Proceedings of Meetings on Acoustics

Volume 6, 2009

http://asa.aip.org

157th Meeting Acoustical Society of America Portland, Oregon 18 - 22 May 2009 Session 1aAO: Acoustical Oceanography

1aAO3. Transverse coherence lengths, processing limits and implications

William M. Carey*

*Corresponding author's address: Mechanical Engineering, Boston University, Boston, MA 02215, wcarey@bu.edu

How does scattering in sound channels(deep and shallow waters) limit coherent array processing or what is the limitation of resolution in terms of the mutual coherence function and its temporal and spatial coherence lengths? The resolution of an array is limited by the mutual coherence function; but estimation in a partially coherent noise background with a multipath signal is difficult using the normalized cross power spectral density, magnitude squared coherence, because of the properties of both signals and noise. The measurement of magnitude-squared coherence is a poor statistical estimator since it is a function of the signal-to-noise ratio and multipath interference with large confidence bounds. Array gain measurements and a wave-theoretic coherence function. This paper reviews single path coherence results and those derived from array measurements over the low- to mid-frequency range in deep and shallow water. Representative coherence lengths are discussed in terms of boundary interactions, internal wave scattering, and coastal mesoscale features. The implications for arrays used to estimate geoacoustic properties, mammal locations, and scattering from the boundaries are presented.

Published by the Acoustical Society of America through the American Institute of Physics

Talk Outline

- Deep Water Horizontal Coherence
 - Coherence Measurement
 - Pairwise Coherence Results
 - Array Signal Gain results
- Shallow Water- Downward Refraction- Sandy-Relative Signal Gain Results
- Basic Conclusion: Water borne paths in deep water have coherence lengths on the order of 100 λ at a frequency of 400 Hz at a range of 400 km. While shallow water (100m) with sandy bottoms have coherence lengths on the order of 30 λ at a frequency of 400 Hz at a range of 40 km.

What do we mean by coherence?

How is it estimated from measurements?

What bearing does it have on array performance?

Volume scattering relationsThe Beran-McCoy-Adams Formulation:Transverse Coherence Function is $\Gamma(\Delta y) = R_p(R, f, \Delta y, z)/I(z) = \exp(-(\Delta y/L_{hc})^{3/2})$ $= \exp(-E_f f^{5/2} R(\Delta y)^{3/2}) = \exp(-E_k k^{5/2} R(\Delta y)^{3/2})$ where $E_f = 1.136 \cdot 10^{-6} E_k = 1.136 \cdot 10^{-6} (\varepsilon \cdot 10^{-10})$ and $L_{hc}^{-1} = f^{5/2} (E_f R)^{2/3}$ The Flatte-Dashen Formulation: $\Gamma(\Delta y) = R_p(R, f, \Delta y, z)/I(z) = \exp(-D_{1,2}/2) = \exp(-(\Phi \Delta y/L_{hc} \sqrt{2})^2)$ M.J. Beran, J. J. McCoy, and B. B. Adams, "Effects of a fluctuating temperature field on the spatial coherence of acoustic signals," NRL, Washington, D. C. 20375, NRL Tech. Rept. 7809, 1975 - (Avail DTIC).R. Pashen, S. M. Flatte, W. H. Munk, and F. Zachariasen, "Limits on Coherent Processing Due to Internal Waves," Standford Research, Menlo Park, Ca, 94025, Standford Research Rep. Tr-JSR-76-14, 1977-(Avail DTIC).

W. M. Carey and W. B. Moseley, "Space-time processing, environmental-acoustic effects," in <u>Progress in Underwater</u> <u>Acoustics</u>, ed. H. M. Merklinger, Plenum Pub., pp. 743-758, 1987(IEEE J. Ocean. Eng. 16(3), pp. 285-301, 1991.

Proceedings of Meetings on Acoustics, Vol. 6, 005001 (2009)

	Snallow water conerence length results.								
Ref.	[17]	[18]	[19]	[20]	[20]	[20]	[20]	[20]	
Location	N. Sea	N.W. Atl.	GM/WFE	GM/FS	NWA/JS	SOK-1	SOK-1	SOK-2	
SVP	ISV	DR	DR	DR	DR	DR	DR	DR	
WD	65m	0.1-1 km	0.1-1km	200m	100m	100m	100m	100m	
Bottom	S	S-SC	S-SC	S-SC	S-SC	S-SC	S-SC	SC-S	
f1(Hz)	400	135	173-175	200-400	200-400	354	300	354	
f2	800			400-800	400-600	600	500	604	
Range	7.4	100	25	9.3	4-22	7-11	5-45	14-2	
L _e	18	31	21	30	23	27	29	38	
L	10			32	25	30	31	54	
Source	Exp.	CW	CW	Exp.	Exp.	CW	Exp.	CW	
SD	21m	18m	100m	100m	52m	30 m	52m	33m	
RD	15m	750m	400m	200m	100m	101m	101m	94m	
COV	8%	4%	6%	4%	4%	4%	5%	2-4%	

SVP=Sound Velocity Profile; ISV= Isovelocity; DR=Downward Refracting; WD= Water Depth; S= Sand; S-SC= Sandy- Silty- Clay; SD=Source Depth; RD= Receiver Depth. COV=coefficient of variation in measured results.

W. M. Carey, "The determination of signal coherence length based on signal coherence and gain measurements in deep and shallow water", J. Acoust. Soc. Am. 104 (2, pt.1), August 1998, 831-837.

				TAB	LE 2				
			TABULAR SU	MMARY OF CO	HERENCE	MEASUREN	IENTS		
COHERENCE	FREQUENCY	BAND	AVERAGING TIME	PROPAGATION PATH(S)	SOURCE DEPTH	RECEIVER DEPTH	SOURCE RECEIVER RANGE	HYDROPHONE	REFEREN
>3 km (e=0.8, constant to 3 km)	7,5 kHz cw	Narrow	0,1 sec	Single, Near Surface	Shallow		0.6-12 km	Horizontal Transverse	16
6 meters 1 meter	4, 7. 15 kHz	Pulses	3 and 30 ms Pulses	Surface Reflection	Shellow Water Depth 80 m.	·.	600 m.	Horizontal Transverse Vertical	17
24000 ft. 1600 ft.	400 Hz	Pulses	0.1 hr.	Single, Refracted		Artemis*	19 ml.	Horizontal Vertical	19
1300 ft. 700 ft.	400 Hz	Pulses		Single, Refracted	1200 ft	Artemis*	270 mi.	Horizontal Vertical	18
48 ft. 6 wavelengths	750 Hz cw	Narrow	105 ms	Surface Reflected	9500 ft	TVA**	24 mi.	Vertical	9
300 ft.	800 Hz Pulses		5 ms	Single, Refracted	9500 ft	TVA**	24 mi.	Vertical	20
8 wavelengths	50-100 Hz 100-200 Hz 200-400 Hz	Octave	Shot Duration	Multiple Refracted	800 ft.	TVA**	100-600 mi.	Vertical	21
300 ft. 1000 ft.	367 Hz	Narrow	840 sec 150 sec	Multiple Refracted (RSR)		Artemis*	700 mi.		22
2 wavelengths 8 wavelengths 10 wavelengths 30 wavelengths	3.1-3.3 kHz 1.5-1.7 kHz 0.7-0.9 kHz 0.3-0.5 kHz	200 Hz	Shot Duration	Shallow Water Paths	Shallow Water Depth 65 m.		4 mi.	Horizontal Transverse	23
500 ft, t	44-88 Hz 177-354 Hz 354-707 Hz	Octave	2 sec	Surface- Bottom Reflections	15 ft.	4000 ft.	1 ky 2 ky 3 ky	Vertical	14

[13] D.R.Morgan, T.M. Smith, "Coherence effects on the detection performance of quadratic array processors, with applications to large-array matched-field beamforming," J. Acoust. Soc. Am. 87(2), pp737-747, 1990. [14] D.C. Stickler, R.D.Worley, S.S.Jaskot, Bell Telephone Laboratories, unpublished. Summarized by G.H.Robertson, "Model for Spatial variability effects on single path reception of underwater sound at long ranges," J. Acoust. Soc. Am. 69, pp112-123, 1981. [15] W.B.Moseley, D.R.Del Balso,"Horizontal random temperature structure in the ocean," J. Phys. Oceanog. 6, pp267-280, 1976.(Also NRL Rpt.7673, NRL, Wash. D.C., 1974) [16] W.B. Moseley," Acoustic coherence in space time-an overview," in Proc. EASTCON'78 Also: "Geographic variability of spatial signal correlation and subsequent array performance," in Proc. Int. Symp. Underwater Acoustics, Tel Aviv, Israel, 1981. [17] P. Wille and R.Thiele, "Transverse horizontal coherence of explosive signals in shallow water," J. Acoust. Soc. Am. 50 (1pt.2), pp. 348-353,1971. [18] W.M. Carey," Measurement of down-slope sound propagation from a shallow source to a deep ocean receiver," J. Acoust. Soc. Am. 79(1), pp. 49-59, 1986. [19] W. M. Carey, I. B. Gereben, and B. A. Brunson, "Measurement of sound propagation downslope to a bottom-limited sound channel", J. Acoust. Soc. Am. 81(2), pp. 244-257, 1987. [20] These results are from the ACT series of experiments conducted by W. Carey, P. Cable, and J. O'Connor on the Florida Shelf in the Gulf of Mexico, on the Jersey Continential Shelf, and in the Straits of Korea. Explosive sources were developed and deployed by W. Marshall and the analysis was performed by Mike Steele, T. Kooij, J. Angle from BBN Laboratories. In addition the CW sources were deployed by W. Carey and G. Hunsaker, NRAD. Analysis of the Straits of Korea array data was performed by J. Reese, NRAD.

