
2.29 Finite Volume MATLAB Framework Documentation

Matt Ueckermann, Jing Lin, Sydney Sroka, Pierre Lermusiaux

January 23, 2015

1

Contents

1 Problem Formulations: Incompressible N-S Equations 3
1.1 General 3-D N-S Equations . 3
1.2 N-S Equations with Boussinesq Approximation . 3
1.3 Transport of Density Anomaly under Boussinesq Approximation 5
1.4 2-D Flow Idealization and Nondimensionalization . 7
1.5 Variable Correspondence to the Finite Volume Framework 7
1.6 Examples . 8

1.6.1 Bottom Gravity Current . 8
1.6.2 Internal Wave Generation from Flow Over Topography 10

2 Discretization: Schemes and Implementation 11
2.1 Advection Schemes . 11

2.1.1 Central Scheme . 12
2.1.2 Upwind Schemes . 12
2.1.3 QUICK Scheme . 12
2.1.4 TVD Scheme . 13
2.1.5 Advection Schemes for Dynamically Orthogonal Equations 14
2.1.6 Mexed Routines . 14
2.1.7 The CFL Condition . 14

2.2 Matrix Operators . 14
2.2.1 Gradient Operations . 15
2.2.2 Divergence Operator . 15
2.2.3 Laplace Operator . 15

2.3 Stokes Solvers . 16
2.4 Dynamical Orthogonality Condition Stochastic Solvers 16

3 Download and Installation 16
3.1 Downloading . 16
3.2 Installing on Linux . 17
3.3 Installing on Mac . 18
3.4 Installing on Windows . 19

4 Quick Start Guide 19
4.1 Brief Description of Provided Examples . 20

5 Setting Up New Examples 22
5.1 Naming Conventions . 22
5.2 Node Numbering Convention . 23
5.3 Data Structures . 23
5.4 Domain, Masking and Boundary Conditions: General Rules and Guidelines 26

5.4.1 Domain . 26
5.4.2 Masking . 26
5.4.3 Boundary Conditions . 28

5.5 Stokes Forcing Test Case: . 30
5.5.1 Setting Up Forcing Functions . 31
5.5.2 Setting Up the Grid . 32

2

5.5.3 Boundary Conditions . 33
5.5.4 Initial Conditions . 34
5.5.5 Misc. and Plotting . 34

5.6 Sudden Expansion . 35
5.6.1 Setting Up Forcing Functions . 36
5.6.2 Setting Up the Grid . 37
5.6.3 Boundary Conditions . 39
5.6.4 Initial Conditions . 40
5.6.5 Misc. and Plotting . 41

6 Troubleshooting 41

1 Problem Formulations: Incompressible N-S Equations

1.1 General 3-D N-S Equations

Before going into 2-dimensional flows which this finite volume framework actually simulates, we
first state the governing equations in a general 3-dimensional setting so that users can have an idea
of in what ways a 3-D flow can be simplified to a 2-D one and simulated by this code.

The general 3-D incompressible Navier-Stokes equations are:

∇ · u = 0, (1)

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u + g − 2Ω× u + Fu(x, t), (2)

∂φ

∂t
+ u · ∇φ = κφ∇2φ+ Fφ(φ,x, t). (3)

Note that all boldface symbols represent 3-D vectors here.

u is the fluid velocity field while p is the fluid pressure field. ρ and ν, which are density and kinetic
viscosity, respectively, are given constant physical properties of the fluid. g is a given constant grav-
itational acceleration. Ω(x, t) is a given angular velocity vector field under the reference framework
(e.g. earth rotation). Fu is a given source term representing other known exterior forces.

φ is an arbitrary tracer, namely a scalar field transported by advection and diffusion. κφ is a given
constant diffusivity of φ and Fφ is a given source term which can also depend on φ. For example, if
φ is the temperature, which is a measure of internal energy, then κφ is the thermal diffusivity and
Fφ represents heat sources and sinks due to, for instance, radiation and chemical reactions.

1.2 N-S Equations with Boussinesq Approximation

In general (1) and (2) already form a closed system and (3) is coupled to them only in a one-way
manner. However, there is one situation frequently-encountered in nature where a tracer also goes
into the momentum equation (2) and thus makes (1), (2) and (3) fully coupled. This is the case
called density driven flow such as natural convection in atmosphere and bottom gravity current in
ocean.

3

In these flows, the dominant driving effect is the buoyancy due to non-uniformly distributed fluid
density together with gravity. The density variation could be mainly due to either temperature
or salinity or even both, but hardly pressure. Moreover, the density fluctuation is usually small
compared to its absolute value (e.g. < %1 in ocean). In such cases, density variation is important
and can not be ignored completely, but on the other, compressibility effect, namely pressure wave,
is still immaterial and thus negligible. Hence, we want to approximate the flow in such a way that
it can still be treated as incompressible but at the same time, the effects of gravity exerted on fluid
with different densities are accounted.

The Boussinesq approximation achieves this goal. First, rewrite the momentum equation (2) for
incompressible flows as below:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ ρν∇2u + ρg − 2ρΩ× u + ρFu(x, t). (4)

Since the density ρ only has a small variation, we decompose it into the sum of a reference value
ρ0 and a small perturbation ρ′:

ρ = ρ0 + ρ′. (5)

Accordingly, we decompose the pressure p into the sum of a hydrostatic part p0 due to ρ0 and a
non-hydrostatic part p′:

p = p0 + p′ (6)

where

p0(x) = patm +

∫ x

xatm

ρ0g · dl = patm + ρ0g · (x− xatm). (7)

Here xatm is an arbitrary reference point and patm is an arbitrary reference pressure. Actually, if
we assume hydrostatic case, namely u ≡ 0, without source Fu and with uniform density ρ ≡ ρ0,
the momentum equation (4) reduces to

∇p = ρ0g (8)

and p0 defined by (7) is exactly the solution to (8).

For convenience, we can set the reference point to origin and the reference pressure to 0 and simplify
(7) to

p0(x) = ρ0g · x (9)

and hence
p′ = p− ρ0g · x. (10)

With (5), (6) and (9), the pressure and gravity terms in the momentum equation (4) can be
rearranged as

−∇p+ ρg = −∇(ρ0g · x + p′) + (ρ0 + ρ′)g = −∇p′ + ρ′g (11)

Substituting (5) and (11) into (4) and dividing by ρ0 gives(
1 +

ρ′

ρ0

)(
∂u

∂t
+ u · ∇u

)
= − 1

ρ0
∇p′ + ρ′

ρ0
g +

(
1 +

ρ′

ρ0

)(
ν∇2u− 2Ω× u + Fu(x, t)

)
. (12)

The Boussinesq approximation says if |ρ′| � ρ0 holds in a flow, the effects of ρ′ are negligible in all
terms but the gravity one. Hence (12) can be well approximated by

∂u

∂t
+ u · ∇u = − 1

ρ0
∇p′ + ν∇2u +

ρ′

ρ0
g − 2Ω× u + Fu(x, t). (13)

4

Since ρ0 is just a constant, for convenience we usually define a reduced pressure and a reduced
density:

P ′ =
p′

ρ0
, ρ̃′ =

ρ′g

ρ0
. (14)

Note that by Boussinesq approximation, the continuity equation (1) and tracer transport equation
(3) are unchanged.

1.3 Transport of Density Anomaly under Boussinesq Approximation

With the Boussinesq approximation, the continuity equation (1) and momentum equation(13) no
longer form a closed system because an unknown density anomaly field ρ′(x, t) is introduced. As is
mentioned before, the density variation ρ′ is due to temperature and salinity variation. Therefore,
to close the system, we need an equation of state associating ρ′ with temperature T and salinity S
as well as two governing equations of T and S.

Due to the small perturbation assumption |ρ′| � ρ0, we can use a linear equation of state about
the reference state

ρ = ρ0[1− α(T − T0) + β(S − S0)] (15)

where the thermal expansion coefficient α and the density-salinity coefficient (maybe not the right
term) β are given constant physical properties. Note also that ρ0 is the fluid density at reference
temperature T0 and reference salinity S0. Similar to ρ′, if we introduce T ′ = T−T0 and S′ = S−S0,
(15) can be simplified to

ρ′ = −ρ0αT
′ + ρ0βS

′. (16)

Temperature T is governed by the energy equation which can be rewritten in the same form as
(3):

∂T

∂t
+ u · ∇T = κT∇2T + FT (T,x, t) (17)

where κT is a given constant thermal diffusivity. Since T0 is constant, (17) can be rewritten as a
transport equation of T ′:

∂T ′

∂t
+ u · ∇T ′ = κT∇2T ′ + FT (T0 + T ′,x, t). (18)

Salinity S is governed by a species (salt) transport equation

∂S

∂t
+ u · ∇S = κS∇2S + FS(S,x, t) (19)

where κS is a given constant mass diffusivity of salt in water. Similarly, this yields the equation
for S′ as

∂S′

∂t
+ u · ∇S′ = κS∇2S′ + FS(S0 + S′,x, t). (20)

5

Now the Navier-Stokes equations (1), (13) together with (16), (18) and (20) form a closed system.
For convenience, the equations of the whole system are grouped and rewritten here:

∇ · u = 0,

∂u

∂t
+ u · ∇u =−∇P ′ + ν∇2u +

ρ′

ρ0
g − 2Ω× u + Fu(x, t),

ρ′ =− ρ0αT
′ + ρ0βS

′,

∂T ′

∂t
+ u · ∇T ′ = κT∇2T ′ + FT (T0 + T ′,x, t),

∂S′

∂t
+ u · ∇S′ = κS∇2S′ + FS(S0 + S′,x, t).

(21)

Note that if the source term FT (T0 + T ′,x, t) is solution-independent, namely independent of T ′,
the transport equation (18) would be linear in T ′, though may not be homogeneous. The same
argument applies to (20) for S′. Hence, besides solution-independence in FT and FS , if we further
assume the same Prandtl and Schmidt number (i.e. κT = κS , κ), since the equation of state (16)
is also linear, (16), (18) and (20) can be reduced to a single transport equation for ρ′ by linear
superposition:

∂ρ′

∂t
+ u · ∇ρ′ = κ∇2ρ′ − ρ0αFT (x, t) + ρ0βFS(x, t). (22)

If the boundary conditions can also be superposed this way (e.g. Boundary condition types for
T ′ and S′ in each location are always simultaneously Dirichlet or Neumann), (1), (13) and (22)
themselves form a closed system:

∇ · u = 0,

∂u

∂t
+ u · ∇u =−∇P ′ + ν∇2u +

ρ′

ρ0
g − 2Ω× u + Fu(x, t),

∂ρ′

∂t
+ u · ∇ρ′ = κ∇2ρ′ − ρ0αFT (x, t) + ρ0βFS(x, t).

(23)

This system may look a bit confusing. On one hand, the divergence-free velocity constraint implies
incompressibility. On the other, the density transport equation is similar to the mass conservation
law for a compressible flow. To avoid such confusion, keep in mind that ρ′ is just a density
perturbation that is small compared to the fluid density, and thus the density equation is not a
mass conservation law, but a transport equation for internal energy (characterized by temperature)
or (and) salt. These variables are related through a linear equation of state, which is valid due to
the small density perturbation assumption inherent in the Boussinesq approximation.

Some literature uses the reduced density ρ̃′ defined by (14) instead of ρ′, and the governing equations
therein become

∇ · u = 0,

∂u

∂t
+ u · ∇u =−∇P ′ + ν∇2u + ρ̃′eg − 2Ω× u + Fu(x, t),

∂ρ̃′

∂t
+ u · ∇ρ̃′ = κ∇2ρ̃′ − gαFT (x, t) + gβFS(x, t),

(24)

where eg is the unit vector parallel to g and usually eg = −k along negative z-axis.

6

If density variation is solely due to temperature, namely ρ = ρ0[1 − α(T − T0)], the temperature
perturbation can be recovered from the reduced density by

T ′ = − ρ̃′

gα
.

Similarly, if density variation is solely due to salinity, namely ρ = ρ0[1 + β(S − S0)], the salinity
perturbation can be recovered from the reduced density by

S′ =
ρ̃′

gβ
.

1.4 2-D Flow Idealization and Nondimensionalization

A 2-dimensional flow in a horizontal plane is governed by

∂u

∂x
+
∂v

∂y
= 0,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=− ∂P

∂x
+ ν

∂2u

∂x2
+ ν

∂2u

∂y2
+ f(x, y, t)v + Fu(x, y, t)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
=− ∂P

∂y
+ ν

∂2v

∂x2
+ ν

∂2v

∂y2
− f(x, y, t)u+ Fv(x, y, t)

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
= κ

∂2ρ

∂x2
+ κ

∂2ρ

∂y2
+ Fρ(ρ, x, y, t).

(25)

A 2-dimensional flow in a vertical plane is governed by

∂u

∂x
+
∂w

∂z
= 0,

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
=− ∂P ′

∂x
+ νxy

∂2u

∂x2
+ νz

∂2u

∂z2
+ Fu(x, z, t)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
=− ∂P ′

∂z
+ νxy

∂2w

∂x2
+ νz

∂2w

∂z2
− ρ′g

ρ0
+ Fw(x, z, t)

∂ρ′

∂t
+ u

∂ρ′

∂x
+ w

∂ρ′

∂z
= κxy

∂2ρ′

∂x2
+ κz

∂2ρ′

∂z2
+ Fρ(ρ

′, x, z, t).

(26)

1.5 Variable Correspondence to the Finite Volume Framework

In this finite volume MATLAB framework, the following equations are solved:

∂u

∂x
+
∂v

∂y
= 0,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=− ∂P

∂x
+ ν1

∂2u

∂x2
+ ν2

∂2u

∂y2
+ f(x, y, t)v + Fu(x, y, t)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
=− ∂P

∂y
+ ν1

∂2v

∂x2
+ ν2

∂2v

∂y2
− ρg − f(x, y, t)u+ Fv(x, y, t)

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
= κ1

∂2ρ

∂x2
+ κ2

∂2ρ

∂y2
+ Fρ(ρ, x, y, t).

(27)

7

The code accepts the parameters and variables through the following relations:

app.nu = ν1, app.nu2 = ν2, app.kappa = κ1, app.kappa2 = κ2,

app.g = g, app.Fcor = f(x, y, t),

u = u, v = v, P = P, ρ = ρ.

(28)

1.6 Examples

1.6.1 Bottom Gravity Current

Based on Özgökmen and Chassignet (2002), if we assume the flow is isothermal and the variation
of density is entirely due to salinity with Boussinesq approximation, the governing RANS equations
of the flow read

∂u

∂x
+
∂w

∂z
= 0

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −∂P

′

∂x
+ νx

∂2u

∂x2
+ νz

∂2u

∂z2

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −∂P

′

∂z
+ νx

∂2w

∂x2
+ νz

∂2w

∂z2
− ρ′g

ρ0

∂S′

∂t
+ u

∂S′

∂x
+ w

∂S′

∂z
= Kx

∂2S′

∂x2
+Kx

νz
νx

∂2S′

∂z2
− k(S′ −∆S).

The density variation and salinity variation are defined as ρ′ = ρ−ρ0, S′ = S−S0, respectively and
are related by ρ′ = ρ0βS

′ (in accord with previous sections). Furthermore, p∗ is the non-hydrostatic
part of the mechanical pressure divided by the reference density ρ0, i.e. P ′ = pm/ρ0 + gz (again,
as in previous sections). Last but not least, there is a relaxation term in the salinity equation
representing a salinity forcing where k is the relaxation frequency and ∆S is a given maximum
salinity variation. This term is only turned on near the inlet.

We assume the flow is going from left to right and down a slope. The boundary conditions are set
as below. At the bottom, the no-slip condition is used:

u = 0, w = 0,
∂S′

∂n
= 0.

At the top, the free-slip condition is used:

∂u

∂z
= 0, w = 0,

∂S′

∂z
= 0.

Both the inlet and the outlet use an open boundary condition

∂u

∂x
= 0,

∂w

∂x
= 0,

∂S′

∂x
= 0.

Note that there is no driving effect in the boundary conditions. The gravity flow is driven by the
salinity forcing term turned on only in a region near inlet.

Now we first nondimensionalize the equation to facilitate both understanding the physics and
solving the equations numerically. We use the thickness of the gravity current h as a scale for length

8

and νx/h as a scale for velocity. Thus the time is scaled as h2/νx and the pressure by (νx/h)2.
Besides, we use ∆S to scale S′. Therefore, we have the following nondimensional variables:

u∗ =
hu

νx
, w∗ =

hw

νx
, P ′∗ =

h2P ′

ν2
x

, S′∗ =
S′

∆S
,

t∗ =
h2t

ν2
x

, x∗ =
x

h
, z∗ =

z

h
.

After the nondimensionalization, the governing equations read

∂u∗

∂x∗
+
∂w∗

∂z∗
= 0,

∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
+ w∗

∂u∗

∂z∗
= −∂P

′∗

∂x∗
+
∂2u∗

∂x∗2
+ r

∂2u∗

∂z∗2
,

∂w∗

∂t∗
+ u∗

∂w∗

∂x∗
+ w∗

∂w∗

∂z∗
= −∂P

′∗

∂z∗
+
∂2w∗

∂x∗2
+ r

∂2w∗

∂z∗2
−GrS′∗,

∂S′∗

∂t∗
+ u∗

∂S′∗

∂x∗
+ w∗

∂S′∗

∂z∗
=

1

Pr

(
∂2S′∗

∂x∗2
+ r

∂2S′∗

∂z∗2

)
− k∗(S′∗ − 1).

Four nondimensional numbers appear in the system:

r =
νz
νx
, Gr =

gh3β∆S

ν2
x

, P r =
νx
Kx

, k∗ =
kh2

νx
.

r is the ratio of vertical to horizontal turbulent diffusivity. Gr is the Grashof number. Pr is the
turbulent Prandtl number and k∗ is the nondimensional relaxation frequency.

The boundary conditions in terms of non-dimensional variables are as below. At the bottom, the
no-slip condition is used:

u∗ = 0, w∗ = 0,
∂S′∗

∂n
= 0.

At the top, the free-slip condition is used:

∂u∗

∂z∗
= 0, w∗ = 0,

∂S′∗

∂z∗
= 0.

Both the inlet and the outlet use an open boundary condition

∂u∗

∂x∗
= 0,

∂w∗

∂x∗
= 0,

∂S′∗

∂x∗
= 0.

Furthermore, the initial condition is set as

u∗ = 0, w∗ = 0, S′
∗

= 0

except at the salinity forcing region we have

S′
∗

=
1

2

[
1− cos

(
π

1km− z
1km− 0.8km

)]
.

The code accepts the parameters and variables through the following relations:

app.nu = 1, app.nu2 = r, app.kappa =
1

Pr
, app.kappa2 =

r

Pr
, app.g = Gr,

u = u∗, v = w∗, P = P ′∗, ρ = S′∗.

9

1.6.2 Internal Wave Generation from Flow Over Topography

This example (Ogden, 2011; Legg and Huijts, 2006; Khatiwala, 2003) involves solving the Navier-
Stokes equations for incompressible, inviscid flow with the Boussinesq approximation applied to
the density perturbation, i.e.

∇ · u = 0,

∂u

∂t
+ u · ∇u = −∇P ′ + ν∇2u− ρ̃′j + Fu(x, t),

∂ρ̃′

∂t
+ u · ∇ρ̃′ = κ∇2ρ̃′.

P ′ is the non-hydrostatic pressure divided by the reference density and ρ̃′ is the perturbation density
multiplied by g and divided by ρ0.

P ′ =
p− (−ρ0gz)

ρ0
=
p− p0

ρ0
, ρ̃′ = ρ′

g

ρ0
.

The effective diffusivity of density, κ, is taken to be 0. The boundary conditions for velocity are
free slip at the top and bottom of the rectangular domain

∂u

∂y
= 0, v = 0,

time-dependant Dirichlet on the left and right of the rectangular domain

u = U0 sin(ω0t), v = 0,

and no slip on the topography (sea mountain)

u = 0, v = 0.

The boundary conditions for density ρ̃′ and the pressure projection term q are zero Neumann on
all boundaries.

∂ρ̃′

∂n

∣∣∣
∂Ω

= 0,
∂q

∂n

∣∣∣
∂Ω

= 0

Note that the velocity boundary conditions implemented in Legg and Huijts (2006) differ from this
example, with free slip boundary conditions on the topography and open boundary conditions on
the left and right of the rectangular domain.

The code solves the a non-dimensional problem for this example, where the relevant length and
timescales are the domain depth (H[m]) and tidal frequency (ω0[s−1]). Thus, we have the following
nondimensional variables:

u∗ =
u

ω0H
, v∗ =

v

ω0H
, P ′∗ =

P ′

ω2
0H

2
, ρ̃′∗ =

ρ̃′

ω2
0H

,

t∗ = ω0t, x∗ =
x

H
, y∗ =

y

H
,

ν∗ =
ν

ω0H2
, κ∗ =

κ

ω0H2
, U∗0 =

U0

ω0H
.

10

The simulation goes though m tidal periods described by 0 ≤ t∗ ≤ 2πm. The governing equations
are modified accordingly:

∇ · u∗ = 0,

∂u∗

∂t
+ u∗ · ∇u∗ = −∇P ′∗ + ν∗∇2u∗ − ρ̃′∗j + F ∗u(x∗, t∗),

∂ρ̃′∗

∂t
+ u∗ · ∇ρ̃′∗ = κ∗∇2ρ̃′∗.

The left and right boundary conditions are modified as

u∗
∣∣
∂ΩLeft

= u∗
∣∣
∂ΩRight

= U∗0 sin(t∗).

The code accepts the parameters and variables through the following relations:

app.nu = ν∗, app.kappa = κ∗, app.g = 1, app.T = 2πm, U0 = U∗0 ,

u = u∗, v = v∗, P = P ′∗, ρ = ρ̃′∗.

2 Discretization: Schemes and Implementation

This section summarizes the numerical discretization utilized in the framework. Again, this is not
an exhaustive manual, but should be sufficient for students who have been introduced to numerical
fluid mechanics. In general the MATLAB functions are well commented, and users are encouraged
to read the codes for further study.

2.1 Advection Schemes

The different advection schemes implemented are described in this section. The functions discussed
can be found under <app root>/Src/Advect>, where <app root> is the root folder where these
MATLAB scripts were uncompressed.

The central, upwind and QUICK schemes for tracer and u, v-velocity advection are implemented.

The discrete finite volume problem is as follows:

∂φx,y
∂t

∆V =
{
ux−∆x/2,yφ̂x−∆x/2,y − ux+∆x/2,yφ̂x+∆x/2,y

}
+ (29){

vx,y−∆y/2φ̂x,y−∆y/2 − vx,y+∆y/2φ̂x,y+∆y/2

}
Or using the East, West, North, South naming convention:

∂φx,y
∂t

∆V =
{
uW φ̂w − uEφ̂e

}
+
{
vSφ̂s − vN φ̂n

}
(30)

where the problem now is selecting appropriate values of the fluxes φ̂x±∆x/2,y±∆y, which are ap-

proximately equal to φ̂i ≈
∫
Ai
φdAi

Ai
.

A logical choice would be φ̂x+∆x/2,y =
φx+∆x,y+φx,y

2 and this is known as the central scheme. How-
ever, in general, the central scheme is unstable.

For the following sections, we will use the east face flux as an example.

11

2.1.1 Central Scheme

The central difference scheme (CDS) uses a linear interpolation to determine the value of the
function at interfaces:

φ̂e =
φP + φE

2
. (31)

The central scheme is implemented in SCAadvect CDS mex.m and UVadvect CDS mex.m.

2.1.2 Upwind Schemes

The upwind scheme works by choosing the upwind value of the function as the true value of the
function at the interface of a control volume. The discrete flux function then takes the value:

φ̂e =

{
φP uE > 0
φE uE < 0

(32)

To implement this in the code, a trick involving absolute values is used to avoid using ”if” state-
ments:

φ̂e =
1

2
{uE(φE + φP)− |uE |(φE − φP)} (33)

The upwind tracer and u, v-velocity advection functions are implemented in SCAadvect UW.m and
UVadvect UW.m respectively.

For the tracer advection functions, the velocities at the center of the control surfaces are conveniently
available, hence only the upwind value of the function needs to be selected in two dimensions for
each of the four surfaces. To to this, the indices were carefully selected using integers ”w, e, s, n”
for the west, east, south, and north faces. Setting one of these integers equal to 1 and the rest to 0
then selects the correct indices for the corresponding face. Therefore, the only change in the code
from one flux to the next is setting these integers, as well as selecting either the u or v component
of velocity.

The final line selects only the active interior nodes, and returns the flux for those nodes. The
advection is performed for all nodes in the domain, including inactive boundary nodes in the
interior if present.

Essentially the same procedure is followed in the function performing the u, v-velocity advection,
however in this case we need to consider the staggering of the grid more carefully. That is, sometimes
it is necessary to average the vertical or horizontal velocity to obtain a value at the desired location.
The code for the u and v velocity advection is very similar, in fact, once the u-velocity code was
working it was copied, pasted, and with minor modifications was used for the v-velocity.

2.1.3 QUICK Scheme

The QUICK scheme interpolates the value of the function at the midpoint of the control surfaces
using a quadratic interpolation. This is similar to the unstable central flux scheme which uses a
linear interpolation, with the difference that an upwind bias is introduced. Since three points are

12

required for the interpolation, two points are chosen from the upwind direction, and only one is
chosen from the downwind direction. The QUICK scheme is then given by:

φ̂e =

{
6/8φP − 1/8φW + 3/8φE uE > 0
6/8φE − 1/8φEE + 3/8φP uE < 0

(34)

Or using the naming convention upwind = U, up-upwind = UU, downwind = D:

φ̂e = 6/8φU − 1/8φUU + 3/8φD (35)

The code is essentially the same as the upwind case. The major difference is that first the interpo-
lated values are found. Then, instead of using the upwind and downwind values of the function given
by the CV centers, the interpolated upwind and downwind values of the functions are used.

The exact same procedure is used for the u, v-velocity advection, except (again) care must be taken
with the staggering of the control volumes. This scheme is implemented in SCAadvect mex.m and
UVadvect DO mex.m.

2.1.4 TVD Scheme

The TVD scheme uses a mixture between the CDS and UW schemes. TVD stands for Total
Variation Diminishing. Basically, what happens is the slope is ”‘limited”’ to ensure that the
maximum value of the function is never exceeded, and the minimum value of the function is never
undershot.

We use a standard Total Variation Diminishing (TVD) scheme, with an monotonized central (MC)
symmetric flux limiter (Van Leer, 1977). The scheme can be written for a variable η as:

F (ηi− 1
2
) = ui− 1

2

ηi + ηi−1

2

−
∣∣∣ui− 1

2

∣∣∣ ηi − ηi−1

2

[
1−

(
1−

∣∣∣∣ui− 1
2

∆t

∆x

∣∣∣∣)Ψ(ri− 1
2
)

]
,

(36)

where the MC slope limiter Ψ(r) is defined as

Ψ(r) = max

{
0,min

[
min

(
1 + r

2
, 2

)
, 2r

]}
,

and the variable r as

ri− 1
2

=

[
1
2

(
ui− 1

2
+
∣∣∣ui− 1

2

∣∣∣) (ηi−1 − ηi−2) + 1
2

(
ui− 1

2
−
∣∣∣ui− 1

2

∣∣∣) (ηi+1 − ηi)
]

ui− 1
2
(ηi − ηi−1)

,

where ui− 1
2

is used without interpolation for the density advection (due to the grid staggering)

while a second-order linear interpolation is used for the non-linear u and v advection. For more
information about TVD schemes, we refer to Leveque (2002).

The exact same procedure is used for the u, v-velocity advection, except (again) care must be taken
with the staggering of the control volumes. This scheme is implemented in SCAadvect TVD mex.m

and UVadvect TVD mex.m.

13

2.1.5 Advection Schemes for Dynamically Orthogonal Equations

For the implementation of the stochastic dynamically orthogonal (DO) schemes, we require more
flexibility in the advection schemes. For this reason, the DO specific routines UVadvect DO.m,
UVadvect DO UW.m and UVadvect DO CDS.m are provided. Basically, functions allow for either of
the following choices for the u advection.

ui
∂uj
∂x

+ vi
∂uj
∂y

(37)

ui
∂vj
∂x

+ vi
∂vj
∂y

(38)

2.1.6 Mexed Routines

To increase the efficiency of the solvers, it was found that the MATLAB implementations of the
advection schemes was slow compared to a C++ implementation. Therefore, most of the advection
schemes were coded in C, compiled, and linked to MATLAB (mexing).

Note, that you may have to compile the binaries yourself. This is a simple matter on a Linux or
Mac system with a
>> mex filename.cpp

whereas on a Windows system, first an appropriate C++ library needs to be installed and configured
to work with MATLAB. Refer to the Installation section for more details on this.

2.1.7 The CFL Condition

The Courant-Friedrichs-Lewy (CFL) condition is a stability criterion on the numerical solution of
the advection equations. This condition states that the numerical domain of dependence must
contain the physical domain of dependence. In other words, the maximum allowable information
propagation speed in a numerical scheme must exceed the physical advection speed. For an explicit
scheme for the advection terms, the CFL condition requires that

∆t

∆x
C ≤ 1, (39)

where C is the physical advection speed.

If this condition is violated, the numerical solution may become unstable. Therefore, if a simula-
tion blows up, we may need a smaller time step ∆t.

2.2 Matrix Operators

To solve the Navier-Stokes equations using the projection methods as used in this code, the Lapla-
cian and diffusion matrices need to be inverted, and gradients and divergences need to be taken.
The divergence and gradient operations do not require inversion, and are therefore implemented as
functions in a matrix-free format. The diffusion matrix is easily build from the Laplacian by adding
a diagonal component, hence the major matrix that needs to be built and stored is the Laplacian
matrix.

14

2.2.1 Gradient Operations

For solving the Navier-Stokes and Stokes equations, only the gradient of the pressure is required.
This is implemented in Grad2D.m. A simple second order central difference (finite difference) scheme
is used to find the gradient of the pressure:

∂φ

∂x

∣∣∣∣
x+ ∆x

2

=
φ(x+ ∆x)− φ(x)

∆x
(40)

∂φ

∂y

∣∣∣∣
y+ ∆y

2

=
φ(y + ∆y)− φ(y)

∆y
(41)

The gradient is calculated for the entire domain, including any interior masked points, and then
only the active interior point are selected and outputted.

2.2.2 Divergence Operator

For solving the Navier-Stokes and Stokes equations, only the divergence of the velocity is required.
This is implemented in Div2D.m.The basic divergence operator implementation is essentially the
same as the Gradient operator, since it also use a second-order accurate finite difference approx-
imation of the derivatives. However, in the case where Neumann boundary conditions are used,
additional steps are required to set the correct value of ∂φ

∂n at the boundary. Therefore, in the code,
first the derivatives are found while ignoring the boundary conditions. Then the IDs of the Neu-
mann boundaries are found. Finally, on Neumann boundaries, the calculated derivative is replaced
by the specified values of the Neumann boundaries.

The implementation looks, perhaps, more complicated than it should be. However, this implemen-
tation is generally applicable to any interior masked domain.

2.2.3 Laplace Operator

The discrete version of the Laplacian operator ∇2 is built using the mk DiffusionOperator func-
tion. The base discrete matrix is built for either Neumann or Dirichlet boundary conditions.
However, due to staggering, the Dirichlet boundary conditions will be incorrect for some faces of
the u, v CVs, and all faces of the Pressure CVs. These are fixed using FixDiffuvDbcs. Also,
open boundary conditions are corrected for using FixDiffPObcs (open boundaries set the second
derivative equal to zero).

The second derivative is approximated using the following:

−
{
∂2φ

∂x2
+
∂2φ

∂y2

}
x,y

=
−φ(x+ δx, y) + 2φ(x, y)− φ(x− δx, y)

∆x2
(42)

+
−φ(x, y + δy) + 2φ(x, y)− φ(x, y − δy)

∆y2

note that the negative of this operator is implemented in the code.

15

2.3 Stokes Solvers

We use a projection method to solve the Stokes problem. That is, the time integration proceeds in
three steps, and is as follows:[

I

∆t
− ν∇2

]
ũk+1 =

uk

∆t
+ Fk+1 (43)

∇2P k+1 =
1

∆t
∇ · ũk+1 (44)

uk+1 = ũk+1 −∆t∇P k+1 (45)

where P in this case is only the “Pseudo-pressure,” and does not actually solve the correct pressure.
An improved algorithm is the Incremental Pressure correction scheme, and we use the rotational
form: [

I

∆t
− ν∇2

]
ũk+1 =

uk

∆t
−∇P k + Fk+1 (46)

∇2(qk+1) =
1

∆t
∇ · ũk+1 (47)

uk+1 = ũk+1 −∆t∇qk+1 (48)

P k+1 = qk+1 + P k − ν∇ · ũk+1 (49)

For the Navier Stokes equations we treat the non-linear terms explicitly. That is, to solve the
Navier Stokes equations, we set Fk+1 ≈ −uk · ∇uk. For an excellent review of Projection method,
see Guermond and Minev (2006).

2.4 Dynamical Orthogonality Condition Stochastic Solvers

In the DO representation, the velocity field is decomposed into a finite sum

u = ū +
S∑
i=1

Yiui (50)

where ū is the mean field, ui are modes such that
∫

Ω uiujdΩ = δij , and Yi are zero-mean stochastic
coefficients, that is E[Yi] = 0. The novelty with the DO approach is that both the stochastic
coefficients, and the modes are evolving in time. With other methods, either the coefficients or the
modes are normally fixed. This allows for a very efficient representation of stochastic information.
For further details, please refer to Sapsis and Lermusiaux (2009).

3 Download and Installation

3.1 Downloading

The code can be downloaded from http://mseas.mit.edu/codes. You will have to register to
get access to the site. Once you are logged in, you may download the latest Framework from the

16

”‘Downloads::Dynamic Models”’ link:
http://mseas.mit.edu/codes/downloads/dynamic-models. The code is also directly available
on Stellar for 2.29 students.

3.2 Installing on Linux

Installation is simple on a Linux machine. Simply untar the file in the directory of your choice, for
example:

% cd $install-root\

% tar xvfz FV_MATLAB_Framework_vX-XXX.tar.gz

where $install-root is a directory of your choice, and X-XXX indicates the version number.

Some files are coded in C++ for efficiency and these need to be compiled. If you are lucky, the files
that come with the framework that we compiled on our machine will work on your machine. But
if this is not the case, you will need to ”mex” the routines yourself.

On Linux this is a simple task.

% cd $install-root\

% matlab -nodesktop -nosplash

>> setup

>> cd Src/Advect

>> mex Narrowband_Advect_LS_mx.cpp

>> mex Narrowband_LS_mx.cpp

>> mex SCAadvect_CDS_mx.cpp

>> mex SCAadvect_mx.cpp

>> mex SCAadvect_TVD_mx.cpp

>> mex UVadvect_DO_CDS_mx.cpp

>> mex UVadvect_DO_mx.cpp

>> mex UVadvect_TVD_mx.cpp

>> cd ../Util

>> mex dsegment.cpp

>> cd ../..

and you are ready to go!

If this does not work, it is possible that you do not have a C++ compiler installed on your system.
In that case, you may have to install a compiler and set it up in MATLAB. For example, if you are
on an Ubuntu system, the following is a start:

% sudo apt-get install build-essential

% matlab -nosplash -nodesktop

>> mex -setup

at which point you are on your own, good luck!

17

3.3 Installing on Mac

Installation is a little more complicated a Mac. Start by uncompressing the file in the directory of
your choice.

Some files are coded in C++ for efficiency and they have to be compiled. If you are lucky, the files
that come with the framework that we compiled on our machine will work on your machine. You
can first try things out, but if our compiled routines don’t work on your machine, you will need to
”mex” the routines yourself.

On a mac, you first have to install Xcode, including the Developer tools. Once you have these
installed, you will have a ”‘/Developer/usr”’ directory on your Mac. Once properly installed, you
should be able to mex the required routines. Start by opening MATLAB, and from the command
window type:

>> setup

>> cd Src/Advect

>> mex Narrowband_Advect_LS_mx.cpp

>> mex Narrowband_LS_mx.cpp

>> mex SCAadvect_CDS_mx.cpp

>> mex SCAadvect_mx.cpp

>> mex SCAadvect_TVD_mx.cpp

>> mex UVadvect_DO_CDS_mx.cpp

>> mex UVadvect_DO_mx.cpp

>> mex UVadvect_TVD_mx.cpp

>> cd ../Util

>> mex dsegment.cpp

>> cd ../..

and you are ready to go!

If this does not work, it is possible that the /Developer directory is not in you path. To check,
type

>> !echo $PATH

From MATLAB. If you do not see /Developer/usr/bin and /Developer/usr/lib/, then MATLAB
will not be able to find the compilers. To fix this, open a new X11 terminal. Start by checking if
the directories are in the path, if not add, them, then open MATLAB from the terminal:

bash-3.2$!echo $PATH

bash-3.2$ export PATH=$PATH:/Developer/usr/bin

bash-3.2$ export PATH=$PATH:/Developer/usr/lib

bash-3.2$ cd /Applications/MATLAB_R2010b/bin

bash-3.2$./matlab

Then change folders until you get to the trunk/Src/Advect folder, and issue the commands above.

18

3.4 Installing on Windows

Installation on Windows is a little more complex than on a Linux machine. First the downloaded
file needs to be untarred by a program such as IZArc. Untar the file to a directory of your choice
$install-root (for example, $install-root=C:\Users\usrname\Documents\MIT229FV\).

Some files are coded in C++ for efficiency and they have to be compiled in a special way to be
used in MATLAB, which is called to be mexed. If you are lucky, the mexed files (.mexa or .mexw,
depending on operating systems) coming with the framework will work on your machine. But if this
is not the case, you will need to mex the routines yourself. You may be able to use the C-compiler
coming with MATLAB. To use it, start with:

>> mex -setup

Then you may compile the .cpp subroutines as follows:

>> setup

>> cd Src/Advect

>> mex Narrowband_Advect_LS_mx.cpp

>> mex Narrowband_LS_mx.cpp

>> mex SCAadvect_CDS_mx.cpp

>> mex SCAadvect_mx.cpp

>> mex SCAadvect_TVD_mx.cpp

>> mex UVadvect_DO_CDS_mx.cpp

>> mex UVadvect_DO_mx.cpp

>> mex UVadvect_TVD_mx.cpp

>> cd ../Util

>> mex dsegment.cpp

>> cd ../..

If this does not work, you may need to install a compatible compiler. You can find relevant infor-
mation and download links for compatible compilers in different operating systems on the web page
http://www.mathworks.com/support/compilers/R2014b/index.html. After doing this, you can
mex the necessary files as above. At this point, you should hopefully be ready to go!

4 Quick Start Guide

After starting MATLAB, browse to the 〈install-root〉 directory (directory containing setup.m).
The first task is to properly setup all the paths so that MATLAB knows where to find the necessary
source files. This is done by running the setup.m script from the MATLAB prompt.

NOTE: To use this framework, setup has to be run every time you start MATLAB.

To see if the Framework is correctly installed with all components working, you can run the 21
examples we have provided by issuing the following commands. From the 〈install-root〉 directory
(directory containing setup.m) run:

>> setup

>> TestCase(?);

19

where ? should be replaced by any integer from 1-18.

The TestCase.m is basically a high-level interface to all the solvers and examples that we provide.
For detailed information about the inputs, outputs, different examples and solvers, type

>> help TestCase

at the MATLAB prompt. It is not necessary to run TestCase for all applications, but the solvers
may be called directly. However, the examples in TestCase have been tested thoroughly, and should
work without error when using all default parameters.

TestCase may be invoked with 1, 2, or 3 inputs. By running TestCase.m with only 1 input, default
values are used for the solver, resolution, diffusivity, and other parameters. The second input is a
structure with which you may adjust many of the other solution parameters. If you adjust these
values and the solution no longer works, please see the Troubleshooting section of this document.
With the third input, a different solver may be chosen instead of the default.

For example, you may want to run the Lock-Exchange example with the default solver, but a
different ν. This can be done as follows:

>> app.nu = 0.1

>> TestCase(6,app);

that is, simply enter “[]” for the solver.

4.1 Brief Description of Provided Examples

1. Heated plate demo: This test-case demonstrates the different boundary conditions and geom-
etry that can be used on the different staggered grids (see §5.2). Its main purpose, initially,
was to validate that the diffusion operator was working correctly.

2. Tracer advection demo with QUICK scheme: This example is used for a convergence study to
verify the correctness of the advection scheme. This demo uses the Quadratic Upwind Inter-
polation for Convective Kinetics (QUICK) scheme (see §2.1.3). Its performance is contrasted
with the upwind scheme in the next example.

3. Tracer advection demo with Upwind scheme: This example is included to highlight the poor
performance of the low-order upwind scheme (see §2.1.2), which is still commonly used in
many CFD codes, compared to the previous example using the QUICK scheme.

4. Analytical Stokes Example: This example is used to verify the correctness of the Stokes solver
implementations. It is described in detail in §5.5.

5. Poiseuille flow test case: This example solves the classical Poiseuille flow in a pipe. It tests
the implementation of the open boundary condition.

6. Lock exchange experiment: This example tests Boussinesq solvers, that is, density driven
flows. The setup is as follows: initially a dense and light fluid are separated by a barrier or a
“lock.” At time 0, the barrier is instantaneously removed, and the flow evolves.

7. Sudden expansion: This example demonstrates the accuracy of a control-volume analysis com-
pared to a Bernoulli analysis for predicting the pressure drop across a sudden expansion in a
pipe. Students in MIT course 2.29 solve this problem analytically using the two approaches,

20

and verify the answer numerically at a later point in the course. The Bernoulli approach is
incorrect in this case, because the recirculation zones that develop violate the - no viscous
effects assumption - upon which Bernoulli is based. This example ensures that the numerical
solution remains symmetric up to a transition Reynolds number where numerical roundoff can
become sufficiently large to cause flow perturbations. It is also used to test the open boundary
condition, and it demonstrates that the domain masking works correctly. The setup script
for this example also shows how to create more complex geometries. This case can readily be
modified for the classical flow over a cylinder test-case. The setup file is described in detail
in §5.6.

8. Buoyant sudden expansion: This is nearly the same as the previous example, but a lighter
density fluid is allowed to enter the domain, causing fluid to rise upwards after the expansion.
This introduces an asymmetry into the problem, and vortex shedding is seen using the default
parameter values.

9. Warm rising bubble: This is another density driven flow example. Here, the solution is ini-
tialized with a small bubble of warm water surrounded with cold water in a tube with closed
ends. The bubble rises and diffuses/mixes with the cold water as the flow evolves. The plot
script for this example shows an elegant method for saving outputs (such as images of .mat
files). It involves adding additional fields to the app data-structure.

10. Lid-driven cavity flow: This example is a standard test-case for CFD codes. Fluid initially at
rest is inside a closed box (or cavity). At the time 0, the lid (or top boundary) instantaneously
moves with a fixed velocity, and continues to do so until the end of the simulation. For low
Reynolds numbers, a steady state is reached, whereas for sufficiently high Reynolds numbers,
a steady state is not reached.

11. Stochastic lid-driven cavity flow: This is the same setup as the previous example, but adds
uncertain initial conditions. The uncertainties are then allowed to evolve using the Dynami-
cally Orthogonality (DO) equations (see Sapsis and Lermusiaux (2009)). The setup script for
this case demonstrates how to manually initialize DO simulations for specific applications.

12. Stochastic lid-driven cavity flow: This is the same setup as the previous two examples, except
in this case the uncertain initial conditions are automatically initialized, and an adaptive
number of modes are used. That is, during the simulation, a variable number of terms are
kept in the expansion for the velocity (see Sapsis and Lermusiaux (2011)).

13. Stochastic Double-Gyre test case: This example makes use of the solvers that include the
Coriolis forces. It uses automatic initialization for the DO modes, and an adaptive number
of modes. The fluid is initially at rest, and at time 0, a wind instantaneously starts to force
the 2D horizontal flow. The 2D wind on top of the fluid is the shape of a cosine function,
with maximum amplitudes at the top, middle, and bottom of the 2D horizontal domain. The
direction of the wind at the top and bottom are to the left, whereas in the middle the direction
is to the right. This drives the flow to form a double-gyre, which becomes unstable after long
integration times for high enough Reynolds numbers. The default parameter values do no
reach the point of instability, since simulations that do take considerable time to complete.

14. Deterministic Double-Gyre test case: Same example as above, but using the deterministic
solver.

15. Stochastic Double-Gyre test case with path planning: This has the same setup as the above

21

two examples, except here a vehicle is added which is affected by the flow. This example
demonstrates the use of Level Sets to advance a wavefront (representing possible vehicle
positions) in a dynamic flow field. From the level sets, a path can be calculated to desired
targets, which is demonstrated for two targets in this example.

16. Path planning with analytically-provided flow-field (1): This example demonstrates path plan-
ning, but in this case the flowfield is provided through an analytic expression as a function of
position and time. This example has a rotating, time-varying flowfield.

17. Path planning with analytically-provided flow-field (1): This example is the same as the pre-
vious one, except in this case the flowfield is less complicated and not time-varying. It has
a highway flow, and illustrates how two very different paths can reach similar end points at
the same time.

18. Thermohaline circulation: This example solve the Boussinesq equations with the density de-
termined through a non-linear state equation which is a function of pressure, salinity and
temperature. The 2D cross-section represents a zonally averaged meridional slice through the
earth, that is, the south-pole is on the left and the north-pole is on the right, the top is the
surface of the ocean, and the bottom is the ocean seabed. The circulation here is driven by
the temperature difference between the equator and the poles. This example is a step towards
idealized stochastic climate studies. The setup file for this example also illustrates how to
have a variable (non-constant) boundary condition on the top boundary.

19. Flow over a Square Cylinder in a Confined channel: Very similar to the sudden expansion ex-
ample, this illustrates the classical flow-over-a-cylinder test-case, showing von Karman vortex
streets for Re > 50 and a steady recirculation zone for Re < 40.

20. Deterministic Rayleigh-Bernard Instability: This is a buoyancy-driven flow, where the top is
being cooled and the bottom heated – resulting in an unstable density stratification which
drives flow. This classic test-case can have multiple solutions depending on the input param-
eters (for example, clockwise versus counter-clockwise circulation).

21. Stochastic Rayleigh-Bernard Instability: Same test as above using the Stochastic solver. Here
multiple solutions are captures within a single run.

5 Setting Up New Examples

This section is for users who wish to set up new problems using this framework or want to have a
better understanding of the inner working of this code. We remind the reader that this is not an
exhaustive manual, but should be sufficient for students who have been introduced to numerical
fluid mechanics. In general the MATLAB functions are well-commented, and for further study,
users are encouraged to read the code.

5.1 Naming Conventions

In the code two naming conventions are used. When dealing with a single control volume centered
at (x, y) we name the locations (x − ∆x/2, y),(x + ∆x/2, y),(x, y − ∆y/2), and (x, y + ∆y/2)
as [west/left], [east/right], [south/bottom], [north/top], respectively, using LOWERCASE letters.

22

Similarly, we name the locations (x−∆x, y),(x+∆x, y),(x, y−∆y), and (x, y+∆y) as [West/Left],
[East/Right], [South/Bottom], [North/Top], respectively, using UPPERCASE letters. Finally, it
is customary to label the value of the function centered at the present CV as ”Present” or just
”P”. We note that this may be confusing with the Pressure, however, Pressure is never used as
a subscript, so hopefully the meaning will be clear from the context. This naming convention is
illustrated in Figure [1].

Figure 1: Naming conventions

Usually a single letter of the alphabet is used for integer numbers used in for loops, and generally
the first for loop is started using the letter ”i”. Also, generally ”i” is used for the rows of matrices,
and ”j” is used for the columns of matrices.

5.2 Node Numbering Convention

The tracer, u-velocity and v-velocity grids are shown superimposed in Figure [2] and separately in
Figure [3]. The numbering convention used in the code is illustrated in Figure [2]. A node matrix
will be used and it will be in the form Node(i,j). Therefore, the ”i” index will be used for the
y-direction, and the ”j” index will be used for the x-direction. This convention was chosen such
that the way a matrix is printed on screen in MATLAB mirrors the numbering convention of the
physical domain. It is nearly ideal, since increasing the column number of the matrix j increases
the x spatial direction. However, to increase the y spatial direction, the row number of the matrix
i has to decrease. Note, nowhere are the node-numbering matrices required, but these are used for
coding convenience, and (hopefully) clarity.

5.3 Data Structures

Since structured grids are used, the data-structures are reasonably simple. Unknowns are stored
in 1-dimensional arrays. The first Nbcs entries are reserved for boundary conditions, and are used
to specify the value of boundaries. Time varying boundary conditions are allowed in this way, and
coded through the updateBcs function.

23

Figure 2: Grid setup

24

Figure 3: Grid setup

25

The application data-structure app is used as the general input structure. By using a structure,
users are allowed to pass in whatever information they desire to be used in the setup scripts. For ex-
ample, one could include an app.bcsDu field that controls the u-velocity boundary condition.

The remaining data-structures are restricted to the matrix operators. All matrix operators are
stored as sparse two-dimensional arrays.

5.4 Domain, Masking and Boundary Conditions: General Rules and Guide-
lines

Here we describe the overall rules and guidelines required in the set-up of the domain, masking and
boundary conditions for all simulations and test cases. Some users may want to check sub-sections
on a forced Stokes flow (sub-section 5.5) and on a Sudden Expansion flows (sub-section 5.6) for
more detailed examples. In what follows, the description is a bit more generic.

5.4.1 Domain

The domain is set-up as a rectangle. The call to mesh the domain is:

[XP, YP, XU, YU, XV, YV, dx, dy] = meshdomain(app, [0, a], [0, b])

We note that domains are always rectangles/squares, so up to the number of finite volumes, the
set-up of the domain is pretty much the same for all examples. What varies from one example to
the next are the masking and boundary/initial conditions, and of course the equations used.

5.4.2 Masking

This mask is user-created. Zeros are unmasked, and non-zero integers indicate a masked region.
The four domain sides are not considered as masked, but they have a separate number assigned to
them in the Node numbering arrays.

To allow for different boundary conditions at the edges of each masked regions, the interior of each
masked region must have a different integer number. If two masked region have the same number,
they will be considered as a single masked region with its own definition of boundary condition at
the edges of the mask.

First, the whole mask is created that fills the whole rectangular domain. Then the user can define
additional masked regions using the position arrays XP and YP, and Boolean rules.

For example, let’s assume we would like to define a domain for sudden expansion, but with a
elliptical obstacle (Fig. 4). We then need to define three masked region, two rectangles and one
ellipse. Each one of these are defined using their positions and Boolean rules.

For the two rectangles, we have:

top_rect = @(x, y) logical((y \ge 2 / 3) .* (x \le 4));

bot_rect = @(x, y) logical((y \le 1 / 3) .* (x \le 4));

For the ellipse, we have:

26

Figure 4: Sudden Expansion Boundary ID setup with an additional cirle region masked.

27

ellipse = @(x, y) (((x - 10) .^2 / 20 + (y - 0.5) .^ 2) < 0.1);

We then assign numbers to the three masked region, for example, associate 1 with the top domain,
2 for the bottom domain and 3 for the circle.

Mask(top_rect(XP, YP)) = 1;

Mask(bot_rect(XP, YP)) = 2;

Mask(ellipse(XP, YP)) = 3;

5.4.3 Boundary Conditions

The type of boundary conditions needs to be specified. The available types are:

1. ’D’: Dirichlet with a single value

2. ’Dmv’: Dirichlet with multiple values (i.e. spatially variable)

3. ’O’: Open boundary

4. ’N’: Neumann with a single value

5. ’Nmv’: Neumann with multiple values (i.e. spatially variable)

The boundary type is specified in a cell array bcid2type{i}, where i corresponds to the boundary
condition id number. For example, the ellipse has boundary id=3 (Fig. 4), so to set a Neu-
mann boundary on u-velocity for the ellipse, you would ensure that bcid2type u{e}=’N’. Each of
pressure, u-velocity, v-velocity, and optionally density should have its own array. The boundary
condition type is set using the set bcs function.

Initially, all BC values are set to zero everywhere. Some of these boundary conditions may perhaps
not be used in a specific example (for example, if density or temperature is not used), but it is still
fine to initialize them.

[bcsDP, bcsOP, bcsNP] = init_bcs(nbcP);

[bcsDu, bcsOu, bcsNu] = init_bcs(nbcu);

[bcsDv, bcsOv, bcsNv] = init_bcs(nbcv);

[bcsDrho, bcsOrho, bcsNrho] = init_bcs(nbcrho);

Hence, the above set-to-zero lines should in general not be changed in the set-up part of the
code.

Next, the user can modify these zero boundary conditions to the values that they wish to use. First
we obtain the coordinates for the boundary points. Each of the XY arrays contain two columns, the
first gives the x-coordinate, the second gives the y-coordinate associated with a particular boundary
(D, O, or N).

The four sides of the domains are set-up directly, without the need of using boolean selections
based on position arrays XP and YP, or XU and YU. However, for all masked regions, first, we
re-select the region of the masks that needs to be assigned to a value, this is done as in the mask
definition themselves. Then, a value is assigned to this. For example, to set the top half of the inlet
boundary condition to 1, and the bottom half to 0.5, you would first ensure that bcid2type rho{4}
= ’Dmv’, then:

28

%Get the boundary coordinates

[XYD, XYO, XYN] = get_bc_coord(’u’, XU, YU, Nodeu, bcsDu, bcsOu, bcsNu);

ids = (XYD(:, 1) == 0);

bcsDu(ids & XYD(:, 2) > 0.5) = 1;

bcsDu(ids & XYD(:, 2) <= 0.5) = 0.5;

For the masked regions in the interior, you can also add boundary values that vary in space. For
example, to add a Dirichlet parabolic density profile to the ellipse, you would first ensure that
bcid2type u{3} = ’Dmv’, then:

[XYD, XYO, XYN] = get_bc_coord(’P’, XP, YP, NodeRho, bcsDrho, bcsOrho, bcsNrho);

ids = ellipse(XYD(:, 1), XYD(:, 2));

bcsDrho(ids) = (XYD(ids, 1) - mean(XYD(ids, 1))).^2;

We note that the script set bcs ensures that all conventions needed for the code are followed. In
most cases, the user, thus, does not need to worry about this: she/he can use his/her own mask
numbers and set bcs will reset them (it is only in some rare cases that it may need some updates).
The conventions that the arrays NodeP, Nodeu, Nodev, and NodeRho, should follow once they come
out of the script set bcs are:

1. No Neumann boundary condition can have a number smaller than a Dirichlet or Open bound-
ary condition. That is we require BCidNeumann > BCidDirichlet.

2. No Open boundary condition can have a number smaller than a Dirichlet condition, or larger
than a Neumann condition. That is we require BCidNeumann > BCidOpen > BCidDirichlet.

3. No Dirichlet boundary condition can have a number higher than an Open or Neumann bound-
ary condition. That is we require BCidNeumann > BCidOpen > BCidDirichlet.

4. The number of boundary conditions for velocity, pressure, and density have to be the same.

5. The bcsD arrays need to include open boundary conditions, and the bcsO arrays need to
indicate which of the Dirichlet boundaries are actually open boundaries.

6. Time-varying boundary conditions are implemented through the user-provided updateBcs

function. If this function is not provided, boundary conditions will not be time-dependent.
The function needs to have the following outputs, and take the following inputs:

[bcsDP, bcsNP, bcsDrho, bcsNrho, bcsDu, bcsNu,bcsDv, bcsNv]...

= updateBcs(time, XP, YP, XU, YU, XV, YV, app, P, rho, u, v,...

NodeP, NodeRho, Nodeu, Nodev);

The rest of this section walks through how to create the SuddenExpansion and StokesForcing input
files, including also the initial conditions.

29

5.5 Stokes Forcing Test Case:

This is an analytical test case used for testing the convergence of various Stokes solvers. The
solution is:

u = π sin(t) sin(2πy) sin2(πx) (51)

v = −π sin(t) sin(2πx) sin2(πy) (52)

P = sin(t) cos(πx) sin(πy) (53)

and is solved on a square domain of size [−1, 1]× [−1, 1].

The solver function requires 3 inputs: app,SetupScript,PlotScript. The first input is a structure,
where the fields app.Nx, app.Ny, app.T and app.dt define the discretization, giving the number
of INTERIOR cells in the x-direction, y-direction, the duration of the simulation, and the time step
size, respectively. The value of the kinematic viscosity (which is analogous to the inverse Reynolds
number for the full NS equations) is set through the app.nu field. The app.PlotIntrvl field is
an integer number that indicates the number of time integrations steps between calling the script
given by the string input PlotScript. The second input is the main focus of the quick-start guide,
and it is a string giving the name of a MATLAB script which sets up the necessary variables for
the problem to be solved. That is, the solver calls eval(SetupScript) to setup the problem at
hand. Similarly, the solver calls eval(PlotScript) every app.PlotIntrvl steps of the integration.
While PlotScript is normally used for plotting the solution, it can also be used for saving the
solution, and various other user-defined tasks. Also, any uncleared variables in SetupScript will
be available for use in PlotScript. Therefore, a function handle created in SetupScript can be
used in PlotScript without causing an error.

The setup file is in its entirety as follows:

% Stokes Flow forcing function test case

%% Forcing Function

app.nu = 1;

Fu = @(time,p) ...

pi.*cos(time+1).*sin(2.*pi.*p(:,2)).*sin(pi.*p(:,1)).^2-...

2.*pi.^3.*sin(time+1).*sin(2.*pi.*p(:,2)).*cos(pi.*p(:,1)).^2+...

6.*pi.^3.*sin(time+1).*sin(2.*pi.*p(:,2)).*sin(pi.*p(:,1)).^2-...

sin(time+1).*sin(pi.*p(:,1)).*pi.*sin(pi.*p(:,2));

Fv = @(time,p) ...

-pi.*cos(time+1).*sin(2.*pi.*p(:,1)).*sin(pi.*p(:,2)).^2-...

6.*pi.^3.*sin(time+1).*sin(2.*pi.*p(:,1)).*sin(pi.*p(:,2)).^2+...

2.*pi.^3.*sin(time+1).*sin(2.*pi.*p(:,1)).*cos(pi.*p(:,2)).^2+...

sin(time+1).*cos(pi.*p(:,1)).*cos(pi.*p(:,2)).*pi;

%% Exact Solution (used in plotting function)

uexact = @(time,x) pi*sin(time+1).*(sin(2*pi*x(:,2)).*(sin(pi*x(:,1))).^2);

vexact = @(time,x) -pi*sin(time+1).*(sin(2*pi*x(:,1)).*(sin(pi*x(:,2))).^2);

pexact = @(time,x) sin(time+1).* cos(pi*x(:,1)).* sin(pi*x(:,2)) ;

%% Set domain size

a = 2; b = 2;

dx = a./(app.Nx); dy = b./(app.Ny);

%% Set boundary conditions

bcsDP= []; bcsNP= [0 0 0 0];

30

bcsDu= [0 0 0 0]; bcsNu= [];

bcsDv= [0 0 0 0]; bcsNv= [];

%% Set number of timesteps

Nt = app.T/app.dt;

%% create geometry mask

Nbcs = length(bcsDP) + length(bcsNP);

Mask = zeros(app.Ny, app.Nx);

%create Node matrices

[NodeP, Nodeu, Nodev, idsP, idsu, idsv] = NodePad(Mask,[1 1 1 1],1);

%% Initialize fields

%create vectors of coordinates for p, u, and v control volumes

xp = linspace(dx/2/a-0.5, 0.5-dx/2/a, app.Nx)*a;

yp = fliplr(linspace(dy/2/b-0.5, 0.5-dy/2/b, app.Ny))*b;

xu = linspace(dx/a-0.5, 0.5-dx/a, app.Nx-1)*a;

yu = fliplr(linspace(dy/2/b-0.5, 0.5-dy/2/b, app.Ny))*b;

xv = linspace(dx/2/a-0.5, 0.5-dx/2/a, app.Nx)*a;

yv = fliplr(linspace(dy/b-0.5, 0.5-dy/b, app.Ny-1))*b;

%create matrix of x and y coordinates

[XP YP] = meshgrid(xp,yp);

[XU YU] = meshgrid(xu,yu);

[XV YV] = meshgrid(xv,yv);

%Initialize vectors

P = [bcsDP; bcsNP; pexact(0,[XP(idsP) YP(idsP)])];

u = [bcsDu; bcsNu; uexact(0,[XU(idsu) YU(idsu)])];

v = [bcsDv; bcsNv; vexact(0,[XV(idsv) YV(idsv)])];

Pex = [bcsDP; bcsNP; pexact(0,[XP(idsP) YP(idsP)])];

uex = [bcsDu; bcsNu; uexact(0,[XU(idsu) YU(idsu)])];

vex = [bcsDv; bcsNv; vexact(0,[XV(idsv) YV(idsv)])];

5.5.1 Setting Up Forcing Functions

The forcing functions can take time and space as the input variables. The spatial variable is
expected to be a matrix with two columns. The first column should contain the x locations of
control volume (CV) centres, and the second column should contain the y locations of CV centres.
To set up the forcing functions corresponding to the solutions (53) we proceed as follows:

Fu = @(time,p) ...

pi.*cos(time+1).*sin(2.*pi.*p(:,2)).*sin(pi.*p(:,1)).^2-...

2.*pi.^3.*sin(time+1).*sin(2.*pi.*p(:,2)).*cos(pi.*p(:,1)).^2+...

6.*pi.^3.*sin(time+1).*sin(2.*pi.*p(:,2)).*sin(pi.*p(:,1)).^2-...

sin(time+1).*sin(pi.*p(:,1)).*pi.*sin(pi.*p(:,2));

Fv = @(time,p) ...

-pi.*cos(time+1).*sin(2.*pi.*p(:,1)).*sin(pi.*p(:,2)).^2-...

6.*pi.^3.*sin(time+1).*sin(2.*pi.*p(:,1)).*sin(pi.*p(:,2)).^2+...

2.*pi.^3.*sin(time+1).*sin(2.*pi.*p(:,1)).*cos(pi.*p(:,2)).^2+...

sin(time+1).*cos(pi.*p(:,1)).*cos(pi.*p(:,2)).*pi;

You will note we used “time+1” in the forcing functions, and this is only to start the simulation
with a non-zero forcing.

31

5.5.2 Setting Up the Grid

The first step in creating the grid is setting the constant discretization sizes ∆x,∆y, and number
of time-integration steps Nt, which is accomplished simply as:

%% Set domain size

a = 2; b = 2;

dx = a./(app.Nx); dy = b./(app.Ny);

%% Set number of timesteps

Nt = app.T/app.dt;

since here the domain is 2× 2 units long, and we are integrating for T/∆t timesteps.

The Stokes solvers require 3 node numbering matrices, NodeP, Nodeu, and Nodev for the Pressure,
u-velocity, and v-velocity. A simple way to create these matrices is by providing a “masking”
matrix to the NodePad function. Since there is no interior geometry for this test-case (that is no
obstructions or holes in the interior of the domain), we can provide a mask with all-zero values the
size of the domain to the NodePad function as follows:

Mask = zeros(Ny, Nx);

%create Node matrices

[NodeP, Nodeu, Nodev, idsP, idsu, idsv] = NodePad(Mask,[1 1 1 1],1);

In this case there are Nx interior control volumes (or nodes) in the x-direction, and Ny interior
control volumes in the y-direction. The mask is only created for the interior control volume.
Therefore NodePad “pads” the masking matrix to add the four boundaries conditions on each edge.
The second input to NodePad is a logical array, and tells the function which of the boundaries to
pad ([left, right, bottom, top]), and the last input is a logical scalar which checks for periodicity,
automatically adding periodic boundaries if required.

Note that the ID of the first interior degree of freedom is Nbcs+ 1, where Nbcs is a scalar variable
containing the number of boundary conditions, in this case Nbcs = 4. Therefore the first interior
node ID is 5, and this will be the first unknown that will be solved (that is, the first row in the A
matrix).

32

An example of NodeP, Nodeu, and Nodev for a Nx = 5, Ny = 4 domain is as follows:

NodeP =

1 4 4 4 4 4 2
1 5 9 13 17 21 2
1 6 10 14 18 22 2
1 7 11 15 19 23 2
1 8 12 16 20 24 2
1 3 3 3 3 3 2

Nodeu =

1 4 4 4 4 2
1 5 9 13 17 2
1 6 10 14 18 2
1 7 11 15 19 2
1 8 12 16 20 2
1 3 3 3 3 2

Nodev =

1 4 4 4 4 4 2
1 5 8 11 14 17 2
1 6 9 12 15 18 2
1 7 10 13 16 19 2
1 3 3 3 3 3 2

5.5.3 Boundary Conditions

Significant care must be taken with properly setting up the
boundary conditions

There are a number of conventions related to the boundary conditions (see §5.4). First, let us define
the variables used for the boundary conditions. In each case, these variables are one-dimensional
double arrays:

bcsDP: Pressure Dirichlet boundary conditions

bcsNP: Pressure Neumann boundary conditions

bcsOP: ID of Pressure Dirichlet boundary that should be an open boundary

bcsDu: U-velocity Dirichlet boundary conditions

bcsNu: U-velocity Neumann boundary conditions

bcsOu: ID of U-velocity Dirichlet boundary that should be an open boundary

bcsDv: V-velocity Dirichlet boundary conditions

bcsNv: V-velocity Neumann boundary conditions

bcsOv: ID of V-velocity Dirichlet boundary that should be an open boundary

The numbering convention comes from how the node numbering matrices are used. The first Nbcs
numbers are reserved for the boundary conditions. So, in this case, the first 4 numbers are reserved
for boundaries. bcsDP, then, is an array that contains the VALUE of the Dirichlet boundary
conditions. Since this problem contains only uniform Dirichlet boundaries for velocity and uniform
Neumann conditions for Pressure, bcsDu, bcsDv, and bcsNP are all 1× 4 arrays with zero entries.
The remaining arrays are empty. This is implemented as follows:

bcsDP= []; bcsNP= [0 0 0 0];

bcsDu= [0 0 0 0]; bcsNu= [];

bcsDv= [0 0 0 0]; bcsNv= [];

33

5.5.4 Initial Conditions

To create the initial conditions, first “coordinate” matrices, which contain the coordinates of the
control volume centres, are created as follows:

%% Initialize fields

%create vectors of coordinates for p, u, and v control volumes

xp = linspace(dx/2/a-0.5, 0.5-dx/2/a, app.Nx)*a;

yp = fliplr(linspace(dy/2/b-0.5, 0.5-dy/2/b, app.Ny))*b;

xu = linspace(dx/a-0.5 ,0.5-dx/a , app.Nx-1)*a;

yu = fliplr(linspace(dy/2/b-0.5, 0.5-dy/2/b, app.Ny))*b;

xv = linspace(dx/2/a-0.5, 0.5-dx/2/a, app.Nx)*a;

yv = fliplr(linspace(dy/b-0.5 , 0.5-dy/b, app.Ny-1))*b;

%create matrix of x and y coordinates

[XP YP] = meshgrid(xp,yp);

[XU YU] = meshgrid(xu,yu);

[XV YV] = meshgrid(xv,yv);

note here we are using the MATLAB meshgrid function to create the matrices, and that these
matrices are the size of the INTERIOR nodes only, that is, they do not go all the way up to the
boundaries. Also note, the vertical coordinate starts from the maximum value
and decreases, and this is due to the node numbering convention described in Section §5.2.

When initializing the variables, the boundary condition values are also stored in the vector of un-
knowns. Therefore, when initializing the vector of unknowns, the values of the boundary conditions
have to be included as well.

For the general case there may be interior masked nodes, and then the created coordinate matrices
will have too many entries, and will not necessarily correspond to the IDs of the unknowns. Here
the idsP, idsu, and idsv outputs from the NodePad function is useful for selecting the correct
elements of the coordinate matrices.

Initializing the vector of unknowns using the analytical solution to the problem at t = 0 is accom-
plished as follows:

%% Solution

uexact = @(time,x) pi*sin(time+1).*(sin(2*pi*x(:,2)).*(sin(pi*x(:,1))).^2);

vexact = @(time,x) -pi*sin(time+1).*(sin(2*pi*x(:,1)).*(sin(pi*x(:,2))).^2);

pexact = @(time,x) sin(time+1).* cos(pi*x(:,1)).* sin(pi*x(:,2)) ;

%Initialize vectors

P = [bcsDP; bcsNP; pexact(0,[XP(idsP) YP(idsP)])];

u = [bcsDu; bcsNu; uexact(0,[XU(idsu) YU(idsu)])];

v = [bcsDv; bcsNv; vexact(0,[XV(idsv) YV(idsv)])];

5.5.5 Misc. and Plotting

To plot the solution we can simply use surf(P(NodeP)) in the plotting script. To plot the solution
at the correct (x, y) coordinates for the interior we can use
surf(XP,YP,P(NodeP(2:end-1,2:end-1))).

This problem requires ν = 1, and to ensure this happens, we explicitly set ν = 1 in the SetupScript
to guarantee this happens.

34

We also created vectors Pex, uex, vex in the SetupScript, and these are again used in PlotScript

for plotting the exact solution.

5.6 Sudden Expansion

Note: This section is now a bit out-dated and could be updated for easier use with the new boundary
condition interface. However, it still works as is, so we leave in the manual for now.

This example demonstrates the accuracy of a control-volume analysis compared to a Bernoulli
analysis for predicting the pressure drop across a sudden expansion in a pipe. Students in MIT
course 2.29 solve this problem analytically using the two approaches, and verify the answer numer-
ically at a later point in the course. Bernoulli’s principle does not apply in this case, because the
recirculation zones violate the inviscid flow assumption, upon which Bernoulli’s principle is based.
This example ensures that the numerical solution remains symmetric up to a transition Reynolds
number where numerical roundoff is sufficiently large enough to cause flow perturbations. It is also
used to test the open boundary condition, and it demonstrates that the domain masking works
correctly. The setup script for this example also shows how to create more complex geometries.
This case can readily be modified for the classical flow over a cylinder test-case.

The Navier Stokes solvers require 3 inputs: app,SetupScript and PlotScript. The first input is
a structure, where the fields app.Nx, app.Ny, app.T and app.dt define the discretization, giving
the number of INTERIOR points in the x-direction, y-direction, the duration of the simulation,
and the size of the time step, respectively. The value of the kinematic viscosity (which is analogous
to the inverse Reynolds number) is set through the app.nu field, whereas the kinematic diffusivity
for the density is set through app.kappa. The app.PlotIntrvl field is an integer number that
indicates the number of time integrations steps between calling the script given by the string input
PlotScript. The second input is the main focus of this section, and it is a string giving the
name of a MATLAB script which sets up the necessary parts of the problem to be solved. That
is, the solver calls eval(SetupScript) to setup the problem at hand. Similarly, the solver calls
eval(PlotScript) every app.PlotIntrvl steps of the integration. While PlotScript is normally
used for plotting the solution, it can also be used for saving the solution. Also, any uncleared
variables in SetupScript will be available for use in PlotScript. Therefore, a function handle
created in SetupScript can be used in PlotScript without causing an error.

The setup file is in its entirety as follows:

% Sudden Expansion test case

%# of interior CV’s

%Check of app.Ny is a multiple of 3

if mod(app.Ny,3)

fprintf(’NOTE: app.Ny was not a multiple of 3, change app.Ny from %g to %g\n’,...

app.Ny,app.Ny-mod(app.Ny,3));

app.Ny = app.Ny-mod(app.Ny,3);

end

if app.Ny/3<=2

display(’app.Ny needs to be at least 9 for this test case, app.Ny changed to 9.’)

app.Ny = 9;

end

%Define Forcing functions

Fu = @(time,p) 0;

35

Fv = @(time,p) 0;

%Set size of domain

a = 20; b = 1;

dx = a./(app.Nx); dy = b./(app.Ny);

%Set boundary conditions

bcsDrho = [0 0 0 0]; bcsNrho = [0];

bcsDP = [0]; bcsNP = [0 0 0 0];

bcsOP = [1];

bcsDu = [0 1 0 0 0]; bcsNu= [];

bcsOu = [5];

bcsDv = [0 0 0 0]; bcsNv= [0];

%Set number of timesteps

Nt = ceil(app.T/app.dt);

%% create geometry mask

Nbcs = length(bcsDP) + length(bcsNP);

bnd = [1 1 1 1];

Mask = zeros(app.Ny, app.Nx);

Mask(1:round(app.Ny/3),1:round(app.Nx/5))=1;

Mask(end-round(app.Ny/3-1):end,1:round(app.Nx/5))=1;

%create Node matrices

[NodeP, Nodeu, Nodev, idsP, idsu, idsv] = NodePad(Mask,bnd,1);

NodeRho=NodeP;

NodeP(find(NodeP==1))=-1;NodeP(find(NodeP==3))=1;NodeP(find(NodeP==-1))=3;

Nodeu(find(Nodeu==3))=-1;Nodeu(find(Nodeu==5))=3;Nodeu(find(Nodeu==-1))=5;

Nodev(find(Nodev==3))=-1;Nodev(find(Nodev==5))=3;Nodev(find(Nodev==-1))=5;

NodeRho(find(NodeRho==3))=-1;NodeRho(find(NodeRho==5))=3;NodeRho(find(NodeRho==-1))=5;

%% Initialize fields

xp = linspace(dx/2, a-dx/2, app.Nx);yp = fliplr(linspace(dy/2, b-dy/2, app.Ny));

xu = linspace(dx ,a-dx , app.Nx-1);yu = fliplr(linspace(dy/2, b-dy/2, app.Ny));

xv = linspace(dx/2, a-dx/2, app.Nx);yv = fliplr(linspace(dy , b-dy, app.Ny-1));

[XP YP] = meshgrid(xp,yp);[XU YU] = meshgrid(xu,yu);[XV YV] = meshgrid(xv,yv);

rhoinit=@(X,Y) 0*((X>0.5) - (X<0.5))*0.5;

pinit = @(X,Y) zeros(size(X));

uinit = @(X,Y) zeros(size(X));

vinit = @(X,Y) zeros(size(X));

rho=[bcsDrho’ ;bcsNrho’ ;rhoinit(XP(idsP), YP(idsP))];

P = [bcsDP; bcsNP; pinit(XP(idsP), YP(idsP))];

u = [bcsDu; bcsNu; uinit(XU(idsu), YU(idsu))];

v = [bcsDv; bcsNv; vinit(XV(idsv), YV(idsv))];

5.6.1 Setting Up Forcing Functions

The forcing functions can take time and space as the input variables. For this test case there are
no forcing function contributions, so we simply set:

Fu = @(time,p) 0;

Fv = @(time,p) 0;

36

5.6.2 Setting Up the Grid

The first step in creating the grid is setting the constant discretization sizes ∆x,∆y, and number
of time integration steps Nt, which is accomplished simply as:

%Set size of domain

a = 20; b = 1;

dx = a./(app.Nx); dy = b./(app.Ny);

%Set number of timesteps

Nt = ceil(app.T/app.dt);

since here the domain is 20× 1 units long, and we are integrating for T/∆t time steps.

The Navier-Stokes solvers require 4 node numbering matrices, Noderho, NodeP, Nodeu, and Nodev for the density,
Pressure, u-velocity, and v-velocity. A simple way to create these matrices is by providing a “masking” matrix to the
NodePad function. Since there we now have interior geometry for this test-case, we need to set parts of the masking
matrix equal to a non-zero number (for example 1, in this case, see NodePad.m for more information) to the NodePad

function as follows:

%% create geometry mask

Nbcs = length(bcsDP) + length(bcsNP);

bnd = [1 1 1 1];

Mask = zeros(app.Ny, app.Nx);

Mask(1:round(app.Ny/3),1:round(app.Nx/5))=1;

Mask(end-round(app.Ny/3-1):end,1:round(app.Nx/5))=1;

%create Node matrices

[NodeP, Nodeu, Nodev, idsP, idsu, idsv] = NodePad(Mask,bnd,1);

NodeRho=NodeP;

In this case, there are Nx interior nodes in the x-direction, and Ny interior nodes in the y-direction, minus the nodes
that are masked. Note that only the first fifth (Nx/5) of the domain in the x-direction is masked, and the top and
bottom third (Ny/3) of the domain in the y-direction is masked. The mask is only created for the interior nodes.
Therefore NodePad ”pads” the masking matrix to add the four boundaries conditions on each edge. The second input
to NodePad is a logical array, and tells the function which of the boundaries to pad ([left, right, bottom, top]), and the
last input is a logical scalar which checks for periodicity, automatically adding periodic boundaries if required.

Note that the ID of the first interior degree of freedom is Nbcs + 1, where Nbcs is a scalar variable containing the
number of boundary conditions, in this case Nbcs = 5. Therefore the first interior node ID is 6, and this will be the
first unknown that will be solved (that is, the first row in the A matrix).

37

An example of NodeP and Nodeu for a Nx = 10, Ny = 9 domain is as follows:

NodeP =

2 5 5 5 5 5 5 5 5 5 5 3
2 1 1 12 21 30 39 48 57 66 75 3
2 1 1 13 22 31 40 49 58 67 76 3
2 1 1 14 23 32 41 50 59 68 77 3
2 6 9 15 24 33 42 51 60 69 78 3
2 7 10 16 25 34 43 52 61 70 79 3
2 8 11 17 26 35 44 53 62 71 80 3
2 1 1 18 27 36 45 54 63 72 81 3
2 1 1 19 28 37 46 55 64 73 82 3
2 1 1 20 29 38 47 56 65 74 83 3
2 4 4 4 4 4 4 4 4 4 4 3

Nodeu =

2 5 5 5 5 5 5 5 5 5 3
2 1 1 12 21 30 39 48 57 66 3
2 1 1 13 22 31 40 49 58 67 3
2 1 1 14 23 32 41 50 59 68 3
2 6 9 15 24 33 42 51 60 69 3
2 7 10 16 25 34 43 52 61 70 3
2 8 11 17 26 35 44 53 62 71 3
2 1 1 18 27 36 45 54 63 72 3
2 1 1 19 28 37 46 55 64 73 3
2 1 1 20 29 38 47 56 65 74 3
2 4 4 4 4 4 4 4 4 4 3

With the boundary conditions chosen for this problem, however, the arrangement given above is not possible (see
§5.4), hence the boundary condition numbers are re-arranged using the following code:

%Re-arrange pressure boundary node numbers suchs that open boundary has lowest number

NodeP(find(NodeP==1))=-1;

NodeP(find(NodeP==3))=1;

NodeP(find(NodeP==-1))=3;

%Re-arrange u-velocity boundary node numbers such that open boundary has highest number

Nodeu(find(Nodeu==3))=-1

;Nodeu(find(Nodeu==5))=3;

Nodeu(find(Nodeu==-1))=5;

%Re-arrange v-velocity boundary node numbers such that Neumann boundary has highest number

Nodev(find(Nodev==3))=-1;

Nodev(find(Nodev==5))=3;

Nodev(find(Nodev==-1))=5;

%Re-arrange density boundary node numbers such that Neumann boundary has highest number

NodeRho(find(NodeRho==3))=-1;

NodeRho(find(NodeRho==5))=3;

NodeRho(find(NodeRho==-1))=5;

38

and gives the following results for NodeP and Nodeu:

NodeP =

2 5 5 5 5 5 5 5 5 5 5 1
2 3 3 12 21 30 39 48 57 66 75 1
2 3 3 13 22 31 40 49 58 67 76 1
2 3 3 14 23 32 41 50 59 68 77 1
2 6 9 15 24 33 42 51 60 69 78 1
2 7 10 16 25 34 43 52 61 70 79 1
2 8 11 17 26 35 44 53 62 71 80 1
2 3 3 18 27 36 45 54 63 72 81 1
2 3 3 19 28 37 46 55 64 73 82 1
2 3 3 20 29 38 47 56 65 74 83 1
2 4 4 4 4 4 4 4 4 4 4 1

Nodeu =

2 3 3 3 3 3 3 3 3 3 5
2 1 1 12 21 30 39 48 57 66 5
2 1 1 13 22 31 40 49 58 67 5
2 1 1 14 23 32 41 50 59 68 5
2 6 9 15 24 33 42 51 60 69 5
2 7 10 16 25 34 43 52 61 70 5
2 8 11 17 26 35 44 53 62 71 5
2 1 1 18 27 36 45 54 63 72 5
2 1 1 19 28 37 46 55 64 73 5
2 1 1 20 29 38 47 56 65 74 5
2 4 4 4 4 4 4 4 4 4 5

5.6.3 Boundary Conditions

Significant care must be taken with properly setting up the
boundary conditions

There are a number of conventions related to the boundary conditions. First, let us define the variables used for the
boundary conditions, in each case these variables are one-dimensional double arrays:

bcsDP: Pressure Dirichlet boundary conditions

bcsNP: Pressure Neumann boundary conditions

bcsOP: ID of Pressure Dirichlet boundary that should be an open boundary

bcsDu: U-velocity Dirichlet boundary conditions

bcsNu: U-velocity Neumann boundary conditions

bcsOu: ID of U-velocity Dirichlet boundary that should be an open boundary

bcsDv: V-velocity Dirichlet boundary conditions

bcsNv: V-velocity Neumann boundary conditions

bcsOv: ID of V-velocity Dirichlet boundary that should be an open boundary

The numbering convention comes about from the way that the node numbering matrices are used. The first Nbcs
numbers are reserved for the boundary conditions. So, in this case, the first 5 numbers are reserved for boundaries.
bcsDP, then is an array that contains the VALUE of the Pressure Dirichlet boundary conditions with one exception
(for open boundaries), and bcsNP contains the VALUE of the Pressure Neumann boundary conditions. bcsOP contains
the IDs of Dirichlet boundary conditions that are actually open boundary conditions, and this is where the exception
comes about for Dirichlet boundaries. This may seem strange, but due to the way open boundary conditions are
implemented, they are first treated as Dirichlet boundaries and the matrices are modified afterwards to open boundary
conditions. The numbering rules are as follow: The lowest numbered boundary conditions must be of Dirichlet or
Open type, and the highest numbered boundary conditions must be of Neumann type. That is, there can never be
a Dirichlet boundary that has a larger number than a Neumann boundary. This explains why the Node numbering
matrices had to be renumbered in the grid-creation section. Open boundary conditions must be the highest numbered
Dirichlet boundary condition, that is, no true Dirichlet boundary condition may have a higher number than an
open boundary condition. Therefore, the numbering order (from lowest-numbered to highest numbered) is then as
follows:

1. Dirichlet

39

2. Open

3. Neumann

The open boundary condition used sets ∂2φ
∂n2 = 0, where φ is any quantity and n is in the normal direction. The

reason for this boundary condition is that it is a very weak condition on the solution. It essentially requires that the
second derivative vanishes as the exit, that is, no curvature.

To implement the following boundary conditions

ρ = 0 ∀x 6= 20 on ∂Ω

∂ρ

∂n
= 0 ∀x = 20 on ∂Ω

∂P

∂n
= 0 ∀x 6= 20 on ∂Ω

∂2P

∂n2
= 0 ∀x = 20 on ∂Ω

u = 0 ∀y = 0|y = 1 on ∂Ω

u = 1 ∀x = 0 on ∂Ω
∂u

∂n
= 0 ∀x = 20 on ∂Ω

v = 0 ∀x 6= 20 on ∂Ω

∂v

∂n
= 0 ∀x = 20 on ∂Ω

we use the code below:

%Density

bcsDrho = [0 0 0 0];

bcsNrho = [0];

%Pressure

bcsDP = [0];

bcsNP = [0 0 0 0];

bcsOP = [1];

%Velocities

bcsDu = [0 1 0 0 0];

bcsNu = [];

bcsOu = [5];

bcsDv = [0 0 0 0];

bcsNv = [0];

5.6.4 Initial Conditions

To create the initial conditions, first ”coordinate” matrices that contain the coordinates of the control volume centers
are created as follows:

%% Initialize fields

xp = linspace(dx/2, a-dx/2, Nx);yp = fliplr(linspace(dy/2, b-dy/2, Ny));

xu = linspace(dx ,a-dx , Nx-1);yu = fliplr(linspace(dy/2, b-dy/2, Ny));

xv = linspace(dx/2, a-dx/2, Nx);yv = fliplr(linspace(dy , b-dy, Ny-1));

[XP YP] = meshgrid(xp,yp);[XU YU] = meshgrid(xu,yu);[XV YV] = meshgrid(xv,yv);

note here we are using the MATLAB meshgrid function to create the matrices, and that these matrices are of the
size of the INTERIOR nodes only, that is, they do not go all the way up to the boundaries. Also note, the vertical
coordinate starts from the maximum value and decreases, and this is due to the node numbering convention described
in Section §5.2.

When initializing the variables, the boundary condition values are also stored in the vector of unknowns. Therefore,
when initializing the vector of unknowns, the values of the boundary conditions have to be included as well.

40

In this case there are interior masked nodes, which means that the created coordinate matrices will have too many
entries, and will not necessarily correspond to the IDs of the unknowns. Here the idsP, idsu, and idsv outputs
from the NodePad function needs to be used to select the correct elements of the coordinate matrices in order to
properly initialize.

Initializing the vector of unknowns using a uniform u-velocity is accomplished as follows:

rhoinit=@(X,Y)zeros(size(X));

pinit = @(X,Y) zeros(size(X));

uinit = @(X,Y) zeros(size(X));

vinit = @(X,Y) zeros(size(X));

rho=[bcsDrho’ ;bcsNrho’ ;rhoinit(XP(idsP), YP(idsP))];

P = [bcsDP; bcsNP; pinit(XP(idsP), YP(idsP))];

u = [bcsDu; bcsNu; uinit(XU(idsu), YU(idsu))];

v = [bcsDv; bcsNv; vinit(XV(idsv), YV(idsv))];

5.6.5 Misc. and Plotting

To plot the solution we can simply use surf(P(NodeP)) in the plotting script. To plot the solution at the correct
(x, y) coordinates for the interior we can use surf(XP,YP,P(NodeP(2:end-1,2:end-1))).

6 Troubleshooting

1. I get an error that MATLAB cannot find certain files?
Did you remember to run setup at the start?

2. I changed app.Nx and app.Ny when running one of the examples in TestCase, but now my solution is
wrong/blows up, and I get NaNs. What’s going on?
You are probably violating the CFL condition (See §2.1.7). Try reducing app.dt until your solution is no
longer wrong/blows up.

3. My Boundary conditions aren’t working? What’s going on?
Did you carefully read the rules concerning boundary conditions? See §5.4.

4. None of the above worked? What do I do now?
Make sure that you are not inputting any non-physical parameter (for example, a negative dt). Check over
your code, and try a few more things, but if you are stuck, please try the forum or submit a bug report on
http://mseas.mit.edu/codes.

41

References

Guermond, J. and Minev, P. (2006). An overview of projection methods for incompressible flow. Comput. Methods
Appl. Mech. Engrg., 195:6011–6045.

Khatiwala, S. (2003). Generation of internal tides in an ocean of finite depth:analytical and numerical calculations.
Deep-Sea Research Part I, 50:3–21.

Legg, S. and Huijts, K. (2006). Preliminary simulations of internal waves and mixing generated by finite amplitude
tidal flow over isolated topography. Deep-Sea Research Part II, 53:140–156.

Leveque, R. J. (2002). Finite Volume Methods for Hyperbolic Problems. Cambridge University Press.

Ogden, K. (2011). Internal tides simulated using the 2.29 finite volume boussinesq code. MIT Course 2.29 Final
Project.

Özgökmen, T. M. and Chassignet, E. P. (2002). Dynamics of two-dimensional turbulent bottom gravity currents.
Journal of Physical Oceanography, 32:1460–1478.

Sapsis, T. and Lermusiaux, P. (2009). Dynamically orthogonal field equations for continuous stochastic dynamical
systems. Physica D, 238:2347–2360.

Sapsis, T. P. and Lermusiaux, P. F. J. (2011). Dynamical criteria for the evolution of the stochastic dimensionality
in flows with uncertainty. Physica D, In. Press.

Van Leer, B. (1977). Towards the ultimate conservative difference scheme. IV. A new approach to numerical convec-
tion. J. Comput. Phys., 23(3):276 – 299.

42

