

- Motivation
- Hybrid Discontinuous Galerkin (HDG) Methods
 - Formulation
 - Similarity to other methods (LDG, IP, CG)
 - Post-processing
- Simple Test cases: Convergence studies
- Projection method
 - Results for analytical stokes problem
 - Results for Lock-exchange problem
- Comments on GPU implementation of HDG algorithm
- Future work

- Major complaint of DG methods:
 - Too many degrees of freedom (DOFs)!

 Basic idea: if boundary value of element is known, the element can be independently solved.

1. Nguyen, N. C., Peraire, J., and Cockburn, B. (2009). *An implicit high-order hybridizable discontinuous galerkin method for linear convection-diffusion equations.* Journal of Computational Physics, 228(9):3232–3254.

2. Cockburn, B., Gopalakrishnan, J., and Lazarov, R. (2009). *Unified hybridization of discontinuous galerkin, mixed, and continuous galerkin methods for second order elliptic problems*. Siam Journal on Numerical Analysis, 47(2):1319–1365.

Plii

• Consider:

• Finite Element (FE) spaces:

 $W_h^p = \left\{ w \in L^2(\Omega) : w \mid_K \in \mathcal{P}^p(K), \forall K \in \mathcal{T}_h \right\}$

 $V_h^p = \left\{ \mathbf{v} \in (L^2(\Omega))^d : \mathbf{v} \mid_K \in (P^p(K))^d, \forall K \in \mathcal{T}_h \right\}$

• FE formulation

$$\begin{split} &\int_{K} \kappa^{-1} \mathbf{q}_{h} \cdot \mathbf{v} dK + \int_{\partial K} \hat{u}_{h} \mathbf{v} \cdot \mathbf{n} d\partial K - \int_{K} u_{h} \nabla \cdot \mathbf{v} dK = 0 \\ &\int_{K} \frac{\partial u_{h}}{\partial t} w dK + \int_{\partial K} \hat{\mathbf{q}}_{h} \cdot \hat{\mathbf{n}} w \partial K - \int_{K} \mathbf{q}_{h} \cdot \nabla w dK = 0 \end{split}$$

•

Finite Element (FE) spaces:

$$W_h^p = \left\{ w \in L^2(\Omega) : w \mid_K \in \mathcal{P}^p(K), \forall K \in \mathcal{T}_h \right\}$$

 $V_h^p = \left\{ \mathbf{v} \in (L^2(\Omega))^d : \mathbf{v} \mid_K \in (P^p(K))^d, \forall K \in \mathcal{T}_h \right\}$

• FE formulation

$$\begin{split} &\int_{K} \kappa^{-1} \mathbf{q}_{h} \cdot \mathbf{v} dK + \int_{\partial K} \hat{u}_{h} \mathbf{v} \cdot \mathbf{n} d\partial K - \int_{K} u_{h} \nabla \cdot \mathbf{v} dK = 0 \\ &\int_{K} \frac{\partial u_{h}}{\partial t} w dK + \int_{\partial K} \hat{\mathbf{q}}_{h} \cdot \hat{\mathbf{n}} w \partial K - \int_{K} \mathbf{q}_{h} \cdot \nabla w dK = 0 \\ &\hat{\mathbf{q}}_{h} = \{\{\mathbf{q}_{h}\}\} - C_{11} [u_{h} \hat{\mathbf{n}}] + \mathbf{C}_{12} [\mathbf{q}_{h} \cdot \hat{\mathbf{n}}] \\ &\hat{u}_{h} = \{\{u_{h}\}\} - \mathbf{C}_{12} \cdot [u_{h} \hat{\mathbf{n}}] - C_{22} [\mathbf{q}_{h} \cdot \hat{\mathbf{n}}] \end{split}$$

• Finite Element (FE) spaces:

 $W_h^p = \left\{ w \in L^2(\Omega) : w \mid_K \in \mathcal{P}^p(K), \forall K \in \mathcal{T}_h \right\}$

 $V_h^p = \left\{ \mathbf{v} \in (L^2(\Omega))^d : \mathbf{v} \mid_K \in (P^p(K))^d, \forall K \in \mathcal{T}_h \right\}$

• FE formulation

$$\begin{split} &\int_{K} \kappa^{-1} \mathbf{q}_{h} \cdot \mathbf{v} dK + \int_{\partial K} \hat{u}_{h} \mathbf{v} \cdot \mathbf{n} d\partial K - \int_{K} u_{h} \nabla \cdot \mathbf{v} dK = 0 \\ &\int_{K} \frac{\partial u_{h}}{\partial t} w dK + \int_{\partial K} \hat{\mathbf{q}}_{h} \cdot \hat{\mathbf{n}} w \partial K - \int_{K} \mathbf{q}_{h} \cdot \nabla w dK = 0 \\ &\hat{\mathbf{q}}_{h} = \{\{\mathbf{q}_{h}\}\} - C_{11} [u_{h} \hat{\mathbf{n}}] + \mathbf{C}_{12} [\mathbf{q}_{h} \cdot \hat{\mathbf{n}}] \\ &\hat{u}_{h} = \{\{u_{h}\}\} - \mathbf{C}_{12} \cdot [u_{h} \hat{\mathbf{n}}] - C_{22} [\mathbf{q}_{h} \cdot \hat{\mathbf{n}}] \end{split}$$
Couples *u* and **q** solutions. Inefficient?

- Additional FE space
 - $M_h^p = \{ \mu \in L^2(\varepsilon_h) : \mu|_e \in \mathcal{P}^p(e), \forall e \in \varepsilon_h \}$ $\varepsilon_h = \bigcup \partial K_i,$
- Flux Definition⁽¹⁾ $\hat{\mathbf{q}}_h = \mathbf{q}_h + \tau (u_h - \hat{u}_h)$ $\hat{u}_h = \begin{cases} Pg_D, \text{ on } \varepsilon_h^\partial \\ \lambda_h, \text{ on } \varepsilon_h^\circ \end{cases}$
- Final Equations

$$\begin{split} \int_{\mathcal{T}_{h}} \kappa^{-1} \mathbf{q}_{h} \cdot \mathbf{v} d\mathcal{T}_{h} &- \int_{\mathcal{T}_{h}} u_{h} \nabla \cdot \mathbf{v} d\mathcal{T}_{h} + \int_{\partial \mathcal{T}_{h}} \lambda_{h} \hat{\mathbf{n}} \cdot \mathbf{v} d\partial T_{h} &= -\int_{\partial \mathcal{T}_{h}} g_{D} \hat{\mathbf{n}} \cdot \mathbf{v} d\partial T_{h} \\ &\int_{\mathcal{T}_{h}} \frac{\partial u_{h}}{\partial t} w d\mathcal{T}_{h} - \int_{\mathcal{T}_{h}} \mathbf{q}_{h} \cdot \nabla w d\mathcal{T}_{h} + \int_{\partial \mathcal{T}_{h}} \hat{\mathbf{q}} \cdot \hat{\mathbf{n}} w d\partial T_{h} &= \int_{\mathcal{T}_{h}} f w d\mathcal{T}_{h} \\ &\int_{\varepsilon_{h}} \llbracket \hat{\mathbf{q}} \rrbracket \mu \partial \varepsilon_{h} &= \int_{\varepsilon_{h}^{\partial}} g_{N} \mu \partial \Gamma_{N} \end{split}$$

Algebraic Equations

Block Diagonal! Element-local inversion

 $K = \lambda F$ - Global system of unknowns

Algebraic Equations -- Simple implementation

$$K = \lambda F$$

$$K = -\begin{bmatrix} C & E^T \end{bmatrix} \begin{bmatrix} A & -B^T \\ B & D \end{bmatrix}^{-1} \begin{bmatrix} C^T \\ E \end{bmatrix} + H$$

$$F = -\begin{bmatrix} C & E^T \end{bmatrix} \begin{bmatrix} A & -B^T \\ B & D \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ F \end{bmatrix}$$

- May also implement this by constructing the K matrix <u>directly</u>.
 - Considerably faster
 - Much more difficult to implement

• HDG in the standard form:

$$\begin{aligned} \hat{\mathbf{q}}_{\mathbf{h}} &= \{\{\mathbf{q}_{h}\}\} - C_{11}[\![u_{h}\hat{\mathbf{n}}]\!] + \mathbf{C}_{12}[\![\mathbf{q}_{h} \cdot \hat{\mathbf{n}}]\!] \\ \hat{u}_{h} &= \{\{u_{h}\}\} - \mathbf{C}_{12} \cdot [\![u_{h}\hat{\mathbf{n}}]\!] - C_{22}[\![\mathbf{q}_{h} \cdot \hat{\mathbf{n}}]\!] \\ C_{11} &= \frac{\tau^{+}\tau^{-}}{\tau^{+} + \tau^{-}}, \quad \mathbf{C}_{12} = \frac{1}{2} \left(\frac{[\![\tau\hat{\mathbf{n}}]\!]}{\tau^{+} + \tau^{-}}\right), \quad C_{22} = \frac{1}{\tau^{+} + \tau} \end{aligned}$$

Compared to LDG/IP:

- HDG: Sparser matrix, Fewer globally coupled degrees of freedom,
 - Always for 2D⁽²⁾
 - For higher than 2nd order basis in 3D⁽²⁾
- What about expense of local solvers?

Compared to CG/Mixed-method

• $\tau \to \infty$: CG $\tau \to 0$: Mixed methods (redefine u, \mathbf{q} spaces)

- HDG convergence for $\tau \sim \mathcal{O}(1)$
 - Both *u* and **q** converge at order *p*+1
- Allows for local post-processing of solution

$$\begin{split} \int_{K} \kappa \nabla u_{h}^{*} \cdot \nabla w dK &= -\int_{K} \mathbf{q} \cdot \nabla w dK \quad \forall w \in \mathcal{P}^{p+1} \\ \int_{K} \nabla u_{h}^{*} dK &= -\int_{K} u_{h} dK \end{split}$$

• Only required at final time

Test Case Examples - Steady Diffusive Problem

0

-0.2

-0.4

-0.6

-0.8

- 1

12

8

6

4

2

Degree(p)	Mesh(n)	u_h Error	u_h Order	q_h Error	q_h Order	U_h^* Error	U_h^* Order
1	3	2.661e-01	0	8.533e-01	0	3.158e-02	0
	5	7.350e-02	1.86	2.510e-01	1.77	4.315e-03	2.87
	9	1.883e-02	1.97	6.559e-02	1.94	5.579e-04	2.95
	17	4.731e-03	1.99	1.662e-02	1.98	7.073e-05	2.98
2	3	4.442e-02	0	1.235e-01	0	4.858e-03	0
	5	5.952e-03	2.9	1.688e-02	2.87	3.225e-04	3.91
	9	7.565e-04	2.98	2.162e-03	2.97	2.029e-05	3.99
	17	9.491e-05	2.99	2.722e-04	2.99	1.266e-06	4
3	3	7.049e-03	0	1.857e-02	0	7.181e-04	0
	5	4.686e-04	3.91	1.251e-03	3.89	2.352e-05	4.93
	9	2.975e-05	3.98	7.967e-05	3.97	7.424e-07	4.99
	17	1.867e-06	3.99	5.004e-06	3.99	2.362e-08	4.97

Phir

- Solution scheme: Incremental pressure correction scheme⁽³⁾
 - Uses Pressure Poisson Equation (PPE)

$$\begin{split} \frac{2\Delta t}{3} (\tilde{u}^{k+1} - 4u^k + u^{k+1}) &- \nu \nabla^2 \tilde{u}^{k+1} + \nabla p^k = f(t^{k+1}), \quad \tilde{u}^{k+1} \big|_{\Gamma} = 0 \\ \nabla^2 (p^{k+1} - p^k) &= \frac{3}{2\Delta t} \overline{\nabla \cdot \tilde{u}^{k+1}} \\ u^{k+1} &= \tilde{u}^{k+1} - \frac{2\Delta t}{3} \overline{\nabla (p^{k+1} - p^k)} \\ f(t^k + 1) &= -u^{\star, k+1} \cdot \nabla u^{\star, k+1} + \vec{g} \rho^{\star, k+1} \\ (.)^{\star, k+1} &= 2(.)^k - (.)^{k-1} \end{split}$$

• HDG provides accurate derivative terms

3. Guermond, J.L., Minev, P., and Shen, Jie. (2006). *An overview of projection methods for incompressible flows*. Comput. Methods Appl. Mech. Engrg, 195:6011–6045.

• Tau = 1

- Velocity postprocessing has significant effect
 - Reduce error by one order
- Divergence field very noisy

- Tau = 10,000
- Velocity postprocessing reduces error

Stokes: Pressure error comparison

Tau = 10,000 0.02 0.015 0.025 0.02 0.01 0.015 0.01 0.005 0.005 0 0 -0.005 -0.01 -0.005 -0.015 -0.02 -0.01 -0.025 1 -0.015 0.5 0.5 -0.02 0 -0.5 -0.5 -1 -1 Tau = 1 0.04 0.05 0.03 0.04 0.03 0.02 0.02 0.01 0.01 0 -0.01 0 -0.02 -0.01 -0.03 -0.04 -0.02 0.5 0.5 -0.03 0 0 -0.5 -0.5

-1

- Tau = 10,000 pressure error compares well with literature
- Tau = 1 pressure error very noisy
- Numerical boundary Pressure boundary layer

Order	Grid	u	v	Р	$\partial_x u$	$\partial_y v$	$\partial_x P$	$\partial_y P$
1	2-3	1.13	1.13	3.45	2.37	2.37	2.84	2.85
	3-5	0.67	0.67	0.58	-0.96	-0.96	-0.28	-0.28
	5-9	1.73	1.73	2.15	1.10	1.10	0.98	0.98
	9-17	1.88	1.88	3.08	1.76	1.76	2.03	2.03
2	2-3	0.48	0.49	1.61	-0.64	-0.64	0.56	0.56
	3-5	1.65	1.65	2.71	1.17	1.17	1.86	1.86
	5-9	2.42	2.42	3.49	2.13	2.13	2.58	2.59
	9-17	2.90	2.90	3.32	2.88	2.88	2.39	2.40
3	2-3	0.26	0.26	2.37	0.43	0.43	1.10	1.10
	3-5	2.76	2.76	4.05	2.36	2.36	2.68	2.68
	5-9	3.99	3.99	4.19	3.93	3.93	3.01	3.01
	9-17	3.88	3.88	4.56	3.87	3.87	3.84	3.65

Table 1: Convergence of Stokes test case before postprocessing

Order	Grid	u	v	Р	$\partial_x u$	$\partial_y v$	$\partial_x P$	$\partial_y P$
1	2-3	2.76	2.76	3.19	2.37	2.37	2.86	2.85
	3-5	1.28	1.28	0.67	-0.19	-0.19	-0.29	-0.29
	5-9	2.76	2.76	2.06	1.57	1.57	0.98	0.98
	9-17	2.86	2.86	3.17	1.87	1.87	2.03	2.03
2	2-3	1.42	1.42	1.56	0.11	0.11	0.56	0.56
	3-5	3.19	3.19	2.76	1.92	1.92	1.86	1.86
	5-9	3.35	3.35	3.67	2.27	2.27	2.58	2.58
	9-17	3.92	3.92	3.25	2.88	2.88	2.39	2.40
3	2-3	1.31	1.31	2.38	-0.35	-0.35	1.10	1.10
	3-5	3.76	3.76	4.16	2.30	2.30	2.68	2.68
	5-7	4.98	4.98	4.16	3.92	3.92	3.01	3.01
	9-17	4.90	4.90	4.57	3.90	3.90	3.84	3.65

Table 1: Convergence of Stokes test case after postprocessing

time: 0

- 13.5 hrs
- 1320 Elements
- *p*=6
- Gr = 1.25x10⁶, Sc=0.71

4. Hartel, C., Meinburg, E., and Freider, N. (2000). Analysis and direct numerical simulations of the flow at a gravitycurrent head. Part 1. Flow topology and front speed for slip and no-slip boundaries. J. Fluid. Mech, 418:189-212.
16 September, 2009

Lock Exchange Problem

- Local HDG solver has three steps
 - 1. Build matrix and right-hand side vector: Local operation
 - 2. Solve global system of equations: Global operation
 - 3. Reconstruct solution: Local operation
- Local steps (1, 3) very well-suited to parallel architectures such as GPU
- Local read patterns very well-suited to coalesced memory access
- Write pattern less localized (to form matrix)
- Negates the problem with "expensive" local solutions

Phir

- Investigate methods to reduce tau in PPE
- Test different algorithms for solving Boussinesq Equations
- Can we do better?
 - Some ideas to further reduce global DOF
- Investigate adaptive/multiscale strategies
 - Octree-structured (2*p*+1 accurate post-processed solution)
 - Unstructured
 - Nesting
- 2D Non-hydrostatic dynamical studies
- Implement efficient 3D code
 - Exploit HDG parallelism: domain decomposition
 - MPI?
 - GPU?

Thank You!

dt	u	v	Р	$\partial_x u$	$\partial_y v$	$\partial_x P$	$\partial_y P$
0.05-0.025	2.11	2.12	1.74	2.06	1.53	1.25	0.58
0.025 - 0.0125	2.04	2.05	1.65	1.92	1.42	1.02	0.62
0.0125 - 0.00625	1.92	1.89	1.64	1.29	1.45	0.94	1.17
0.00625 - 0.003125	1.22	1.39	2.07	0.35	1.61	1.74	1.97

Table 1: Time convergence after postprocessing

dt	u	v	Р	$\partial_x u$	$\partial_y v$	$\partial_x P$	$\partial_y P$
0.05 - 0.025	1.81	1.93	1.74	2.06	1.53	1.25	0.58
0.025 - 0.0125	0.64	0.95	1.65	1.90	1.41	1.02	0.62
0.0125-0.00625	0.07	0.14	1.64	1.16	1.44	0.94	1.17
0.00625 - 0003125	0.04	0.04	2.10	0.27	1.50	1.74	1.97

Table 1: Time convergence before postprocessing

Lock Exchange: Vorticity and Pressure

dP/dy

- Have compared LDG descretization with HDG
- Solved matrixes using various preconditioners
- HDG at least 3x faster than LDG for *p*=4 using similar preconditioners

Slash	sh GmresR				Qmr					Sumn Min	nary Min			
Time	Precond.	Time	lter.	Resid.	Precond.	Time	lter.	Resid.	Precond.	Time	lter.	Resid.	Time	MV
dt=0.2		dt=0.2				dt=0.2				dt=0.2			dt=0	.2
0.4219	None	0.6563	188	9.0E-07	None	0.5000	142	9.2E-07	None	0.4531	90	5.0E-09	0.4531	180
0.4063	Upper	0.2656	107	8.2E-07	Upper	0.5156	58	6.1E-07	Upper	0.2813	30	4.6E-08	0.2656	60
0.4375	Lower	0.2656	105	7.4E-07	Lower	0.4844	55	6.4E-07	Lower	0.2500	30	2.4E-08	0.2500	60
0.4375	Jacobi	0.3438	131	9.7E-07	Jacobi	0.3750	86	6.6E-07	Jacobi	0.3750	60	9.3E-10	0.3438	120
0.4375	ILU0	0.1563	88	9.5E-07	ILUO	0.3750	31	8.1E-07	ILUO	0.3438	30	1.8E-12	0.1563	60
0.4375	BlockILU	0.2969	119	9.7E-07	BlockILU	0.5000	73	7.4E-07	BlockILU	0.2500	30	7.2E-07	0.2500	60
0.4375	BlockJacobi	0.4063	119	9.7E-07	BlockJacobi	0.7344	73	8.0E-07	BlockJacobi	0.3594	30	7.2E-07	0.3594	60
0.4375	BlockJacobi2	0.6563	119	9.7E-07	BlockJacobi2	1.2344	73	8.0E-07	BlockJacobi2	2.0000	30	7.2E-07	0.6563	60
0.4219	GS	0.3750	99	8.9E-07	GS	0.54688	49	4.6E-07	GS	3.75	30	3.2E-09	0.3750	60
0.4219	Multigrid	3.2656	95	5.4E-07	Multigrid	28.0156	26	2.4E-03	Multigrid	86.7969	30	3.1E-10	3.2656	60

HDG, solve system 3 times

LDG, solve system once

dt=0.2	dt=0.2				dt=0.2				dt=0.2			dt=0.2	2
0.5938 None	0.4688	66	9.6E-07	None	0.8438	50	7.3E-07	None	0.4063	30	1.2E-07	0.4063	60
0.6094 Upper	0.3438	42	7.5E-07	Upper	1.0313	32	6.1E-07	Upper	0.4219	20	8.2E-07	0.3438	40
0.5781 Lower	0.2969	37	9.3E-07	Lower	0.7031	26	3.9E-07	Lower	0.4063	20	1.2E-08	0.2969	37
0.5938 Jacobi	0.3750	49	7.3E-07	Jacobi	0.7344	43	9.5E-07	Jacobi	0.5313	30	2.5E-07	0.3750	49
0.5938 ILU0	0.1563	28	4.9E-07	ILU0	0.6094	10	5.1E-07	ILU0	0.2969	10	4.4E-11	0.1563	20
0.6094 BlockILU	0.5781	41	8.9E-07	BlockILU	1.4688	35	3.6E-07	BlockILU	1.0938	30	3.6E-09	0.5781	41
0.5938 BlockJacobi	0.5938	41	8.9E-07	BlockJacobi	1.6094	35	3.1E-07	BlockJacobi	1.1094	30	3.6E-09	0.5938	41
0.6094 BlockJacobi2	1.0625	41	8.9E-07	BlockJacobi2	2.5000	35	3.1E-07	BlockJacobi2	9.4844	30	3.6E-09	1.0625	41
0.5938 GS	0.7344	33	7.3E-07	GS	1.92188	19	7.7E-07	GS	19.84375	20	3.7E-10	0.7344	33
0.6094 Multigrid	1.0781	28	8.7E-07	Multigrid	10.9219	43	1.4E-01	Multigrid	29.9063	10	1.0E-12	1.0781	20
												0 1562	20

Test Case Examples - Steady advection-diffusion

Approximate solution for c=[50,50]

Approximate solution for c=[100,100]

