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By considering the stochastic nature of the phase fluctuations in the ocean, the conventional ray 
theory intensity relaxation was extended in an earlier paper [J. A. Neubert, J. Acoust. Soc. Am. 
51, 310-322 ( 1972}] to permit consideration of partial coherence in multipath problems. Although 
this relation worked well in the open ocean [J. A. Neubert, J. Acoust. Soc. Am. 62, 326-334 
(1977)], it proves to be incomplete for sound propagation through a random ocean front. By also 
considering the amplitude fluctuations, a mean multipath intensity relation {as well as its standard 
deviation •r•) is found that takes into consideration the strong horizontal sound-speed gradients 
that occur in certain important ocean frontal regions. 

PACS numbers: 43.30.Bp, 43.60. Cg, 43.20.Bi, 92.10.Vz 

INTRODUCTION 

The Lagrangian (i.e., pathwise) relation for the sound 
pressure wave after having traveled an arc length s from g 
through the refractive field n(x} is given by 1 

p[X(s,g)] =`4 (s)exp[ikoS(s)] (1) 

1 C'ds' (ndX, h =po(g)exp[-•-3o n(s'} ds' Li 
+ ik o ds' n(s' , (2) 

where .4 is the amplitude, k o is the wavenumber, 

S• ds' n[X(s')] (3) 

is the stochastic phase factor, and 

Po(g} = .4 (g)exp [ikoS (g)]. (4) 

As in Ref. 1, the notation is as follows. The refractive 
index n is represented by 

n = n[X(s)] = no[X(s)] [1 + ap(s)] = Co/C[X(s)], (5) 

where Co is some convenient reference sound speed, c [ X(s)] is 
the sound speed at path arc length s at point X, X(s) varies 
from its initial point X(s = 0) = g to its terminal point x, ctp 
is the fluctuation of n about its mean no= (n), and 
a(0 < a< 1) is the normalized rms variance of the refractive 
index fluctuations [see Eqs. (3)-(7} of Ref. 1]. 

Equation {2) yields the multipath intensity relation L 
which is discussed in detail in Sec. I. Taking the ensemble 
expectation of/yields the mean multipath intensity relation 
for E { I } in Sec. II. In a similar manner, the standard devi- 
ation at about E { I I is evaluated. Both E { I I and a• are de- 
pendent on the new stochastic factors Fo(s ) and Fi(s). In Sec. 
III and Ref. 2, it is shown that these two stochastic factors 
are important (i.e., differ from unity) only in pronounced 
sound-speed frontal regions. Therefore the previous rela- 
tions for E I I } and a• are valid outside of these frontal re- 
gions but the complete relations derived belo TM are necessary 
to describe sound propagation through a pronounced sound- 
speed frontal region. 

I. GENERAL EXPRESSION FOR INTENSITY 

In Ref. l the effect of the phase fluctuation on the mean 
multipath ray theory intensity in a random ocean was inves- 
tigated. This resulted in the introduction of an important 
stochastic factor, which is called the "partial coherence fac- 
tor." In this development the amplitude fluctuation behav- 
ior is retained as well. The result is two new stochastic fac- 

tors that become important in sound propagation through 
an ocean front. 2 These stochastic factors occur when the 

approximation of Eq. (46) of Reft 1 is not made. Further- 
more, Eq. {42) of Ref. 1 left out one important term that does 
not effect the results of Ref. 1. The corrected relation is 

\ ds /.• \ ds /o.• 

+ a ds' [t4s'}no(S')]•. +O(a2) ' (6) 
%½} ,, 

where 

/ dX, \ = no(g) dX, (0} + 1 ds' no.,(s'). (7) [-g;iSl}o nolXl ds nol%-- 
Using the stochastic integral theory of Refs. 1, 3-6, the 

integral of the second two terms of Eq. (6) can be accurately 
approximated as follows using Eq. (7): 

f/d$'[Ig($'}(•f')o].i-[- •o • as' J/'ds"( []'g{$")rtO{$")]'i %½'} 

= -- ds' (s') nø(g-•) dX, .(0) 
no(s') ds' 

ds' ds" [p(s )no(s )].izlZ(S)no.i(s ) (8) 
no(S' } 

= -- ds' no(g)--•-s, lu)[, n'•}., 

fo • f•' [(/z 'nø•/ ] + ds' ds" •(s") + g(s',s") , 
do t \ no[s I/.• 

(9) 
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- ax, •" -- ds' no(g ) 

fo-dSfordS I.t ( ' ,ii$ ,S , 

where 

110) 

111) 

and 

ß /% (x'}, (11a) 

I•',i,(s",s')•(t•,i (s") nø(a"'• (12) no(S' ) 

• /•,.(s") (12a) 
n,,(s'),n,,(s")• I 

no.,(s")'• •'•0. 113) g(s',s")-- [kt(s")--/•(s')] no(S') ]., 
The symbol •-- means that the quantity g(s',s") will give 

a negligible contribution compared to the other factors ap- 
pearing in the following ensemble expectations. 4'-6 Taking 
no--} 1 gives the homogeneous limit. 

Assume Eq. (34) of Ref. 1 so that 

i(s)= i(•)exp(_ fo•dS ' dX, ) 
•--Io(s}I-I a (s)F a (s), 

where 

(14) 

(15) 

(16) 

is the deterministic ray theory intensity as computed by con- 
ventional ray theory software, 

ax, Fas, , 's" • Ha(s)=exp -ano(g)-•-s (g)jo •,,I •) 117) 
is the stochastic intensity path divergence factor, and 

Fa (s)--exp(a J•ø• ds' .•' ds" l.t'.,(s",s',) (18) 
is the stochastic intensity fading factor which results from 
pathwise phase fluctuations. 

Therefore Eqs. (38)-{40) of Re[ 1 can be replaced by 
M 

I x • I •/2 s H i/2 s F 1/2 s G s e i•t 

M 

= • Io(S m )H• (s•)F• (s•) 
M--I M 

(S•)I 0 (S, • • (S•)H • (s•) +2Z Z 
m=l l•m+l 

x • Y• (s•)• 7%)cos [ &(s• - St) ], (20) 
where M is the total number of multipaths, o is the angular 
frequency, t is the time, and 

G• (s•)•exp ( -- k• ) 121) 
is the stochastic pathwise phase fluctuation factor. The first 
term in •. (20) represents the incoherent summation of in- 
tensities while the second tern represents the coherent con- 
tribution to the multipath intensity. 

II. THE MEAN MULTIPATH INTENSITY RELATION 

The following developments parallel those of Appendix 
B of Ref. 1 (with a few notational changes) except the approx- 
imation of Eq. (46) ofRef. 1 is avoided. The ensemble expec- 
tation of Eq. (201 gives the mean multipath intensity 

E (I (x)}•_ • Io(s, • )E .[H a (sm )F a (sm)) 
M--I M 

+ 2 Z Z I•/2(sm)I•/2(s')E{ n}/2(s•) 
m=l I=m+l 

X, 1/2 I_ Ip I/2 (Sin) r I/2 (s,)cos[ko(S m - S, )] }. 
(22) 

The standard deviation at about Eli I is defined by 

[c(x)] ,/2 [c(x)] ,/2 

'--E(I(x))-E[ p(x) } 2, (24) [c(x)] ,/2 
which is Eq. (57) of Ref. 1. 

Equations (22) and (24) are evaluated as follows via the 
conservation of energy for stochastic processes. 4-6 The first 
ensemble expectation in Eq. (22) is 

E (Ha (s)F• (s))_•Fo(s)F, (s}, (25) 
where 

Fo{s}----ex p ( -- 2ct2Ra3 Qas 2) = exp ( - s2/d o 2 ) (26} 
is the stochastic scatter loss factor [which is the ensemble 
expectation of the interaction of the stochastic path diver- 
gence factor and the stochastic fading factor; it represents 
the scattering away of acoustic energy and is dependent on 
the sound-speed gradients as shown in Eq. {29}] and 

Fi(s)--•--exp(2ct2Ral Q,s ) = exp( s/di ) {27) 
is the stochastic scatter gain factor [which is the ensemble 
expectation of the stochastic divergence factor; it represents 
the scattering in of acoustic energy and is dependent on the 
sound-speed gradients as shown in Eq. (31}]. The decorrela- 
tion length (do} for Fo(s } is 

do•= [ ct(2R., O,)'/2 ] - ,, (28) 
where 

• • •" dX• . 
4S2Ra3Q3• fo dS' fo ds" fo ds'" no(•)--•s, (O)E Jttz:,(s', 

X [/•(s'",s")-E{•u•(s'",s")}]}. 129) 
The correlation length (d•) for F•. is 
di--(2ct2Ra, QI)-- 1, (30) 

where 

i 2 t t t it 4sR•Q1- ds ds" no{g)E{j%(s•.•(s )}. 131) 

The second ensemble expectation in Eq. (22) is 
1/2 1/2 I/2 I/2 E{H,, (s.•)H a (st)V,• (s,•)Fa (st)cos[ko(S,•-St)]) 

ß I/2 1/2 1/2 
•--Fo (sm)Fo (s,)F, (Sin) 

XF]/:(st)F.(s,.)Fv(st)cos[ko(So., -- So, ) 1, (32) 
where 

So---- ds' no[X(s')] (33) 
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is the deterministic phase factor and 

Fp(s) = exp( -- a2k ils) (34) 
is the partial coherence factor [which is the ensemble expec- 
tation of the pathwise phase fluctuation factor; it gives the 
decrease in the coherent crosspath term of Eq. (36)], where 

4sL • ds" ds" no(s')no(s") 

XE([tt{s')- E•(s')}l [t4s") - E•(s")}]). (35) 

Equations (25)-(35) are evaluated by direct application of the 
techniques given in Refs. 1, 3-6. The empirical method for 
determining the stochastic quantities Ra3 Qs,Rat Ql and L 
from actual ocean data is given in Ref. 7. 

Equations (22), (25}, and (32) give the mean multipath 
intensity 

M 

is(•r(x)}_• • •ro(Sr•)Fo(S,•)Fi(s,. ) 
rn=l 

M--I M 

rn=l /:m+l 

xFo 1•2 (s•')•o '• (s,)•'• (s• }•7 • (s,) 

XFp ($rn)Fp ($/)cos[ko(Sor n --So/)] (36) 

-• c,,Fn = O. (37) 
%-0 

When Fo(s ) and Fi(s) are essentially unity (which occurs out- 
side a pronounced sound-speed frontal region as shown in 
Sec. III and Reft 2), Eq. (36) reduces to 

M 

M--I M 

+ 2 E E 
m=l I=m+l 

x F• (s,)cos [ ko(So• - SO,)], (38) 

which is Eq. (49) of Ref. l. 
In a similar manner at of Eq. (24) can be evaluated as 

follows. Equation {51) of Ref. 1 is replaced by 

• iol/a tt'J • p(x) ,.• • (s,,,) (Sin) [c(a)] ,n - .. :, 

XF}/• (Sin) Ga ($rn)e "•' 

which can be shown to yield "*• 

M M--I M 

rn:l rn:l /:rn+ I 
I•/• (s,•)I•/• (st)Fo •/a (s,•) F&/• ($l) 

XF•/2 {Sin ) F•/:z ($1)Fp (Srn Fp ($l)0OS [ko(So m - Soi)]. 

Therefore Eqs. (24), (36), and (39) yield 

/o($m)Fo($rn)F i (Sin)[ 1 --Yp2($m)] (41) 
M 

-, is {• },F, = 0. (42) 

When Fo(s ) and F•(s) are essentially unity (i.e., outside a pron- 
ounced sound-speed frontal region), Eq. (41) reduces to 

M 

o', •-'-- • Io(s•)[1 --F• (Sm)], (43) 

which is Eq. (56) of Ref. 1. 
Note that the incoherent limits of E {I} and ai are 

theoretically equal, i.e., 

(39) 

E•{I}----E {I v (Fp = O) } --a, (F• = O)----•Yii. (44) 

However, during sound propagation scattering smooths out 
the higher order statistics (i.e., it essentially lowers the tails 
of the probability distribution) so that a• is reduced from its 
theoretical value and gives 

(45) 

in practice; a>l and depends on frequency. In Ref. 7, 
a = 6.5 at 1030 Hz. 

(40) 

I 

III. CONCLUSIONS 

In Ref. 1 the effect of the phase fluctuation on the mean 
multipath ray theory intensity in a random ocean was devel- 
oped. This resulted in the introduction of the partial coher- 
ence factor of Eq. {32}. In this paper the amplitude fluctu- 
ation behavior was retained as well. This resulted in the two 

new stochastic factors of Eqs. (26) and (27) that become im- 
portant (i.e., differ from unity) only in regions of strong hori- 
zontal sound-speed gradients that can occur in an ocean 
front. 2'8'ø These stochastic factors occur when the approxi- 
mation of Eq. (46) of Ref. 1 is not made. Instead Eqs. (25) and 
(32) are applied to Eq. (22) to give the mean multipath inten- 
sity relation of Eq. (36). In a similar manner, Eqs. (36} and 
{40) are applied to Eq. (24) to give the standard deviation 
about E{I } in Eq. (41). 

Figure 1 shows some typical sound-speed contours in 
the North Pacific ocean between Hawaii and Alaska? Note 
that the sound-speed gradients that impact Fo(s ) and F• 
[see Eqs. (26)-{31 )], and henceE {I } of Eq. (36), are negligible 
except for the sharp horizontal sound-speed gradient above 
about 300 m at about 40 øN which constitutes a pronounced 
ocean front. Outside this frontal region, Eq. (36) reduces to 
Eq. (38). However, for sound propagating through this ocean 
front all factors in Eq. (36) prove necessary. z 

We cannot determine the random variablep(s) from the 
averaged data of Fig. 1 so we cannot use Eqs. (29} and {31) to 
determine Ra3Q3 and R•IQi, respectively. However, the 
sound speed changes by about 5 m/s across the front in Fig. 1 
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FIG. I. Sound-speed contours (m/s) between Hawaii and Alaska. 

so it can be estimated that a • 3 X 10 -3. From Ref. 2 for a cw 
source depth of 500 ft, a receiver depth of 300 ft and an 
acoustic frequency near 200 Hz, an intensity drop of about 8 
dB occurs over a frontal distance of about 100 kin. Assuming 
one dominant path eliminates the second term in Eq. (36) 
leaving Fo(s)Fi(s ) to account for the 8-dB drop over s• 100 
kin. Since a relatively sharp drop (i.e., 8 dB in 100 kin) is seen 
in Fig. 5 of Ref. 2, it will be assumed that Fo(s) dominates F,(s) 

so that do of Eq. (26) equals about 74 m. Then Eq. (28) gives 
R,,3Q3.• 10/m 2 which, of course, agrees with the 8-dB loss 
via Eq. (26). If it is assumed Raz Qz is of the same order of 
magnitude as R,,3Q• and Eq. (27) is used, 101og,oFi(s) 
•_.0.08 dB which is indeed negligible compared to 
101og]o Fo(s)= -- 8 clB from Eq. (26}. Hence the relative s 
dependence in Eqs. (26} and {27} should lead to Fo(s} dominat- 
ing F,(s) in Eq. (36). 
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