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Presentation OutlinePresentation OutlinePresentation OutlinePresentation Outline

• Background/Motivation
• Scalar Advection
• Lock Exchange Problem
• High-Order on unstructured meshes

• Definitions and Notation
• Method of Weighted Residuals – Comparison to FV
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• Method of Weighted Residuals – Comparison to FV
• Concept of Basis and Test Functions

• Types of test functions
• Types of basis functions
• Continuous versus Discontinuous

• Worked example
• Difficulties and future research



Background/MotivationBackground/MotivationBackground/MotivationBackground/Motivation

• DG Advantages
• Localized memory access
• Higher order accuracy
• Well-suited to adaptive strategies
• Designed for advection dominated flows
• Excellent for wave propagation
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• Can be used for complex geometries

• DG Disadvantages
• Expensive?
• Difficult to implement
• Difficulty in treating higher-order derivatives



Why Higher Order?Why Higher Order?Why Higher Order?Why Higher Order?

Low Order
p=1, Time=260s, DoF=10,300

High Order
p=6, Time=100s, DoF=6,300

Tr
ac

er

Initial Condition
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Budgell W.P., et al.. Scalar advection schemes for ocean modelling on unstructured triangular grids. Ocean Dynamics (2007). Vol 57.

Initial Condition

Final Condition



Why Higher Why Higher Why Higher Why Higher Order?Order?Order?Order?

• Less Numerical Diffusion/Dissipation
• Higher accuracy for lower computational time

• Example test case: 20 periods of linear tracer advection:

Low Order
p=1, Time=260s, DoF=10,300

High Order
p=6, Time=100s, DoF=6,300

Tr
ac

er

Initial Condition
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Budgell W.P., et al.. Scalar advection schemes for ocean modelling on unstructured triangular grids. Ocean Dynamics (2007). Vol 57.

Initial Condition

Final Condition



• 5th order elements
• 35 x 35 elements (equivalent to approx 230x230 FV)

Higher Order Lock ExchangeHigher Order Lock ExchangeHigher Order Lock ExchangeHigher Order Lock Exchange
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Higher Order on unstructured meshesHigher Order on unstructured meshesHigher Order on unstructured meshesHigher Order on unstructured meshes

• Large Stencils are difficult
• What to do at boundaries?
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Definitions and NotationDefinitions and NotationDefinitions and NotationDefinitions and Notation
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Definitions and NotationDefinitions and NotationDefinitions and NotationDefinitions and Notation

• General advection equation
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Method of Weighted Residuals (MWR)Method of Weighted Residuals (MWR)Method of Weighted Residuals (MWR)Method of Weighted Residuals (MWR)

• Multiply residual by test function
• Integrate over domain
• Set equal to zero

• Integrate by parts
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• Integrate by parts

• Divergence theorem (weak form)



Test FunctionsTest FunctionsTest FunctionsTest Functions----Function SpacesFunction SpacesFunction SpacesFunction Spaces

• If test function is in infinite space
• Exact minimization of residual

• Discretization of equations leads to finite test function space

w in L2 such that w restricted to K in polynomial space of order p, for all K in triangulation

• Two spaces, the normed L2 space and Hilbert space
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• Two spaces, the normed L space and Hilbert space

• DG --

• CG --

• Is x2+x+1 in L2? What about H1? How about δ(x)? 



Test FunctionsTest FunctionsTest FunctionsTest Functions

• Collocation

• Subdomain
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• Galerkin
• Test function is chosen to be the same as the basis function
• Often used in practice



Basis FunctionsBasis FunctionsBasis FunctionsBasis Functions

• If basis in infinite space and test function in infinite space
• Solution will be exact

• Einstein Notation
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Basis Functions Basis Functions Basis Functions Basis Functions –––– Modal vs. NodalModal vs. NodalModal vs. NodalModal vs. Nodal

• Nodal
1. 1/2X2 - 1/2X
2. 1 - X2

3. 1/2X2 + 1/2x

• Modal
1. X2

2. X
3. 1
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Basis Functions Basis Functions Basis Functions Basis Functions –––– Continuous vs. DiscontinuousContinuous vs. DiscontinuousContinuous vs. DiscontinuousContinuous vs. Discontinuous

• Continuous Function Space
• Discontinuous Function Space
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Discontinuous Discontinuous Discontinuous Discontinuous vsvsvsvs Continuous Continuous Continuous Continuous GalerkinGalerkinGalerkinGalerkin

• CG has continuity constraint at element edges

_

+3 +2

+1

DG CG
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• CG has continuity constraint at element edges
• Forms matrix with many off-diagonal entries
• Difficult to stabilize hyperbolic problems

• DG has no continuity constraint
• Local solution in each element
• Two unknowns on either side of element edges
• Connection of domain achieved through fluxes: combination of unknowns on 

either side of edge
• Forms matrix with block-diagonal structure



Worked ExampleWorked ExampleWorked ExampleWorked Example

• Choose function space

• Apply MWR
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Worked ExampleWorked ExampleWorked ExampleWorked Example

• Substitute in basis and test functions
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Worked ExampleWorked ExampleWorked ExampleWorked Example

• Substitute for matrices
• M- Mass matrix
• K- Stiffness matrix or Convection matrix

• Solve specific case of 1D equations
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Worked ExampleWorked ExampleWorked ExampleWorked Example
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Worked ExampleWorked ExampleWorked ExampleWorked Example

clear all , clc, clf, close all

syms x
%create nodal basis
%Set order of basis function
%N >=2
N = 3;

%Create basis
if N==3

theta = [1/2*x^2-1/2*x;
1- x^2; 

%Create mass matrix
for i = 1:N

for j = 1:N
%Create integrand
intgr = int(theta(i)*theta(j));
%Integrate
M(i,j) =...

subs(intgr,1)-subs(intgr,-1);
end

end
%create convection matrix
for i = 1:N1- x^2; 

1/2*x^2+1/2*x];
else
xi = linspace(-1,1,N);

for i=1:N
theta(i)=sym( '1' );
for j=1:N

if j~=i
theta(i) = ...

theta(i)*(x-xi(j))/(xi(i)-xi(j));
end

end
end

end

for i = 1:N
for j = 1:N

%Create integrand
intgr = ...

int(diff(theta(i))*theta(j));
%Integrate
K(i,j) = ...

subs(intgr,1)-subs(intgr,-1);
end

end
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Worked ExampleWorked ExampleWorked ExampleWorked Example

%% Initialize u
Nx = 20;
dx = 1./Nx;
%Multiply Jacobian through mass matrix.
%Note computationl domain has length=2, 
actual domain length = dx
M=M*dx/2; 

%Create "mesh"
x = zeros(N,Nx);
for i = 1:N

%Integrate over time
for i = 1:10/dt

u0=u;
%Integrate with 4th order RK

for irk=4:-1:1
%Always use upwind flux
r = c*K*u;
%upwinding
r(end,:) = r(end,:) - c*u(end,:); 
%upwinding
r(1,:) = r(1,:) + c*u( end,ids ); for i = 1:N

x(i,:) =...
dx/(N-1)*(i-1):dx:1-dx/(N-1)*(N-i);

end
%Initialize u vector
u = exp(-(x-.5).^2/.1^2);

%Set timestep and velocity
dt=0.002;   c=1;
%Periodic domain
ids = [Nx,1:Nx-1];

r(1,:) = r(1,:) + c*u( end,ids ); 
%RK scheme
u = u0 + dt/irk*(M\r);

end
%Plot solution
if ~mod(i,10)

plot(x,u, 'b' )
drawnow

end
end
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• How to create basis on triangles, tetrahedrals?
• Need to create set of well-behaved Nodal point

• Integration in 2D, 3D?
• Higher-order quadrature rules on triangles, tetrahedrals

DifficultiesDifficultiesDifficultiesDifficulties
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Difficulties and future researchDifficulties and future researchDifficulties and future researchDifficulties and future research

• Higher-order derivatives
• Naturally handled with CG
• Somewhat more difficult with DG

• Decompose higher derivatives into system of first-order 
derivativesderivatives
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Difficulties and future researchDifficulties and future researchDifficulties and future researchDifficulties and future research

• Research directed towards improved treatment of higher-
order derivatives

Hybrid Discontinuous 
Galerkin Discontinuous GalerkinContinuous Galerkin

30 November, 2009

Duplication at corners, 
but no interior DOFs!

Duplication at edgesNo duplication of DOF



Lock Lock Lock Lock Exchange Exchange Exchange Exchange Problem using HDGProblem using HDGProblem using HDGProblem using HDG

• 37,000 DOF, 14,000 HDG unknowns
• 13.5 hrs
• 1320 Elements
• p=6
• Gr = 1.25x106, Sc=0.71
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Hartel, C., Meinburg, E., and Freider, N. (2000). Analysis and direct numerical simulations of the flow at a gravity-
current head. Part 1. Flow topology and front speed for slip and no-slip boundaries. J. Fluid. Mech, 418:189-212.



Lock Exchange ProblemLock Exchange ProblemLock Exchange ProblemLock Exchange Problem

Time = 10Time = 5

37,000 DOF
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Hartel, C., Meinburg, E., and Freider, N. (2000). Analysis and direct numerical simulations of the flow at a gravity-
current head. Part 1. Flow topology and front speed for slip and no-slip boundaries. J. Fluid. Mech, 418:189-212.

23,000 DOF
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