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Need for nonhydrostatic ocean models

Importance of nonhydrostatic dynamics:

“As horizontal resolutions increase, nonhydrostatic 
effects become increasingly strong and presently are 
detectable at the submesoscale [1-5] and in deep 
convection [6] …

…few ocean circulation models presently 
have nonhydrostatic capability.”

[Fox-kemper et al., Challenges and 
prospects in ocean circulation models, 2019] 

Circulation Models

CFD

[1] Mahadevan, 2006  [2] Hamlington et al., 2014  [3] Suzuki et al., 2016  [4] McWilliams, 1985  [5] Taylor and Thompson, 2023 [6] Marshall et al., 1997
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Need for nonhydrostatic ocean models

Internal waves:
• Disturbances that propagate in the interior of a stratified fluid [1] wavelengths: O(1 km)

[1] Simmons et al., 2011

[1]

propagation distance: O(1000 km)



Need for nonhydrostatic ocean models

Subduction dynamics:
• Mechanisms of subduction are nonhydrostatic and not 

captured by regional models [2, 3] global models [1] 
• Wind-driven surface stress can excite a dramatic 

dynamical response in the water column in terms of 
large-amplitude internal waves and strong vertical 
mixing [4, 5, 6]

5

Density 

 Seiche-like free-surface dynamics Velocity

[1] Freilich & Mahadevan, JGR, 2021  [2] Pinardi et al, OM-2017 [3] Lermusiaux et al, OD-2013 [4] Calil, OD, 2017  [5] Kaempf, OD, 2017  [6] Kaempf, OD, 2019



Need for nonhydrostatic ocean models

• Frontal subduction, mixed-layer 
instabilities in Belearic and Alboran 
seas [7]

6

Modeling Domain [4] 

Subduction dynamics:

Gale: March 27 00:00Z, W/SW
Wind Field

Vertical Velocity

[1] Freilich & Mahadevan, JGR, 2021  [2] Pinardi et al, OM-2017  [3] Lermusiaux et al, OD-2013  [4] Calil, OD, 2017  [5] Kaempf, OD, 2017  [6] Kaempf, OD, 2019  [7] MSEAS CALYPSO Sea Exercise, 2022

• Mechanisms of subduction are nonhydrostatic and not 
captured by regional models [2, 3] global models [1] 

• Wind-driven surface stress can excite a dramatic 
dynamical response in the water column in terms of 
large-amplitude internal waves and strong vertical 
mixing [4, 5, 6]

• Dynamics important for ocean 
acoustics, nutrient transport, carbon 
subduction from the atmosphere at 
small horizontal length scales [1-7]
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Why high-order methods?

Scalar advection equation:

low-order high-order

30 elements 15 elements 5 elements

High-order methods often provide more accurate solutions for 
the same computational cost [1, 2]

[1] Hesthaven, 2008  [2] Ueckermann, M.P., PhD Thesis

All three simulations: same computational cost [2]

— Exact solution 

— Numerical solution
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Effectiveness of high-order DG methods

Importantly: effective in under-resolved regimes

• Stability and robustness for projection, fully-implicit schemes [3] 
• Able to transport high-frequency features over long time-integration horizons 

without significant dissipation/dispersion [4] 
• Efficient on modern computer architectures [5, 6] 
• Well-suited to adaptive mesh refinement [2]

DG methods: incredibly successful modeling a wide 
range of phenomena in computational physics [1, 2]

State-of-the-art, incompressible Navier-Stokes equations 

[1] Hesthaven 2008 [2] Kronbichler and Persson, Springer, 2021a  [3] Fehn et al., JCP, 2017  [4] Fehn et al., JCP, 
2018a  [5] Fehn et al., JCP, 2018b  [6] Kronbichler and Wall, SIAM, 2018  [7] Nguyen et. al, JCP, 2009a

CG DG HDG [7]
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Apply high-order DG methods to nonhydrostatic modeling

Ocean models: few have nonhydrostatic capability, and low-order

• PSOM (Mahadevan, 2020) 
• MERF v3.0 (Tang et al., 2021) 
• SUNTANS, GVC (Fringer et. al 2006; Fringer et al., 2011; Yue et al., 2021) 
• MIT GCM (Marshall et al., 1997)—  
• CROCO-ROMS (Cambon et al., 2018) 
• Oceananigans.jl (Ramadhan et al., 2021) 

Use of high-order DG methods for nonhydrostatic modeling: promising, but still in its infancy [1-6]  

State of the art, nonhydrostatic-capable models 

[1] Ueckermann, 2014, PhD Thesis; [2] Ueckermann & Lermusiaux, 2016; [3] Foucart et. al, 2018; [4] Pan et. al, 2019, 
[5] Pan et al., 2021, [6] Foucart et al., Ocean Modelling. in prep. 2023a.
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Model domain & geometry
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2D 3D

[1] Foucart et al., Ocean Modelling. in prep. 2023a.   



Ocean Equations: temporal discretization [1, 2]
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velocity predictor [3D]

free-surface correction [2D]

pressure correction [3D]

Ocean equations with a free-surface:

tracer evolution [3D]

[1] Ueckermann, M.P., 2014   [2] Foucart et al., Ocean Modelling. in prep. 2023a.

where:



Contribution: novel spatial discretization of ocean equations

13
[1] Foucart et al., 2021. [2] Foucart et al., Ocean Modelling. in prep. 2023a.   [3,4] Nguyen et al., JCP. 2009a,b.  [5] Fehn 
et al., JCP. 2017. [6] Fehn et al., JCP. 2018.  [7] Kronbichler & Persson, Springer, 2021. 

• Derived & implemented a new HDG spatial discretization of the free-surface ocean equations 
(nonhydrostatic and hydrostatic) [1, 2] 

• Incorporated ideas from classical HDG literature [3, 4] as well as modern results from DG 
literature pertaining to robust projection schemes for under-resolved incompressible flows [5, 6, 7] 

• Implemented the discretization in a parallelized C++ framework tailored to HDG schemes 
• originally implemented in Python, then re-written in C++ for performance 
• multi-threaded implementation—parallelized HDG assembly/reconstruction 
• template meta-programming for dimension-specific compiler optimizations 
• suite of ~200 tests that verify implementations, optimal convergence rates for all solvers



Spatial discretization: notation, finite element spaces

14

Finite element spaces:

Mesh:

[1] Foucart et al., Ocean Modelling. in prep. 2023a.



Weak formulation: velocity predictor

15[1] Foucart et al., 2021   [2] Foucart et al., Ocean Modelling. in prep. 2023a.   

Advection term:

Nonhydrostatic pressure gradient term:

Numerical flux definitions:

Body forcing terms:



Weak formulation: free-surface correction (dim - 1)
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Discrete depth-integrated divergence

[1] Foucart et al., 2021   [2] Foucart et al., Ocean Modelling. in prep. 2023a.   

Numerical flux definition:



Weak formulation: pressure correction

17[1] Foucart et al., 2021   [2] Foucart et al., Ocean Modelling. in prep. 2023a.   

Numerical flux definition:



Verification: convergence

18[1] Foucart et al., Ocean Modelling. in prep. 2023a.  [2] Hesthaven, Warburton, 2008

• Spatial convergence test: method of 
manufactured solutions, inspired by [2]. 
For each weak form (in 2D, 3D):

• Optimal p+1 convergence observed in both 
primal and gradient unknowns (HDG) 
(shown for the momentum equation, right)

[1]



Verification of NHS model: free-surface seiche
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Modeling Domain, Boundary Conditions

Initial Condition:

[1] S. Vitousek and O.B. Fringer (2014), OM  [2] Foucart et al., IEEE Oceans 2021  [3] Foucart et al., Ocean Modelling. in prep. 2023a.

top bottom sides
ū �N �N �D
w̄ �N �D �N
�⌘ - - �N
�p0 �D �N �N
⇢0 �N �N �N

<latexit sha1_base64="rJfL4yGW/L+mGzHAib2PHGowaDU=">AAAEPnicfVNbb9MwFE4bLiPcNnjkxdAWISSqZEIab0wwCV5AQ6LbpLpUjnPSWLOdyHYoVch/42/wB/aGeOUR5zLWriuWHB1/3/mOj885CTPOtPH9n52ue+36jZtbt7zbd+7eu7+98+BIp7miMKIpT9VJSDRwJmFkmOFwkikgIuRwHJ6+rfjjr6A0S+Vns8hgIshMsphRYiw03emc4RBmTBaGWEk5TkyYPZ54CLUwBWlAlReA9cs5UWWBssIfBj428M3MWWSScg1Yd1lHbGicVNl76CkyaWa/YWpMKqyhWQQa4wuPPg6JKvKyb8k+fkeEINOPGw8H/UrbaOabNQerTKOJgBuCMBhSsS/srj9LAZb9si8FzhQTUP4n8BW3qCS9Urn5TY2yrQcGGf1rSNWi6nzesXPSdtXzvOl2zx/69ULrRtAaPaddh3YyXuMopbmw4SgnWo8DPzOTgijDaBUT5xoyQk/JDMbWlESAnhT1RJZoYJEIxamyWxpUo8uKggitFyK0noKYRF/mKvAqbpyb+NWkYDLLDUjaXBTn3E4OqsYbRUwBNXxhDUIVs7kimhBFqK3J6i2hsHUZoFzSVFSPrLMN7a8DTdIeViBhXrFERs9xTATjiwhiknNTYB23ps1hsBJYx3X2VcmDywVeN452h8HL4d6n3d7+m7b4W84j54nzzAmcPWffee8cOiOHdj90dfd7t3R/uGfuL/d349rttJqHzspy//wFS8hSkA==</latexit>



Verification of NHS model: free-surface seiche
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a = 0.1 m

T = 1 s

H = 10 m L = 100 m

Solutions at one seiche period (t=T)

Numerical Exact

Initial Condition, Parameters:

[1] S. Vitousek and O.B. Fringer (2014), OM  [2] Foucart et al., IEEE Oceans 2021  [3] Foucart et al., Ocean Modelling. in prep. 2023a.

Analytical Solution: (linear gravity-wave theory)

Initial Condition:



Verification of NHS model: free-surface seiche

21

a = 0.1 mH = 10 m

Initial condition, parameters:

vertical slice: x=L/10

L = 7.5 m T = 10�2 s

[1] S. Vitousek and O.B. Fringer (2014), OM  [2] Foucart et al., IEEE Oceans 2021  [3] Foucart et al., Ocean Modelling. in prep. 2023a.
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Depth profiles: agreement with NHS theory, 
deviation from HS prediction

Verification of NHS model: free-surface seiche

Free-surface: numerical wave speed c

c =

r
g

k
tanh(kH)

[1] Foucart et al., IEEE Oceans 2021  [2] Foucart et al., Ocean Modelling. in prep. 2023a.



Continuously-stratified internal seiche
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⇢0 =
�⇢

2

"
1� tanh

 
2 tanh�1 ↵s

�⇢
(z + H/2� ⇠)

!#

Initial Condition:

[1] S. Vitousek and O.B. Fringer (2014), OM  [2] Foucart et al., IEEE Oceans 2021  [3] Foucart et al., Ocean Modelling. in prep. 2023a.

Zero-free surface, stratified density perturbation



Continuously-stratified internal seiche

24

c =

s
g 0

2k
tanh

✓
kH

2

◆
fi (k�⇢)

Interface wave speeds agree with 
theoretical values

[1] S. Vitousek and O.B. Fringer (2014), OM  [2] Foucart et al., IEEE Oceans 2021  [3] Foucart et al., Ocean Modelling. in prep. 2023a.

…over many different simulations with 
differing domain aspect ratios.
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Additional verification / validation of HDG NHS model

Modeling Domain

• inflow velocity u = 50 cm/s pulls heavier 
water over lighter water 

• Formation of RTI instabilities 
• Mixing and re-stratification behind the front  

Idealized mixed-layer Rayleigh Taylor 
Instability formation (shown last time)

[1] Foucart et al., Ocean Modelling. in prep. 2023a.

top bottom inflow ouflow

ū �N �N �D �N

w̄ �N �D �D �N

�⌘ - - �N �N

�p0 �D �N �N �N

⇢0 �N �N �N �N

Table 1: HDG NHS model boundary condition specifications used for the idealized

mixed-layer RTI instability simulations.

<latexit sha1_base64="MKb6uazHjkPzLGFATJ/aHkXluF8="></latexit>

Boundary Conditions



Idealized subduction: Rayleigh-Taylor instabilities

Simulation:

26

• Formation of RTI instabilities 
• Mixing and re-stratification 

behind the front  

[MSEAS group, CALYPSO Sea Experiment 2022]

Modeling Domain



Additional verification / validation of HDG NHS model

27

HDG 2.29 (FV)

[1] Foucart et al., Ocean Modelling. in prep. 2023a.

• Goal: verify diffusive physics by comparison to a 
legacy finite volume (FV) code 
• 2D incompressible Navier-Stokes solver with 

Boussinesq approximation 

HDG

parameters
HDG FV units

Nx ,Nz (25, 10) (540, 25)

⌫x 1 · 102 1 · 102 m
2
/s

⌫z 8 · 10�3
8 · 10�3

m
2
/s

�t 100 100 s

order 4 2

<latexit sha1_base64="0TyxGbrjBY4hvpVPs51KhvrxkvI="></latexit>



Additional verification / validation of HDG NHS model

28

• Goal: verify diffusive physics by comparison to a 
legacy finite volume (FV) code 
• 2D incompressible Navier-Stokes solver with 

Boussinesq approximation 

HDG 2.29 (FV)

[1] Foucart et al., Ocean Modelling. in prep. 2023a.

• Differences explainable by free surface 
• Excellent agreement with FV code 
• HDG: significant reduction of cost (high-order) 

• 540 x 25 grid (FV) 
• 25 x 10 elements (polynomial order 4)



Internal Solitary Wave Generation
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Initial value

Normalized density perturbation  
(Top 20% of domain)

𝝆′ /𝝆𝟎

After 0.5 tidal cycles

After 1 tidal cycle

After 1.5 tidal cycles

• 200km x 1000m domain 
• ISWs propagate away from the seamount 
• Nonlinear ISW train develops in leading left-propagating 

wave starting around 1.25 tidal cycles 
• Qualitative agreement with expected nonhydrostatic behavior

Low order simulations did not capture ISW train

Strongly-stratified flow over “tall” seamount:

[1] S. Vitousek and O.B. Fringer 2014 [2] Buijsman, et al. 2010  [3] Foucart et al., 2018



Internal Solitary Wave Generation

30

After 0.5 tidal cycles

[1] Foucart et al., 2018



31[1] Foucart et al., Ocean Modelling. in prep. 2023a.

• Salmon-colored line: denotes a vertical section in the 
Alboran Sea along which wind-driven instabilities 
were observed in the hydrostatic MSEAS PE 
simulations  
  

• The section starts in the west along the northern edge 
of the West Alboran Gyre and extends to the east-by-
northeast out of the gyre towards the Spanish coast. 

• Implemented 2D HDG NHS model nesting and 
initialization from real data 

• Goal: model instabilities in the mixed layer and compare 
to HS simulation output

Region of investigation:

Application: 2D model nesting within a large hydrostatic code (MSEAS-PE)

MSEAS-PE (hydrostatic)

Modeling domains

Modeling domain for model nested runs in the Alboran Sea showing the 
MSEAS-PE domain (shaded, black), and the HDG NHS nested modeling 
domain (blue) in 2D (center slice) and 3D (box).

(domain slice)

HDG NHS Model

(not to scale)



2D model nesting in the Alboran sea

32

Model comparison after wind event

• HDG NHS initialized on March 25, run for 5 days 
• Same parameters and effective resolution as 

hydrostatic MEAS-PE model (500 m) 
• Gale: March 27 2019 

[1] Foucart et al., Ocean Modelling. in prep. 2023a.

HDG NHS model (mixed layer)

Modeling Domain March 27, 2019

Wind Field

NHS model: boundary conditions



2D model nesting in the Alboran sea
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Model comparison after wind event

• HDG NHS initialized on March 25, run for 5 days 
• Same parameters and effective resolution as 

hydrostatic MEAS-PE model 
• Gale: March 27  
• Strong nonhydrostatic response observed over model 

domain 
• After conclusion of wind event, agreement with 

hydrostatic model once again

[1] Foucart et al., Ocean Modelling. in prep. 2023a.

Modeling Domain March 27, 2019

Wind Field



2D model nesting in the Alboran sea

34

- measure of instability

red - unstable, blue - stable



Initialization from Alboran sea data (MSEAS-PE)

35[1] Foucart et al., Ocean Modelling. in prep. 2023a.

During instability:

• about 90 hours into the simulation 
• overturning present in the NHS model 
• another strong dynamic difference between the two 

models 
• remarkably, the length/time scales of the vertical bands in 

the velocity are similar for both models 
• less “columnar” for the NHS model



3D Model Nesting in the Alboran Sea

[1] Foucart et al., Ocean Modelling. in prep. 2023a.

modeling domains

• Modeling domain: denotes a section in the 
Alboran Sea along which wind-driven instabilities 
were observed in the hydrostatic MSEAS PE 
simulations   

• The section starts in the west along the northern 
edge of the West Alboran Gyre and extends to the 
east-by-northeast out of the gyre towards the 
Spanish coast. 

• Implemented 3D HDG NHS model nesting and 
initialization from real data 

• Goal: model instabilities in the mixed layer and 
compare to HS simulation output as well

Region of investigation:

Modeling domain for model nested runs in the Alboran Sea showing the 
MSEAS-PE domain (shaded, black), and the HDG NHS nested modeling 
domain (blue) in 2D (center slice) and 3D (box).

MSEAS-PE (hydrostatic)

(not to scale)
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3D model nesting in the Alboran sea data (MSEAS-PE)

Density perturbation, domain to scale

[1] Foucart et al., Ocean Modelling. in prep. 2023a.
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3D model nesting in the Alboran sea data (MSEAS-PE)

[1] Foucart et al., Ocean Modelling. in prep. 2023a.

Domain scaled by factor of 300 in z

• In 3D, interpretation 
can be very sensitive 
to the visualization
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3D model nesting in the Alboran sea data (MSEAS-PE)

[1] Foucart et al., Ocean Modelling. in prep. 2023a.
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3D model nesting in the Alboran sea data (MSEAS-PE)

[1] Foucart et al., Ocean Modelling. in prep. 2023a.

Density perturbation contours, volumetric rendering



41[1] Foucart et al., Ocean Modelling. in prep. 2023a.

Density perturbation between 2.4, 2.5 kg/m3

3D model nesting in the Alboran sea data (MSEAS-PE)



42[1] Foucart et al., Ocean Modelling. in prep. 2023a.

Overhang instability

What are the vertical velocities?

3D model nesting in the Alboran sea data (MSEAS-PE)



43[1] Foucart et al., Ocean Modelling. in prep. 2023a.

3D model nesting in the Alboran sea data (MSEAS-PE)

Ideally, we would like to visualize 
both together



What does this model let us do?

• Perform zonal investigations of nonhydrostatic behavior 
• Areas with steep bathymetry [1], [5], [6] 
• Regions experiencing wind stress [1], [3], [4] 

• Validate hydrostatic models 
• Determine when hydrostatic models are capable of resolving the  

correct length/time scales of ocean processes, and when they aren’t [1], [5], 
[7-9] 

• Discover parametrization for incorporation into large  
legacy hydrostatic models / climate models 
• Statistical descriptions of the same (Oceananigans.jl) [7] 

• Hydrostatic/nonhydrostatic domain splitting 
• Work already started in our group [9] 
• DG/HDG boundary conditions advantageous for such approaches

44
[1] Foucart et al., Ocean Modelling. in prep. 2023a. [2] Freilich & Mahadevan, JGR, 2021  [3] Calil, OD, 2017  [4] Kaempf, OD, 2019  [5] Vitousek and 
Fringer 2014  [6] Buijsman, Kanarska, and McWilliams 2010  [7] Ramadhan, et. al (2022)  [8] Foucart et al., 2018 [9] A. Karthik, MSEAS, SM Thesis
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Deep reinforcement learning for adaptive mesh refinement

Motivation:

46

• machine learning excels at learning latent patterns from large datasets in the absence 
of a model [1] 

• a PDE is often an excellent model, and numerical methods provide stability, 
consistency, and convergence guarantees 

• using machine learning to directly learn solutions to PDEs is subject to demonstrable 
failure modes, and often generalizes poorly [2]

Idea:
• use machine learning to improve heuristic elements of numerical solvers for which 
we don’t have a good model 

• adaptive mesh refinement is one such aspect

[1] Bishop, 2006  [2] Krishnapriyan et al., 2021  [3] Foucart et al., JCP. 2022.



Adaptive mesh refinement (AMR)

47

Idea: refine mesh only “where something is happening”

AMR strategies:

Mesh, Numerical solution

SOLVE  ESTIMATE  MARK  REFINE

(difficult, heuristic)  [1]

[1] T. Plewa et al., 2005; De Sterck et al., 2008

PDE:



Adaptive mesh refinement strategies are difficult and heuristic

48

Idea: Use deep reinforcement learning to find a 
good strategy

AlphaRefine?

(Yang et al., [arxiv preprint] 2021)



Reinforcement learning

49

Agent: interacts with environment at discrete time 
intervals

• 
• 
• 

Markov decision process:  tuple Goal: 

that maximizes expected reward

over an infinite time horizon

[1] Sutton and Barto, 2018; D. Silver, 2015



Deep reinforcement learning

50

“Deep” RL:

goal: 

that maximizes expected reward

over an infinite time horizon

• represent value function as neural network 

• use each reward signal (experience) to update 
network during training 

• once trained, agent is “deployed” by querying policy 
network for recommendation based on current state 
and action 

• neural networks are universal function approximators 
[3] and can learn arbitrarily complex policies

[1] Sutton and Barto, 2018  [2] D. Silver, 2015  [3] Kornik et al., 1989



How can we make our numerical solver “play against itself?”

51

Original problem:

Weak formulation [1]:

[1] Cockburn, ZAMM, 2003



Increasing conformity upon refinement

52

• underlying solution to PDE is continuous
Key idea:

• numerical representation of solution is discontinuous

[1] Foucart et al., JCP. 2022.



Increasing conformity upon refinement

53

• underlying solution to PDE is continuous
Key idea:

• numerical representation of solution is discontinuous

[1] Foucart et al., JCP. 2022.



Designing the reward function

54

percent of computational 
resources used

“Computational cost incurred”“Change in      as a result of refinement”

[1] Foucart et al., JCP. 2022.



Training

55

Single RL agent

Current numerical solution:

[1] Foucart et al., JCP. 2022.



Training

56

Current numerical solution:

Observation space:
• the local solution
• the interface jumps over the cell 

boundary
• the average interface jump over 

all mesh interfaces
• the current usage of 

computational resources
• any PDE-specific features the 

user wishes to provide Action space:
• refine 
• do nothing 
• coarsen

-10

[1] Foucart et al., JCP. 2022.



Training

57

Current numerical solution:

Observation space:
• the local solution
• the interface jumps over the cell 

boundary
• the average interface jump over 

all mesh interfaces
• the current usage of 

computational resources
• whatever PDE-specific features 

you want to provide Action space:
• refine 
• do nothing 
• coarsen

[1] Foucart et al., JCP. 2022.



Training

58

Current numerical solution:

Observation space:
• the local solution
• the interface jumps over the cell 

boundary
• the average interface jump over 

all mesh interfaces
• the current usage of 

computational resources
• whatever PDE-specific features 

you want to provide Action space:
• refine 
• do nothing 
• coarsen

+10

[1] Foucart et al., JCP. 2022.



Training

59

Current numerical solution:

Observation space:
• the local solution
• the interface jumps over the cell 

boundary
• the average interface jump over 

all mesh interfaces
• the current usage of 

computational resources
• whatever PDE-specific features 

you want to provide Action space:
• refine 
• do nothing 
• coarsen

[1] Foucart et al., JCP. 2022.



Training

60

Current numerical solution:

Observation space:
• the local solution
• the interface jumps over the cell 

boundary
• the average interface jump over 

all mesh interfaces
• the current usage of 

computational resources
• whatever PDE-specific features 

you want to provide Action space:
• refine 
• do nothing 
• coarsen

+10

[1] Foucart et al., JCP. 2022.



[1] Foucart et al., JCP. 2022.

Training

61

Current numerical solution:

Observation space:
• the local solution
• the interface jumps over the cell 

boundary
• the average interface jump over 

all mesh interfaces
• the current usage of 

computational resources
• whatever PDE-specific features 

you want to provide Action space:
• refine 
• do nothing 
• coarsen

This is the numerical solver “playing against itself”
Over time, it learns a good refinement strategy.



Deployment: 

62

Walk every cell with the RL-agent 

and refine according to its recommendation.

[1] Foucart et al., JCP. 2022.



Proof of concept: smooth jump test case

63

Steady-state advection equation Exact solution*

*at no point during training or deployment 
do we make use of the exact solution

[1] Foucart et al., JCP. 2022.



Trained model deployment

64

RL Agent, 25 cell budget

Deep RL for AMR



Test against a typical AMR implementation

65

(gradient-based, 50/50 bulk-refinement)

Error vs. DOF

RL agent

AMR heuristic

[1] Foucart et al., JCP. 2022.



Does it generalize?

66

Same trained RL model as in previous example RL Agent, 25 cell budget

RL Agent, 100 cell budget

• No additional training 
• Apply it to same PDE, but with new boundary 

conditions and forcing function 
• Does it still recommend a good mesh?

[1] Foucart et al., JCP. 2022.



Time-dependent problems

67

Sommerfeld wave equation

initial condition:

AMR Heuristic

RL Agent

RL agent strategy preserves solution 
features, at a fraction of the cost.

[1] Foucart et al., JCP. 2022.



steady-state advection equation:

circular, counter-clockwise velocity field 
cylindrical gen. of the “smooth jump”

Higher-dimensional problems

68[1] Foucart et al., JCP. 2022.



RL agent suggests more conservative refinement
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RL agentAMR heuristic (gradient-based)

[1] Foucart et al., JCP. 2022.



The RL agent’s strategy
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RL agentAMR heuristic (gradient-based)

[1] Foucart et al., JCP. 2022.



AMR heuristic RL agent

How does the RL policy compare to the AMR heuristic?
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RL agent learned to refine where 
the steep gradient meets the 
outflow boundary

We never “told” it how to do this

In fact, recall that the agent never 
knows where it “is”

[1] Foucart et al., JCP. 2022.



Advances: more complicated PDE, numerical scheme, solution features

72[1] Nguyen et al., JCP 2009a.  [2] Foucart et al., JCP. 2022.

AMR Heuristic RL agent (1500 cell) RL agent (5000 cell)Starting mesh

Advection diffusion, mixed boundary conditions
Discretized with a fourth-order hybridizable 
discontinuous Galerkin (HDG) method [1] 



More complicated, time-dependent dynamics

73[1] Kulkarni & Lermusiaux. JCP. 2019

2D ring advection [1] test case:



More complicated time-dependent dynamics
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Train on a much simpler example: advection of Gaussian pulse

[1] Foucart et al., JCP. 2022.



More complicated time-dependent dynamics: 2D ring advection

75[1] Foucart et al., JCP. 2022.

• The RL agent is able to accurately preserve 
the shape of the ring over time integration 

• Practically same accuracy as the AMR 
heuristic (Kelly bulk refinement), but does so 
at a fraction of the cost of the heuristic in 
terms of number of cells



Deep RL for AMR: summary
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Effective AMR policies can be discovered directly from numerical 
simulation using deep reinforcement learning.

• the RL policy network is trained directly through experience by 
numerical simulation on small problems, and can be deployed 
on much larger problems 

• learns a local relationship, and therefore robust to 
overfitting on any particular feature seen during training 

• the deep-RL AMR technique is not specific to any 
dimension, PDE, or numerical solver 
 

• at no point during training or model deployment do we 
ever use an exact solution or “ground truth” 
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DG-FEM, ocean modeling:

Scientific machine learning:

Other contributions:

https://arxiv.org/abs/2209.12351


Summary of contributions
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• Formulated adaptive mesh refinement as a 
reinforcement learning problem 

• Conceived and implemented neural network 
architectures to learn to solve the reinforcement 
learning problem, without training data or an exact 
solution   

• Wrote a binding language between custom AMR-
capable DG/HDG solvers and machine learning libraries 

• Showed the resultant trained policies to be competitive 
or better than many common AMR heuristics, over a 
wide range of PDEs and test cases

[1] Foucart et al., JCP, 2022.    [2] Foucart et al., Ocean Modelling. in prep. 2023a.  [3] Foucart et al., IEEE Oceans 2021.  
[4] Foucart et al. IEEE Oceans, 2018.  [5] Foucart, SM Thesis, 2019.

Deep Reinforcement Learning for AMR  [1]
• Development and implementation of a novel HDG spatial 

discretization of the hydrostatic & nonhydrostatic ocean 
equations with a free surface 

• Wrote a parallelized C++ library implementation 
• Verification of NHS / HS model with results from linear 

wave theory 
• Idealized simulations of nonhydrostatic behavior 

(subduction, internal solitary waves) 
• Implemented model nesting in the MSEAS-PE code for 

use with real ocean data in 2D and 3D 
• Conducted preliminary investigations of nonhydrostatic 

behavior in the Alboran Sea

Nonhydrostatic HDG Ocean Modeling  [2], [3]

Miscellaneous DG/HDG contributions:
• Quadrature-free HDG operator formulation & matrix-free schemes [5] 
• Computational considerations for treatment of the singular Poisson equation 
• UQ: EnKF for HDG ensembles, Bayesian inversion of PDE coefficients using MCMC with DG schemes 
• Parallel and multi-threaded computing approaches for HDG schemes [4], [5]
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Free surface boundary conditions
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Pure Neumann problem: convergence

94[1] Foucart et al., JCP. in prep. 2023b.    [2]   P. Bochev and R. B. Lehoucq. SIAM Review, 2005

Singular system 
• Arises in pressure-poisson equation 
• Rank-one deficient  
• Several approaches to treat singularity [2]: 

• point constraint 
• penalty method 
• subspace projection 

• All converge optimally (but at different costs), 
no rigorous comparison has ever been done [1]



Pure Neumann problem: benchmarking
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Singular system 
• Several approaches to treat singularity: 

• point constraint 
• penalty method 
• subspace projection 

Compare their performance in terms of 
iterative solver iterations



Pure Neumann problem: benchmarking
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Subspace projection is unambiguously 
the best, especially at high-order

Singular system 
• Several approaches to treat singularity: 

• point constraint 
• penalty method 
• subspace projection 

Solver iterations can be misleading due to the 
cost of applying each iteration; measure error 
as a function of wall-clock time to solution.



Deep reinforcement learning: training and deployment
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“deep” RL:
• represent value function as neural network 

• use each reward signal (experience) to update 
network during training 

• once trained, agent is “deployed” by querying policy 
network for recommendation based on current state 
and action 

• neural networks are universal function approximators 
(Kornik et al., 1989) and can learn arbitrarily 
complex policies

(Foucart et al., JCP-2022-sub)



98[1] Foucart et al., Ocean Modelling. in prep. 2023a.

modeling domains

MSEAS-PE (hydrostatic)

HDG NHS model

(domain slice)

(not to scale)

• Black line: denotes a section in the Alboran Sea along which wind-
driven instabilities were observed in the hydrostatic MSEAS PE 
simulations   

• The section starts in the west along the northern edge of the West 
Alboran Gyre and extends to the east-by-northeast out of the gyre 
towards the Spanish coast. 

• Implemented 2D HDG NHS model nesting and initialization from real 
data 

• Goal: model instabilities in the mixed layer and compare to HS 
simulation output

Region of investigation:

Application: 2D model nesting within a large hydrostatic code (MSEAS-PE)

NHS model: boundary conditions


