finally, the results are summarized and
discussed in § 6. The simulations reported here fail to model some aspects of the
observed features, in particular the small-scale instabilities and the entrainment pro-
cess which FA99 argue leads to the formation of a high-drag state. A discussion of
this is included in § 6.

2. The numerical model

The numerical model used in this study is a modified version of the non-hydrostatic
model described in Lamb (1994), which uses the Boussinesq approximation. A rigid
lid is used at the surface at z = 0. A crude turbulence model has been added in the
form of vertical eddy diffusion and viscosity. Its main purpose is to form a bottom
boundary layer (BBL) by slowing fluid near the bottom boundary, this being the most
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crucial contributor to flow separation. Rotation is not included for these simulations,
as Knight Inlet is only a few kilometres across. The model equations are

Ut + U · ∇U = −∇p − ρgk̂ + (KuUz)z + MUχχ, (2.1)
ρt + U · ∇ρ = (Kρρz)z + Mρχχ, (2.2)

∇ · U = 0, (2.3)

where standard terminology has been used and p and ρ have been scaled by the
reference density ρ0. Terrain following (sigma) coordinates are used and χ is the
horizontal terrain-following coordinate. The horizontal diffusivity/viscosity M acts
along sigma levels as in the POM (Mellor & Yamada 1985). Some model runs with
values of M no larger than 5×10−3 were done. As these results differed only slightly
from corresponding runs with M = 0, all results reported here use M = 0. The
formulation of the model allows Ku and Kρ to vary spatially and temporally. In
this paper they are usually specified functions of z only. For some model runs these
specified values are augmented by a Richardson-number-based parametrization of
the form used by Pacanowski & Philander (1981). The latter gives temporally and
spatially varying values and is used only to explore the sensitivity of the results.
Parametrizations of this form were developed for use in low-resolution hydrostatic
models and hence may seem unnecessary in a non-hydrostatic model. The model
used here, however, will fail to accurately simulate small-scale instabilities because of
both inadequate resolution and the fact that the model is two-dimensional. Boundary
conditions in the vertical are ρz = 0 along the top and bottom boundaries, and uz = 0
along the top boundary with a no-slip condition along the bottom boundary. Use of
a no-slip condition, rather than a quadratic stress law, was found to be essential for
flow separation. For the inviscid version of the model, Ku = Kρ = M = 0 and the
boundary conditions along the upper and lower boundaries are those of no normal
flow. Horizontal resolutions between 10 and 1 m over the sill have been used. There
are J grid points in the vertical with J typically 100. Most of the model runs used a
vertically uniform grid. Some model runs were done using a vertically varying grid,
with higher resolution at the bottom. There was very little difference between such
runs and the corresponding run using a vertically uniform grid.

The model topography used is

z = h(xk)
= −200 + 67 itanh(xk, 10.45, 0.05)

− 50 itanh(xk, 10.94, 0.08) + 112 itanh(xk, 11.91, 0.08)
− 119 itanh(xk, 12.015, 0.06) − 160 itanh(xk, 12.8, 0.04)

+ 125 itanh(xk, 13.01, 0.08) + 25 itanh(xk, 13.6, 0.08), (2.4)

where xk = x/1000 is in km and

itanh(xk, a, s) =
∫ xk

−∞
1+tanh

(
x′

k − a

s

)
dx′

k = xk −a+s ln
(

2 cosh
xk − a

s

)
. (2.5)

The model topography is compared with the observed topography in figure 1. The
topography has been levelled at depths of 200 and 150 m on the landward/seaward
sides of the sill. The sill is asymmetric with a maximum slope of 0.3 near the top of

Proc. R. Soc. Lond. A (2004)



2310 K. G. Lamb

−3 −2 −1 0 1 2 3
x (km)

−250

−200

−150

−100

−50

0

z 
(m

)

Figure 1. Comparison of model topography (solid curve)
and observed topography (dotted curve).
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Figure 2. Model densities. (a) Comparison of model density ρ̄1(z) (dotted curve) with the
observed density 1.2 km from the sill (solid curve). (b) Comparison of three model densities:
ρ̄1(z) (solid line), ρ̄2(z; −10, 5) (dotted line), ρ̄3(z) (dashed line).

the sill on the seaward side. The steep slope is conducive to boundary-layer separation
during ebb tide.

Several density stratifications have been used. The first stratification used is a fit
to a mean density field observed 1.2 km upstream of the sill during ebb tide and so
may have been influenced by upstream effects. It is given by

ρ0ρ̄1(z) =
1
2

[
(1024.0 − 7.5(1 + tanh(z + 4)))(1.0 + tanh(z + 4.0))

+
(

1024.6 +
20.0
z − 1

)
(1.0 − tanh(z + 4.0))

]
. (2.6)

The reference density used in making the Boussinesq approximation is ρ0 =
1016.5 kg m−3. Density ρ̄1 is compared with the observed density in figure 2a. Note
the thin surface cap of fresh water formed by river run-off.
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Figure 3. Vertical profiles of the vertical eddy viscosity/diffusivity given
by equation (2.10) for α = 0.25 m−1 (solid line) and 0.1 m−1 (dotted line).

A number of alternative density fields were considered, all modifications of (2.6).
First, a class of density fields was defined via

ρ̄2(z; z0, d) = a + bz + s

[
1 + tanh

(
z − z0

d

)]
. (2.7)

The values a = 1.008 and b = 8.125 × 10−7 m−1 were chosen to match the density
and density gradient values at z = −200 m with those of ρ̄1 given by (2.6). For spec-
ified values of z0 and d, the value of s was chosen so that ρ̄2(0) = ρ̄1(0). In figure 2b
ρ0ρ̄1(z) and ρ0ρ̄2(z) are compared using (z0, d) = (−10, 5) m. Density ρ̄2(z) has a
weaker gradient at depths greater than 20 m and has a broader, weaker pycnocline.
It is also missing the upper mixed layer.

The model results using densities (2.6) and (2.7) with (z0, d) = (−10, 5) m were
quite different. The difference is due to the decreased stratification immediately above
the sill, i.e. at depths greater than 20 m. To illustrate this a third density field was
used, which is a weighted average of ρ̄1(z) and ρ̄2(z), namely

ρ̄3(z) = rρ̄1(z) + (1 − r)ρ̄2(z; −10, 5), (2.8)

where

r(z) = 0.5
(

1 + tanh
(

z + 17.5
5.0

))
, (2.9)

density ρ̄3(z) is equal to ρ̄2(z; −10, 5) for z below ca.−22.5 m and is equal to ρ̄1 for
z greater than ca.−12.5 m. It is also plotted in figure 2.

The temporally fixed, vertically varying eddy viscosity and diffusivity Ku and Kρ

have the form
Ku,ρ(x, z) = Cu,ρ sech2(α(z − h(xk))), (2.10)

where Cu is a constant. Values of α between 0 and 0.5 m−1 have been used. When
α = 0, the vertical viscosity/diffusivity is constant. For α = 0.25 m−1, Ku,ρ are
reduced to 20% of their maximum value ca. 5 m above the bottom (see figure 3).
This is the base value. It gives a boundary-layer thickness of ca. 5 m at peak tidal
flow. Some model runs were done using profiles of Ku,ρ which are constant, or increase
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Table 1. Model runs discussed in the text

(Under BBL, yes (no) means that there is (is not) a bottom boundary layer. PP refers to use
of Richardson-number-based eddy viscosity/diffusivity above the bottom. ∆ρ̄ refers to the use
of a density jump across the sill. The jump extends above the sill crest in cases I and K but is
restricted to below the crest in cases E and F.)

case ρ̄ BBL PP ∆ρ̄ tend

A const. no no no 0.5τ

B const. yes no no 0.5τ

C ρ̄1 no no no 0.5τ

D ρ̄1 yes no no 0.5τ

E ρ̄1 yes no yes 0.5τ

F ρ̄1 yes no yes 0.5τ

G ρ̄3 yes no no 0.5τ

H ρ̄3 yes yes no 0.5τ

I ρ̄3 yes yes yes 0.5τ

J ρ̄1 yes no no 1.5τ

K ρ̄3 yes yes yes 1.0τ

linearly, in the first 10 m above the bottom before rapidly dropping off to zero. The
results were very similar to those using (2.10).

All model runs are started from a state of rest. The flow is driven by specifying
values of ut at the left boundary. Sinusoidal tidal flow with a period of τ = 12.4 h
is used throughout. Unless otherwise specified, model runs commence at the start
of ebb tide. They all use a peak volume flux of 36 m2 s−1, based on observations.
This gives a peak barotropic tidal flow of 0.6 m s−1 at the sill crest. Tidal advection
distances are 4.3 km at the sill crest and 1.3 km in the deep water. These distances
are comparable to the sill width. For density ρ̄1(z), Froude numbers U/c at the sill
crest at maximum ebb are 0.9 and 2.0 for mode-1 and mode-2 waves. Here U and
c are the barotropic current and linear long-wave propagation speed, respectively.
Since the calculation of these numbers uses the initial undisturbed density field and
assumes no vertical structure in the horizontal currents, assumptions not valid at
peak ebb tide, they should be used as a guide only: the peak ebb flow is subcritical
for mode-1 waves and supercritical to mode-2 waves.

3. Unstratified flow over the sill

Internal waves are a consequence of the gravitational adjustment of vertical displace-
ments of a stratified fluid. In inviscid flow over a sill, the flow field that creates the
initial disturbances is a potential flow. Thus, before considering the problem of strat-
ified flow over the sill it is instructive to consider some aspects of the unstratified
problem: specifically, potential flow over the sill for the inviscid case and boundary-
layer separation in the absence of stratification for the case with vertical viscosity.

Figure 4 illustrates the potential flow over the sill, determined by running the
inviscid version of the model with gravity set to zero (case A, see table 1). Density
contours, used as a tracer to visualize fluid advection, are shown in figure 4a, b. Con-
tour plots of the horizontal and vertical velocities are presented in figure 4c, d. Only
part of the computational domain is shown in the figures. That the results accurately
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Figure 4. Potential flow over the sill (case A). (a), (b) Density contours (used as a tracer) at
t = τ/16 and τ/8. (c), (d) Horizontal and vertical velocity contours (solid contours positive
values, dashed contours negative values) at t = τ/8.

approximate potential flow in a horizontally unbounded domain was verified by run-
ning the model for several resolutions and for different locations of the left and right
boundaries.

The first density contour plot shows the displacements at t = τ/16 = 2790 s. At
this time, horizontal displacement of fluid is 32 m at the top of the sill and less in
greater depths. This distance is small compared with the horizontal scale of the sill
and, in particular, with the width of the downwelling zone in the lee of the sill.
Hence, the vertical displacement pattern largely reflects the pattern of the vertical
velocity shown in figure 4d. At t = τ/8 (figure 4b), the horizontal advection distance
has increased to 1.2 km at the top of the sill, and 0.5 km in water of depth 150 m.
The displacement pattern no longer reflects the vertical velocity field.

For the stratified cases considered in the next section, the mode-1 propagation
speed is smallest on top of the sill where it is ca. 0.66 m s−1. The time taken to
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Figure 5. Potential flow over the sill. Vertical profiles of (a) the horizontal velocity, (b) the
vertical velocity at t = 1395 s. Profiles in (b) are, from left to right, at 10 m intervals between
x = 0 and x = −50 m. Profiles in (a) are at the same locations using the same line styles.

propagate 200 m is 300 s on top of the sill and less in deeper water. Thus, in the
presence of gravity, it is clear that wave propagation will substantially modify the
vertical displacement and velocity fields in the lee of the sill by t = τ/16.

Figure 5 shows vertical profiles of the horizontal and vertical velocity at 10 m
intervals between x = −50 m and x = 0. The crest of the sill is at x = −54 m.
The potential flow horizontal velocity has vertical shear with maximum horizontal
velocities occurring at the bottom at about x = −25 m. Surface values are ca. 7%
smaller than those at the bottom at this location. The vertical velocities have their
maximum absolute values at the bottom, decreasing approximately linearly to zero
at the surface. The largest downwelling velocity of −0.025 m s−1 occurs at x = 44 m,
32 m below the sill crest (not shown).

Profiles of some features of the flow along the bottom boundary in the vicinity of
the sill crest are presented in figure 6. For reference, the topography in the vicinity of
the sill crest is shown in figure 6a. Figure 6b shows the horizontal velocity u and the
tangential component of the velocity q = t̂ · U at t = τ/16. Here t̂ is the rightward
pointing unit tangent vector along the bottom boundary. Since q is positive during
ebb tide, it is the fluid speed along the bottom boundary. Its maximum occurs at
about x = −25 m, slightly in the lee of the sill. Note that for a time-dependent
potential flow the location of the maximum fluid speed is independent of the time.

The horizontal pressure gradient px and the tangential pressure gradient ps = t̂·∇p,
where s is distance along the boundary, are shown at times t = τ/16 and t = τ/4 in
figure 6c, d. At the latter time the flow is at maximum ebb and is not accelerating;
hence, the pressure minimum along the sill occurs at x = −25 m, the location of
maximum speed, as required by Bernoulli’s equation. At the earlier time the flow
is still accelerating to the right and both the horizontal and tangential pressure
gradients are negative everywhere. There is no pressure minimum over the sill.

An illustrative analytic example, namely oscillating flow past a half-disc in an
infinitely deep fluid, is presented in Appendix A. There it is shown that early during
ebb flow there is no pressure minimum. As the flow increases in strength, a pres-
sure minimum is eventually formed at the rightward (downstream) stagnation point,
which thereafter moves upstream until it reaches the crest of the disc at the time of
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Figure 6. Potential flow over the sill. (a) Topography, (b) horizontal velocity (solid) and tan-
gential velocity (dotted) along the lower boundary at t = τ/32 = 1395 s. Horizontal (solid) and
tangential (dotted) pressure gradients along the lower boundary at (c) t = τ/32 = 1395 s and
(d) t = τ/4 (peak ebb).

maximum flow. A similar process occurs for flow over the sill, with some important
differences. Firstly, at maximum flow the pressure minimum is slightly downstream
(for rightward flow) of the sill crest due to its asymmetric shape. Secondly, because
of the variable curvature of the sill (as opposed to the constant curvature for a half-
disc), a pressure minimum first appears well above the bottom of the sill. Indeed,
from Bernoulli’s equation for a time-dependent potential flow,

ps = −qt − qqs, (3.1)

is the tangential pressure gradient (recall that p has been scaled by the reference
density). To separate the time dependence let

q = sin(ωt)r, (3.2)

where r is independent of t. Then

ps = −(ω cos(ωt) + sin2(ωt)rs)r. (3.3)

Since r is strictly positive along the bottom boundary, for small t the tangential
pressure gradient ps is negative everywhere. It first becomes zero at the location
where rs has its minimum (which is negative). The minimum of rs occurs at x = 29 m
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(close to where ps has its maximum value in figure 6c, d). From (3.3) we find that
the tangential pressure gradient first becomes zero at approximately t = 1685 s
(1.21τ/32 = 0.038τ). At earlier times the pressure gradient along the sill is favourable
(pressure decreases in the direction of the flow). At later times, up to peak ebb flow,
there is a section along the wall with an adverse pressure gradient.

The potential flow described above plays an important role in the evolution of the
boundary layer in viscous flow over the sill because the flow outside the boundary
layer is accurately modelled by the potential flow up to the time the flow first sepa-
rates or when the boundary layer becomes too thick. In particular, the pressure field
in the bottom boundary layer is set by this outer flow. Thickening of the boundary
layer occurs most rapidly in the deep water downstream of the sill where fluid which
has passed over the sill close to the bottom boundary is advected into the interior as
streamlines separate. This process, however, does not strongly modify the flow over
the sill.

Regions with an adverse pressure gradient play an important role in boundary-
layer theory. For example, for a steady flow a region with an adverse pressure gradient
is required for flow separation. For a viscous flow the curvature of the flow at the
wall is determined by the sign of the tangential pressure gradient, since at a solid
boundary the no-slip condition implies that

ps = Kuηη, (3.4)

where η is a coordinate perpendicular to the lower boundary. Under a favourable
(adverse) pressure gradient, uηη has the opposite (same) sign as uη at the boundary
in regions where the flow above the wall is in the same direction as the outer potential
flow. During ebb tide, potential theory predicts that the location and times for
which an adverse pressure gradient exists are asymmetric about peak flow (t = τ/4)
because cos(ωt) is antisymmetric and sin2(ωt)rs is symmetric about this time. In
fact, between 0.41τ and 0.5τ there is an adverse pressure gradient everywhere over
the sill.

Theoretical predictions of the time and location of initial flow separation (uη = 0
at the wall) for a uniformly accelerating flow have been obtained by Blasius (1908)
(see Schlichting 1979). For a potential flow with tangential flow q = r(s)t along the
boundary (starting from a state of rest at t = 0), the flow is predicted to separate at
the first time that

1 + 0.427
dr

ds
t2 − 0.026

(
dr

ds

)2

t4 − 0.01r
d2r

ds2 t4 = 0. (3.5)

This prediction is independent of the viscosity. For the Knight Inlet sill, this equation
predicts flow separation to occur at x = 31 m at t = 2446 s (1.754τ/32 = 0.055τ).
This is ca. 9 m below the sill crest. If the O(t4) terms are ignored, the flow is predicted
to separate at x = 29 m at t = 2579 s (1.862τ/32 = 0.058τ). Since the predicted time
of separation is early during the tidal period, use of a constant flow acceleration is a
good approximation to the actual sinusoidal flow.

Figure 7 shows some results from a model run with gravity set to zero but now
with vertical viscosity and a no-slip bottom boundary condition (case B). As for the
potential flow case, we use the density field as a tracer to illustrate fluid displacement
(it is still subject to diffusion near the bottom). In this simulation the flow first
separates (u < 0 one grid point above lower boundary) at x = 70 m at t = 3100 s.
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Figure 7. Unstratified flow over the sill with vertical viscosity/diffusivity given by equation (2.10)
with (Cu, Cρ) = (0.02, 0.0002) m2 s−1 and α = 0.25 m−1. ∆x = 1 m. Case B. (a) t = τ/16;
(b) t = τ/8.

This is 20 m below the sill crest. By t = τ/8 = 5580 s the separation point has moved
upstream to x = 20 m, ca. 7 m below the sill crest.

For this model run the resolution was 1 m in the horizontal (above the sill only)
with 200 grid points in the vertical. In the model results, flow separation first occurs a
distance below the sill equal to twice the theoretical prediction and at a slightly later
time (3100 s against 2450 s). The theoretical prediction is of course an approximate
theory, assuming, among other things, weak curvature of the bottom boundary. The
discrepancy between the theoretical prediction and the model results must also be
partly due to insufficient resolution in the bottom boundary layer. However, the
separation point was not very different in a model run using dx = 10 m and with
100 grid points in the vertical.

The results discussed in this section have some important consequences for strat-
ified flow over the sill. The potential flow solution illustrates that over the lee of
the sill vertical displacement of fluid takes place throughout the water depth. As a
consequence, waves are generated near the surface as well as near the bottom. While
the largest vertical displacements occur near the bottom, it is not correct to view
the waves as being generated at or near the bottom and subsequently propagating
upward. While this phenomenon does occur, waves are also simultaneously generated
near the surface. The relative importance of the various generation sites depends on
the stratification (the body forcing term of Baines (1982)). In the extreme case of
a two-layer fluid with the interface near the surface (as is approximately the case
in Knight Inlet), small-amplitude waves are generated on the interface, due to the
small vertical velocities present there. The generation of a lee wave is unavoidable
in an inviscid model. The only possible way to inhibit lee-wave generation is to have
boundary-layer separation from near the crest of the sill, and so substantially reduce
the vertical component of the velocity field above the lee of the sill. The viscous
results show, however, that boundary-layer separation does not occur until after
t = 2790 s. Up to this time flow outside the bottom boundary layer is very similar
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Figure 8. Density contours for case C. Inviscid model run without a deep water density pool.
Values contoured were specified and are not at equal intervals. The same values are contoured
for all figures. Horizontal resolution ∆x = 10 m. (a) t = τ/16; (b) t = τ/8.

to the potential flow as can be seen by comparing figures 4a and 7a. These figures
make it clear that, in the stratified cases, even the use of a no-slip bottom boundary
condition to trigger flow separation will not eliminate the formation of a lee wave in
model runs starting from rest.

4. The role of bottom boundary-layer separation and
a deep salty pool on internal wave generation

In this section results from four stratified model runs are discussed. These runs were
designed to investigate the relative importance of boundary-layer separation and of
a cross-sill density jump on the evolution of the flow. These four cases demonstrate
that boundary-layer separation is crucial for an accurate simulation of the flow over
the Knight Inlet sill. They also demonstrate that a deep water density pool by itself
is unable to cause flow separation but that it can enhance the separation of the
bottom boundary layer.

Case C is an inviscid model run without a cross-sill density jump. Contour plots
of the density field at t = τ/16 = 0.0625τ and τ/8 are shown in figure 8. Contour
plots of the horizontal velocity field at t = τ/8 and 3τ/16 = 0.1875τ are presented
in figure 11. These illustrate the rapid establishment of a strong downslope jet. At
t = τ/16 a large lee wave has already developed slightly downstream of the crest.
It extends right down to the bottom boundary (a depth of 100 m). By 3τ/32 =
0.0937τ , overturning has commenced between depths of 20 and 90 m, i.e. virtually
to the bottom, and a strong downslope flow has been established which extends
downstream to about x = 300 m (not shown). By τ/8, a high-drag state has formed.
The downslope jet has strengthened, having a peak velocity of ca. 1.0 m s−1, and it
now extends downstream to about x = 600 m, where it ends in a hydraulic jump (see
figure 11). As the flow evolves, the ca. 40 m thick jet lengthens as the hydraulic jump
moves downstream. Above is a thick layer of slow-moving fluid. Instabilities can be

Proc. R. Soc. Lond. A (2004)



Internal wave generation at a sill 2319

0

0.05

0.10

0.15

0.20

q 
(m

 s
−1

)

stratified
potential

(a)

0

0.10

0.20

0.30

0.40

stratified
potential

(b)

−300 −200 −100 0 100 200 300
x (m)

−0.25

−0.20

−0.15

−0.10

−0.05

0

0.05

0.10

p s (
×1

0
−3

 m
 s

−2
)

ps, stratfield
ps, potential
px, potential

(c)

−300 −200 −100 0 100 200 300
x (m)

(d)

p s (
×1

0
−3

 m
 s

−2
)

q 
(m

 s
−1

)

ps, stratfield
ps, potential
px, potential

1.2

0.8

0.4

0

−0.4

−0.8

Figure 9. Comparison of potential flow (case A) with stratified inviscid flow (case C). Tangential
flow along the lower boundary at (a) t = 1395 and (b) t = 2790 s. Tangential and horizontal
pressure gradients along the lower boundary at (c) t = 1395 and (d) t = 2790 s.

seen in the downslope jet starting at about τ/8. These have been extensively studied
in the atmospheric context (e.g. Scinocca & Peltier 1989; Afanasyev & Peltier 2001a,
and references therein).

Before considering the next case, which uses vertical viscosity/diffusivity, we briefly
compare the stratified and unstratified inviscid model runs. Comparison of figures 4a
and 8a show that gravitational adjustment has resulted in a substantial narrowing
and deepening of the depression in the lee of the sill. By t = 2790 s the depression is
about half the width in the stratified case, a reflection of the upstream propagation
of the depression (some of the depression propagates down stream). In figure 9a, b
the tangential component of the velocity along the bottom boundary for case A is
compared with the potential flow at times t = 1395 and 2790 s. For the stratified case
q is substantially larger than in the unstratified case over and slightly downstream of
the sill. This is a consequence of the positive bottom velocities associated with the
leftward-propagating wave of depression. At the back of the wave this velocity per-
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Figure 10. Density contours for case D. Vertical viscosity/diffusivity given by (2.10) with
(Cu, Cρ) = (0.02, 0.0002) m2 s−1 and α = 0.25 m−1. ∆x = 10 m. No density pool. (a) t = τ/16;
(b) t = τ/8; (c) t = 3τ/16; (d) t = τ/4.

turbation drops rapidly and becomes negative (hence qstrat < qpotential). Figure 9c, d
shows the tangential pressure gradient ps at the same times. Here, the hydrostatic
part of the pressure gradient has been removed for the stratified case and hence
ps = t̂ · (∇p + gρk̂). Also shown is the horizontal pressure gradient px for the strati-
fied case. It is very similar to ps. At t = 1395 s, ps < 0 everywhere for the potential
flow solution, and hence the pressure gradient is favourable over the sill. For the
stratified case, however, ps is positive between x = 40 and 260 m. This is associated
with the rapid drop in q in the rear half of the leftward-propagating depression wave.
At t = 2790 s, ps is an order of magnitude larger in the rear of the wave.

Because of the adverse pressure gradients created by the wave we can expect that
in the model runs with vertical viscosity, boundary-layer separation will occur earlier
in the stratified case than in the unstratified case. This indeed turns out to be the
case.
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Figure 11. Contour plots of the horizontal velocity. Case C (inviscid, stratified flow) at (a) t = τ/8
and (b) t = 3τ/16. Case D (viscous, stratified flow) at (c) t = τ/8 and (d) t = 3τ/16. Block sizes
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Case D uses a vertical eddy viscosity/diffusivity with a no-slip bottom boundary
condition with (Cu, Cρ) = (0.02, 0.0002) m2 s−1. Values of Ku and Kρ have these
maximum values at the bottom boundary and decrease above the bottom with an
inverse scale height of α = 0.25 m−1 (see figure 3). Density contour plots are shown
in figure 10 at four different times. Contour plots of u are given in figure 11. Some
significant differences between cases C and D are apparent. Prior to the onset of
flow separation, downward flow in the lee of the sill has been reduced below the sill
crest. As a consequence, vertical displacements of fluid are reduced and consequently
the lee wave formed downstream of the sill is greatly reduced in amplitude. Flow
separation below the sill crest occurs ca. 25 m below the top of the sill starting at
about t = 3700 s. This should be compared with the unstratified case (case B) for
which flow separation occurred earlier (at t = 3100s) 20 m below the sill crest. The
delay in separation and the slightly deeper depth can be attributed to the enhanced
bottom flow near the bottom associated with the rightward-propagating wave of
depression. This instance of flow separation is not the first, however. Flow separation
first occurs at a much greater depth (x = 250 m, 80 m below the sill crest) at about
t = τ/16 = 2790 s, behind the leftward-propagating wave of depression.

By 3τ/32 = 0.09375τ the developing lee wave has commenced overturning but
only in the upper 50 m (not shown). In contrast, at the same time in the inviscid run
(case C) overturning occurs to a depth of ca. 90 m. By t = τ/8 the flow separation
point has moved up slightly, breaking in the large lee wave is confined to the upper

Proc. R. Soc. Lond. A (2004)



2322 K. G. Lamb

−500 0 500 1000 1500
x (m)

−160

−120

−80

 40

0

z 
(m

)

−500 0 500 1000 1500
x (m)

(a) (b)

Figure 12. Contour plots from a rerun of case D using higher horizontal
resolution of ∆x = 2.5 m (case J). (a) t = τ/4; (b) t = 3τ/8.

40 m, and the reverse flow under the flow separation line has strengthened. At this
stage in the inviscid model run, a high-drag state has already been reached with a
strong, unstable downslope jet. Between τ/8 and 3τ/16 the lee wave grows rapidly
and the flow separation point moves to a depth of 110 m. Thereafter, the lee wave
grows more slowly and the separation point slowly moves deeper. It has a depth of
120 m at peak ebb (t = τ/4). Although a strong down-slope jet is formed down the
sill slope, it terminates just behind the deep trough of the lee wave in a hydraulic
jump. This is known as post-wave separation (Baines 1995). This is clearly seen in the
contour plots of the horizontal velocity shown in figure 11. At t = τ/4, downstream
of the separation point the flow is seaward throughout most of the water column,
the exception being a weak reverse flow near the bottom. In contrast, in the inviscid
model run, the downslope jet extends beyond 1500 m. It is ca. 40 m thick with large
positive velocities in a layer ca. 15–20 m thick. Above lies a layer of weak reverse
flow between 40 and 90 m above the bottom. Peak horizontal velocities are smaller
in case D (1.2 against 1.8 m s−1 at t = τ/4).

For approximately the first eighth of the tidal period, mode-2 waves launched at
the lee of the sill can propagate upstream over the sill. A mode-2 wavefront can be
seen in figure 10. It is at ca.x = −300 m at t = τ/8. As the tidal current strength-
ens, it is swept downstream to near the sill crest. At peak ebb tide a hydraulic
control point has been established at this point. The precise location of the control
point is somewhat sensitive to the form of the vertical viscosity/diffusivity and to
the model resolution. Cases C and D used a horizontal resolution of 10 m. Case D
was rerun using a horizontal resolution of 2.5 m (case J, see below). Mode-2 solitary
waves, which have a propagation speed greater than the linear long-wave propa-
gation speed, were generated. At t = τ/4 the leading one was ca. 100 m ahead of
the location of the control point for case D. At this time the solitary waves were
advected downstream and by t = 3τ/8 no waves lay upstream of the control point,
which is near x = 0. This is shown in figure 12. The early stages of flow develop-
ment were not significantly changed by the increased resolution. Downstream of the
sill the details of the flow rapidly became quite different after the lee wave over-
turns. These affected the amplitudes of lee waves downstream of the sill, which in
turn influenced the location of the flow separation and reattachment points. Three-
dimensionalization of the flow would also be expected to modify the flow downstream
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Figure 13. Density contours for case E: density pool, no viscosity/diffusivity.
∆x = 10 m. (a) t = τ/8; (b) t = τ/4.
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Figure 14. Density contours for case F: density pool, vertical viscosity/diffusivity
as in figure 10. ∆x = 10 m. (a) t = τ/8; (b) t = τ/4.

of the sill. For the higher-resolution run the separation point started moving down
slightly earlier and its final depth was ca. 10 m shallower and exhibited a little more
variability.

Huppert & Britter (1982) showed that for hydrostatic flow of one- and two-layer
fluids, flow separation occurs if the flow is subcritical everywhere, and the flow
remains attached if it is supercritical but it separates at a hydraulic jump. The
above results are consistent with their findings. Flow separation occurs early in a
ebb tide, when the flow is subcritical everywhere. In the high-drag state, for which
the jet of fluid is supercritical, the boundary layer remains attached until immedi-
ately behind the large lee wave, where it separates from the lower boundary in a
hydraulic jump.

The observations of Klymak & Gregg (2003) show that there is a density difference
across the sill, with water on the seaward side being 0.5 kg m3 denser at depths below
the sill. The density contrast extended well above the sill. They have suggested that
the denser water on the seaward side of the sill is an important contributing factor
to flow separation. To explore this possibility several model runs were done using
a horizontally varying density. Results from two cases, with and without vertical
viscosity/diffusivity, are presented in figures 13 and 14. For these cases the density is
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Figure 15. Density contours for case G: density ρ̄3(z), same viscosity/diffusivity as for case D
(figure 10). ∆x = 10 m. (a) t = τ/16; (b) t = τ/8; (c) t = 3τ/16; (d) t = τ/4.

increased by 0.5 kg m3 seaward of the sill below the sill top. This is done by adding

∆ρ = 0.25
(

1 − tanh
(

z + 60
5.0

))
H(x) (4.1)

to the density, where H(x) is the Heaviside step function equal to zero for x < 0 and
unity for x � 0. Some model runs were done with an initial density field that had a
horizontal density variation extending above the sill. Results using such a horizon-
tally varying stratification for a different base density are presented in § 4 c. For the
base density ρ̄1 used here, the results obtained using a horizontal density variation
extending above the sill crest did not differ qualitatively from those presented in
figures 13 and 14.

For the inviscid model run (case E), the presence of the deep-water density pool
significantly decreases the amplitude of the lee wave during its early stages (t �
3τ/32 = 0.09375τ). However, the deep-water density pool is ultimately pushed away
from the sill and by t = τ/8 the overturning lee wave extends to the same depth as
in case C upstream of the density front (x = 200 m). Thereafter the flow is similar
for the two cases upstream of the density front, which continues to move downstream
(figure 13).

Case F differs from case E only in the use of a vertical viscosity/diffusivity which
is the same as that used in case D. Of the four cases considered thus far, this case
has the smallest lee wave during the early stages of the flow development. At t =
3τ/32 = 0.09375τ overturning has just commenced in the upper 30 m, compared with
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Figure 16. Horizontal velocity for case G. (a) t = τ/8; (b) t = 3τ/16; (c) t = τ/4; (d) t = 3τ/8.

the upper 50 m for case D. At t = τ/8 the flow separation point is at its shallowest
among the four cases, being ca. 10 m below the sill top. As the flow evolves, the region
of slow-moving fluid formed by the overturning lee wave deepens and the separation
point moves down the sill. The leading lee wave that is formed is considerably smaller
than in Case D. By t = τ/4, post-wave separation occurs at a depth of ca. 100 m,
20 m higher than in case D. The deep-water density pool is not pushed beyond this
point, in contrast to the inviscid run.

5. Sensitivity studies

The sensitivity of the results presented in the preceding section to the background
density field and the eddy viscosity/diffusivity parametrization are now considered.
For reasons of computational efficiency, the majority of the model runs were done
starting from a quiescent state at the beginning of ebb tide. In nature, however, an
ebb tide is but one of a continual cycle of ebb and flood tides. Two model runs were
done to investigate the effects of a preceding flood tide on the formation of the lee
wave and on the evolution of the boundary-layer separation.

(a) Sensitivity to initial density field

We first explore the sensitivity of the results to the initial density profile. Density
ρ̄2, given by (2.7), was used for values of z0 between −20 and −5 m and for values of
d between 7.5 and 2.5 m. All these model runs differed considerably from case D. The
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results were found to be most sensitive to changes in the stratification immediately
above the sill. Thus, we illustrate the sensitivity to the stratification immediately
above the sill by showing some model results from case G which uses density ρ̄3(z)
given by (2.8). This density is identical to density ρ̄1(z) near the surface but has
a reduced stratification at depths greater than 20 m. Results from this case are
presented in figures 15 and 16. This case is identical to case D except for the change
in density.

Reducing the strength of the stratification below a depth of 20 m significantly
reduces the amplitude of the lee wave. It breaks later and the initial overturning is
confined to the upper 30 m. As a result there is a delay in the downward movement of
the separation point. In case G the separation at early times is ca. 10 m below the sill
crest, as opposed to ca. 25 m for case D. By t = 3τ/16 = 0.1875τ the separation point
has not moved down in case G, while in Case D it was at a depth of ca. 110 m (see
figure 10). At peak tidal flow the separation point has shifted to a depth of 90 m and
by t = 5τ/16 = 0.3125τ it has reached a depth of 110 m. At this point a high-drag
state has been formed with post-wave separation. The separation point remains at
this depth for almost the duration of the ebb flow, having risen to a depth of 100 m
at the end of ebb flow. The observations of FA99 also showed a similar persistence
of the high-drag state once formed. The delay in the downward movement of the
separation point, relative to case D, can be attributed to the slower growth and
reduced amplitude of the lee wave. This reduces the strength of the high-pressure
region needed to push the separation point down.

(b) Sensitivity to eddy viscosity/diffusivity

The sensitivity of the results to the vertical eddy viscosity/diffusivity was also
investigated. First, the value of α was varied. Doubling or halving α did not result
in significant changes in the model results. However, setting α to zero, which gives
a (large) vertically uniform eddy viscosity/diffusivity, resulted in a flow separation
which lasted the whole of ebb tide. The vertical viscosity/diffusivity (2.10) was also
augmented by the Richardson-number-based parametrization of Pacanowski & Phi-
lander (1981), modified to include a cut-off value. This parametrization (henceforth
referred to as the PP parametrization) has

Kh =

⎧⎨
⎩

βh

(1 + 5Ri)2
+ γh, if Ri > −0.1,

4βh + γh, if Ri < −0.1,

(5.1)

added to the eddy viscosity, and

Km =

{
Kh(1 + 5Ri) + γm, if Ri > −0.1,

0.5Kh + γm, if Ri < −0.1,
(5.2)

added to the vertical eddy diffusivity.
It is unclear which values of βh, γh and γm are most suitable for the present

situation, or indeed whether the parametrization given by (5.1) and (5.2) is a good
choice. It is used here solely to demonstrate the sensitivity of the model results.
Given the energetic environment it seems reasonable to focus on larger values of βh.
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Case H is identical to case G except for the use of the PP parametrization using
βh = 5 × 10−2 m2 s−1, and γh = γm = 10−5 m2 s−1. These parameter values give a
maximum of Kh equal to 0.2/0.05 m2 s−1 in overturning/non-overturning regions.
As a comparison, Cummins (2000) shows a plot of the eddy diffusivities calculated
by the Mellor–Yamada turbulence closure in the POM. Four hours into ebb tide
the vertical eddy viscosities above and in the lee of the sill range from 0.01 to over
10 m2 s−1, the largest values being in the large breaking lee wave above the sill
crest.

Density contours for case H are shown in figure 17. Comparing the results with
those from case G we find that the lee-wave amplitude is significantly reduced, the
separation point is 5 m below the sill crest (as opposed to 95 m) at t = τ/4, and that
the separation point reaches a maximum depth of 90 m well after peak tide. A train
of lee waves can be seen at t = τ/4. Similar wave trains have been observed at the
Knight Inlet sill (Farmer & Freeland 1983, fig. 19).

In a model run with the vertical eddy diffusivity reduced by about a factor of 10,
the lee wave did not grow and the separation point did not move down the lee of the
sill. This supports the idea, put forth by FA99, that mixing into the nearly stagnant
fluid plays an important role in determining the growth rate of the lee wave. However,
given the ad hoc parametrization used here, further investigation is required.

(c) Combined effect of modified density, deep water
density pool and PP parametrization

We now consider a model run (case I) which differs from case H by the addition
of a deep water density pool on the seaward side of the sill. In particular, the initial
horizontally varying density field is given by

ρ̄4(x, z) = ρ̄3(x, z) + 0.125
(

1 + tanh
(

x + 400
400

))(
1 − tan

(
z + 45

5.0

))
. (5.3)

In contrast to case F, the density increase on the seaward side of the sill now extends
15 m above and 400 m to the landward side of the sill crest. In comparison with
case D, case I has reduced stratification below the pycnocline, a deep water density
pool extending above the sill crest and has eddy viscosity/diffusivity parametrization
in the flow interior.

Results are shown in figure 18. They are quite different from earlier results. A large
lee wave never forms. In its place, a train of small-amplitude lee waves, ca. 5 m in
amplitude, is formed. At t = τ/4 the leading-wave is slightly downstream of the sill
crest and is being advected downstream. It reaches its greatest downstream distance
of ca. 200 m at t = 5τ/16 = 0.3125τ . In conjunction with these small-amplitude lee
waves, flow separation occurs less than 5 m below the sill crest throughout ebb tide.
The shear layer associated with the flow separation is unstable, as indicated by the
large amplitude waves on the shear layer downstream of the sill.

A model run with βh reduced by a factor of 10 to 5 × 10−3 gave similar results. At
about t = 5τ/16 a lee wave started to form over the lee of the sill. It reached a peak
amplitude of ca. 40 m at t = 13τ/32 = 0.40625τ . At this time the separation point
(post-wave) was ca. 15 m below the sill crest. Other differences between the two runs
included larger waves in the shear layer associated with the flow separation. This
resulted in pulsations in the flow below the shear layer which occasionally resulted
in a series of reattachment and post-wave separation points.
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Figure 17. Density contours for case H. Same as case G but with PP parametrization using
βh = 5 × 10−2 m2 s−1, and γh = γm = 10−5 m2 s−1. ∆x = 10 m. Every sixteenth of a tidal
period from t = τ/8 to t = 7τ/16.

An inviscid model run with the same initial density field gave results qualitatively
similar to case E in that a large lee wave and a strong downslope jet terminating in
an hydraulic jump were rapidly formed.

(d) The effect of a preceding flood tide

A few longer models runs were done. Case J was similar to case D except that it
was run for 1.5τ and had a horizontal resolution of 2.5 m. In figure 19 some vertical
density and horizontal velocity profiles are shown from locations taken every 50 m
between x = −300 m and x = 0 after one tidal period. These show that after one tidal
period the strength of the pycnocline has been reduced and that there is considerable
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Figure 18. Density contours for case I. Density ρ̄4(z). PP parametrization. This model uses
βh = 5 × 10−2 m2 s−1 and γh = γm = 10−5 m2 s−1. ∆x = 10 m. (a) t = 0; (b) t = τ/8;
(c) t = τ/4; (d) t = 3τ/8.
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Figure 19. Vertical profiles of density and horizontal velocity fields after flood tide (t = τ) for
case J. (a) Density profiles. Solid curve is initial density. Dotted curves are density profiles
every 50 m between x = −300 m and x = 0. (b) Horizontal density profiles. Solid curve is
horizontal velocity profile at x = 0. Dotted curves are profiles every 50 m between x = −300
and x = −50 m.
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Figure 20. Density contours for case J starting at end of flood. Density ρ̄1(z).
∆x = 2.5 m. (a) t = τ ; (b) t = 17τ/16; (c) t = 9τ/8; (d) t = 5τ/4.

vertical structure to the velocity field. The velocity profiles show a pronounced mode-
2 structure. Flow is seaward (positive) between depths of ca. 10 and 30–40 m. Flow
is landward above and below these depths, apart from a small region in the bottom
boundary layer. The peak velocities are a significant fraction of the peak barotropic
tidal current over the sill. The observations reported in FA99 give no indication of
such a current structure near the start of ebb tide. In the model results these currents
are associated with the passage of a large amplitude mode-2 bore generated during
flood tide. This is shown in figure 20. At t = τ , the front of the seaward-propagating
bore is at x = 500 m. A series of overturning waves on the shear layer beneath the
bore (at depths of ca. 40 m) are readily apparent, indicating that the sheared flow
associated with the bore is unstable.

By t = 5τ/4, at peak ebb tide, the flow over the sill is laminar. A large lee wave
has formed over the lee of the sill, very similar to that in case D. The preceding ebb
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Figure 21. Density contours for case K during flood tide. Density ρ̄4(z). Uses PP parametrization
using βh = 5 × 10−3 m2 s−1 and γh = γm = 10−5 m2 s−1. ∆x = 2 m. (a) t = τ/8; (b) t = τ/4.
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Figure 22. Vertical profiles of density and horizontal velocity fields
after flood tide (t = 0.5τ) for case K. Curves as for figure 19.

and flood tides do not appear to have had a significant impact on the nature of the
flow at this time.

We next consider case K which uses the same horizontally varying density (5.3)
used in case I. The PP parametrization was used with βh = 5 × 10−3 m2 s−1 (a factor
of 10 smaller than in case I) and γh = γm = 1 × 10−5 m2 s−1. The model run started
at the beginning of flood tide and was run for one tidal period. Contour plots during
flood tide are shown in figure 21. Figure 22 shows some vertical density and horizontal
velocity profiles at the end of flood tide. At the end of flood tide the near-surface
density gradient has been reduced. The vertical structure of the horizontal velocity
is more complicated than in the preceding case. It is positive in the upper 30–45 m
with two velocity maximums. Flow is landward at greater depths, except for some
small positive velocities in the bottom boundary layer. The directions of these flows
are consistent with an exchange flow driven by the density difference across the sill.
Note the larger near-bottom negative velocities (ca.−0.4 m s−1) than in the previous
case.
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Figure 23. Density contours for case K during ebb tide. Every sixteenth
of a tidal period from t = τ/2 to t = 15τ/16.
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During ebb tide a lee wave has formed by t = 5τ/8 (figure 23). In contrast, in
a model run using the same PP parametrization and initial density, but beginning
at the start of ebb tide, a large lee wave was not formed until t = 3τ/8, much
later into ebb tide. In both cases a small broad lee wave is formed early in ebb
tide. Only in the model run which started at the beginning of flood tide does this
wave grow significantly in the first half of ebb tide. Differences in the initial density
and velocity fields at the start of ebb tide could account for this difference. Another
possible mechanism for the growth of the wave is the enhanced vertical mixing caused
by the strongly sheared flow at the end of flood tide. A model run continued from the
end of flood tide with the PP parametrization turned off produced similar results,
making this mechanism doubtful.

The lee wave is sporadic. At t = 11τ/16 = 0.6875τ it is greatly reduced in size but
has reappeared at t = 3τ/4. At this time the flow separates ca. 40 m below the sill
crest. The lee wave is thereafter advected downstream and the flow above the sill
crest is laminar as far as 400 m downstream of the sill crest. In conjunction, the flow
separates from the sill crest for the remainder of ebb tide, similar to the late stages
of ebb tide for case I.

6. Discussion and summary

In all but one of the model runs presented in the preceding sections, a large lee wave
is generated. The lee wave grows in time, breaks, and the resulting patch of slow-
moving fluid forms the high-pressure region required to create the high-drag state
associated with the fast moving, downslope jet of fluid beneath the breaking wave.
Boundary-layer separation significantly modifies the evolution to the high-drag state
by delaying it and limiting the downstream extent of the jet, which always leaves the
topography immediately behind the lee wave.

The field observations of FA99 (see their figure 7) suggest that the transition to
a high-drag state occurs shortly after peak ebb tide. For the base model run using
the observed density, with no density pool and without the PP parametrization
(case D), the transition to the high-drag state occurs much earlier, shortly after an
eighth of a tidal period. Other model runs showed, however, that the transition to
a high-drag state can be delayed further when: the stratification immediately above
the sill is weakened (case G, figures 15 and 16); the viscosity/diffusivity terms are
increased outside of the bottom boundary layer (case H, figure 17); and a deep water
density pool is added on the seaward side of the sill (case F, figure 14 and case I,
figure 18). In case I, in which all three of these affects are present, a high-drag
state is never formed. These results indicate a considerable sensitivity to the details
of the model. On the one hand this is encouraging given the rich variety of flows
observed over the Knight Inlet sill (Farmer & Smith 1980; Farmer & Freeland 1983;
FA99). On the other hand, it suggests that an accurate simulation of an observed
flow will be very difficult, particularly as the sensitivity of the model results to the
stratification, viscosity/diffusivity parametrization and horizontal inhomogeneities
implies a sensitivity to 3D features of the topography and of the flow.

One model run, case H, provided some support for FA99’s contention that mixing
of fluid into a slow-moving, near-surface wedge of fluid can lead to growth of the lee
wave. This model run used density ρ̄3(z), for which the strength of the stratification
below a depth of 20 m was reduced from the observed stratification. It also used
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Figure 24. Comparison of theoretical (dotted) and model (solid) predicted vertical profiles of
horizontal velocity at two different times (a) x = −300 m; (b) x = −200 m. The left pair of
curves in each panel are at t = τ/32. The right pair are at t = τ/16.

the PP viscosity/diffusivity parametrization. A large lee wave was formed late in
ebb flow, starting at approximately t = 5τ/16 = 0.3125τ . When the vertical eddy
diffusivity was reduced by a factor of ten, the growth of the lee wave was limited and
a high-drag state was not reached. Other model runs in which the eddy diffusivity
was reduced did not produce this effect.

FA99 attributed the formation of a wedge of stagnant, near-surface fluid, resulting
in transition to a high-drag state, to small-scale mixing associated with an instability
of the flow over the top of the sill. They furthermore attributed the formation of
the shear flow to the subcritical response early in the tidal cycle. The model runs
presented in the preceding section show no indication of such instabilities and, with
one exception, a large lee wave was formed. Why the apparent contradiction?

The results of §§ 3 and 4 show that lee-wave generation is inevitable unless
boundary-layer separation occurs shortly after the ebb tide begins. Case I is one
example of a model run for which a large lee wave was not formed. Small lee waves,
confined to the pycnocline, were generated. This suggests that under the right con-
ditions a large lee wave need not form.

Why were the observed shear flow instabilities during the early stages of ebb tide
not modelled in these simulations? During the early stages of ebb tide a mode-1 wave
is formed over the sill crest. Figure 24 shows vertical profiles of the horizontal velocity
at x = −300 and x = −200 (parts (a) and (b) of figure 24, respectively) at t = τ/32 =
0.03125τ and τ/16 = 0.0625τ for case D. The velocity profiles are compared with the
theoretically predicted profiles using the hydrostatic mode-1 linear eigenmode. The
amplitude of the wave used in the theoretical profiles is chosen to match the model
velocity at the top boundary. The fit is quite good at x = −300 m, particularly at
the earlier time t = τ/32. Closer to the sill crest at x = −200 m the flow increases
with depth, relative to the linear mode-1 velocity, until the bottom boundary layer
is reached. This difference is due to the growing lee wave centred just downstream
of the sill crest at x = 0. The lee wave acts to slow down the fluid in the upper
half of the water column and accelerate it in the lower half. The effect becomes
more pronounced with time and by t = τ/16 is apparent at x = −300 m. The long
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mode-1 wave over the top of the sill produces a strong shear layer ca. 5 m below the
surface. As the mode-1 response over the sill grows, the Richardson number decreases,
providing a possible mechanism for the creation of an unstable flow. For case D, at
t = τ/16, the minimum Richardson number (outside the bottom boundary layer) is
ca. 70 at x = −300 m, decreasing to ca. 10 at x = −100 m and ca. 2 at x = 0. The
latter minimum value occurs at a depth of ca. 30 m and is due to a combination of
baroclinic shear production and straining of isopycnals in the lee wave. By t = τ/8
the minimum Richardson number at x = −300 m has decreased to 2.5. At x = −100
it has decreased to 0.3. The only values below 0.25 occur in the overturning lee wave.

The conclusion then, is that, at least outside the bottom boundary layer, the flow
over the sill is stable until the lee wave overturns. This contradicts the observations
which show the presence of small-scale instabilities. One possible reason for the
absence of small-scale instabilities in the model results is that the density field used
in the model simulations, which is based on observations over 1.2 km away, is not
accurate enough in the region over the sill. Another contributing factor could be a
background shear flow such as an exchange flow over the sill, however fig. 7(ii) of
FA99 suggests that this is weak, if at all present, at the beginning of ebb tide. Some
model simulations have been done using a density field with a sharper pycnocline
and much higher resolutions (dx = 50 cm, dz = 20 cm over the sill) for which shear
instabilities in the subcritical response over the sill are generated, in addition to the
lee wave response. Available computational resources have limited model run times
and at this time no connection between these instabilities and the formation of a
wedge of stagnant fluid has been made. It is hoped that this can be explored more
fully in the future.

This work was funded by a grant from the Natural Sciences and Engineering Research Council
of Canada.

Appendix A.

As an example of potential flow over an obstacle with an analytic solution, consider an
infinitely deep layer of fluid flowing over a half-disc of radius a. With lower boundary
at

z = h(x) =

{
0, if |x| � a,√

a2 − x2, if |x| < a,
(A 1)

and far field flow U(t) in the x-direction, the velocity potential is

φ = U(t)
[
1 +

a2

x2 + z2

]
x. (A 2)

From Bernoulli’s theorem we have

φt + p + 1
2∇φ · ∇φ = C(t), (A 3)

where C(t) is a function of time (we recall that the pressure has been scaled by the
reference density).

Along z = 0, for |x| > a, the pressure field is

p = C(t) − U ′(t)
(

x +
a2

x

)
− 1

2U2(t)
(

1 − a2

x2

)2

. (A 4)
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Evaluating at the left stagnation point at x = −a gives

C(t) = psp(t) − 2aU ′(t), (A 5)

where psp(t) = p(−a, 0, t) is the pressure at the left stagnation point. The pressure
at the right stagnation point at (x, z) = (a, 0) is psp(t) − 4aU ′(t).

Over the surface of the half-disc the pressure field is

p = C(t) − 2aU ′(t) cos θ − 2U2(t) sin2 θ. (A 6)

Integrating the x-component of −
∫

pn̂ ds over the surface of the half-disc shows that
the net horizontal force acting on the disc is

Fx = πa2U ′(t). (A 7)

This is non-zero for an accelerating flow, illustrating the fact that, for stratified tidal
flow over a sill, part of the form drag on the sill is not associated with internal wave
generation. In a reference frame fixed with the fluid at infinity, in which the disc is
oscillating, fluid must be accelerated as the disc accelerates. The work done by the
disc to accelerate the fluid is reflected in the non-zero value of Fx. This is referred
to as the added mass effect.

From (A 6), it can be shown that the pressure has a minimum at

cos θ =
aU ′

2U2 , (A 8)

provided that a|U ′| < 2U2. If a|U ′| > 2U2, the pressure decreases/increases mono-
tonically along the surface, depending on the sign of U ′. For weak acceleration, with
0 < U ′ < 2U2/a, the pressure minimum is to the right of the crest. For weak decel-
eration it is to the left.

For sinusoidal flow U(t) = U0 sin(ωt) and

aU ′

2U2 =
aω

2U0

cot(ωt)
sin(ωt)

. (A 9)

For small t there is no pressure minimum. As t increases to π/(2ω), the time of max-
imum flow, aU ′/2U2 decreases monotonically to zero. At some point aU ′/2U2 = 1.
At this time the pressure has a minimum at x = a, the right stagnation point. As t
increases the location of the pressure minimum moves to the left until at the time of
maximum flow, when U ′ = 0, the pressure minimum is at the crest at x = 0. As the
flow decelerates, the pressure minimum continues to move to the left, until it reaches
the left stagnation point when aU ′/2U2 = −1.
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