
2.29 BELGIUM CHOCOLATE NAVIER STOKES SOLVER MATLAB
PACKAGE

MATT UECKERMANN

1. Introduction

This set of MATLAB packages and scripts solve advection-diffusion-reaction (ADR)
equations eq. [1], the Stokes equations eq. [2] and the Navier-Stokes equations eq. [3].

∂φ

∂t
+ u · ∇φ− κ∇2φ = f(φ,x, t)(1)

∂u
∂t

= ν∇2u−∇P

∇ · u = 0(2)

∂u
∂t

+ u · ∇u = ν∇2u−∇P ∗ − ρ∗k̂ + F (x, t)

∇ · u = 0
∂ρ∗

∂t
+ u · ∇ρ∗ − κ∇2ρ∗ = 0(3)

where P ∗ is the dynamic pressure (hydrostatic component removed) divided by the average
density ρ0, and ρ∗ is perturbation density multiplied by g.

2. Quick Start Guide

This Guide walks through how to create the SuddenExpansion and StokesForcing test
cases.

2.1. StokesForcing test case: This is an analytical test case used for testing the conver-
gence of various Stokes solvers. The solution is:

u = π sin(t) sin(2πy) sin2(πx)(4)
v = π sin(t) sin(2πx) sin2(πy)(5)
P = sin(t) cos(πx) sin(πy)(6)

and is solved on a square square domain of size [−1, 1]× [−1, 1].
The solver function requires 7 inputs: Nx,Ny,Nt,nu,PlotIntrvl,SetupScript,PlotScript.

The first three inputs define the discretization, giving the number of INTERIOR points
in the x-direction, y-direction, and in time. The fourth input is the value of the kine-
matic viscosity (which is analogous to modifying the Reynolds number for the full NS
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2 MATT UECKERMANN

equations). The fifth input is an integer number that indicates the number of time inte-
grations steps between calling the script given by the string input PlotScript. The sixth
input is the main focus of the quick-start guide, and it is a string giving the name of a
MATLAB script which sets up the necessary parts of the problem to be solved. That is,
the solver calls eval(SetupScript) to setup the problem at hand. Similarly, the solver
calls eval(PlotScript) every PlotIntrvl steps of the integration. While PlotScript is
normally used for plotting the solution, it can also be used for saving the solution. Also,
any uncleared variables in SetupScript will be available for use in PlotScript. Therefore,
a function handle created in SetupScript can be used in PlotScript without causing an
error.

The setup file is in its entirety as follows:

TODO

2.1.1. Setting up forcing functions. The forcing functions can take time and space as the
input variables. The spatial variable is expected to be a matrix with two columns. The
first column should contain the x locations of control volume (CV) centres, and the second
column should contain the y locations of CV centres. To set up the forcing functions
corresponding to the solutions eq. [6] we proceed as follows:

TODO

2.1.2. Setting up the grid. The Stokes solvers require 3 node numbering matrices, NodeP,
Nodeu, and Nodev for the Pressure, u-velocity, and v-velocity. A simple way to create these
matrices is by providing a ”masking” matrix to the NodePad function. Since there is no
interior geometry for this test-case, we can provide a mask with all-zero values the size of
the domain to the NodePad function as follows:

Mask = zeros(Ny, Nx);
%create Node matrices
[NodeP, Nodeu, Nodev, idsP, idsu, idsv] = NodePad(Mask,[1 1 1 1],1);

In this case there are Nx interior nodes in the x-direction, and Ny interior nodes in the
y-direction. The mask is only created for the interior nodes. Therefore NodePad ”pads”
the masking matrix to add the four boundaries conditions on each edge. The second input
to NodePad is a logical array, and tells the function which of the boundaries to pad ([left,
right, bottom, top]), and the last input is a logical scalar which checks for periodicity,
automatically adding periodic boundaries if required.

Note that the ID of the first interior degree of freedom is Nbcs+1, where Nbcs is a scalar
variable containing the number of boundary conditions, in this case Nbcs = 4. Therefore
the first interior node ID is 5, and this will be the first unknown that will be solved (that
is, the first row in the A matrix).
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An example of NodeP, Nodeu, and Nodev for a Nx = 5, Ny = 4 domain is as follows:

NodeP =


1 4 4 4 4 4 2
1 5 9 13 17 21 2
1 6 10 14 18 22 2
1 7 11 15 19 23 2
1 8 12 16 20 24 2
1 3 3 3 3 3 2



Nodeu =


1 4 4 4 4 2
1 5 9 13 17 2
1 6 10 14 18 2
1 7 11 15 19 2
1 8 12 16 20 2
1 3 3 3 3 2



Nodev =


1 4 4 4 4 4 2
1 5 8 11 14 17 2
1 6 9 12 15 18 2
1 7 10 13 16 19 2
1 3 3 3 3 3 2


2.1.3. Boundary Conditions. Significant care must be taken with properly setting up the
boundary conditions

There are a number of conventions related to the boundary conditions. First, let us
define the variables used for the boundary conditions, in each case these variables are
one-dimensional double arrays:
bcsDP: Pressure Dirichlet boundary conditions
bcsNP: Pressure Neumann boundary conditions
bcsOP: ID of Pressure Dirichlet boundary that should be an open boundary
bcsDu: U-velocity Dirichlet boundary conditions
bcsNu: U-velocity Neumann boundary conditions
bcsOu: ID of U-velocity Dirichlet boundary that should be an open boundary
bcsDv: V-velocity Dirichlet boundary conditions
bcsNv: V-velocity Neumann boundary conditions
bcsOv: ID of V-velocity Dirichlet boundary that should be an open boundary

The numbering convention comes about from the way that the node numbering matrices
are used. The first Nbcs numbers are reserved for the boundary conditions. So, in this
case, the first 4 numbers are reserved for boundaries. bcsDP, then is an array that contains
the VALUE of the Dirichlet boundary conditions. Since this problem contains only uniform
Dirichlet boundaries for velocity and uniform Neumann conditions for Pressure, bcsDu,
bcsDv, and bcsNP are all 1× 4 arrays with zero entries. The remaining arrays are empty.
This is implemented as follows:
bcsDP= []; bcsNP= [0 0 0 0];
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bcsDu= [0 0 0 0]; bcsNu= [];
bcsDv= [0 0 0 0]; bcsNv= [];

2.1.4. Initial conditions. To create the initial conditions, first ”coordinate” matrices that
contain the coordinates of the control volume centres are created as follows:
TODO

note here we are using the MATLAB meshgrid function to create the matrices, and that
these matrixes are the size of the INTERIOR nodes only, that is, they do not go all the
way up to the boundaries. Also note, the vertical coordinate starts from the maximum
value and decreases, and this is due to the node numbering convection described in Section
3.2.

When initializing the variables, the boundary condition values are also stored in the
vector of unknowns. Therefore, when initializing the vector of unknowns, the values of the
boundary conditions have to be included as well.

For the general case there may be interior masked nodes, and then the created coordinate
matrices will have too many entries, and will not necessarily correspond to the IDs of the
unknowns. Here the idsP, idsu, and idsv outputs from the NodePad function is useful
for selecting the correct elements of the coordinate matrices.

Initializing the vector of unknowns using the analytical solution to the problem at t = 0
is accomplished as follows:
%% Solution
uexact = @(time,x) pi*sin(time+1).*(sin(2*pi*x(:,2)).*(sin(pi*x(:,1))).^2);
vexact = @(time,x) -pi*sin(time+1).*(sin(2*pi*x(:,1)).*(sin(pi*x(:,2))).^2);
pexact = @(time,x) sin(time+1).* cos( pi*x(:,1)).* sin(pi*x(:,2)) ;
%Initialize vectors
P = [bcsDP’;bcsNP’;pexact(0,[XP(idsP) YP(idsP)])];
u = [bcsDu’;bcsNu’;uexact(0,[XU(idsu) YU(idsu)])];
v = [bcsDv’;bcsNv’;vexact(0,[XV(idsv) YV(idsv)])];

2.1.5. Misc. and Plotting. To plot the solution we can simply use surf(P(NodeP)) in the
plotting script. To plot the solution at the correct (x, y) coordinates for the interior we
can use surf(XP,YP,P(NodeP(2:end-1,2:end-1))).

This problem requires ν = 1, and to ensure this happens, we explicitly set ν = 1 in the
SetupScript to guarantee this happens.

We also create vectors Pex, uex, vex in the SetupScript, and these are again used in
PlotScript for plotting the exact solution.

2.2. Sudden Expansion. This test case is useful for ensuring the numerical solution
remains symmetric up to a transition Reynolds number where numerical roundoff is suffi-
ciently large enough to cause flow perturbations. It is also used to test the open boundary
condition, and it demonstrates that the domain masking works correctly.

The Navier Stokes solver functions require 8 inputs: Nx,Ny,Nt,nu,kappa,PlotIntrvl,SetupScript,PlotScript.
The first three inputs define the discretization, giving the number of INTERIOR points in
the x-direction, y-direction, and in time. The fourth input is the value of the kinematic
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viscosity (which is analogous to modifying the Reynolds number for the full NS equations),
and the fifth is the diffusivity of the tracer density. The sixth input is an integer number
that indicates the number of time integrations steps between calling the script given by
the string input PlotScript. The seventh input is the main focus of the quick-start guide,
and it is a string giving the name of a MATLAB script which sets up the necessary parts
of the problem to be solved. That is, the solver calls eval(SetupScript) to setup the
problem at hand. Similarly, the solver calls eval(PlotScript) every PlotIntrvl steps
of the integration. While PlotScript is normally used for plotting the solution, it can
also be used for saving the solution. Also, any uncleared variables in SetupScript will be
available for use in PlotScript. Therefore, a function handle created in SetupScript can
be used in PlotScript without causing an error.

The setup file is in its entirety as follows:
Todo

2.2.1. Setting up forcing functions. The forcing functions can take time and space as the
input variables. For this test case there are no forcing function contributions, so we simply
set:
Fu = @(time,p) 0;
Fv = @(time,p) 0;

2.2.2. Setting up the grid. The Stokes solvers require 4 node numbering matrices, Noderho,
NodeP, Nodeu, and Nodev for the density, Pressure, u-velocity, and v-velocity. A simple
way to create these matrices is by providing a ”masking” matrix to the NodePad function.
Since there we now have interior geometry for this test-case, we need to set parts of the
masking matrix equal to a non-zero number to the NodePad function as follows:
%% create geometry mask
Nbcs = length(bcsDP) + length(bcsNP);
bnd = [1 1 1 1];
Mask = zeros(Ny, Nx);
Mask(1:round(Ny/3),1:round(Nx/5))=1;
Mask(end-round(Ny/3-1):end,1:round(Nx/5))=1;

%create Node matrices
[NodeP, Nodeu, Nodev, idsP, idsu, idsv] = NodePad(Mask,bnd,1);
Noderho=NodeP;

In this case there are Nx interior nodes in the x-direction, and Ny interior nodes in the
y-direction, minus the nodes that are masked. Note that only the first fifth (Nx/5) of
the domain in the x-direction is masked, and the top and bottom third (Ny/3) of the
domain in the y-direction is masked. The mask is only created for the interior nodes.
Therefore NodePad ”pads” the masking matrix to add the four boundaries conditions on
each edge. The second input to NodePad is a logical array, and tells the function which
of the boundaries to pad ([left, right, bottom, top]), and the last input is a logical scalar
which checks for periodicity, automatically adding periodic boundaries if required.
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Note that the ID of the first interior degree of freedom is Nbcs+1, where Nbcs is a scalar
variable containing the number of boundary conditions, in this case Nbcs = 5. Therefore
the first interior node ID is 6, and this will be the first unknown that will be solved (that
is, the first row in the A matrix).

An example of NodeP and Nodeu for a Nx = 10, Ny = 9 domain is as follows:

NodeP =



2 5 5 5 5 5 5 5 5 5 5 3
2 1 1 13 21 30 39 48 57 66 75 3
2 1 1 13 22 31 40 49 58 67 76 3
2 1 1 14 23 32 41 50 59 68 77 3
2 6 9 15 24 33 42 51 60 69 78 3
2 7 10 16 25 34 43 52 61 70 79 3
2 8 12 17 26 35 44 53 62 71 80 3
2 1 1 18 27 36 45 54 63 72 81 3
2 1 1 19 28 37 46 55 64 73 82 3
2 1 1 20 29 38 47 56 65 74 83 3
2 4 4 4 4 4 4 4 4 4 4 3



Nodeu =



2 5 5 5 5 5 5 5 5 5 3
2 1 1 13 21 30 39 48 57 66 3
2 1 1 13 22 31 40 49 58 67 3
2 1 1 14 23 32 41 50 59 68 3
2 6 9 15 24 33 42 51 60 69 3
2 7 10 16 25 34 43 52 61 70 3
2 8 12 17 26 35 44 53 62 71 3
2 1 1 18 27 36 45 54 63 72 3
2 1 1 19 28 37 46 55 64 73 3
2 1 1 20 29 38 47 56 65 74 3
2 4 4 4 4 4 4 4 4 4 3



With the boundary conditions chosen for this problem, however, the arrangement given
above is not possible (explanation is following section), hence the boundary condition
numbers are re-arranged using the following code:

%Re-arrange pressure boundary node numbers suchs that open boundary has lowest number
NodeP(find(NodeP==1))=-1;NodeP(find(NodeP==3))=1;NodeP(find(NodeP==-1))=3;
%Re-arrange u-velocity boundary node numbers such that open boundary has highest number
Nodeu(find(Nodeu==3))=-1;Nodeu(find(Nodeu==5))=3;Nodeu(find(Nodeu==-1))=5;
%Re-arrange v-velocity boundary node numbers such that Neumann boundary has highest number
Nodev(find(Nodev==3))=-1;Nodev(find(Nodev==5))=3;Nodev(find(Nodev==-1))=5;
%Re-arrange density boundary node numbers such that Neumann boundary has highest number
NodeRho(find(NodeRho==3))=-1;NodeRho(find(NodeRho==5))=3;NodeRho(find(NodeRho==-1))=5;
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and gives the following results for NodeP and Nodeu:

NodeP =



2 5 5 5 5 5 5 5 5 5 5 1
2 3 3 13 21 30 39 48 57 66 75 1
2 3 3 13 22 31 40 49 58 67 76 1
2 3 3 14 23 32 41 50 59 68 77 1
2 6 9 15 24 33 42 51 60 69 78 1
2 7 10 16 25 34 43 52 61 70 79 1
2 8 12 17 26 35 44 53 62 71 80 1
2 3 3 18 27 36 45 54 63 72 81 1
2 3 3 19 28 37 46 55 64 73 82 1
2 3 3 20 29 38 47 56 65 74 83 1
2 4 4 4 4 4 4 4 4 4 4 1



Nodeu =



2 3 3 3 3 3 3 3 3 3 5
2 1 1 13 21 30 39 48 57 66 5
2 1 1 13 22 31 40 49 58 67 5
2 1 1 14 23 32 41 50 59 68 5
2 6 9 15 24 33 42 51 60 69 5
2 7 10 16 25 34 43 52 61 70 5
2 8 12 17 26 35 44 53 62 71 5
2 1 1 18 27 36 45 54 63 72 5
2 1 1 19 28 37 46 55 64 73 5
2 1 1 20 29 38 47 56 65 74 5
2 4 4 4 4 4 4 4 4 4 5


2.2.3. Boundary Conditions. Significant care must be taken with properly setting up the
boundary conditions

There are a number of conventions related to the boundary conditions. First, let us
define the variables used for the boundary conditions, in each case these variables are
one-dimensional double arrays:
bcsDrho: Density Dirichlet boundary conditions
bcsNrho: Density Neumann boundary conditions
bcsDP: Pressure Dirichlet boundary conditions
bcsNP: Pressure Neumann boundary conditions
bcsOP: ID of Pressure Dirichlet boundary that should be an open boundary
bcsDu: U-velocity Dirichlet boundary conditions
bcsNu: U-velocity Neumann boundary conditions
bcsOu: ID of U-velocity Dirichlet boundary that should be an open boundary
bcsDv: V-velocity Dirichlet boundary conditions
bcsNv: V-velocity Neumann boundary conditions
bcsOv: ID of V-velocity Dirichlet boundary that should be an open boundary

The numbering convention comes about from the way that the node numbering matrices
are used. The first Nbcs numbers are reserved for the boundary conditions. So, in this case,
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the first 5 numbers are reserved for boundaries. bcsDP, then is an array that contains the
VALUE of the Pressure Dirichlet boundary conditions with one exception (for open bound-
aries), and bcsNP contains the VALUE of the Pressure Neumann boundary conditions.
bcsOP contains the IDs of Dirichlet boundary conditions that are actually open boundary
conditions, and this is where the exception comes about for Dirichlet boundaries. This may
seem strange, but due to the way open boundary conditions are implemented, they are first
treated as Dirichlet boundaries and the matrices are modified afterwards to open boundary
conditions. The numbering rules are as follow: The lowest numbered boundary conditions
must be of Dirichlet or Open type, and the highest numbered boundary conditions must be
of Neumann type. That is, there can never be a Dirichlet boundary that has a larger num-
ber than a Neumann boundary. This explains why the Node numbering matrices had to be
renumbered in the grid-creation section. Open boundary conditions must be the highest
numbered Dirichlet boundary condition, that is, no true Dirichlet boundary condition may
have a higher number than an open boundary condition. Therefore, the numbering order
(from lowest-numbered to highest numbered) is then as follows:

(1) Dirichlet
(2) Open
(3) Neumann

.
The open boundary condition used sets ∂2φ

∂n2 = 0, where φ is any quantity and n is in the
normal direction.

Therefore, to implement the following boundary conditions

ρ = 0 ∀x 6= 20 on ∂Ω
∂ρ

∂n
= 0 ∀x = 20 on ∂Ω

∂P

∂n
= 0 ∀x 6= 20 on ∂Ω

∂2P

∂n2
= 0 ∀x = 20 on ∂Ω

u = 0 ∀y = 0|y = 1 on ∂Ω
u = 1 ∀x = 0 on ∂Ω

∂2u

∂n2
= 0 ∀x = 20 on ∂Ω

v = 0 ∀x 6= 20 on ∂Ω
∂v

∂n
= 0 ∀x = 20 on ∂Ω

we use the code below:
%Density
bcsDrho = [0 -0.0 0 0];
bcsNrho = [0];
%Pressure
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bcsDP= [0];
bcsNP = [0 0 0 0];
bcsOP= [1];
%Velocities
bcsDu= [0 1 0 0 0];
bcsNu= [];
bcsOu= [5];
bcsDv= [0 0 0 0];
bcsNv= [0];

2.2.4. Initial conditions. When initializing the variables, the boundary condition values are
also stored in the vector of unknowns. Therefore, when initializing the vector of unknowns,
the values of the boundary conditions have to be included as well.

In this case there are interior masked nodes, which means that the created coordinate
matrices will have too many entries, and will not necessarily correspond to the IDs of the
unknowns. Here the idsP, idsu, and idsv outputs from the NodePad function needs
to be used to select the correct elements of the coordinate matrices in order to properly
initialize.

Initializing the vector of unknowns using a uniform u-velocity is accomplished as follows:
rhoinit=@(X,Y)zeros(size(X));
pinit = @(X,Y) zeros(size(X));
uinit = @(X,Y) ones(size(X));
vinit = @(X,Y) zeros(size(X));

rho=[bcsDrho’ ;bcsNrho’ ;rhoinit(XP(idsP), YP(idsP))];
P = [bcsDP’;bcsNP’; pinit(XP(idsP), YP(idsP))];
u = [bcsDu’;bcsNu’; uinit(XU(idsu), YU(idsu))];
v = [bcsDv’;bcsNv’; vinit(XV(idsv), YV(idsv))];
%Correct u-velocity IC to be divergence-free
u(Nodeu(2:end-1,round(Nx/5)+2:end))=1/3;

2.2.5. Misc. and Plotting. To plot the solution we can simply use surf(P(NodeP)) in the
plotting script. To plot the solution at the correct (x, y) coordinates for the interior we
can use surf(XP,YP,P(NodeP(2:end-1,2:end-1))).

3. Detailed documentation

3.1. Naming conventions. In the code two naming conventions are used. When deal-
ing with a single control volume centered at (x, y) we name the locations (x−∆x/2, y),(x+
∆x/2, y),(x, y−∆y/2), and (x, y+∆y/2) as [west/left], [east,right], [south,bottom], [north,top],
respectively, using LOWERCASE letters. Similarly, we name the locations (x−∆x, y),(x+
∆x, y),(x, y−∆y), and (x, y+∆y) as [West/Left], [East,Right], [South,Bottom], [North,Top],
respectively, using UPPERCASE letters. Finally, it is customary to label the value of the
function centered at the present CV as ”Present” or just ”P”. We note that this may be
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confusing with the Pressure, however, Pressure is never used as a subscript, so hopefully
the meaning will be clear from the context. This naming convention is illustrated in Figure
[1].

Figure 1. Naming conventions

Usually a single letter of the alphabet is used for integer numbers used in for loops, and
generally the first for loop is started using the letter ”i”. Also, generally ”i” is used for the
rows of matrices, and ”j” is used for the columns of matrices.

3.2. Node number convention. The tracer, u-velocity and v-velocity grids are shown
superimposed in Figure [2] and separately in Figure [3]. The numbering convention used
in the code is illustrated in Figure [2]. A node matrix will be used and it will be in the
form Node(i,j). Therefore, the ”i” index will be used for the y-direction, and the ”j”
index will be used for the x-direction. This convention was chosen such that the way a
matrix is printed on screen in MATLAB mirrors the numbering convention of the physical
domain. It is nearly ideal, since increasing the column number of the matrix j increases
the x spatial direction. However, to increase the y spatial direction, the row number of the
matrix i has to decrease. Note, nowhere are the node-numbering matrices required, but
these are used for coding convenience, and (hopefully) clarity.

3.3. Data-Structures. Since structured grids are used, the data-structures are reasonably
simple. Unknowns are stored in 1-dimensional arrays. The first Nbcs entries are reserved
for boundary conditions, and are used to specify the value of boundaries. Time varying
boundary conditions are allowed in this way, but these are not explicitly coded (although,
it *could* be handled using PlotScript.

The remaining data-structures are restricted to the matrix operators. All matrix oper-
ators are stored as sparse two-dimensional arrays.
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Figure 2. Grid setup

3.4. Coordinate Transformation. The main difference between the Vanilla code and
this one is the use of a generalized coordinate transformation. This transformation requires
functions x = f(ξ, η), y = g(ξ, η), where ξ, η are defined on a uniform cartesian grid with
ξ = [0, 1], η = [0, 1], which is staggered as shown in Figure [2].

The conservation equation, which in cartesian coordinates reads:

∂(ρφ)
∂t

+
∂

∂xj

(
ρujφ− ν

∂φ

∂xj

)
= Sφ(7)
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Figure 3. Grid setup

becomes

∂(ρφ)
∂t

+
1
J

∂

∂ξj

[
ρUjφ−

ν

J

(
∂φ

∂ξm
Bmj

)]
= Sφ(8)
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where

J = det

(
∂xi
∂ξj

)
=

∣∣∣∣∣∣∣
∂x

∂ξ

∂x

∂η
∂y

∂ξ

∂y

∂η

∣∣∣∣∣∣∣ =
∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ
(9)

Uj = ukβ
kj = uβ1j + vβ2j(10)

Bmj = βkjβkm = β1jβ1m + β2jβ2m(11)

βij =


∂y

∂η
−∂y
∂ξ

−∂x
∂η

∂x

∂ξ

(12)

3.5. Advection Schemes. The different advection schemes implemented are described
in this section. The functions discussed can be found under <app root>/Advect>, where
<app root> is the root folder where these MATLAB scripts were uncompressed.

Both the UPWIND and QUICK (TODO) schemes for scalar advection and u, v-velocity
advection are implemented.

The discrete finite volume problem is as follows:

∂φx,y
∂t

∆V =
{
ux−∆x/2,yφ̂x−∆x/2,y − ux+∆x/2,yφ̂x+∆x/2,y

}
+(13) {

vx,y−∆y/2φ̂x,y−∆y/2 − vx,y+∆y/2φ̂x,y+∆y/2

}
Or using the East, West, North, South naming convention:

∂φx,y
∂t

∆V =
{
uW φ̂w − uEφ̂e

}
+
{
vSφ̂s − vN φ̂n

}
(14)

where the problem now is selecting appropriate values of the fluxes φ̂x±∆x/2,y±∆y, which

are approximately equal to φ̂i ≈
R

Ai
φdAi

Ai
.

A logical choice would be φ̂x+∆x/2,y = φx+∆x,y+φx,y

2 and this is known as the ”Central”
flux. However, for general cases, the central flux is shown to be unstable.

For the following sections, we will use the east flux as the example flux.

3.5.1. UPWIND schemes. The upwind scheme works by choosing the upwind value of the
function as the true value of the function at the interface of a control volume. The discrete
flux function then takes the value:

φ̂e =
{
φP uE > 0
φE uE < 0(15)

To actually implement this in the code, a trick involving absolute values are used to avoid
use of ”if” statements, and this is as follows.

φ̂e =
1
2
{uE(φE + φP )− |uE |(φE + φP )}(16)
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The upwind scalar and u, v-velocity advection functions are implemented in SCAadvect UW.m
and UVadvect UW.m respectively.

For the scalar advection functions, the velocities at the center of the control surfaces are
conveniently available, hence only the upwind value of the function needs to be selected in
two dimensions for each of the four surfaces. To to this, the indices were carefully selected
using integers ”w, e, s, n” for the west, east, south, and north faces. Setting one of these
integers equal to 1 and the rest to 0 then selects the correct indices for the corresponding
face. Therefore, the only change in the code from one flux to the next is setting these
integers, as well as selecting either the u or v component of velocity.

The final line selects only the active interior nodes, and returns the flux for those nodes.
The advection is performed for all nodes in the domain, including inactive boundary nodes
in the interior if present.

Essentially the same procedure is followed in the function performing the u, v-velocity
advection, however in this case we need to consider the staggering of the grid more carefully.
That is, sometimes it is necessary to average the vertical or horizontal velocity to obtain
a value at the desired location. The code for the u and v velocity advection is very
similar, in fact, once the u-velocity code was working it was copied, pasted, and with
minor modifications was used for the v-velocity.

3.6. Matrix Operators. To solve the Navier Stokes equations using the Projection Meth-
ods as used in this code, the Laplacian and Helmholz matrices need to be inverted, and
gradients and divergences need to be taken. The divergence and gradient operations do
not require inversion, and are therefore implemented as functions in a matrix-free format.
The Helmholz matrix is easily build from the Laplacian by adding a diagonal component,
hence the major matrix that needs to be built and stores is the Laplacian matrix.

3.6.1. Gradient Operations. For solving the Navier Stokes and Stokes equations, only the
gradient of the Pressure is required. This is implemented in mk Grad Div t.m. A simple
second order central difference (finite difference) scheme is used to find the gradient of
the pressure. The gradient is calculated for the entire domain, including any interior
masked points, and then only the active interior point are selected and outputted. For the
transformed coordinate frame, the equations are as follows:

∂φ

∂x
=

∂φ

∂ξ

β11

J
+
∂φ

∂η

β12

J

≈
φi,j+ 1

2
− φi,j− 1

2

∆ξ
β11

J
+

β12

4J∆η

(
φi−1,j+ 1

2
− φi+1,j+ 1

2
+ φi−1,j− 1

2
− φi+1,j− 1

2

)
(17)

∂φ

∂y
=

∂φ

∂ξ

β21

J
+
∂φ

∂η

β22

J

≈ β21

4J∆ξ

(
φi+ 1

2
,j+1 − φi+ 1

2
,j−1 + φi− 1

2
,j+1 − φi− 1

2
,j−1

)
+
φi− 1

2
,j − φi+ 1

2
,j

∆η
β22

J
(18)

There are a few things to note. First, this finds the derivative at the point i, j which would
be a velocity point, NOT a pressure point. Therefore, the equation above is written using
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the velocity point indices. Also, keep in mind that in our notation i is for n− s (up down)
and j is for e−w (right left), and i decrease going north (up) while j increases going east
(right). This gives the following computational stencils (now written in Pressure indices)

j j + 1
i− 1 β12

4J∆η
β12

4J∆η

i − β11

J∆ξ
β11

J∆ξ

i+ 1 − β12

4J∆η − β12

4J∆η

Table 1. Computational cell for ∂P
∂x in Pressure indices

j − 1 j j + 1
i − β21

4J∆ξ
β22

J∆η
β21

4J∆ξ

i+ 1 − β21

4J∆ξ − β22

J∆η
β21

4J∆ξ

Table 2. Computational cell for ∂P
∂y in Pressure indices

3.6.2. Divergence Operations. For solving the Navier Stokes and Stokes equations, only
the divergence of the velocity is required. This is implemented in mk Grad Div t.m.The
basic divergence operator implementation is essentially the same as the Gradient operator,
since it also use a second-order accurate finite difference approximation of the derivatives.
However, in the case where Neumann boundary conditions are used, additional steps are
required to set the correct value of ∂phi

∂n at the boundary. Therefore, in the code, first
the derivatives are found while ignoring the boundary conditions. Then the IDs of the
Neumann boundaries are found. Finally, on Neuman boundaries, the calculated derivative
is replaced by the specified values of the Neumann boundaries.

The implementation looks, perhaps, more complicated than it should be. However, this
implementation is generally applicable to any interior masked domain. The computational
cells remain the same, with some minor changes in indices due to the grid staggering.

j − 1 j

i− 1 β12

4J∆η
β12

4J∆η

i − β11

J∆ξ
β11

J∆ξ

i+ 1 − β12

4J∆η − β12

4J∆η

Table 3. Computational cell for ∂u
∂x in u-velocity indices
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j − 1 j j + 1
i− 1 − β21

4J∆ξ
β22

J∆η
β21

4J∆ξ

i − β21

4J∆ξ − β22

J∆η
β21

4J∆ξ

Table 4. Computational cell for ∂v
∂y in v-velocity indices

3.6.3. Laplace Operator. The discrete version of the Laplacian operator ∇2 is built using
the mk Laplace function. The base discrete matrix is built for either Neumann or Dirichlet
boundary conditions. However, due to staggering, the Dirichlet boundary conditions will
be incorrect for some faces of the u, v CVs, and all faces of the Pressure CVs. These are
fixed using fixdbcs t.m. Also, open boundary conditions are not yet implemented, but
should be corrected for using FixDiffPObcs.

j − 1 j j + 1

i−1
ε12

k,m− 1
2

+ε12

k+ 1
2 ,m

4J∆ξ∆η −
ε22

k+ 1
2 ,m

J∆η2 +
ε12

k,m− 1
2

−ε12

k,m+ 1
2

4J∆ξ∆η

−ε12

k,m+ 1
2

−ε12

k+ 1
2 ,m

4J∆ξ∆η

i −
ε11

k,m− 1
2

J∆ξ2 +
ε12

k+ 1
2 ,m

−ε12

k− 1
2 ,m

4J∆ξ∆η

ε11

k,m+ 1
2

+ε11

k,m− 1
2

J∆ξ2 +
ε22

k+ 1
2 ,m

+ε22

k− 1
2 ,m

J∆η2 −
ε11

k,m+ 1
2

J∆ξ2 +
ε12

k− 1
2 ,m

−ε12

k+ 1
2 ,m

4J∆ξ∆η

i+1
−ε12

k,m− 1
2

−ε12

k− 1
2 ,m

4J∆ξ∆η −
ε22

k− 1
2 ,m

J∆η2 +
ε12

k,m+ 1
2

−ε12

k,m− 1
2

4J∆ξ∆η

ε12

k,m+ 1
2

+ε12

k− 1
2 ,m

4J∆ξ∆η

Table 5. Computational cell for ∇2 in transformed coordinates. εijk,m = ν
JB

ij |k∆η,m∆ξ,.

This cell highlights one of the unfortunate effects of our choice of coordinates systems.
While i decrease, we require k to increase, which can lead to some confusion. Particularly,
the function used in the code for εijk,m is defined as Eij(mξ,kη), that is, the subscript and
the function call order are reversed. Finally, notice that εij = εji is symmetric.


