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Abstract Accurate numerical modeling of biogeochemical ocean dynamics is essential

for numerous applications, including coastal ecosystem science, environmental manage-

ment and energy, and climate dynamics. Evaluating computational requirements for

such often highly nonlinear and multiscale dynamics is critical. To do so, we complete

comprehensive numerical analyses, comparing low to high order discretization schemes,

both in time and space, employing standard and hybrid discontinuous Galerkin Finite

Element Methods, on both straight and new curved elements. Our analyses and syn-

theses focus on nutrient-phytoplankton-zooplankton dynamics under advection and

diffusion within an ocean strait or sill, in an idealized two-dimensional geometry. For

the dynamics, we investigate three biological regimes, one with single stable points

at all depths and two with stable limit cycles. We also examine interactions that are

dominated by the biology, by the advection, or that are balanced. For these regimes

and interactions, we study the sensitivity to multiple numerical parameters including:

quadrature-free and quadrature-based discretizations of the source terms; order of the

spatial discretizations of advection and diffusion operators; order of the temporal dis-

cretization in explicit schemes; and resolution of the spatial mesh, with and without

curved elements. A first finding is that both quadrature-based and quadrature-free

discretizations give accurate results in well-resolved regions, but the quadrature-based

scheme has smaller errors in under-resolved regions. We show that low-order temporal

discretizations allow rapidly growing numerical errors in biological fields. We find that

if a spatial discretization (mesh resolution and polynomial degree) does not resolve

the solution, oscillations due to discontinuities in tracer fields can be locally significant

for both low and high order discretizations. When the solution is sufficiently resolved,

higher-order schemes on coarser grids perform better (higher accuracy, less dissipative)

for the same cost than lower-order scheme on finer grids. This result applies to both

passive and reactive tracers, and is confirmed by quantitative analyses of truncation

errors and smoothness of solution fields. To reduce oscillations in un-resolved regions,

we develop a numerical filter that is active only when and where the solution is not

smooth locally. Finally, we consider idealized simulations of biological patchiness. Re-

sults reveal that higher-order numerical schemes can maintain patches for long-term

integrations while lower-order schemes are much too dissipative and cannot, even at

very high resolutions. Implications for the use of simulations to better understand bi-

ological blooms, patchiness and other nonlinear reactive dynamics in coastal regions

with complex bathymetric features are considerable.

Keywords Ocean straits · shelfbreaks · biogeochemical dynamics · high-order ·
curved boundary · quadrature · ocean modeling · Discontinuous Galerkin

Mattheus P. Ueckermann and Pierre F. J. Lermusiaux
Massachusetts Institute of Technology, 77 Mass. Avenue, Cambridge, MA 02139
Tel.: +1-617-253-7799
E-mail: mpuecker@mit.edu, E-mail: pierrel@mit.edu



2

1 Introduction

Accurate modeling of biogeochemical-physical ocean dynamics is required for multiple

scientific and societal applications, covering a wide range of time and space scales.

With the increased understanding of biogeochemical interactions (Lalli and Parsons,

1997, Robinson et al., 2002, Fennel and Neumann, 2004), ecosystems models have

substantially improved in the past decades (Fasham et al., 1990, Hofmann and Lascara,

1998, Robinson and Lermusiaux, 1999, Hofmann and Friedrichs, 2002, Lynch et al.,

2009). Coupled biogeochemical-physical models have been used from coastal regions

e.g. (Anderson et al., 2005, Spitz et al., 2005, Ji et al., 2008, Stow et al., 2009) to

basins and global ocean domains e.g. (Oschlies and Garcon, 1998, Rothstein et al., 2006,

Doney et al., 2009). However, in light of the strong nonlinearities observed in biological

processes, an important subject that has been largely overlooked is the numerical

requirements for such simulation studies. One of the major objectives of our work is

to address such computational questions for reactive ocean tracers, directly including

the latest advances in computational fluid dynamics e.g. (Chung, 2002, Ferziger and

Peric, 2002, Lomax et al., 2003, Cebeci et al., 2005, Karniadakis and Sherwin, 2005)

and multiscale ocean modeling (Deleersnijder and Lermusiaux, 2008).

Previous numerical ocean studies related to ours have primarily focused on passive

or dynamic (density-related) tracer advections. The most significant progress include

the results of Hecht et al. (1995), Hanert et al. (2004), Budgell et al. (2007), but none of

these advances have dealt with higher order advection of reactive tracers on unstruc-

tured meshes with curved geometries. Iskandarani et al. (2005) applied and studied

high-order schemes for passive tracer and density dynamics in two-dimensions, includ-

ing Hecht et al. (1995)’s test and the gravitational adjustment of density in a channel

of constant depth (Haidvogel and Beckmann, 1999), but they did not consider curved

elements. Lévy et al. (2001) assessed five different low-order finite volume advection

schemes for biological modeling and found a 30% difference in new production esti-

mates, highlighting the need for careful numerical studies. In Bernard et al. (2009),

high-order discontinuous Galerkin (DG) methods are used to solve tidal flows around

shallow water islands with non-trivial geometries and using curved triangular meshes.

Here, we are interested in biogeochemical tracers with possibly highly non-linear reac-

tive or source terms, and we compare a set of low to high order schemes, both in time

and in space. We employ the DG Finite Element Method (Cockburn, 1998), using both

straight and curved elements, and we study a varied set of numerical properties. As in

previous computational studies, we restrict our numerical analyses to two-dimensional

(2D) flows, focusing on coupled dynamics in idealized straits.

Our ultimate dynamics motivation is to allow quantitative simulation studies of

fundamental nonlinear biological-physical dynamics in coastal regions with complex

bathymetric features such as straits, sills, ridges and shelfbreaks. Such features strongly

affect flows and, if they are shallow enough, one can expect biological responses in the

euphotic zone. Multiple physical scales are possible, from rapid tidal effects to slow

water-mass driven overflows, and biological resonances at some of these scales are likely.

Our focus is on the numerical requirements prerequisite to such studies. Our work is

partly inspired by our experience in coastal regions with complex geometries (Haley

and Lermusiaux, 2010), especially with steep shelfbreaks such as the Massachusetts Bay

and Stellwagen Bank (Besiktepe et al., 2002), Middle Atlantic Bight shelfbreak (Ler-

musiaux, 1999), Monterey Bay shelfbreak (Haley et al., 2009), Taiwan region shelfbreak

(Lermusiaux and Xu, 2010) and Philippine Archipelago Straits (Haley and Lermusiaux,
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2010). The latter effort particularly motivated the present work, within the context of

the Philippines Experiment (PhilEx) which is a five-year joint research project focused

on interdisciplinary modeling, data assimilation, and dynamical studies in the straits

regions of the Philippine Archipelago to better understand, model and predict sub-

mesoscale and mesoscale physical and biogeochemical dynamics in complex regions.

For realistic PhilEx simulations, we employ our MIT Multidisciplinary Simulation,

Estimation, and Assimilation Systems (MSEAS-Group, 2010). It includes a free sur-

face hydrostactic ocean model over complex geometries with novel implicit schemes

for telescoping nesting (Haley and Lermusiaux, 2010). This physical model is coupled

to biological models (Besiktepe et al., 2002), forced with multiscale barotropic tides

(Logutov and Lermusiaux, 2008) and initialized with new objective mapping schemes

specific for multi-connected domains (Agarwal, 2009, Agarwal and Lermusiaux, 2010).

The multi-resolution nested domains cover very shallow regions with strong tides, steep

bathymetries and the deep ocean. The MSEAS system was employed in real-time, as-

similating data sets from ships, gliders and satellite remote sensing, and issuing daily

physical-biological forecasts with dynamical descriptions and adaptive sampling guid-

ance (Lermusiaux et al., 2009). The complex, nonlinear and multiscale biology in the

region confirmed the need for the present computational studies.

Our work is part of an incubation for the next-generation of ocean modeling sys-

tems, focusing on key numerical questions for biogeochemical dynamics. The biologi-

cal model we employ is based on Flierl and McGillicuddy (2002), Burton (2009) and

Ueckermann (2009). We restrict ourselves to a relatively simple model to focus on the

numerics. However, the model is complex enough to reveal important characteristics

and to complete a large number of parameter sensitivity studies which we can syn-

thesize. We study three biological regimes, one with single stable points at all depths

and two with stable limit cycles. We examine interactions that are dominated by the

biology, by the advection, or that are balanced. We also consider idealized simulations

of biological patchiness which is commonly observed in the coastal ocean. For these

regimes and interactions, we study a wide range of temporal and spatial discretizations.

In what follows, we give our dynamical problem statement, definitions, and notation

in §2. Our new numerical schemes and discretization are formulated and studied in §3.

The results of our varied numerical and scientific investigations are described in §4.

Finally, our conclusions are stated in §5.

2 Dynamical Problem statement, definitions, and notation

2.1 Dynamical Problem Statement

The biological dynamics are governed by the following advection-diffusion-reaction

equations:

∂Φ

∂t
+∇ · (uΦ)− κ∇2Φ = S(Φ,x, t), in Ω (1)

with boundary conditions

Φ = gD, on ΓD
(uΦ− κ∇Φ) · n̂ = gN , on ΓN

(2)
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where Φ(x, t) = [φ1(x, t), . . . , φNc(x, t)] is the vector of Nc biological components, u

is the prescribed velocity field, κ is a positive diffusivity coefficient, S(Φ,x, t) is the

biological reaction terms, and gD, gN are the boundary conditions for the Dirichlet

and Neumann boundaries respectively. Equations 1-2 are solved on the domain Ω ∈ Rd,

where d is the dimension of the problem, with boundary ∂Ω = ΓD ∪ ΓN such that

ΓD ∩ ΓN = ∅.
Since we are interested in strait dynamics, for the flowfield u, we assume that

earth rotational effects are negligible, which is true if the ratio of the strait width

to the Rossby radius is small (Pedlosky, 1987, Signell, 1989, Cushman-Roisin, 1987,

Bourgault and Kelley, 2004). Additionally, for uniform geometry across the strait with

a rigid lid approximation, a small Froude number, and a homogeneous density, the

velocity field can be approximated as a potential flow field. A similar setup was used

by Signell (1989) for tidal flows. The potential velocity u is obtained by solving for the

stream function

∇2ψ = 0, in Ω (3)

u = ∇× ψ (4)

with boundary conditions

ψ = hD, on ∂Ω. (5)

2.2 Finite Element Definitions and Notation

We discretize (1)-(5) using the Discontinuous Galerkin (DG) Finite Element method.

The first reported use of DG FEM was by Reed and Hill (1973) where DG was used

to solve the steady-state neutron transport equation. However, DG drew little atten-

tion until a series of papers Cockburn and Shu (1989), Cockburn et al. (1989, 1990),

Cockburn and Shu (1998b), where the Runge-Kutta DG methods were described. The

extension of DG to higher order derivatives by Bassi and Rebay (1997) made the

method applicable to solving advection-diffusion equations, which can be extended to

solving the Navier Stokes equations. Since the late 90’s, DG has seen a number of

realistic applications in aerospace, solid mechanics, and electromagnetism to name a

few. For a review on the use of such schemes in next-generation physical ocean models,

we refer to Pain et al. (2005), Slingo et al. (2009) and Ueckermann (2009).

In this section, we first describe the notation used for the domain and the discrete

elements. Then we define the notation used for the solution on the element interior, and

on the element interfaces. Next, we described the discontinuous polynomial spaces and

the necessary inner products for the DG discretization, followed by the discontinuous

finite element space and inner product for the HDG method. A set of terms is also

defined.

The basic domain notation is illustrated in Figure [1]. We let Th = ∪Ki be a finite

collection of non-overlapping elements, Ki, that discretizes the domain Ω, where h

denotes the characteristic size of an element. Also, let ∂Th = {∂K : K ∈ Th} be the set

of interfaces of all elements. For two elements K+ and K− belonging to Th, we define

e = ∂K+ ∩ ∂K− 6= ∅ as the unique interior interface between elements K+ and K−.

For a single element K belonging to Th, e = ∂K ∩ ∂Ω 6= ∅ is a boundary interface. Let

ε◦h and ε∂h denote the set of unique interior and boundary interfaces, respectively, such

that εh = ε∂h ∪ ε
◦
h. We note that in the interior ∂Th contains two interfaces, ∂K+ and
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Fig. 1 Notation for domain and triangular elements.

∂K−, at the same location (one for each element), whereas the set εh only contains a

single interface, e, at the same location.

K+ and K− have outward pointing normals n̂+ and n̂− respectively. We then let

vector and scalar quantities (q±, u±) be the traces of (q, u) on the interface e from the

interior of K±. The mean value {{.}} and jumps [[.]] on the interior interface e ∈ ε◦h for

scalar and vector quantities are then defined as

{{q}} = (q+ + q−)/2 {{u}} = (u+ + u−)/2

[[q · n̂]] = q+ · n̂+ + q− · n̂− [[un̂]] = u+n̂+ + u−n̂−.

On the set of boundary interfaces e ∈ ε∂h, (with outward facing normal n̂ on ∂Ω), we

set

{{q}} = q {{u}} = u

[[q · n̂]] = q · n̂ [[un̂]] = un̂.

since here q and u are single-valued. Note that the jump in a vector is a scalar (involving

only the normal component of the vector), whereas the jump in a scalar is a vector.

Additionally, the jump will be zero for a continuous function.

The main difference between continuous Galerkin (CG) and DG lies in the ap-

proximation subspaces used. DG uses bases that are in normed space L2(Ω) while

CG uses bases that are in the Hilbert space H1(Ω), that is, the function has to be

continuous across elements. For a function f(x) to be in L2(Ω), it has to satisfy∫
Ω
f(x)2dΩ < ∞, whereas a function in H1(Ω) has to belong to a smaller space

satisfying
∫
Ω
f(x)2 +∇f(x) · ∇f(x)dΩ < ∞. Let Pp(D) denote the set of polynomi-

als of maximum degree p existing on a domain D. For example, we will be using p2

to denote a second degree polynomial basis, which will result in a 3rd order accurate

scheme. We introduce the discontinuous finite element spaces defined as

W p
h =

{
w ∈ L2(Ω) : w |K∈ Pp(K),∀K ∈ Th

}
Vp
h =

{
v ∈ (L2(Ω))d : v |K∈ (Pp(K))d, ∀K ∈ Th

}
where W p

h is a scalar space, Vp
h is a vector space of dimension d, and L2(D) is the

space of square integrable functions f(x) such that
∫
D
f(x)2dD <∞ on domain D.
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Finally we define the inner products over continuous domains D ∈ Rd and ∂D ∈
Rd−1 as

(q,v)D =
∫
D

q · vdD (u,w)D =
∫
D
uwdD

〈q,v〉∂D =
∫
∂D

q · vd∂D 〈u,w〉∂D =
∫
∂D

uwd∂D

(6)

for vector functions q,v and scalar functions u,w. Over discontinuous domains we also

define

(q, v)Th =
∑
K∈Th

(q,v)K , 〈u,w〉∂Th =
∑
K∈Th

〈u,w〉∂K , (7)

for vector or scalar functions q, v defined on Th, and u, v defined on ∂Th.

To use the Hybridized Discontinuous Galerkin (HDG) framework for solving (3)-

(5), we will require the traced finite element space existing on the interfaces εh

Mp
h = {µ ∈ L2(εh) : µ|e ∈ Pp(e), ∀e ∈ εh}.

We also set Mp
h(gD) = {µ ∈Mp

h : µ = PgD on ΓD}, where P is the L2 projection into

the space {µ|∂Ω∀µ ∈ M
p
h}. Note that Mp

h is continuous on the interface, e, shared by

K+ and K−, but discontinuous at the borders between different interfaces. We will

also require the additional inner product on this discontinuous domain

〈µ, η〉εh =
∑
e∈εh

〈µ, η〉e (8)

for vector or scalar functions µ, η defined on εh.

2.3 Comparing numerical codes: Defining Efficiency, Accuracy, and Performance

To be clear, we use the term “efficiency” or ”cost” to refer exclusively to the com-

putational resources (elapsed-time, memory) required for a simulation, and we do not

use “efficiency” to imply any degree of correctness of the solution. We reserve the term

“accuracy” to refer to the correctness of the solution. Finally, here we also use the term

“performance” as the combined consideration between efficiency and accuracy (Chapra

and Canale, 2006).

Comparing different numerical schemes is not a straight-forward task (see Kubatko

et al. (2009)). First, results are not universally applicable and are generally problem

dependent. After focusing on a particular class of problems, the usual approach is to fix

the computational efficiency of both schemes and then compare the accuracy, or vice

versa. The scheme that performs better will then have a superior accuracy, since the

efficiency will be the same for both. However, the efficiency of the scheme is dependent

on its implementation, as well as the computer architecture on which the simulations

are performed. A simple approach, then, is to fix the number of degrees of freedom

(DOFs) of the different schemes, that is, having the same number of unconstrained pa-

rameters in both schemes. Because the DOFs are related to computational efficiency,

this approach is useful for comparing similar numerical schemes with different imple-

mentations. However, it is not a good approach when comparing different numerical

schemes where the computational cost per DOF is inherently and significantly different

between the schemes, which is the case for comparisons between high order and low
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order schemes. Finally, conclusions drawn about the performance is also dependent on

the particular definition of accuracy. The accuracy is normally defined in terms of a

quantity useful to a particular researcher. Thus, researchers with different quantities of

interest may draw different conclusions about the performance of a scheme. We address

the efficiency issue by presenting results for multiple efficiencies, and we address the

accuracy issue by using generic global error measures (see §3.5) and by using difference

plots.

3 Numerical Methodology

In this section we first derive the basic FE formulations for (1)-(5), using the no-

tation from §2.2. Starting with equations (1)-(2), we multiply each biological com-

ponent by test function w and integrate over the domain. We seek approximations

Φh = [φ1
h . . . φ

Nc
h ] of Φ such that for all K ∈ Th,(

∂Φh
∂t

, w

)
K

+ (∇ · (uΦh), w)K −
(
κ∇2Φh, w

)
K

= (S(Φh,x, t), w)K , ∀w ∈ P(K).(9)

where each component φih ∈ W
p
h . We set φih =

∑NP
j=1 φ

i
j(t)θj(x) where φij(t) are NP

time varying coefficients with NP corresponding spatial basis functions, θj(x) ∈ P(K).

For convenience we use Einstein summation notation Φh = Φjθj , where the sum over

the repeated index j is implied and we let Φj ≡ Φj(t), θj ≡ θj(x).

To obtain our finite-element formulation of equations (3)-(5), we multiply by test

functions w and v and integrate over the domain. We seek approximations ψh ∈ W
p
h

of ψ and uh ∈ Vp
h of u such that for all K ∈ Th,(
∇2ψh, w

)
K

= 0, ∀w ∈ P(K), (10)

(uh,v)K = (∇× ψh,v)K , ∀v ∈ (P(K))d (11)

Next, we describe in detail the discretization of the source-terms in §3.1, since one

of the novel aspects of our work is the high-order schemes for ocean biogeochemical

simulations. Our spatial discretizations are derived in §3.2 for the advection terms, §3.3

for the diffusive terms, and our temporal discretizations given in §3.4. The calculation of

error norms is outlined in §3.5. Finally, brief details of our implementation are presented

in §3.6, and our method for generating high-order curved meshes is described in §3.7.

3.1 Source term discretization

Quadrature-based integration approximates a definite integral by a weighted sum of

function evaluations at discrete points (quadrature points). For example, Gaussian

quadrature using Ng points can exactly evaluate polynomials of degree 2Ng − 1.

Quadrature-free methods avoid evaluating the weighted sum by using approximations

and/or analytically evaluating definite integrals, and the solution to the definite inte-

gral is used directly in numerical implementations. For more details, see for example,

Hesthaven and Warburton (2008). We further restrict the definition of “quadrature-

free” to mean exact integration on the original polynomial basis. It is possible to use
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an expanded basis to evaluate the source terms, but additional cost is involved to in-

terpolate the solution unto the higher degree basis. For the source term discretization,

either approach could be used, and we will examine the impact of this choice.

To discretize the source terms with a quadrature-based approach, consider the

source term for a single biological component i:(
Si(Φh,xi, t), wk

)
K

=
(
Si(Φjθj ,x, t), wk

)
K

≈ Si
(
Φjθj(xi),xi, t

)
wk(xi)ωi

= Wki

[
Si
(
ΦjΘji,xi, t

)
ωiJi

]
(12)

where xi are the locations of the Ng quadrature points with corresponding weights ωi,

Wki = wk(xi) are the values of the test functions evaluated at the quadrature points,

and Θji = θj(xi) are the values of the basis functions evaluated at the quadrature

points. To evaluate this integral numerically, we pre-compute the matrixW ∈ RNP×Ng .

Because a reference element is used, the corresponding Jacobians at the quadrature

points Ji also need to be calculated, and these are multiplied together with the weights

(ω). The integration over an element is performed as a matrix-vector multiplication

with O(2NgNP ) operations for a single biological component. In addition, we need

to consider the interpolation of the values of Φh unto the quadrature points, ΘjiΦj ,

resulting in an additional O(2NgNP ) for each biological component. Finally, we have

to evaluate the function describing the source terms at the quadrature points. The

quadrature-based algorithm thus has a total of O(4NcNgNP ) + NgCs operations per

element, where Cs is the cost of evaluating the source terms.

Alternatively, to discretize the source terms with a quadrature-free approach using

the original basis, we use(
Si(Φh,x, t), wk

)
K
≈
(
Si
(
Φj ,xj , t

)
θj , wk

)
K

=
(
θj , wk

)
K
Si
(
Φj ,xj , t

)
= MkjS

i (Φj ,xj , t) (13)

where xj are the locations of the NP nodal points, and we can pre-compute the element

local mass matrix Mkj = (θj , wk)K such that M∈ RNP×Np . Note, for straight-sided

elements, the mass matrix computed on the reference matrix can be used and multiplied

by the element local scalar Jacobian. However, on elements with curved boundaries,

a mass matrix using the element local spatially variable Jacobian is computed. In the

quadrature-free case, we approximate the integral by essentially fitting the function

Si(Φ,x, t) on the polynomial space spanned by θ. For a nodal basis, the coefficients of

the basis are the values of the source terms evaluated at discrete points. Since these

source term values at nodal points do not depend continuously on space, the second

equality in (13) follows. This approach introduces an aliasing error since Si(Φ,x, t)

may contain complicated functions which are not captured in span{θ}. The operation

count for this approach scales as O(2NcNpNp) +NpCs if we need to multiply through

by the mass matrix. If the number of quadrature points are equal to the number of

basis functions, Ng = Np, and the cost of evaluating the source terms is small, then

the quadrature-free algorithm is 2 times more efficient in terms of total operations.

However, we can normally eliminate the mass matrix multiplication in front of the

source term since there is also a mass matrix in front of the
∂φih
∂t term, Mkj

∂φij
∂t =
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MkjS
i
(
Φj ,xj , t

)
→ ∂φij

∂t = Si
(
Φj ,xj , t

)
. Note, the mass matrix cannot be eliminated

for all the terms in the partial differential equation (PDE), for example a matrix will

remain in front of the discretized advection operator. However, the operation count for

evaluating the source terms of the quadrature-free algorithm reduces to NpCs. There-

fore, from an efficiency perspective, it is desirable to use a quadrature-free algorithm.

The accuracy of the quadrature-based integration is limited by the quadrature

rule used, and the number of quadrature points Ng. Choosing a greater number of

quadrature points, any desirable accuracy can be obtained, at the cost of reduced

efficiency. Conversely, the accuracy of the quadrature-free integration is limited by the

order of basis function used, and potentially large errors can be introduced due to

inexact integration.

The biological source terms are the origin of non-linear and non-homogeneous dy-

namics for the whole PDE. They can lead to high-accuracy discretization requirements

in the other terms of the PDE in both space and time. This is discussed in the next

sections §3.2-§3.4.

3.2 Spatial discretization of Advection operators

Integrating the advection terms (∇ · (uΦh), w)K by parts and using the divergence

theorem, we obtain the weak form of the advection operator

(∇ · (uΦh), w)K = − (uΦh,∇w)K + 〈ûΦh · n̂,∇w〉∂K , (14)

where the formulation is complete once we specify the value of the flux ûΦh. Here we

use the upwind flux

ûΦh · n̂ = u · n̂{{Φh}} −
1

2
|u| · [[Φhn̂]] (15)

The same quadrature versus quadrature-free discussion is relevant to the advection

terms. However, here we choose to use a quadrature-based scheme to ensure the accu-

racy of the advection part of the discretization. Since we are focusing on evaluating the

accuracy of the source-terms, we do not want the additional consideration about the

accuracy of the advection operators to complicate the discussion. Note, however, that

considerable efficiency can be gained for the advection terms as well if a quadrature-free

scheme is employed (Hesthaven and Warburton, 2008). We then let

− (uΦh,∇wk)K + 〈ûΦh · n̂,∇wk〉∂K ≈ −Dki
[(

uiΦjΘji
)
ωiJi

]
+∑

e∈K
We
ki

[
(ûiΦjΘ

e
ji) · n̂iω

e
i J
e
i

]
(16)

where Dki = ∇wk(xi), and the superscript (.)e indicates that the quantity is defined

on an element interface, and ui = ujΘji is the flow-field evaluated at the quadrature

points.
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3.3 Spatial discretization of diffusive operators

To discretize the diffusive operator
(
κ∇2Φh, w

)
K

, we follow standard practice with

DG and consider the canonical problem

−∇ · (κ∇)φ = s.

Introducing the auxiliary variable q = −κ∇φ, this equation is re-written as two coupled

first-order equations

∇ · q = s

q + κ∇φ = 0.

Multiplying these equations by the appropriate test functions, integrating by parts,

and applying the divergence theorem, we obtain the finite element formulation for all

K ∈ Th

−(qh,∇w)K + 〈q̂h · n̂, w〉∂K = (sh, w)K ∀w ∈ P(K) (17)

(κ−1qh, w)K − (φ,∇ · v)K + 〈φ̂h,v · n̂〉∂K = 0 ∀v ∈ (P (K))d (18)

where we have multiplied by κ−1 so that it does not appear as part of the flux (or

interface) terms. This formulation is complete once we specify the form of the flux

terms at the interfaces, q̂ and φ̂h. The diffusive fluxes for DG schemes are normally

reported in the form

q̂h = {{qh}} − C11[[φhn̂]] + C12[[qh · n̂]] (19)

φ̂h = {{φh}} −C12 · [[φhn̂]]− C22[[qh · n̂]] (20)

Biogeochemical diffusive fluxes: Using explicit time integration to solve (1), we do

not need to invert a matrix in (9), in which case we utilize the Local Discontinuous

Galerkin fluxes (Cockburn and Shu, 1998a)

C11 = τ, C12 =
n̂±

2
, C22 = 0, (21)

although many other choices exist.

Potential Flows: For solving (3), a matrix inversion is required in (10), in which

case we discretize the diffusive operators using the novel Hybridized Discontinuous

Galerkin (HDG) method. For the full derivation of these equations, including more

specific implementation details, refer to Cockburn et al. (2009), Nguyen et al. (2009).

The premise of HDG is to recognize that one can solve (17) - (18) locally on an element

as long as the flux quantities are known. Within an HDG framework, the local element

unknowns are parameterized in terms of a new variable λh ∈M
p
h(0), where the notation

Mp
h(0) refers to the space Mp

h that is zero-valued on the boundaries of the domain.

The fluxes are expressed as

φ̂h =

{
PgD, on ε∂h
λh, on ε◦h

(22)

q̂h = qh + τ(φh − φ̂h)n̂, on ∂Th (23)

where τ is a tune-able stabilization parameter, and P is, again, the L2 projection into

the space {µ|∂Ω∀µ ∈M
p
h}. Now, once λh is known, (17) - (18) can be solved efficiently
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on each element independently. What remains is an equation for λh, which can be

found by enforcing continuity of the normal diffusive flux

〈[[q̂ · n̂]], µ〉εh = 〈gN , µ〉ΓN . (24)

Note this is an equation with globally coupled unknowns. However, the number of

unknowns is greatly reduced compared to the original system, since only unknowns on

the interfaces εh are involved.

This solution method involves three steps:

1. The inversion of local operators on each element to form both the right-hand-side

vector and the global matrix.

2. The global solution to find λh.

3. The local reconstruction of the solution on the element.

The local operations are efficient because inversions are done on matrices which are of

dimension R(1+d)Np×(1+d)Np . This procedure dramatically increases the efficiency of

solving elliptic problems with DG where implicit time integration is required. Addi-

tionally, when the stabilization parameter for this choice of fluxes is chosen optimally

(τ ∼ O(1)), the optimal convergence rate of O(p+ 1) is obtained for both the gradient

(q) and the solution (φ) (Nguyen et al., 2009). This allows a post-processing procedure

that can produce a solution u∗h which converges at O(p+ 2).

Reporting the fluxes for HDG in the standard form we have from Nguyen et al.

(2009) the following

C11 =
τ+τ−

τ+ + τ−
, C12 =

1

2

(
[[τ n̂]]

τ+ + τ−

)
, C22 =

1

τ+ + τ−
. (25)

3.4 Temporal discretization

Motivated by strong nonlinearities in biogeochemical dynamics, an objective of this

study is to evaluate effects of temporal discretization errors on the accuracy of numer-

ical simulations. We investigate fourth-order, second-order, and first order schemes in

time. Specifically, for the majority of this work, we will use the following four-stage

low storage fourth-order-accurate Runge-Kutta scheme for explicit time integration

Φa = Φ(t) +
∆t

4

∂Φ

∂t

∣∣∣∣
Φ(t)

Φb = Φ(t) +
∆t

3

∂Φ

∂t

∣∣∣∣
Φa

Φc = Φ(t) +
∆t

2

∂Φ

∂t

∣∣∣∣
Φb

Φ(t+∆t) = Φ(t) +∆t
∂Φ

∂t

∣∣∣∣
Φc
.

It is implemented in a four-stage for loop, where the solution at the initial time Φ(t)

is saved in a temporary array, and the array containing the solution is updated using

the three intermediate Φa−c variables.
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We evaluate the temporal discretization error by considering a 2nd-accurate explicit

Runge-Kutta scheme

Φa = Φ(t) +
∆t

2

∂Φ

∂t

∣∣∣∣
Φ(t)

Φ(t+∆t) = Φ(t) +∆t
∂Φ

∂t

∣∣∣∣
Φa
,

and the first-order-accurate explicit Euler scheme

Φ(t+∆t) = Φ(t) +∆t
∂Φ

∂t

∣∣∣∣
Φt
.

In each case, ∂Φ∂t is evaluated using the right-hand-side spatial PDE.

3.5 Error Norm Calculation

Unless indicated otherwise, the global domain L2 norm ||e||2 =
(∫
Ω
e2dΩ

) 1
2 is calcu-

lated using the quadrature-based approach as described in §3.1. That is, the numerical

solution is interpolated unto the quadrature points, the error e = φh − φ is evaluated,

and then multiplied by the quadrature weights and summed for an approximate inte-

gration. In some cases, we evaluate the global error using an interpolation approach

(similar to quadrature-free) and this is mentioned when we do. In these cases, the er-

ror is evaluated at the nodal points, then the error is interpolated to the quadrature

points, multiplied by quadrature weights, and summed. Where ambiguous, we indi-

cate the quadrature-based error evaluation using ||e||qp2 (quadrature points), and the

interpolated error evaluation using ||e||nd2 (nodal points).

The infinity norm ||e||∞ = max|e| is calculated by evaluating the error at nodal

points, and taking the maximum absolute value.

3.6 Implementation

The discretized equations were implemented for 2D triangular elements. Even though

our codes are efficient, our implementation is not fully optimized, in particular, the

higher order simulations would most benefit from further optimization (e.g. see Lam-

brechts et al. (2010)). This is fine for our purposes since if we find that our high-

order implementations are more accurate for the same cost/efficiency than lower-order

schemes, then further optimization would only accentuate this result.

The correctness of our implementation is verified by performing convergence studies

using analytical test cases on curved and straight geometries. The implementation of

each discretized operator is verified both separately and collectively. Results of some

of the convergence studies are shown in §4.1 and §4.2.

For the polynomial spaces restricted on each element Pp(K), a nodal basis with

Np =
(p+1)(p+2)

2 nodal points is used in two dimensions, and Np = (p+1) nodal points

in one dimension. The total number of DOFs can then be calculated by multiplying

the number of nodal points by the number of elements. The node locations are chosen
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according the method described in Hesthaven and Warburton (2008). More specifically,

we have the basis θj such that

θj(xi) = δij

where xi are the nodal locations. This basis is constructed for the reference element

[0, 0], [1, 0], [0, 1], and an isoparametric coordinate mapping is used for arbitrary tri-

angles. The isoparametric coordinate mapping is described through the element nodal

locations in the problem reference frame.

To integrate polynomials of degree p ≥ 10, cubature rules (multi-dimensional

quadrature rules) are constructed on triangles by using tensor products of one-dimensional

Gauss quadrature rules. For p < 10 we use tabulated rules from Solin et al. (2003) and

Strang and Fix (1973).

In all cases, we utilize the Galerkin approach, that is we choose the test functions

to be the same as the basis functions, wj = θj .

3.7 Higher-Order Mesh Generation

Since higher order DG schemes have more degrees of freedom per element, a coarse mesh

with large elements is required to keep a similar performance across discretizations. To

obtain an accurate solution with a coarse, high-order discretization, it is necessary to

use curved boundary interfaces, as will be demonstrated in §4.3. Here we describe our

new method for creating such a coarse, high-order curved mesh.

When curving the boundary of an element, care needs to be taken because it is

possible to create an element where two of the interfaces cross. The left triangular

element shown in Figure [2] has the true circular geometry crossing one of the straight

interfaces. To avoid this situation, we need to ensure that

h < 2ρ(x) sin(θ), (26)

where h is the length of the element side bordering the boundary, ρ(x) =
|1+f ′(x)|3/2
|f ′′(x)|

is the radius of curvature of the boundary described by f(x), and θ is the minimum

angle of the two angles on the edge bordering the boundary. The element shown on

the right side of Figure [2] illustrates this limiting case for an equilateral triangle, but

our condition (26) is trivially extended to arbitrary triangles as shown by the dashed

lines.

Using our criteria (26), we define the minimum edge spacing on the boundary

as hmin = 2ρ sin(30◦) = ρ. Then, we let the minimum edge length grow linearly by a

certain percentage (fit to 12% here) away from the boundary upto a specified minimum

edge length. Using these criteria, we create coarse base-meshes, then uniformly refine

these meshes to obtain finer discretizations. To create the meshes, we primarily used the

free mesher Distmesh (Persson and Strang, 2004), but we also used Gmsh (Geuzaine

and Remacle, 2009). Distmesh uses an implicit geometry representation, that is, we

define the geometry by a distance function that gives the distance between a queried

point and the nearest boundary. Using Distmesh, we create meshes with straight sides.

To curve the boundary interfaces, we use the same distance function provided

to Distmesh, and numerically calculate the gradient of the distance function to the

boundary. The normalized gradient vector provides the direction of translation, but

to determine the magnitude of the translation a weight needs to be applied to the
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Fig. 2 Minimum triangle angle criterion (26) demonstrated on a circle with equilateral
triangles. h1 = 2ρ does not satisfy the criterion, h2 = 2/3ρ satisfies the criterion, and
h3 = 2ρ sin(π/3) demonstrates the limiting case. This result can be extended to arbitrary
triangles as shown by the dashed lines.

calculated distance. That is, pnew1 = pold1 +Wd ∇d|∇d| , where d is the distance from the

point pold1 to the boundary, andW is the weight. Now, points on the straight boundary

interface are translated to the true, curved boundary with a weight 1, and points on

interior interfaces are not translated, i.e. having weights 0. Points in the volume have

weights defined by the same weighting functions used to create the nodal basis, that is

W(e1) =

(
2λ3

2λ3 + λ1

)(
2λ2

2λ2 + λ1

)
where the point is defined by the barycentric coordinates λi corresponding to vertices

i, and e1 is the curved boundary interface defined by vertices 2 and 3. For details of

this blending function, see Hesthaven and Warburton (2008).

The base mesh with three mesh refinements is shown in Figure [3], and details of

the base mesh for a curved and straight mesh boundary are shown in Figure [4]. Using

our criterion hmin = ρ, the minimum theoretical edge length for our geometry, that is

a Gaussian bump defined by H̃(x) = e−x
2

, is hmin = 0.25. The mesh shown in Figure

[3]a) has a minimum edge length of hmin = 0.2418, close to the theoretical value.

4 Numerical Studies and Scientific Implications

Biogeochemical models may contain a large number of biological or chemical compo-

nents (Hofmann and Friedrichs, 2002). The simplest models often only use Nutrient,

Phytoplankton, and Zooplankton as components, and are commonly called NPZ mod-

els. More complicated models (Besiktepe et al., 2002) can be adaptive and contain many

components. Each component requires the solution of an advection-diffusion-reaction

(ADR) equation of the form (1). The source terms describe the commonly nonlinear

“reactions”, and may lead to stationary, periodic, or chaotic dynamics. For this numer-

ical work, a non-dimensional version of a NPZ model (Flierl and McGillicuddy, 2002)

is used since it contains all characteristics required for our studies:

∂φ∗N
∂t∗

+∇ · (u∗φ∗N )−∇ · 1

Pe
∇φ∗N = −U∗ez

∗/h∗ φ∗Pφ
∗
N

φ∗N + k∗s
+ d∗Pφ

∗
P + d∗Zφ

∗
Z
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a)

b)

c)

d)

e)

Fig. 3 a) The base mesh (g1) with 350 elements. b) First (g2) (1,400 elements) c) second
(g3) (5,600 elements), d) third (g4) (22,400 elements), and fourth (g5) (89,600 elements) grid
refinements. The more-refined meshes are used for lower-order schemes whereas less-refined
meshes are used for higher-order schemes such that the cost of the two schemes are comparable.

a)

b)

Fig. 4 Details of (g1) using a a) curved and b) straight mesh for a p = 8 nodal basis.

+(1− a)g∗νφ
∗
Z(1− e−ν

∗φ∗P ) (27)

∂φ∗P
∂t∗

+∇ · (u∗φ∗P )−∇ · 1

Pe
∇φ∗P = U∗ez

∗/h∗ φ∗Pφ
∗
N

φ∗N + k∗s
− d∗Pφ

∗
P

−g∗νφ∗Z(1− e−ν
∗φ∗P ) (28)
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∂φ∗Z
∂t∗

+∇ · (u∗φ∗Z)−∇ · 1

Pe
∇φ∗Z = −d∗Zφ

∗
Z + ag∗νφ

∗
Z(1− e−ν

∗φ∗P ) (29)

where φ∗(N,P,Z) =
φ(N,P,Z)

Nt , u∗x = ux
ū , u∗z = uzL

ūH , x∗ = x
L , z∗ = z

H , t∗ = t
τ̄ , the

parameters are explained in Table [1], the non-dimensional groups with values are

given in Table [2] with Pe the Peclet number and D∗ the aspect ratio, the subscripts

(.)N , (.)P , (.)Z refer to Nutrients, Phytoplankton, and Zooplankton respectively, ∇ =
∂
∂x∗ + ∂

∂z∗ , and lowercase z∗ refers to the depth coordinate which is positive upward

with z∗ = 0 at the surface. Note that not all three equations (27)-(29) are required

since the biological model satisfies the following conservation law for total nutrients,

assuming a closed ocean system:

φ∗N = 1− φ∗P − φ
∗
Z . (30)

The first equation (27), for example, could be eliminated in favor of (30); however here

we still use (30) to check the conservation of the numerical schemes.

The domain setup is depicted in Figure [5] for the geometric parameter values given

in Table [2]. With this setup, an upwelling of nutrients is created (see §4.4), and the

Table 1 NPZ equation parameter descriptions and units.

Parameter Description [units]

U Phytoplankton uptake rate [1/day]
ks Saturation concentration of phytoplankton [µmol/L]
dP Mortality rate of Phytoplankton [1/day]
dZ Mortality rate of Zooplankton [1/day]
g Grazing rate of Zooplankton [L/(µmol·day]
a Assimilation (efficiency) rate []
h e-folding depth for light (photosynthesis) [m]
ν Parameter for Ivlev form of grazing function [L/µmol]
NT Total biomass [µmol/L]

ū Average inlet velocity [km/day]
H Height of bathymetry [m]
D Total maximum depth [m]
L Effective width of bathymetry [km]
κ Diffusion tensor (vertical and horizontal diffusion different) [m2/s]

Table 2 Values of the dimensionless numbers entering the NPZ equations (29), that are used
in the examples for this manuscript. Bracketed triplets of values correspond to the three bio
cases [1,2,3]. The other values are the same for the three cases.

Parameter Value

U∗ = U τ̄ 7.5

k∗s = ks
NT

[ 1
30

, 1
50

, 1
100

]

d∗P = dP τ̄ 0.2
d∗Z = dZ τ̄ 1
g∗ν = gτ̄

ν
12.5

a∗ = a 0.4

h∗ = h
H

0.34
ν∗ = NT ν [0.3, 0.5, 1]

Pe = ūL
κ

∞
D∗ = D

H
2
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Fig. 5 Test case domain with idealized strait bottom geometry described by H̃(x) = He
− x

2

L2 .

study of idealized biological blooms, which may occur in straits or sills, can be studied.

In total, we consider three sets of parameter values, differing by the non-dimensional

parameters ν∗ and k∗s . In the absence of advection and diffusion, they lead to equations

29 with at most one physically relevant steady state solution (Burton, 2009). The three

sets of non-dimensional parameters ν∗ and k∗s correspond to biological dynamics with

single stable points at all depths (bio case 1: k∗s = 1/30, ν∗ = 0.3), with stable limit

cycles for depths around z∗ = 0.4 − 0.9 and single stable points elsewhere (bio case

2: k∗s = 1/50, ν∗ = 0.5), and stable limit cycles everywhere in the euphotic zone (bio

case 3: k∗s = 1/100, ν∗ = 0.1). The middle parameter values, bio case 2, correspond

to those values used by Flierl and McGillicuddy (2002): they are idealized and not

meant to represent a specific ocean region. We note that biological models with discon-

tinuities in stable solutions are not always representative of nature. However, biology

of interest is likely to have intrinsic oscillatory or chaotic time dependence, e.g. Flierl

and McGillicuddy (2002). For our purposes, we address these issues by considering

three sets of parameter values and so cover a range of biological dynamics. To handle

non-physical negative concentrations due to numerics, we use max(0, φ∗(N,P,Z)) when

evaluating the source terms. In the absence of advection, a timescale of τ̄ = 1[days]

is used, while in the presence of advection, the advective timescale τ̄a = L/ū is used,

where ū =
∫
Inlet

|u|dz is the average inlet velocity.

In our numerical study, we need to characterize the three dynamical regimes and

their behaviour since these properties affect numerical errors. Specifically, for each dy-

namical regime, we study the three limiting balances of terms in (27)-(29): biological

terms dominating; advection terms dominating; advection and biological terms balanc-

ing. When biological terms dominate, the advection is slow, and the problem reduces

to a one dimensional problem, studied in §4.1. When advection is fast, the biology

is unimportant, and we study this case in §4.3, with the generated flowfield studied

in §4.2. Finally, the case where the advection and biological terms are approximately

balanced is studied in §4.4, with the effect of biological patches demonstrated in §4.5.

Since the timescale of biology varies in depth, the advection and biological terms can

only be exactly balanced for one depth. While this results in many choices of approx-

imately balanced terms, we will focus on one parameter set where τ̄a = 12.5[days].

For more details on biological dynamics in straits, we refer to Burton (2009). Finally,

capabilities of numerical filtering for higher-order schemes are examined in §4.6.

Results in this section will be reported for various grid and polynomial degree

combinations, and the notation (grid number, polynomial degree) is used to denote

this information. For example, (g2, p4) refers to the second grid (Figure [3]b) with a 4th

degree basis function. We provide a table with the number of DOFs and computational

time estimates for the test cases we completed Table [3]. In what follows, we show the
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Table 3 Normalized run-times and DOFs for various grids/polynomial degree basis functions,
for the simulations in §4.4. The times are normalized by the (g4, p1) run-time, and numbers
in parentheses are the DOFs.

Degree of basis Grid 1 Grid 2 Grid 3 Grid 4 Grid 5
1 0.0014 0.014 0.12 1.0 8.2

(1,050) (4,200) (16,800) (67,200) (268,800)
2 0.007 0.057 0.1 4.2

(2,100) (8,400) (33,600) (134,400)
3 0.026 0.21 1.8

(3,500) (14,000) (56,000)
4 0.062 0.51 4.1

(5,250) (21,000) (84,000)
5 0.15 1.2

(7,350) (29,400)
6 0.34 3.1

(9,800) (39,200)

results of (g1, p6) and (g2, p5) for our high-order simulations and compare them to

(g4, p1). Normalizing by the average computational time of (g4, p1) these simulations

have relative computational times of 0.34, 1, and 1.2 for (g1, p6), (g4, p1), and (g2, p5),

respectively (see Table [3]). Following the discussion in §2.3 and §3.6, we note that,

in terms of efficiency, (g4, p1) and (g2, p5) are comparable (in fact, (g2, p5) would be

cheaper if fully optimized, see §3.6). (g1, p6) is included because it is comparable in

accuracy to (g4, p1) and it highlights the effect of under-resolution (here g1) when

using higher-order schemes (here p6).

4.1 One-dimensional Biogeochemical Source terms studies

In this section we first illustrate the convergence of our numerical implementation.

Following this, we examine the numerical behaviour of the biological source terms

using three tests: Perturbations of steady-states, Vertical resolution, and High-order

bases.

Numerical convergence in space and time: Since an analytical solution to (29) does

not exist, we verify the spatial implementation of the quadrature-free and quadrature-

based source terms using the analytical test problem ∂φ
∂t − 2∂

2φ
∂z2

= S(z, t) on Ω ∈
[−100, 0] integrating until t = π/200, with solution φ = sin(t) cos2(π/50z) (for an

appropriately chosen S(z, t)). We use a sufficiently small time-step, such that the errors

are dominated by the spatial discretization. The results are shown in Table [4], with the

norm of the error e = φh − φ calculated as described in §3.5. From Table [4], we note

that our implementation converges at the optimal rates for both the quadrature-based

and quadrature-free treatments. While the error numbers are for a special case and

not those for (27)-(29), they show that the solution using quadratures is more accurate

than the solution without quadratures, and this result will be generally expected.

We verify the implementation of the 4th order low-storage Runge-Kutta time inte-

grator using the ordinary differential equation ∂φ
∂t = φ on Ω ∈ [−100, 0] integrating up

to a time t = 1, with solution φ = φ0e
t. Here we choose φ0 = 1, such that the spatial

discretization does not affect the error. The results are given in Table [5], from which

we note that our implementation converges at the optimal rate for this low-storage
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Table 4 Spatial convergence of 1D DG solver used to evaluate the source terms using Nh
elements. The L2 norm (see §3.5) of the error, e = φh−φ, is smaller for the quadrature-based
scheme, but the order of convergence is the same for both. Order of convergence is computed
in a standard way, e.g. Chapra and Canale (2006).

Nh = 10 Nh = 20
Degree ||e||2 Order ||e||2 Order

Quadrature- p=1 5.550e-003 1.9 1.409e-003 2.0
based p=2 5.901e-004 2.9 7.491e-005 3.0

p=3 4.690e-005 3.9 3.019e-006 4.0
p=4 2.976e-006 4.9 9.673e-008 4.9

Quadrature- p=1 1.340e-002 1.9 3.435e-003 2.0
free p=2 1.068e-003 2.9 1.332e-004 3.0

p=3 7.464e-005 3.9 4.724e-006 4.0
p=4 4.282e-006 5.0 1.274e-007 5.1

Table 5 Temporal convergence of 1D DG solver using Nt timesteps (different values of Nt
given only to show that the order does not vary with Nt, but the absolute error of course
changes). Order is computed using Chapra and Canale (2006).

Integration Nt = 16 Nt = 32 Nt = 64
Scheme ||e||2 Order ||e||2 Order ||e||2 Order
RK4 5.683e-006 3.9 3.646e-007 4.0 2.308e-008 4.0

Runge-Kutta scheme. While this test corresponds to exponential biological growth, as

above, the error values are of course not those that would occur for (27)-(29).

Perturbations of steady-states: The purpose of these studies is to examine how

the biological dynamics behave as a result of perturbations away from the steady-

state. Perturbations will arise due to the forcing and dynamics, and due to numerical

reasons in the more complicated tests in §4.4, and it is important to understand how

these perturbations will affect the biological dynamics. All three different biological

regimes were examined in these perturbation tests. We focus on the behavior of the

one-dimensional dynamics for the time interval t∗ = [0, 250], because this corresponds

to the residence time of the biology for the dynamics in §4.4. We initialize all tests

using a perturbed or unperturbed exact steady state, which can be found by setting
∂Φ∗

∂t +∇·(u∗Φ∗)−∇· 1
Pe
∇Φ∗ = 0 in (27)-(29). The steady state solution is perturbed by

setting Φ∗(P,Z)perturb = (1 + γ)Φ∗(P,Z)steady, where γ is some constant, and using (30).

Where required, we impose φ∗Z + φ∗P < 1, by setting Φ∗(P,Z)perturb =
Φ∗(P,Z)steady

(φ∗Z+φ∗P )steady
.

This initialization is done numerically by setting the value of the numerical solution

equal to the calculated solution at the nodal points.

First we ensure that the exact steady state solution can be maintained, and then we

initialize with a perturbation from the exact steady state, and the results are reported

in Table [6]. For these runs we used 100, second-order accurate linear elements (p = 1),

which roughly corresponds to the resolution at the inlet for (g5, p1). We find that

the steady solution can be maintained for all cases up to machine precision for the

quadrature-free implementation when evaluating the error at the nodal points. This is

because we initialized the numerical simulation using the exactly calculated steady state

at the nodal points. Note that the quadrature-based scheme has a smaller difference

than the quadrature-free version when evaluating the error at the quadrature points,

except for the case with stable limit cycles in the euphotic zone (bio case 3). Because
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Table 6 Difference between analytical steady state solution, and perturbed solution at t∗ =

250. Here D = Φ−Φh∫
Ω 1dΩ

· 100% is the percent error per area in the domain. The column ||Di||2
gives the initial difference, Dq indicates using quadratures, Dqf indicates quadrature-free, ||.||qp2
indicates the error evaluated at quadrature points, ||.||nd2 indicates the error evaluated at nodal
points.

Stability γ · 100% ||Di||qp2 ||Di||nd2 ||Dq ||qp2 ||Dqf ||qp2 ||Dq ||nd2

∣∣∣∣Dqf ∣∣∣∣nd2
Single 0 0.361 0.000 0.296 0.361 0.117 0.000
stable 0.05 0.361 0.014 0.296 0.361 0.117 0.002
points 0.50 0.377 0.126 0.295 0.363 0.122 0.015

5.00 0.906 0.860 0.318 0.402 0.208 0.141
Stable limit 0 0.364 0.000 0.352 0.364 0.015 0.000

cycles at 0.05 0.366 0.017 0.353 0.365 0.019 0.011
bottom of 0.50 0.410 0.169 0.377 0.387 0.116 0.112

euphotic zone 5.00 1.360 1.29 1.01 0.974 0.945 0.915
Stable limit 0 0.109 0.000 0.112 0.109 0.038 0.000

cycles in whole 0.05 0.111 0.021 0.637 0.517 0.736 0.619
euphotic zone 0.50 0.234 0.205 1.40 1.20 1.51 1.36

5.00 1.880 1.88 2.39 2.17 2.51 2.37

the quadrature version evaluates the source term at the quadrature points, and the

interpolation of the solution onto the quadrature points is not exactly at the analytical

steady-state, the source-terms are non-zero, and the solution evolves. If the source-

terms were polynomials of lower degree than the basis in the z direction, this would

not happen.

Finally, Table [6] gives a rough description of the dynamical properties of the equa-

tions. Here the norm of the initial difference, ||Di||2 should be compared to the norm

of the final difference at quadrature points for the quadrature-based treatment, and

at the nodal points for the quadrature-free implementation. For the case with single

stable points (bio case 1), the initial difference of the perturbed solution to the analyt-

ical steady state is greater than the final difference, which indicates that the solution

is approaching the calculated steady-state value. For the case with stable limit cycles

in the euphotic zone (bio case 3), the final difference is greater than the initial per-

turbed difference, showing the solution is logically not approaching the steady state,

but instead spiraling outward toward the stable limit cycles present at each depth. Ad-

ditionally, plotting the solution (Figure [6]) profile for the largest perturbation, we can

see that the perturbed solution tends towards the steady state for the entire column

for bio case 1, only for the top part of the water column for bio case 2, and nowhere

for bio case 3. Thus, the parameter set with limit cycles in the euphotic zone (bio

case 3) has the most structure in the vertical, and will require the most resolution to

model accurately. Also, numerical perturbations will be most important for bio case 3

because the differences will grow away from the calculated steady state, as opposed to

decaying.

Vertical resolution: By varying the resolution of the problem, we found that a

minimum of 25 degrees of freedom were necessary to roughly capture the vertical

structure of the biological model dynamics at the final time. For the tests in §4.4,

(g1, p6) has approximately 21 degrees of freedom, indicating that it will be under-

resolved.
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a)

b)

c)

Fig. 6 Solution profiles at all depths with γ = 5%. Magenta crosses show the analytical
steady-state solution, the thick black dashed lines show the initial condition, green circles
show the profile at t∗ = 250, and thin blue lines show the profile at t∗ = 125. Plotted for
biological dynamics with a) single stable points at all depths, b) stable limit cycles at bottom
of euphotic zone, and c) stable limit cycles in entire euphotic zone. The quadrature-based
solution is plotted at the quadrature points, whereas the quadrature-free solution is plotted at
the nodal points.
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a)

b)

Fig. 7 Solution profiles for all depths at t∗ = 500 using a 15th degree polynomial and 3
elements with γ = 5% for dynamics with stable limit cycles at the bottom of the euphotic
zone. As in Figure [6], the magenta crosses show the analytical steady-state solution, thick
black dashed lines show the initial condition, green circles show the profile at t∗ = 250, and
thin blue lines give the profile at t∗ = 125. The solution is plotted at the quadrature points for
the quadrature version, and at the nodal points for the quadrature-free (i.e. where the source
terms are evaluated). a) Uses well-behaved (Gauss-Lobatto) nodal points, b) uses uniform
nodal points.

High-order bases: We find that the quadrature-based treatment of the source terms

results in large jumps of the solution between elements. This is illustrated in Figure

[7] after 500 time units of integration using a 15th degree polynomial and 3 elements.

The problem is amplified when using a uniform nodal spacing, due to a larger inter-

polation error. Also, increasing the number of quadrature points used for integration

did not solve this problem. The problem originates from the discontinuous jump in the

solution, causing oscillations known as Gibbs phenomena. Note that both simulations

are initialized in the same manner, but the Gibbs oscillations can only be “seen” when

evaluating the initial condition at points other than the nodes. The quadrature-based

integration, then, “sees” these oscillations because the source terms are evaluated at

the quadrature points. Using the quadrature-free approach for this one-dimensional

problem essentially decouples the vertical nodes, so numerically, the quadrature-free

version does not “see” the oscillations. The Gibbs oscillations would have occurred in

the quadrature-free scheme if the initialization was done at the quadrature-points in-
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stead. This example illustrates one of the drawbacks of using increasingly higher order

schemes, that is, without special treatment, large oscillations occur for non-smooth

functions. Using lower-order but on a finer discretization (more elements) can be a

better strategy if special treatment is not used. This issue is further addressed in §4.4

and §4.6.

In this section we showed that, with our implementation, both the quadrature-based

and quadrature-free treatment of the source-terms give accurate, convergent results

(see Table [4]), although the absolute error of the quadrature-based implementation is

smaller than the quadrature-free implementation. Then we showed that the analytical

steady state solution could be maintained, and illustrated the dynamical behaviour

of three different biological parameter sets through perturbations of the steady state

solutions. With the vertical resolution tests we found a minimum of 25 degrees of

freedom necessary to roughly capture the vertical solution features of our particular

setup. Finally, we showed that oscillations can occur solely due to numerics for a high-

order discretization. While the quadrature-based algorithm was shown to be more

accurate, the oscillations at element interfaces and the added numerical cost need to

be considered. The additional accuracy may be warranted when a bifurcation of the

solution could occur, or when the solution is under-resolved. As a whole, a key result is

that, for any numerical scheme, careful numerical studies should be performed in one-

dimension to understand the potential errors arising from the nonlinear source term

discretization before proceeding with advective models.

4.2 Flow field convergence

A potential flow-field is calculated by solving (3) using HDG as described in §3.3. Once

ψ is found, we take u = [ψz ,−ψx]. The value of ψ is specified on all boundaries. The

top and bottom boundaries are specified as constants ψ = ψtop and ψ = ψbot. The

inlet and outlet stream functions are specified to vary linearly in z∗, i.e. ψ = ψtop +

z∗(ψbot − ψtop)/D∗. For the advection-dominating cases in §4.3, periodic boundaries

are used, in which case the values of ψ are equal at the inlet and outlet, with no need

for boundary conditions. A flowfield specific to the grid and polynomial degree is used

for all simulations.

We perform a convergence study on steady flowfields to verify that we are indeed

obtaining near-optimal O(p + 1) convergence (Cockburn et al., 2009, Nguyen et al.,

2009), for the gradients of ψ used for the flowfield u. To evaluate the convergence, ref-

erence solutions using (g5, p2) and (g2, p8) are calculated, both giving similar results.

The error was evaluated by considering the point-wise solution at all interior vertices

of grid 1. That is, the solution was averaged across all element-local solutions touching

the vertex and compared to the reference solutions. The point-wise error calculated

using (g2, p8) as the true solution is plotted in Figure [8] for multiple grids and poly-

nomial bases. Using this point-wise error calculation, we obtained near-optimal rate

of convergence. When the domain boundary nodes are included, non-optimal (smaller

and larger) rates of convergence were found for p > 1. This may be due to variations

in the discretizations of the domain boundary for the different grids/polynomial bases.

Similarly, when the ||.||2 or ||.||∞ norms are considered, we find near-optimal conver-

gence for p = 1, but not for p > 1. When the domain boundary is not curved, the

flowfields with p > 1 have both the same rate of convergence and error magnitude as

p = 1 using any of the error metrics mentioned. This shows that curved boundaries are
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Fig. 8 Illustrating the convergence of the flow-field error. The point-wise error calculated
using (g2, p8) as the true solution for multiple grids and polynomial bases. Note that HDG
gives near-optimal convergence for the derivative quantities u = [ψz ,−ψx].

essential for an accurate high-order solution. Also, by using HDG, we have a velocity

field defined on the same grid with the same order of accuracy as our complete solution

scheme for the ADR equations.

Therefore, by using HDG with boundary-curved elements we obtain an accurate,

high-order convergent potential flowfield for our geometry.

4.3 Tracer advection over bump test case results

We study tracer advection without source terms to evaluate the behaviour of our

numerical scheme when advection dominates. We do not illustrate here the convergence

of the resolution (our results as shown in §4.1-§4.2). Instead we focus on numerical

advection artifacts that may affect the behaviour of the biology. We examine three

cases: a uniform tracer; a tracer with a discontinuous jump in the vertical; and a tracer

with a discontinuous jump in the horizontal and a linear horizontal gradient. The first

case examines the divergence of the flowfield. The second case examines the behaviour

of the scheme in the presence of a horizontal jump, which occurs at the edge of the

euphotic zone for our choices of parameters. Note that because we initialize by setting

the numerical initial condition at the nodes equal to an analytical initial condition with

a jump, and the jump does not necessarily occur at element boundaries, the assigned

numerical initial condition contains oscillations. The number of oscillations increases

with the polynomial degree, but is present at all orders. Also, the straightness of the

interface is affected by the grid resolution. The third case examines the behaviour

of the scheme in the presence of a horizontal jump and horizontal gradient, which

is a numerical test for frontal dynamics. Unlike the second case, the assigned initial

condition for the third case does not contain oscillations because the jump occurs at

element boundaries. All cases evolve in a periodic domain. In all cases the flow is left

to right, and the duration of the simulation is determined by the time the mean inlet

velocity would take to travel through the domain. One of the objectives of these tests

is to compare schemes at the same overall cost, for example, a lower order scheme is

used on a higher resolution grid.
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The results for the reference solution (g1, p5), low order solution, (g4, p1), and high

order solutions, (g2, p5) and (g1, p6) on curved meshes, are shown in Figure [9]. In the

top plot (case 1), we find that oscillations exceeding 10−4 are less localized for the

low-order schemes than for the high-order schemes. From the middle and bottom plots

(cases 2-3) we see that the higher order schemes have larger magnitude oscillations

around the jumps (as expected from the initialization). However, the sharpness of the

interfaces are comparable between (g1, p5) and (g2, p5), and also between (g4, p1) and

(g1, p6). Running a lower order case (g3, p1) with 16,800 DOFs (not shown) resulted

in a much more diffuse solution compared to (g1, p6), even though (g1, p6) is as under-

resolved. The higher-order discretization with fewer degrees of freedom is therefore less

numerically dissipative, illustrating one of the advantages of a high-order scheme.

The locations where the solution is outside of the intervals [0.9999,1.0001], [0, 1],

and [-2, 3] for case 1, 2, and 3 respectively are plotted in Figure [10]. From this fig-

ure, we see that the smallest magnitude and most localized errors for case 1 happens

with high-order schemes using curved boundaries. The largest magnitude errors oc-

cur for high-order schemes using straight boundaries, and the least localized errors

occur for low order schemes. From case 2, we see that for both high and low-order

schemes, the initial oscillations do not remain close to the jump, but spread through

the domain. Although, the amplitude of the radiated oscillations are at least an order

of magnitude smaller than the initialized oscillations. In case 3 we see that the high

and low-order schemes have similar performance, both developing numerical oscilla-

tions with the same order of magnitude around the jump. The absolute magnitude of

the oscillations are approximately half the size with low-order compared to high-order,

and can be explained by the greater number of degrees of freedom with the low-order

case. From these plots we note that the magnitude of the oscillations are within 20%

of the solution, and this could have a significant effect on the biology. This illustrates

that discontinuous or highly non-smooth functions caused by physics or biology are

problematic. In the context of this work, the jump will be smoother for the test cases

in §4.4 where we examine the case for approximately balanced advection and biological

source terms. Alternatively, a shock-capturing (see for example Hoteit et al. (2004),

Persson and Peraire (2006), Krivodonova (2007)), filtering (for example Hesthaven and

Kirby (2008)), or postprocessing technique could be used to handle the discontinuity

(see for example Cockburn et al. (2003), Qiu and Shu (2005)). In §4.6 we illustrate how

a filtering approach can be used to damp oscillations for high-order schemes. Note that

special treatment is required for both high and low-order schemes, with a slope-limiting

procedure more often used for the latter.

We note that the large oscillations in case 1 for the high-order scheme happen only

down-stream from the peak. This is because we do not ensure that the definition for the

discrete divergence is the same in the equations calculating the potential flow field and

the tracer/biological ADR equations (see for example Dawson et al. (2004)). Therefore,

we expect to see discretization errors appearing in the ADR discrete divergence oper-

ator, which are advected downstream. Examining the normalized discrete divergence

as defined in the ADR equations,
(
∇·u
|u|

)
, of curved and straight meshes with (g1, p6)

and (g4, p1), we found that largest divergence errors occurs for the higher-order scheme

on the straight mesh. The normalized divergence, in this case, was of O(1) near the

peak, and
∣∣∣∣∣∣∇·u|u| ∣∣∣∣∣∣2 ≈ 0.56 for the domain. The normalized divergence for the low-order

and high-order curved schemes were of O(10−2) near the peak, with the maximum

error for the low-order scheme approximately half the size of the high-order scheme.
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Fig. 9 Solution of three passive tracer cases, on a) (g5, p1) with 268,800 DOFs, b) (g4, p1)
with 67,200 DOFs, c) (g2, p5) with 29,400 DOFs, and d) (g1, p6) with 9,800 DOFs with curved
boundaries. Top plots shows advection of a constant tracer, middle is advection of tracer with
vertical jump, and bottom is advection with a horizontal jump and horizontal gradient. Note
that b) (g4, p1)and c) (g2, p5) have similar costs while d) (g1, p6) is much cheaper and under-
resolved (see Table Table [3] for costs).

However, the error for the high-order scheme was more localized, resulting in a lower

volume-averaged error
∣∣∣∣∣∣∇·u|u| ∣∣∣∣∣∣2 ≈ 0.044, than that of the low-order scheme which was∣∣∣∣∣∣∇·u|u| ∣∣∣∣∣∣2 ≈ 0.11. This reveals that it is important to use a curved mesh for higher-

order schemes: the resultant flow field is then less numerically divergent than a flow

field solved with a low-order finely resolved scheme. Without using a curved mesh,

the divergence can be of the same order as the velocity near the geometry, which may

excite non-physical biological dynamics downstream of the peak. In our case (in §4.4),

the peak was beneath the euphotic zone and thus using a straight boundary represen-

tation would not cause problems, however, in the general case this result cannot be

overlooked. Of course, our advection scheme is conservative, but to also be constancy

preserving, the numerical flow field needs to be discretely divergence-free.

Since the (g1, p6) simulations took less computational time than (g4, p1), and be-

cause the (g2, p5) simulation had a sharper interface, these results suggest that higher-

order schemes performs better than the lower-order schemes for the advection domi-

nated case, as long as curved boundaries are used.
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Fig. 10 Field values outside initially specified fields with a) (g5, p1), b) (g4, p1), c) (g2, p5)
on curved mesh, d) (g1, p6) on curved mesh, e) (g2, p5) on straight mesh, and f) (g1, p6) on
straight mesh. For each case a-e), the top plot shows advection of a constant tracer with
interval [0.9999,1.0001], middle is advection of tracer with vertical jump and interval [0,1], and
bottom is advection with a horizontal gradient and horizontal jump with interval [-2,3].

4.4 Full NPZ equations

In this section we explore the case where the advection and biological source terms are

approximately balanced. We examine effects of low-order and high-order temporal dis-

cretizations in §4.4.1. In §4.4.2, we illustrate the difference between using a quadrature-

based and quadrature-free scheme to discretize the nonlinear biological source terms.

Finally, in §4.4.3, we study effects of spatial resolution, through both grid resolution

and polynomial degree.

We still study the three biological parameter sets: single stable points, stable limit

cycles at the bottom of the euphotic zone, and stable limit cycles for the entire euphotic
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Fig. 11 Biological dynamics at t∗ = 20 (with τ̄a = 12.5[days]) using (g5, p1) . Biolocial
dynamics with a) single stable points, b) stable limit cycles for depths z∗ = 0.4 − 0.9, and
c) stable limit cycles in whole euphotic zone. This is the reference solution against which all
other solutions are compared.

zone, as given in Table [2]. Since the timescale of biology varies in depth, the advection

and biological source terms can only be balanced for one depth. While this results

in many choices of approximately balanced parameter sets, we focus on one where

τ̄a = 12.5 [days]. For these tests, the inlet is specified as the steady state solution

with a smoothed discontinuity. The discontinuity is smoothed by fitting it with a cubic

polynomial which can be resolved on (g1, p6). The fit is biased such that 3/4 of the

polynomial is below the euphotic zone. For the outlet boundary we use ∂Φ
∂n̂ = 0. Also

these results are compared to a (g5, p1) simulation, which is taken as the true solution.

The final solution fields for the three different regimes of biological dynamics (from

Table [2]) and using quadrature-based source terms for (g5, p1) (the reference solution)

is plotted in Figure [11]. The results show that idealized strait bathymetry effectively

perturbs the biology away from the inlet conditions. The case with single stable points

(bio case 1) adjusts back to the stable equilibrium, whereas the two cases with limit

cycles show complex structures in the vertical. In all cases, a Phytoplankton bloom

over the bump is observed.

To qualitatively evaluate the effect of refining the grid or polynomial degree, we

show the solution field for Phytoplankton for (g3, p1), (g3, p2), (g4, p1), and (g4, p2) in

Figure [12], and these discretizations have 16,800, 33,600, 67,200, and 134,400 DOFs

respectively. This figure shows that the solution is converging with increased resolution.

More quantitative comparisons are completed next.
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a)

b)

c)

d)

Fig. 12 Phytoplankton fields at time t∗ = 20 (with τ̄a = 12.5[days]), as computed using four
different spatial resolutions and order of the FE scheme: a) (g3, p1), (16,800 DOFs) b) (g3, p2)
(33,600 DOFs), c) (g4, p1) (67,200 DOFs), and d) (g4, p2) (134,400 DOFs). All fields are for
biological dynamics with stable limit cycles in the euphotic zone (bio case 3 in Table [2]).

4.4.1 Comparing low-order and high-order temporal discretizations

We compare the solutions using 4th order Runge-Kutta, 2nd order Runge-Kutta, and

1st order Explicit Euler on (g2, p4) for the biology with stable limit cycles in the eu-

photic zone (bio case 3). The differences of the lower order schemes compared to 4th

order Runge-Kutta at t∗ = 40 is plotted in Figure [13] for the Phytoplankton field.

Note, the timestep size for the 1st order scheme is half of the 2nd order scheme, such

that the cost of the two are the same. For this test case we used periodic boundary

conditions. From the figure, we note that the major differences occur within the eu-

photic zone. The stable explicit timestep for the 2nd order scheme is set by the Courant

condition for the advection discretization, and since the largest velocity occurs in the

smallest element for this discretization, the timestep size is approximately four orders of
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a)

b)

Fig. 13 Temporal discretization differences for Phytoplankton field with stable limit cycles
in euphotic zone at t∗ = 40 using periodic boundary conditions and on spatial grid (g4, p2).
a) “1st order Euler” minus “4th order Runge-Kutta”, and b) “2nd order Runge-Kutta” minus
“4th order Runge-Kutta”.

magnitude smaller than the biological timescale. Therefore, it is expected that temporal

errors in the source-term should be small even for the low order scheme. Nonetheless,

we still observe differences between the 1st, 2nd and 4th order schemes. We found that

the difference at t∗ = 40 is approximately two orders of magnitude larger than at

t∗ = 20, which indicates the errors are growing quickly. For the 1st order scheme, the

maximum error is of O(1) at t∗ = 40. This suggests that a low-order time discretization

may result in significant errors when long integration times or fast biological timescales

are involved. For example, the latter occurs in coastal applications. As another exam-

ple, for stiff biogeochemical source terms, Burchard et al. (2005) found that even 4th

Runge-Kutta integration is insufficient to maintain the non-negativity of the biological

components. They suggest that positivity preserving Patankar-Runge-Kutta schemes

should be used to obtain a non-negative, conservative solution.

4.4.2 Comparing quadrature-based and quadrature-free source terms

In §4.1 we found that the greatest difference between the quadrature and quadrature-

free treatment of the source-terms occurred for the biological parameter set with stable

limit cycles in the euphotic zone (i.e. bio case 3). Here we examine this case for full

ADR dynamics using the (g1, p6) discretization. Note that we obtained the same results

and conclusions with the (g4, p1) and (g5, p2) discretizations (not shown). Plotting the

difference (quadrature-free minus quadrature-based) of the solution in Figure [14] for

(g1, p6) we see that the largest differences occur near the outlet of the domain where the

mesh solution is under-resolved. The quadrature-based solution is more accurate in the

under-resolved region because the source-term integral is more accurately evaluated,

and this was verified by comparing the errors of the two schemes. However, where the

solution is sufficiently resolved, the quadrature-free and quadrature-based treatments

of the source terms have similar accuracy, that is, they differ by approximately 0.1%.

From the one-dimensional studies, we found that the quadrature-free algorithm was less

oscillatory at element interfaces than the quadrature-based algorithm, and we observed
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a)

b)

c)

Fig. 14 Zooplankton fields at t∗ = 20 computed using (g1, p6) and a) quadrature-based
source terms, b) quadrature-free source terms. c) The difference between the quadrature-free
and quadrature-based source-term simulations. The biological dynamics used has stable limit
cycles within the euphotic zone (bio case 3).

the same effect in these 2D simulations for p > 7 on g1, although the difference between

quadrature-free and quadrature-based was less drastic. The largest differences between

the quadrature-based and quadrature-free schemes did occur at element boundaries,

and the quadrature-based algorithm was more accurate when under-resolved.

Using equation (30), we verify the conservation of the scheme. The results for the

quadrature-free and quadrature-based source terms were similar up to floating point

precision. Also, we find that the conservation error is dominated by the flow field di-

vergence error. Therefore, the conservation properties of the source term discretization

does not affect the choice between quadrature-free and quadrature-based algorithms.

Because the quadrature-free and quadrature-based algorithms had similar accu-

racy in well-resolved regions, we recommend using the quadrature-free treatment in

these regions because of the improved efficiency. However, when the solution is poorly

resolved, the quadrature-based treatment of the source terms is more accurate. Now,

depending on the total solution cost of a particular numerical scheme, a finer res-

olution quadrature-free scheme may be more efficient for the same accuracy than a

quadrature-based scheme.
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a)

b)

c)

Fig. 15 Difference between Zooplankton fields at t∗ = 20 (with τ̄a = 12.5[days]) computed
using (g5, p1) and a) (g4, p1) , b) (g2, p5), and c) (g1, p6). This shows the locations of the
largest numerical errors for the high-order and low-order schemes. The biological dynamics
used have single stable points at all depths (bio case 1).

4.4.3 Comparing low-order and high-order spatial discretizations

Figure [15] shows the differences between the reference solution and the solutions using

other grids and polynomial degrees in Figure [15] for Zooplankton. We see that the

(g2, p5) simulation has the smallest differences, and is therefore the most accurate.

This is a key result since it indicates that when the solution is resolved, for the same

cost/efficiency, a higher order scheme on a coarser grid performs better than a lower-

order scheme on a finer grid. Results for the biological dynamics with limit cycles at

the bottom of the euphotic zone (bio case 2) are similar, but for the biology with limit

cycles in the entire euphotic zone (bio case 3), both high and low-order schemes are

under-resolved for x∗ > 7, especially for the (g1, p6) scheme. The differences between

a fine grid solution (g5, p1) and the low-order and high-order schemes are plotted in

Figure [16] for Zooplankton. From Figure [16], we note that the errors in the low-order

scheme are more localized in the x∗ > 7 region. However, the differences for (g4, p1)

and (g2, p5) are similar in the x∗ > 7 region. The (g1, p6) scheme has the least localized

and largest magnitude errors in the x∗ > 7 region. However, as plotted in Figure [17]

where the solution is smooth and the biology has less structure in the vertical, both

the high-order schemes are more accurate than the low order scheme. Particularly, note

the solution near the surface for x∗ < 7 in Figure [17].

We examine the error characteristics of these fields more closely by considering the

truncated Taylor expansions of the true solution. By the mean value theorem, the trun-
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a)

b)

c)

Fig. 16 As Figure [15], but for the biological dynamics with stable limit cycles within the
euphotic zone (bio case 3).

a)

b)

c)

Fig. 17 As Figure [16], but zoomed in the region above the bathymetry. The difference be-
tween Zooplankton fields using (g5, p1) and a) (g4, p1), b) (g2, p5), and c) (g1, p6).
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cation error for (g4, p1) is h2

2!

(
∂
∂x + ∂

∂y

)2
φ(xη) for some unknown point xη, and for

(g2, p5) and (g1, p6) these terms are h7

6!

(
∂
∂x + ∂

∂y

)6
φ(xζ) and h7

7!

(
∂
∂x + ∂

∂y

)7
φ(xξ)

for unknown points xζ and xξ, where h is the characteristic discretization length

of an element. Now, we can examine the approximate truncation error by running

simulations (g4, p2), (g2, p6), and (g1, p7), and evaluating the highest order non-zero

derivatives of the approximate solution φh. To evaluate the derivatives, we interpolate

the solution onto an orthogonal modal polynomial basis, that is we find the coeffi-

cients aij such that φh =
∑
i φiθi =

∑
ij aijPij , where Pij is a modal orthogonal

polynomial with maximum degree of i on x and j on y, for a maximum total de-

gree of i + j. The derivatives then evaluate as 1
2!

(
∂
∂x + ∂

∂y

)2
φh(xη) =

∑
i+j=2 aij ,

1
6!

(
∂
∂x + ∂

∂y

)6
φh(xξ) =

∑
i+j=6 aij , and 1

7!

(
∂
∂x + ∂

∂y

)7
φh(xξ) =

∑
i+j=7 aij , that

is, we simply need to sum the coefficients of the modal orthogonal polynomial basis

which correspond to terms with total degree of 2, 6, and 7, respectively. Since the co-

efficients of the polynomials are evaluated on the reference element, h ≈ 1 will be the

same for all elements. Also, while this approach gives an estimate of the leading order

truncated term, it does not give an exact value. In our case, we are not interested in

a rigorous error estimator, but instead we only require an estimate of the error to aid

the discussion.

Our approach is similar to that followed by Mavriplis (1989), where Legendre poly-

nomials were used instead. The author proposed a smoothness estimator, where the

coefficients aij are fit to the exponentially decaying function a(i + j) = Ceσ(i+j).

There the author claims that σ < −1 indicates good resolution or smooth functions,

and σ > −1 indicates poor resolution or non-smooth functions. The adaptive strategy

used was to increase the polynomial degree for elements with σ < −1, and to refine

the mesh for elements with σ > −1, if the error level in that element was insufficient.

We evaluate this smoothness indicator σ on (g1, p7) by doing a least squares fit of the

coefficients to Ceσ(i+j). In regions where the magnitude of the solution is close to 0,

that is below the euphotic zone for the Zooplankton field, aij ∀i, j will be small, and

the smoothness indicator σ will not be accurate. The approximate size of the trun-

cated derivative terms along with the smoothness indicator are plotted in Figure [18].

Only the smoothness indicators calculated on (g2, p5) and (g1, p7) are plotted since

the accuracy of the smoothness indicator improves with the number of terms in the

polynomial expansion, and is not accurately represented on (g4, p2) (Mavriplis, 1989).

From Figure [18], we note that the largest differences in Figure [16] correspond to

the regions with the largest approximate truncations errors in Figure [18]. Also, in the

region x∗ > 7 where the low-order solution is more accurate than (g1, p6), we have

σ > −1, which suggests that refining the elements instead of the order of accuracy is

more appropriate. After one level of refinement on (g2, p5), we see that the smooth-

ness indicator shows a smaller region of non-smooth elements. This illustrates that the

smoothness is defined in terms of the numerical discretization, and is not solely a func-

tion of the solution field. Also note in the region where the high-order solution is more

accurate (see Figure [17]), the approximate derivative of the truncation term is small in

both fields, and σ < −1, suggesting a higher degree polynomial basis is more appropri-

ate in this region. This shows that our mesh is not optimized in terms of the solution

field, and highlights the importance of using both mesh refinement and polynomial

basis adaptation to generate an optimal discretization for complex biological ocean
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a)

b)

c)

d)

e)

Fig. 18 Approximate truncation errors for Zooplankton fields at t∗ = 20 (with
τ̄a = 12.5[days]). Calculated on a) (g4, p2) using log10(

∑
i+j=2 aij), on b) g2, p6 using

log10(
∑
i+j=6 aij), and on c) g1, p7 using log10(

∑
i+j=7 aij). d-e) Smoothness indicator σ

calculated on d) (g2, p6) and e) (g1, p7) . The biological dynamics used has stable limit cycles
within the euphotic zone (bio case 3).

dynamics. Also, this shows that whether a coarsely discretized higher order scheme is

better than a finely discretized lower order scheme depends on the smoothness of the

solution and can vary spatially across the solution. The benefit from a higher-order

solution is as follows: when the solution is smooth, increasing the polynomial degree

causes the error to decrease exponentially, whereas the error would only decrease alge-

braically if decreasing the element size. The cost of increasing the polynomial degree
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also scales algebraically, and because of this, a higher-order scheme performs better for

smooth or well-resolved fields. Using our implementation, the (g1, p6) simulation took

approximately 0.34 of the time taken by the (g4, p1) simulation. We also ran (g3, p1),

which was approximately three times more efficient than (g1, p6), but this solution (not

shown) was less than 1% accurate for the majority of the domain. When the solution

is not resolved (i.e. not smooth for the grid resolution or polynomial degree chosen),

higher-order schemes will lead to Gibbs oscillations and filtering is required (see 4.6),

while lower-order schemes may ”look good” but will be very dissipative. When the

solution is resolved (i.e. smooth enough for the grid resolution or polynomial degree

chosen), higher-order discretizations perform better than lower-order ones: they are

more accurate and less dissipative for the same cost.

Finally, we note that the approximate truncation error and smoothness metrics were

different for the different biological components. Therefore, the optimal discretization

for one component is not the same as the optimal discretization for another component.

Ueckermann (2009) proposed a scheme that uses a different order basis function for

different biological components, but also cautions that an incurred interpolation cost

needs to be considered for adaptation strategies.

4.5 Evolution of Biological Patch

In this section we demonstrate how biological activity can enhance the differences

between low order and high order discretizations beyond the effect of numerical dis-

sipation alone. For this example, we modify bio case 1 (single stable points at all

depths) from §4.4 by introducing a vertical column, or “patch”, of biology that uses

the parameters from bio case 2 (stable limit cycles at depths z∗ = 0.4− 0.9 and single

stable points elsewhere). This is easily done in the dimensional form of the equations

by increasing the value of NT locally in the patch. Such situations occur frequently in

nature, e.g. an eddy or front upwelling additional nutrients locally towards the surface.

The initial condition and boundary condition is the same as in bio case 1 (the steady

state solution with smoothed discontinuity), except inside the patch where the initial

conditions for bio case 2 are used instead, that is:

φ∗(patch) = φ∗(bio case 1) +
[
φ∗(bio case 2) − φ

∗
(bio case 1)

]
· e−

(x∗+6.4)4

2·(84) , (31)

where φ∗(patch) is the initial condition used for this example, φ∗(bio case 1) is the steady

state with smoothed discontinuity for bio case 1, and φ∗(bio case 2) is the steady state

with smoothed discontinuity for bio case 2. Note, for this example, we non-dimensionalize

φ∗ = φ
NT,bio case 1

by the total biomass for bio case 1. In addition we superimpose a

periodic velocity onto the mean velocity,

u∗ = u∗mean[1 + 5 · sign{cos(0.16πt∗)}], (32)

where u∗ is now the velocity used for this example, and u∗mean is the potential flowfield

solved from §4.2. The superimposed velocity increases the distance traveled, as well as

the number of time integration steps (due to the CFL condition), and therefore has

the effect of increasing the numerical dissipation.

Figure [19] plots the phytoplankton fields and total biomass for (g2, p5) and (g4, p1)

around the patch, as well as the difference of the solution, (g2, p5) minus (g4, p1), at
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Fig. 19 Detail around the biological patch with stable limit cycles at the bottom of the
euphotic zone at time t∗ = 14.4 for a) the phytoplankton fields and b) the total biomass.
The solution for (g2, p5) is plotted on the left, (g4, p1) in the middle, and the difference
between the solutions, [(g2, p5) − (g4, p1)], is plotted on the right. This shows that (g2, p5)
correctly maintains the full peak of the biological patch, while (g4, p1) does not, leading to
large differences in the phytoplankton fields.

Fig. 20 The relative normed difference between the total biomass of the two solutions, (Q1,
(33)), the sum of relative normed differences between the biological components (Q2 (34)),
the relative normed difference in production (Q3 (35)), and the relative normed difference
in grazing (Q4 (36)) over time from t∗ = 0 to t∗ = 14.4. This shows that the difference in
biological components is amplified beyond the effect of numerical dissipation due to differences
in the source terms such as the production and grazing.
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t∗ = 14.4. We do not use the (g5, p1) solution (as was done in §4.4) for the difference

plots here because we found that even (g5, p1) is more dissipated than (g2, p5), and

therefore (g2, p5) is more accurate inside the biological patch where our calculations

are performed. These results show that the total biomass peak is not maintained by

the low order scheme, (g4, p1), and the details in the phytoplankton fields are also

dissipated. Since these simulations do not contain physical diffusion, any diffusion is

due to the numerical scheme, and therefore the (g2, p5) solution is more accurate than

(g4, p1) because it does maintain the total biomass peak. Apart from the effects of the

periodic velocity, the solution inside the patch should resemble that of Figure [11]b),

and (g2, p5) resembles this solution more closely than (g4, p1).

While some of the differences between the (g2, p5) and (g4, p1) simulations can be

accredited solely to the numerical dissipation, the error due to numerical dissipation is

amplified by the change in biological activity. To illustrate this point, we show in Figure

[20]: the relative normed difference between the total biomass of the two solutions, (Q1,

(33)), the sum of relative normed differences between the biological components (Q2

(34)), the relative normed difference in production (Q3 (35)), and the relative normed

difference in grazing (Q4 (36))

Q1 =

∣∣∣∣{φ∗N + φ∗P + φ∗Z}(g2,p5) − {φ∗N + φ∗P + φ∗Z}(g1,p4)

∣∣∣∣patch

2∣∣∣∣{φ∗N + φ∗P + φ∗Z − 1}
∣∣∣∣patch

2

(33)

Q2 =

∑
I=(N,P,Z)

∣∣∣∣∣∣φ∗I,(g2,p5) − φ
∗
I,(g1,p4)

∣∣∣∣∣∣patch

2∣∣∣∣{φ∗N + φ∗P + φ∗Z − 1}(g4,p1)

∣∣∣∣patch

2

(34)

Q3 =

∣∣∣∣∣∣∣∣{U∗ez∗/h∗ φ∗Pφ∗Nφ∗N+k∗s

}
g2p5

−
{
U∗ez

∗/h∗ φ
∗
Pφ
∗
N

φ∗N+k∗s

}
g4p1

∣∣∣∣∣∣∣∣patch

2∣∣∣∣∣∣∣∣{U∗ez∗/h∗ φ∗Pφ∗Nφ∗N+k∗s

}
g4p1

∣∣∣∣∣∣∣∣patch

2

(35)

Q4 =

∣∣∣∣∣∣∣∣{ag∗νφ∗Z(1− e−ν
∗φ∗P )

}
g2p5

−
{
ag∗νφ

∗
Z(1− e−ν

∗φ∗P )
}
g4p1

∣∣∣∣∣∣∣∣patch

2∣∣∣∣∣∣{ag∗νφ∗Z(1− e−ν∗φ∗P )
}
g4p1

∣∣∣∣∣∣patch

2

, (36)

where ||e||patch
2 =

(∫
patch

e2dx∗dz∗
) 1

2
with the patch area is determined from (g4, p1),

and the quantity ||{φ∗N + φ∗P + φ∗Z − 1}||patch
2 gives the size of the difference between

the base solution and the solution inside the patch since the base number of nutrients

(non-dimensionalized to 1) is subtracted out.

Since our numerical scheme conserves the total biomass, the first quantity, Q1, gives

a quantitative estimate of the numerical dissipation error only. The second quantity,

Q2, should be the same as Q1 if the only difference is due to numerical dissipation.

However, from Figure [20], we note that Q2 > Q1, which means the differences in

dissipation is amplified by nonlinearities and the biology. This is explained by the

differences in biological terms in the two simulations, for example in the production

and grazing terms, Q3 and Q4. Also, note that these differences are growing over time,

and for longer integration periods, the differences will be even greater. As a final note,

the initial differences between the two solutions are due to interpolation errors, since
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the polynomial representation and number of degrees of freedom are not the same for

the two simulations.

The example shows that the numerical dissipation due to a lower-order numerical

scheme can be amplified by the biological reaction terms. This is significant since

for accurate biological ocean science through numerical simulations, it is important to

maintain the amplitudes of biological patches. This is particularly true for biology with

multiple attractors, where relatively small perturbations can lead to vastly different

solutions. The conclusion is that for the same cost, higher-order schemes on coarser

grids are more accurate than lower-order schemes on finer grids.

4.6 Filtering Based on Smoothness Index

Based on the results in §4.4, and on the paper by Hesthaven and Kirby (2008), we

created a selective exponential filter. We found that the default filter described in Hes-

thaven and Kirby (2008), which is applied at every time step, to result in a diffuse

interface, even for high-order filters. This prompted us to develop the following fil-

ter. Consider a modal representation of the numerical solution, φh =
∑
ij aijPij (see

Ueckermann (2009)). After each time integration step, the solution on every element

is modified as follows:

φFh =
∑
ij

σ(ηij)aijPij , (37)

where

σ =

{
exp(−αηsij), if SI > 0

1, if SI < 0
(38)

SI =
aij

maxi+j≥1(aij)
− exp(−(i+ j) + 1) (39)

η =
i+ j

p+ 1
(40)

α = − log(0.01), (41)

with s being the order of the filter and SI the smoothness index.

This results in a filter that is applied only when the smoothness index indicates

that the solution is not smooth. The smoothness index relies on information about the

decay rate of the modal coefficients, so it cannot be used for lower-order schemes. Using

this new filter, we obtain a solution where spurious numerical oscillations are no longer

generated by the numerical scheme, and the interfaces are not significantly diffused.

The new errors plots are shown in Figure [21]. We also verified that this filter does not

affect smooth regions of the domain with other idealized test cases (not shown).

While this filter looks promising, additional verification is needed, and a number

of improvements are also possible. In particular, determining the strength or order, s,

of the filter in an optimal manner is an open question. Also, selectively applying the

filter only in directions where the solution is non-smooth is a topic of future research.
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a)

Fig. 21 Solution of three passive tracer cases as Fig. 9, for a) (g2, p5), and b) (g1, p6) but
using our selective exponential filter (37) with s = 5. Field values outside initially specified
fields as Fig. 10, with c) (g2, p5), and d) (g1, p6) using the same filter. For each case a), b), c)
and d), the filter damps the initialized oscillations of cases 1-2 and no oscillations are created
in case 3.

5 Conclusions

We completed a set of computational studies for the modeling of multi-scale biogeo-

chemical dynamics in coastal ocean regions with complex bathymetric features, utilizing

recent advances in computational fluid dynamics. Specifically, we compared low to high

order discretization schemes, both in time and space, employing standard and hybrid

discontinuous Galerkin Finite Element Methods, on both straight and curved elements.

We studied the effects of a varied set of numerical properties including: quadrature-

free and quadrature-based discretizations of the source terms; order of the spatial

discretizations of advection and diffusion operators; order of the temporal discretiza-

tion in explicit schemes; and, resolution of the spatial mesh, with and without our new

curved elements. We verified the convergence of our numerical schemes for both the

biology and flow fields, validated the codes on analytical solutions, and completed a

rigorous truncation error analysis.

Our numerical analyses concentrated on the nonlinear nutrient-phytoplankton-

zooplankton dynamics under advection and diffusion within an ocean strait or sill,

in an idealized 2D geometry. We first non-dimensionalized the PDEs, evaluated stabil-

ity regions and selected three biological dynamical regimes: single stable points at all

depths, stable limit cycles at the bottom of the euphotic zone, and stable limit cycles

within the whole euphotic zone (the latter two cases have limit cycles that are depth
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and light dependent). We evaluated the effects of numerical parameters on the three

biological regimes, but illustrated only the most relevant results. In addition, for each

of these biological regimes, we examined three types of coupled physics-biology inter-

actions: biological terms dominating; advection terms dominating; and advection and

biological terms balancing. For the advection-dominating case, we studied the advection

over a strait of a uniform tracer, horizontal front and vertical front. For the balanced

situation, relatively common in the real ocean, we considered biological dynamics that

were either as fast as (e.g. coastal ocean) or slower than advection time-scales.

In the regime where biological terms dominate, we found that both the quadrature-

based and quadrature-free treatment of the source-terms give accurate, convergent

results, although the quadrature-based algorithm had slightly smaller errors. We also

showed that oscillations can occur solely due to numerics (Gibbs-like phenomena) for

a high-order discretizations. A key result is that, for any numerical scheme, careful

one-dimensional studies should be performed to understand the potential errors from

the nonlinear source-term discretization.

For the advection-dominating regime, we confirmed the flow field convergence and

using passive tracers studied numerical advection artifacts that would also affect the

biology. We found that for discretizations that do not resolve the solution, oscillations

due to discontinuities in the tracers could be large for both low-order and high-order

discretizations, but can be damped using a filtering approach for the high-order case.

However, our results suggested that when the solution is resolved enough, higher-order

schemes on coarser grids perform better (higher accuracy, less dissipative) for the same

cost than lower-order scheme on finer grids, as long as curved boundaries were used.

For the case of approximately balanced advection and biological terms, we com-

pared low and high order temporal and spatial discretizations, and studied quadrature-

based and quadrature-free discretizations of the source terms. We found that for lower-

order temporal discretizations, the errors grew rapidly and would lead to inaccurate

solutions for applications with faster biological timescales or longer integration times.

We also showed that the quadrature-based source-term discretization was more ac-

curate in regions where the solution was under-resolved, but in well-resolved regions,

there was only a 0.1% discrepancy, and the quadrature-free algorithm could be used

for efficiency purposes. By quantitatively evaluating the truncation error and smooth-

ness of the solution fields, we confirmed that higher-order spatial discretizations were

more accurate in regions where the solution was smooth (i.e. resolved enough), but

less accurate where non-smooth (un-resolved) due to Gibbs-like oscillations. To re-

duce these oscillations, we developed a new numerical filter that is active only when

and where the solution is not smooth locally, using a smoothness indicator. Finally,

we demonstrated the importance of non-dissipative numerical schemes when biological

patches are present which is common in the real ocean. First, we found that effects

of numerical dissipation were amplified by biological activity, causing dissipation er-

rors to increase faster with integration time. Higher-order spatial discretizations were

more accurate when modeling biological patches because they maintained the patches

while lower-order schemes did not. For resolved biology (e.g. as in Figure [15]), higher-

order schemes on coarser grids were for the same cost more accurate than lower-order

schemes on finer grids. This conclusion is most important for longer-term simulations.

It has major implications for fundamental studies of biological blooms, patchiness and

other nonlinear dynamics in coastal regions with complex bathymetric features such as

straits, sills, ridges and shelfbreaks. One can expect similar implications for longer-term

eddy-resolving ecosystem studies or climate applications.
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Based on our results, future research directions are to further develop schemes to

reduce Gibbs-like oscillations without significant loss of accuracy and efficiency (e.g.

Persson and Peraire (2006)). Without oscillation limiters or filtering, the optimal per-

formance could be obtained by using different polynomial degree basis functions in the

domain, where low-order elements could be used in non-smooth regions while high-order

elements could be used in smooth regions. Because the smoothness can be determined

from the discretization, an adaptive grid and polynomial degree scheme could be de-

veloped. Another possibility in this case could be to increase the grid resolution and

decrease the order of schemes (e.g. medium order schemes, i.e. (g3, p3) or (g3, p4)) up

to the point when numerical oscillations reach the size of other errors. Another research

direction is to develop and evaluate schemes that would preserve the non-negativity of

the biological solution. Our results can now be utilized for idealized studies of biological

dynamics in straits or sills. Uncertainty quantifications (Lermusiaux, 2006, Sapsis and

Lermusiaux, 2009) as well as adaptive model learning (Lermusiaux, 2007) for biologi-

cal predictions would also be useful. Finally, we are now well positioned to implement

these new methods in three-dimensional ocean modeling systems (e.g. MSEAS-Group

(2010)) for realistic coupled biogeochemical-physical ocean science and applications.
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