2.29 Numerical Fluid Mechanics Fall 2009 - Special Lecture 2

Discontinuous Galerkin Finite Element Methods

Mattheus P. Ueckermann
MSEAS Group

Department of Mechanical Engineering Massachusetts Institute of Technology

- Background/Motivation
- Scalar Advection
- Lock Exchange Problem
- High-Order on unstructured meshes
- Definitions and Notation
- Method of Weighted Residuals - Comparison to FV
- Concept of Basis and Test Functions
- Types of test functions
- Types of basis functions
- Continuous versus Discontinuous
- Worked example
- Difficulties and future research
- DG Advantages
- Localized memory access
- Higher order accuracy
- Well-suited to adaptive strategies
- Designed for advection dominated flows
- Excellent for wave propagation
- Can be used for complex geometries
- DG Disadvantages
- Expensive?
- Difficult to implement
- Difficulty in treating higher-order derivatives

$$
\begin{gathered}
\text { Low Order } \\
p=1 \text {, Time }=260 \mathrm{~s}, \mathrm{DoF}=10,300
\end{gathered}
$$

Initial Condition

High Order
$p=6$, Time $=100$ s, $D o F=6,300$

Final Condition

Budgell W.P., et al.. Scalar advection schemes for ocean modelling on unstructured triangular grids. Ocean Dynamics (2007). Vol 57. 30 November, 2009

- Less Numerical Diffusion/Dissipation
- Higher accuracy for lower computational time
- Example test case: 20 periods of linear tracer advection:

$$
\begin{gathered}
\text { Low Order } \\
p=1 \text {, Time }=260 \mathrm{~s}, \mathrm{DoF}=10,300
\end{gathered}
$$

Initial Condition

Final Condition

Budgell W.P., et al.. Scalar advection schemes for ocean modelling on unstructured triangular grids. Ocean Dynamics (2007). Vol 57. 30 November, 2009

Higher Order Lock Exchange

- $5^{\text {th }}$ order elements
- 35×35 elements (equivalent to approx $230 \times 230 \mathrm{FV}$)

- Large Stencils are difficult
- What to do at boundaries?

30 November, 2009

- General advection equation

$$
\begin{array}{rlrl}
\frac{\partial u}{\partial t}+\nabla \cdot \mathbf{F}(u) & =S(u), \quad \text { in }(0, T) \times \Omega \\
u & =g_{D}, & & \text { on } \partial \Omega_{D} \\
\mathbf{F}(u) \cdot \hat{\mathbf{n}} & =g_{N}, & & \text { on } \partial \Omega_{N} \\
u & =u_{0}, & & \quad \text { in }(0,0) \times \Omega
\end{array}
$$

- Multiply residual by test function
- Integrate over domain
- Set equal to zero

$$
\int_{K}\left\{\frac{\partial u_{h}}{\partial t} w+\left[\nabla \cdot \mathbf{F}\left(u_{h}\right)\right] w\right\} d K=\int_{K} S\left(u_{h}\right) w d K, \quad \forall K \in \mathcal{T}_{h}
$$

- Integrate by parts
$\int_{K} \frac{\partial u_{h}}{\partial t} w d K+\int_{K} \nabla \cdot\left[\mathbf{F}\left(u_{h}\right) w\right] d K-\int_{K} \mathbf{F}\left(u_{h}\right) \cdot \nabla w d K=\int_{K} S\left(u_{h}\right) w d K$
- Divergence theorem (weak form)
$\int_{K} \frac{\partial u_{h}}{\partial t} w d K+\int_{\partial K} \hat{\mathbf{F}}\left(u_{h}\right) \cdot \hat{\mathbf{n}} w d \partial K-\int_{K} \mathbf{F}\left(u_{h}\right) \cdot \nabla w d K=\int_{K} S\left(u_{h}\right) w d K$

Test Functions-Function Spaces

- If test function is in infinite space
- Exact minimization of residual
- Discretization of equations leads to finite test function space

$$
W_{h}^{p}=\left\{w \in L^{2}(\Omega):\left.w\right|_{K} \in \mathcal{P}^{p}(K), \forall K \in \mathcal{T}_{h}\right\}
$$

w in L 2 such that w restricted to K in polynomial space of order p , for all K in triangulation

- Two spaces, the normed L^{2} space and Hilbert space
- DG -- $L^{2}: \int_{\Omega} f(x)^{2} d \Omega<\infty$
- CG -- $H^{1}: \int_{\Omega} f(x)^{2}+\nabla f(x) \cdot \nabla f(x) d \Omega<\infty$
- Is $x^{2}+x+1$ in L^{2} ? What about H^{1} ? How about $\delta(x)$?

Test Functions

- Collocation

- Subdomain

- Galerkin
- Test function is chosen to be the same as the basis function
- Often used in practice

Basis Functions

- If basis in infinite space and test function in infinite space
- Solution will be exact

$$
\begin{aligned}
u(\mathbf{x}, t) & \approx u_{h}(\mathbf{x}, t)=\sum_{i} u_{h, i}(t) \theta_{i}(\mathbf{x}) \\
u_{h}(\mathbf{x}, t) & =\sum_{i=1}^{N_{P}} u_{h, i}(t) \psi_{i}(\mathbf{x}) \\
u_{h}(\mathbf{x}, t) & =\sum_{i=1}^{N_{P}} u_{h, i}\left(t, \mathbf{x}_{i}\right) \phi_{i}(\mathbf{x})
\end{aligned}
$$

- Einstein Notation

$$
u \approx u_{i} \theta_{i}
$$

- Nodal

1. $1 / 2 X^{2}-1 / 2 X$
2. $1-X^{2}$
3. $1 / 2 X^{2}+1 / 2 x$

- Modal

1. X^{2}
2. X
3. 1

Nodal Basis

Modal Basis

Basis Functions - Continuous vs. Discontinuous

- Continuous Function Space
- Discontinuous Function Space

- CG has continuity constraint at element edges
- Forms matrix with many off-diagonal entries
- Difficult to stabilize hyperbolic problems
- DG has no continuity constraint
- Local solution in each element
- Two unknowns on either side of element edges
- Connection of domain achieved through fluxes: combination of unknowns on either side of edge
- Forms matrix with block-diagonal structure
- Choose function space

$$
W_{h}^{p}=\left\{w \in L^{2}(\Omega):\left.w\right|_{K} \in \mathcal{P}^{p}(K), \forall K \in \mathcal{T}_{h}\right\}
$$

$$
\begin{aligned}
\cdot \text { Apply MWR } & \begin{aligned}
\frac{\partial u}{\partial t}+\nabla \cdot(\vec{c} u) & =0 \\
\int_{K} w \frac{\partial u}{\partial t} d K+\int_{K} w \nabla \cdot(\vec{c} u) d K & =0 \\
\int_{K} w \frac{\partial u}{\partial t} d K-\int_{K} \nabla w \cdot(\vec{c} u) d K+\int_{K} \nabla \cdot(\vec{c} u w) d K & =0 \\
\int_{K} w \frac{\partial u}{\partial t} d K-\int_{K} \nabla w \cdot(\vec{c} u) d K+\int_{\partial K} w \hat{n} \cdot \vec{c} \hat{u} d \partial K & =0
\end{aligned},=0
\end{aligned}
$$

Worked Example

- Substitute in basis and test functions

$$
\begin{aligned}
\int_{K} w \frac{\partial u}{\partial t} d K-\int_{K} \nabla w \cdot(\vec{c} u) d K+\int_{\partial K} w \hat{n} \cdot \vec{c} u d \partial K & =0 \\
\int_{K} w \frac{\partial u_{j}}{\partial t} \theta_{j} d K-\int_{K} \nabla w \cdot\left(\vec{c} u_{j} \theta_{j}\right) d K+\int_{\partial K} w \hat{n} \cdot\left(\vec{c} \hat{u}_{j} \theta_{j}\right) d \partial K & =0 \\
\int_{K} \theta_{i} \frac{\partial u_{j}}{\partial t} \theta_{j} d K-\int_{K} \nabla \theta_{i} \cdot\left(\vec{c} u_{j} \theta_{j}\right) d K+\int_{\partial K} \theta_{i} n \cdot\left(\vec{c} \hat{u}_{j} \theta_{j}\right) d \partial K & =0 \\
\frac{\partial u_{j}}{\partial t} \int_{K} \theta_{i} \theta_{j} d K-\vec{c} u_{j} \int_{K} \nabla \theta_{i} \cdot\left(\theta_{j}\right) d K+\vec{c} \hat{u}_{j} \cdot \int_{\partial K} \hat{n}\left(\theta_{j} \theta_{i}\right) d \partial K & =0
\end{aligned}
$$

- Substitute for matrices
- M- Mass matrix
- K- Stiffness matrix or Convection matrix
- Solve specific case of 1D equations

$$
\begin{aligned}
\frac{\partial u_{j}}{\partial t} \int_{K} \theta_{i} \theta_{j} d K-\vec{c} u_{j} \int_{K} \nabla \theta_{i} \cdot\left(\theta_{j}\right) d K+\vec{c} \hat{u}_{j} \cdot \int_{\partial K} \hat{n}\left(\theta_{j} \theta_{i}\right) d \partial K & =0 \\
\mathbf{M}_{i j} \frac{\partial u_{j}}{\partial t}-\mathbf{K}_{i j} \vec{c} u_{j}+\vec{c} \hat{u}_{j} \cdot \int_{\partial K} \hat{n}\left(\theta_{j} \theta_{i}\right) d \partial K & =0 \\
1 D: \mathbf{M}_{i j} \frac{\partial u_{j}}{\partial t}-\mathbf{K}_{i j} \vec{c} u_{j}+\vec{c} \hat{u}_{j} \cdot \hat{n}\left(\theta_{j} \theta_{i}\right) & =0 \\
1 D: u_{j}^{n+1}=u_{j}^{n}+\Delta t \mathbf{M}^{-1}\left(\mathbf{K}_{i j} \vec{c} u_{j}-\vec{c} \hat{u}_{j} \cdot \hat{n} \delta_{i j}\right) & \\
\hat{u}_{j}=\frac{u_{j}^{+}+u_{h}^{-}}{2}-\frac{c}{|c|} \frac{u_{j}^{+}-u_{h}^{-}}{2} &
\end{aligned}
$$

$$
\begin{align*}
& \frac{\partial u}{\partial t}+\nabla \cdot(\vec{c} u)=0 \tag{1.1}\\
& \int_{K} w \frac{\partial u}{\partial t} d K+\int_{K} w \nabla \cdot(\vec{c} u) d K=0 \tag{1.2}\\
& \int_{K} w \frac{\partial u}{\partial t} d K-\int_{K} \nabla w \cdot(\vec{c} u) d K+\int_{K} \nabla \cdot(\vec{c} u w) d K=0 \tag{1.3}\\
& \int_{K} w \frac{\partial u_{j}}{\partial t} \theta_{j} d K-\int_{K} \nabla w \cdot(\vec{c} u) d K+\int_{\partial K} w \hat{n} \cdot \vec{c} \hat{u} d \partial K=0 \tag{1.4}\\
& \int_{K} \theta_{i} \frac{\partial u_{j}}{\partial t} \theta_{j} d K-\int_{K} \nabla \theta_{i} \cdot\left(\vec{c} u_{j} \theta_{j}\right) d K+\int_{\partial K} \theta_{i} n \cdot\left(\vec{c} \hat{u}_{j} \theta_{j}\right) d \partial K=0 \tag{1.5}\\
& \frac{\partial u_{j}}{\partial t} \int_{K} \theta_{i} \theta_{j} d K-\vec{c} u_{j} \int_{K} \nabla \theta_{i} \cdot\left(\theta_{j}\right) d K+\vec{c} \hat{u}_{j} \cdot \int_{\partial K} \hat{n}\left(\theta_{j} \theta_{i}\right) d \partial K=0 \tag{1.6}\\
& \mathbf{M}_{i j} \frac{\partial u_{j}}{\partial t}-\mathbf{K}_{i j} \vec{c} u_{j}+\vec{c} \hat{u}_{j} \cdot \int_{\partial K} \hat{n}\left(\theta_{j} \theta_{i}\right) d \partial K=0 \tag{1.7}\\
& 1 D:\left(\vec{c} \hat{u}_{j} \theta_{j}\right) d \partial K=0 \tag{1.8}\\
& 1 D: \mathbf{M}_{i j}^{n+1}=u_{j}^{n}+\Delta u_{j} \tag{1.9}\\
& \partial t \mathbf{K}_{i j} \vec{c} u_{j}+\vec{c} \hat{u}_{j} \cdot \hat{n}\left(\theta_{j} \theta_{i}\right) \tag{1.10}
\end{align*}=0
$$

Worked Example

clear all, clc, clf, close all
syms x
\%create nodal basis
\%Set order of basis function
$\% \mathrm{~N}>=2$
$\mathrm{N}=3$;
\%Create basis
if $N==3$
theta $=\left[1 / 2 * x^{\wedge} 2-1 / 2 * x ;\right.$

$$
1-x^{\wedge} 2 ;
$$

$\left.1 / 2 * x^{\wedge} 2+1 / 2^{*} x\right] ;$
else
xi $=\operatorname{linspace}(-1,1, N)$;
for $i=1: N$
theta(i)=sym('1');
for $j=1: N$
if j~=i
theta(i) = ...
theta(i)*(x-xi(j))/(xi(i)-xi(j));

```
%Create mass matrix
for i = 1:N
    for j = 1:N
        %Create integrand
        intgr = int(theta(i)*theta(j));
        %Integrate
        M(i,j) =...
            subs(intgr,1)-subs(intgr,-1);
    end
end
%create convection matrix
for i = 1:N
    for j = 1:N
        %Create integrand
        intgr = ...
                                    int(diff(theta(i))*theta(j));
        %Integrate
        K(i,j) = ...
            subs(intgr,1)-subs(intgr,-1);
    end
end
```

 end
 end
 end
 end

```
%% Initialize u
Nx = 20;
dx = 1./Nx;
%Multiply Jacobian through mass matrix.
%Note computationl domain has length=2,
actual domain length = dx
M=M*dx/2;
%Create "mesh"
x = zeros(N,Nx);
for i = 1:N
    x(i,:) =...
    dx/(N-1)*(i-1):dx:1-dx/(N-1)* (N-i);
end
%Initialize u vector
u = exp(-(x-.5).^2/.1^2);
%Set timestep and velocity
dt=0.002; c=1;
%Periodic domain
ids = [Nx,1:Nx-1];
```

```
%Integrate over time
for i = 1:10/dt
    u0=u;
    %Integrate with 4th order RK
    for irk=4:-1:1
    %Always use upwind flux
    r = c*K*u;
    %upwinding
    r(end,:) = r(end,:) - c*u(end,:);
    %upwinding
    r(1,:) = r(1,:) + c*u(end,ids);
    %RK scheme
    u = u0 + dt/irk*(M\r);
    end
    %Plot solution
    if ~mod(i,10)
        plot(x,u,'b')
        drawnow
    end
end
```


Difficulties

- How to create basis on triangles, tetrahedrals?
- Need to create set of well-behaved Nodal point
- Integration in 2D, 3D?
- Higher-order quadrature rules on triangles, tetrahedrals

$\mathrm{p}=5$

$\mathrm{p}=8$

$\mathrm{p}=3$

$\mathrm{p}=6$

- Higher-order derivatives
- Naturally handled with CG
- Somewhat more difficult with DG

$$
\frac{\partial u}{\partial t}+\nabla \cdot \mathbf{F}_{i n v}(u)+\nabla \cdot \mathbf{F}_{v i s}(u, \nabla u)=S(u)
$$

- Decompose higher derivatives into system of first-order derivatives

$$
\begin{aligned}
\frac{\partial u}{\partial t}+\nabla \cdot \mathbf{q} & =0, \quad \text { in }(0, T) \times \Omega \\
\mathbf{q}+\kappa \nabla u & =0, \quad \text { in } \Omega \\
u & =g_{D}, \quad \text { on } \partial \Omega_{D} \\
\mathbf{q} \cdot \hat{\mathbf{n}} & =g_{N}, \quad \text { on } \partial \Omega_{N} \\
u & =u_{0}, \quad \text { in }(0,0) \times \Omega
\end{aligned}
$$

Difficulties and future research

- Research directed towards improved treatment of higherorder derivatives

Lock Exchange Problem using HDG

- 37,000 DOF, 14,000 HDG unknowns
- 13.5 hrs
- 1320 Elements
- $p=6$
time: 0
- $\mathrm{Gr}=1.25 \times 10^{6}, \mathrm{Sc}=0.71$

-0

Hartel, C., Meinburg, E., and Freider, N. (2000). Analysis and direct numerical simulations of the flow at a gravitycurrent head. Part 1. Flow topology and front speed for slip and no-slip boundaries. J. Fluid. Mech, 418:189-212.
30 November, 2009

Time $=5$
Time $=10$

Hartel, C., Meinburg, E., and Freider, N. (2000). Analysis and direct numerical simulations of the flow at a gravitycurrent head. Part 1. Flow topology and front speed for slip and no-slip boundaries. J. Fluid. Mech, 418:189-212.
30 November, 2009

- Discontinuos Galerkin
- Hesthaven J.S. and T. Warburton. Nodal Discontinuous Galerkin Methods. Texts in applied mathematics 54, (2008)
- Nguyen, N. C., Peraire, J., and Cockburn, B. (2009). An implicit highorder hybridizable discontinuous galerkin method for linear convectiondiffusion equations. Journal of Computational Physics, 228(9):3232-3254.
- Cockburn, B., Gopalakrishnan, J., and Lazarov, R. (2009). Unified hybridization of discontinuous galerkin, mixed, and continuous galerkin methods for second order elliptic problems. Siam Journal on Numerical Analysis, 47(2):1319-1365.
- General FEM
- Brenner S.C. and L.R. Ridgway Scott. The Mathematical Theory of Finite Element Methods. Texts in applied mathematics 15, (2002)
- P.G. Ciarlet and J.L. Lions. Handbook of Numerical Analysis. Volume II: Finite Element Methods (Part 1), (1991).

