THIRD YEAR PHD STUDENT · COMPUTATIONAL SCIENCE AND ENGINEERING

anan **Dos**

235 Albany St, Cambridge, MA, 02139

🛛 (+1) 617-470-5491 | 🗳 mdoshi@mit.edu | 📮 manandoshi | 🖇 Manan Doshi | 🔩 manan

Education

GPA: 5.0 /5 2023 (expected)
GPA: 5.0 /5
Feb 2021
GPA: 9.33 /10
Aug 2018
GPA: 8.50 /10 Aug 2018

INDIAN INSTITUTE OF TECHNOLOGY, BOMBAY

Publications

Bhabra, Manmeet S. et al. (Oct. 2020). "Optimal Harvesting with Autonomous Tow Vessels for Offshore Macroalgae Farming". In: OCEANS 2020 IEEE/MTS. In press. IEEE.

Doshi, Manan, Manmeet Bhabra, and Pierre F. J. Lermusiaux (2021). "Energy-Time Optimal Path Planning in Dynamic Flows: Theory and Schemes". In: In preparation.

Doshi, Manan, Chinmay S. Kulkarni, et al. (Oct. 2019). "Flow Maps and Coherent Sets for Characterizing Residence Times and Connectivity in Lagoons and Coral Reefs: The Case of the Red Sea". In: OCEANS Conference 2019. In press. IEEE. Seattle.

Lermusiaux, Pierre F. J. et al. (Oct. 2019). "Plastic Pollution in the Coastal Oceans: Characterization and Modeling". In: OCEANS Conference 2019. In press. IEEE. Seattle.

Key Projects _

Energy-Time Optimal Path Planning in Dynamic Fields

GUIDE: PROF. PIERRE LERMUSIAUX | MIT

- Derived and implemented schemes to solve the multi-objective problem of traveling between two points in the minimum time while using minimum energy by using the Hamilton-Jacobi optimal control formulation
- Extended the method to problems which allow for harvesting external fields and implemented it to compute paths to optimally collect algae for offshore farming. Computed optimal paths based on real biogeochemical simulations in the Massachusetts Bay region

Lagrangian Analysis of Inertial Particles in Ocean Flow

GUIDE: PROF. PIERRE LERMUSIAUX | MIT

- Built on top of existing methodology to study mixing and transport of passive material to account for particle inertia
- Proposed schemes to use properties of forward and backward transport to improve accuracy of transport predictions

Simulating Incompressible Fluid Flow using DG Methods

GUIDE: PROF. SHIVASUBRAMANIAN GOPALAKRISHNAN | IIT BOMBAY

Developed a python framework to solve incompressible Navier Stokes equations using Discontinuous Galerkin methods

Accelerating Vesicle simulation using Machine learning

GUIDE: PROF. GEORGE BIROS | UNIVERSITY OF TEXAS AT AUSTIN

 Attempted to use a deep CNN to speed up existing Boundary Element Method based simulation of inextensible vesicles suspended in viscous fluid

Technical Skills

Python (SciPy stack + TensorFlow)	C++	Julia
MATLAB	git	ĿТЕХ

Masters Research Current

Masters Research Current

Undergraduate Thesis Aug 2017 - Apr 2018

Summer Internship