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Ecosystem function will in large part be determined by functional groups present in biological

communities. The simplest distinction with respect to functional groups of an ecosystem is the
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differentiation between primary and secondary producers. A challenge thus far has been to examine

these groups simultaneously with sufficient temporal and spatial resolution for observations to be

relevant to the scales of change in coastal oceans. This study takes advantage of general differences in

the bioluminescence flash kinetics between planktonic dinoflagellates and zooplankton to measure

relative abundances of the two groups within the same-time space volume. This novel approach for

distinguishing these general classifications using a single sensor is validated using fluorescence data

and exclusion experiments. The approach is then applied to data collected from an autonomous

underwater vehicle surveying 4500 km in Monterey Bay and San Luis Obispo Bay, CA during the

summers of 2002–2004. The approach also reveals that identifying trophic interaction between the two

planktonic communities may also be possible.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Coastal regions are responsible for approximately 30% of global
ocean productivity (Holligan and Reiners, 1992) and, as such, are
zones of the highest biogeochemical cycling per area with respect
to carbon, nitrogen, phosphorus, and trace metals (Ducklow and
McCallister, 2005; Jahnke, 2005). Mediation, persistence, and
variability of these rates of biogeochemical cycling are primarily
driven by the structure and activity of biological communities.
These communities are, in turn, organized non-randomly, and can
be layered relative to the physical structure of water and
distribution of nutrients, by advective processes and by behavioral
differences within and between organisms (Deutschman et al.,
1993). Because of these varied mechanisms for accumulation
(or patch formation) of different planktonic organisms, their
horizontal and vertical distributions are often heterogeneous, vary
between organisms, and are scaled to the physical, chemical, and
biological forcing. The size of these patches also generally scales
inversely to the organisms’ size (Levin, 1992), with the largest
patches represented by autotrophic phytoplankton, and less
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concentrated larger heterotrophic organisms in successively
smaller patches (Hall and Raffaelli, 1993). Maximal trophic
interactions, transfer of carbon, and rates of biogeochemical
cycling thus occur when these highly concentrated predator and
prey fields intersect. Because of the high rates and levels of
activity in coastal systems, the mechanisms governing patch
distribution and coherence of organisms and their biological
interactions are major topics of ongoing research.

While clearly important, assessing the distribution of plankton
and particularly their interactions have been challenges for
oceanographers. This, in part, stems from the array of approaches
used to quantify planktonic communities in situ, and the
distinction between approaches specific for zooplankton versus
phytoplankton. Bio-optical approaches, such as fluorometry, have
successfully delineated autotrophic populations and communities
in situ for many years (Yentsch and Menzel, 1963; Lorenzen, 1966).
More recently, in situ absorption has been used as a tool to assess
phytoplankton concentrations (Moore, 1994), as well as separate
out specific functional groups (Schofield et al., 2004) or species,
such as harmful algae (Kirkpatrick et al., 2000), based on their
pigment signatures. Similarly, ocean acoustic approaches have
been developed to map zooplankton and nekton (Johnson, 1948;
Holliday and Pieper, 1980; Flagg and Smith, 1989). Recent
advancements in multi-frequency acoustics have been able to
eal structure and interaction of coastal planktonic communities.
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distinguish between zooplankton groups and species (Holliday
et al., 1989; Pieper et al., 1990; Cochrane et al., 2000; Benoit-Bird
and Au, 2003). While both bio-optical and acoustic approaches
provide significant information on the distribution and concen-
tration of phytoplankton and zooplankton at a range of sizes and
groups, in situ measurements are rarely concurrent and at
different scales, making synthesis and integration difficult.
Additionally, uncertainty in the spatial and temporal intersection
of these communities limits the extent of our understanding of
the trophic interaction and thus the nature, rates, and scales
of coastal biogeochemical cycling. These uncertainties have also
played a role in limiting the extent to which biology has been
integrated into dynamical regional ocean models, which have
significantly advanced with respect to physical oceanography
(Kantha and Clayson, 2000). A measurement is therefore needed
that can provide simultaneous data for different planktonic
communities at time and space resolutions similar to routine
oceanographic parameters, such as temperature, salinity, and
fluorometry.

The measure of bioluminescence or bioluminescence potential
(BP) has been reported in the literature for some time (Clarke and
Wertheim, 1956; Clarke and Kelley, 1965; Seliger et al., 1969).
Early research on this phenomenon was driven primarily by the
desire to understand physiological mechanisms for biolumines-
cence, as well as the ecological advantage that bioluminescence
affords to organisms (Alberte, 1993). Previous work in marine
bioluminescence can be divided into a number of categories and
depends largely on the level of organization. Bioluminescence is
produced by over 700 genera representing 16 phyla, spanning the
range of small single-cell bacteria to large vertebrates (Herring,
1987). As such there have been a number of studies examining the
phenomena on individual, population, and ecosystem levels. On
the organism level, the physiological and cellular basis for
bioluminescence (Rees et al., 1998), the spectral quality and flash
kinetics of bioluminescence (Latz et al., 1988; Haddock and Case,
1999), and how these relate to aspects such as circadian rhythms
(Soli, 1966; Morse et al., 1989), photosynthesis (Johnson et al.,
1998), and diet (Haddock et al., 2001) have been well documented.
On a population level, bioluminescence has been studied as it
relates to predator avoidance, prey attraction, and intra-species
communication (Burkenroad, 1943; Morin, 1983; Morin and
Cohen, 1991; Abrahams and Townsend, 1993).
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Fig. 1. Relationship between bioluminescence flash intensity (photons flash�1) and orga

for flash intensity compiled from Lapota and Losee (1984; circles), Lapota et al. (1988;

Thomas (1997) and Johnson and Allen (2005).
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Another body of literature has attempted to examine spatial
and temporal variability in bioluminescence from a community
and ecosystem perspective. In approaching this problem, in situ

sensors, called bathyphotometers, are employed to quantify the
amount of BP and community structure of bioluminescent
organisms in a particular body of water and relate these patterns
to the local- or ecosystem-level dynamics. Case et al. (1993) and
Alberte (1993) review the development of bathyphotometers and
patterns of oceanic bioluminescence. Although developed in
1950s, one of the first large-scale applications of bathyphot-
ometers took place in late 1980s in North Atlantic to examine the
differences in light production by various planktonic taxa
(Batchelder and Swift, 1989; Losee et al., 1989; Batchelder et al.,
1990, 1992; Swift et al., 1995). These measurements are becoming
more prevalent and have now been conducted off ships, on
profiling and undulating systems, on moorings, and on autono-
mous underwater vehicles (AUVs; Widder et al., 1993; Moline
et al., 2001, 2005; Herren et al., 2005). These efforts have provided
new insight into the distribution of coastal bioluminescence at
ecosystem scales as it relates to physical forcing and physiological
rhythms (Widder et al., 1999; Shulman et al., 2003, 2005; Moline
et al., 2005).

From this body of work, there have been a number of general
relationships that have been derived from the measurement
of marine bioluminescence. For a given planktonic community
(highly dependent on locale and season), the number of
bioluminescent organisms and total bioluminescence are propor-
tional to the total biomass (Lapota, 1998). The intensity of
bioluminescent flash and duration of flash have also been shown
to correlate with the size of organism (Lapota and Losee, 1984;
Lapota et al., 1992). Because of this general difference, biolumi-
nescence flash kinetics can be used to delineate these groups
(Fig. 1). Even though larger bioluminescent organisms generally
produce more light, in locally stable environments, their numbers
are proportionally lower relative to smaller single-celled dino-
flagellates. The majority of coastal BP scales inversely with the
size spectrum, with dinoflagellates generally responsible for the
majority of the signal (70–90%; Lapota et al., 1988; Swift et al.,
1995).

Here we use the general relationship between biolumines-
cence flash intensity with organism size to interpret signals
measured from a bathyphotometer deployed on an AUV during
2000 3000
Size (µm)

nism size in dinoflagellates (open symbols) and zooplankton (closed symbols). Data

squares), and Lapota et al. (1992; triangles). Organism size ranges estimated from

veal structure and interaction of coastal planktonic communities.
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2002 and the 2003 Autonomous Sampling Observation Network II
(AOSN II) experiment in Monterey Bay and develop a means
to distinguish and delineate the general structure of coastal
planktonic communities and their interactions. This approach
may complement traditional measurements and serve to validate
or access uncertainties over relevant scales.
2. Methods

2.1. Bioluminescence measurement

The bioluminescence bathyphotometer used in this study to
quantify BP is described in Herren et al. (2005). A centrifugal-type
impeller pump drives water into an enclosed 500-ml chamber and
creates turbulent flow, which mechanically stimulates biolumi-
nescence. The measure of BP is therefore an index of the total
luminescent capacity of organisms in a set water volume. The
measure assumes similar flow-stimulation characteristics for
different groups of organisms and is dependent on the character-
istics of the bathyphotometer, which can vary significantly
Fig. 2. (A) The REMUS autonomous underwater vehicle used in this study being deploy

bathyphotometer for quantification of bioluminescence (see text). (B) Two bathyphoto

bottles were placed on the exhausts of the bathyphotometers to collect organisms for qu

bathyphotometer exhaust ports to capture organisms for validation tests.
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(cf. Herren et al., 2005). Here, a light-baffled photomultiplier tube
(PMT) measures stimulated light between 300 and 650 nm
produced by the entrained organisms. The inside of the chamber
is coated with a 0.075-mm flat white coating to maximize the
amount of stimulated light measured by the PMT. The PMT was
configured to take measurements at 2 Hz. The flow rate through
the chamber is dependent on the rotation rate of the impeller
rotor. This rate is adjusted to achieve residence times of 1.2–1.4 s,
or flow rates of approximately 400 ml s�1. A flow meter monitors
pumping rates using a magnet and a Hall-effect sensor to generate
a period signal, which is converted to an analog signal of flow rate.
The flow rates are measured as water passes from the detection
chamber to exhaust outlets. The bioluminescence bathyphot-
ometer was integrated into the front section of a Remote
Environmental Monitoring UnitS (REMUS) AUV system (Fig. 2A;
Moline et al., 2001, 2005; Blackwell, 2002; Herren et al., 2005). In
order to prevent premature stimulation of bioluminescence by the
moving vehicle, water is taken directly through the front nose
section of the vehicle. Two light-baffling turns in the nose serve to
minimize ambient light contamination. No significant ram effect
on light production or flow rate from the vehicle itself was found
ed in San Luis Obispo Bay, CA. Integrated into the nose section of the vehicle is the

meters attached to a Schindler trap for method validation in this study. Screened

antification and identification. (C) The REMUS with similar bottles attached to the

eal structure and interaction of coastal planktonic communities.
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with this integrated system. Two additional bioluminescence
bathyphotometers were used in profiling mode as part of
validation tests (see below). Cross-calibration between the three
instruments was ensured using a standard isotropic light source
probe inserted into the individual stimulation chambers (Herren
et al., 2005).
2.2. Sampling approach

Data for this study were collected from Monterey Bay in
August 2002 and 2003 as part of the AOSN II experiment, and in
San Luis Bay in June/September 2004 (Fig. 3). Sampling with the
REMUS in Monterey Bay in 2002 occurred along transect ‘‘a’’ while
in 2003, sampling was conducted along transects ‘‘a’’ and ‘‘b’’,
each approximately 21 km in distance. REMUS sampling was
conducted in San Luis Obispo Bay along a cross-shore transect,
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while profile sampling occurred off the California Polytechnic
State University’s Center of Coastal Marine Sciences pier. All
sampling for this study was conducted between 22:00 and 04:00
local time as BP is a diurnally dependent measure, but it has been
shown to be generally stable during this 6-h period (Moline et al.,
2001).

In Monterey Bay, the REMUS was programmed to undulate
between 4- and 40-m depth at a speed of approximately 2 m s�1.
Navigation of the AUV was by an internal compass corrected for
by onboard-measured 3-D currents (Moline et al., 2005). Naviga-
tional error over the combined REMUS runs for this study was
�1.71 of distance covered. For sampling in San Luis Obispo Bay, the
REMUS was programmed to travel across a 400-m transect at
constant depths of 2 and 6 m along the 12-m isobath. Twenty-mm
nets were attached to the exhaust ports of the REMUS during
these deployments to capture the organisms going through the
sampling chamber (Fig. 2C). The REMUS was deployed with this
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net configuration twice in San Luis Obispo Bay along the
two depths. During the second deployment, for the purpose
of excluding larger plankton from the excitation chamber, an
additional 190-mm net was placed between the light-baffling nose
and the bathyphotometer, 0.25 cm from the impellor to prevent
pre-stimulation of bioluminescence. Given the flow rate of the
bathyphotometer (�400 ml s�1) and the diameter of the intake
(3.2 cm), the time between the screen and the impellor (where the
stimulation is designed to occur) was 5 ms, which is significantly
lesser than the flash response latency of these organisms (Widder
and Case, 1981).

In San Luis Obispo Bay, a bioluminescence bathyphotometer
was attached to a Schindler sampling trap (Fig. 2B). The sampler
was suspended at the depth of peak bioluminescence (2.5 m) for
3 min. The intake of the bathyphotometer was alternately pre-
screened with a 190-mm screen or not screened (see above).
Initially, a large-mesh �2500-mm pre-screen was also used to
examine effects of pre-stimulation and impact of screening on the
organism. There were no significant differences in number or type
of organisms or bioluminescence signal between the large-mesh
control and the non-screened treatment (data not shown). We
therefore report only the 190-mm pre-screen and non-screen
conditions. In both of these conditions, the exhaust water from
the bathyphotometer was screened through a 20-mm screen to
capture organisms that traveled through the instrument for
identification and enumeration. There was no visible impact of
the bathyphotometer on the structure of either phytoplankton or
zooplankton. Plankton were identified in a 100-ml settling
chamber using an inverted microscope.
2.3. Signal processing

The variance and mean BP for a given location were calculated
from a sliding data window. The size of the sliding window was
equivalent to 25 m linear distance traveled by the REMUS vehicle
for data collected in Monterey Bay and San Luis Obispo Bay and
was objectively determined by identifying the length scales
of variability, detailed in Moline et al. (2005) and Blackwell
et al. (2007). For the time series tests performed with the
profiling bathyphotometers a data window of 12.5 s was used
(25 observations). The square root of variance of BP and mean BP
were used to generate the coefficient of variation (CV) used in this
study. This approach highlights the differences in bioluminescent
flash intensity rather that flash duration as a means to separate
dinoflagellates and zooplankton. While flash duration is certainly
important and contains species-level information (Widder et al.,
1993), it is problematic for many studies using bathyphotometers
as residence times of these instruments vary (cf. Herren et al.,
2005) and are shorter than flash durations of many organisms.
The simple volume replacement time calculated for the bath-
yphotometer is on the order of a second; however, it is clear that a
decreasing number of organisms can be retained within the flow
field for longer periods (6–10 s; Herren et al., 2005). Because of
this uncertainty in retention and the strong correlation
(R2
¼ 0.81; exponential fit) between flash intensity and duration

(Lapota and Losee, 1984), we have focused on intensity in this
study.
3. Results and discussion

3.1. Coastal dynamics

Data from the REMUS deployments in Monterey Bay in 2002
showed significant coefficient of variability in both physical and
Please cite this article as: Moline, M.A., et al., Bioluminescence to rev
Deep-Sea Research II (2008), doi:10.1016/j.dsr2.2008.08.002
biological fields (Fig. 4). The cross-shore transect was character-
ized by a stratified water column with evidence of upwelled water
out to 5 km. This pattern is consistent with a recurring cyclonic
eddy that forms in Monterey Bay during upwelling periods
(Shulman et al., 2003). Phytoplankton were layered inshore of
5 km with a deeper and more diffuse distribution between 5
and 10 km offshore. At 10 km, there was a twofold decrease
in phytoplankton biomass in surface waters associated with a
salinity front. The depth distribution of high BP was also shallower
inshore of 5 km and deeper between 5 and 10 km offshore, similar
to fluorescence, although the higher BP values were more
concentrated at depth. There were areas of high BP measured
offshore of 15 km, near the bottom inshore, and on the offshore
side of the front at 5 km that did not co-occur with high values of
fluorescence.

In regions where both BP and fluorescence are high, the
traditional interpretation is that the majority of bioluminescent
community is autotrophic (Lieberman et al., 1987; Lapota, 1998;
Geistdoerfer and Cussatlegras, 2001). Some late-stage phyto-
plankton blooms may yield a successional accumulation of
autotrophic dinoflagellates that may include bioluminescent
species, e.g., Lingulodinium sp. (formerly Gonyaulax sp.) or
Ceratium fusus, which may also contribute to a positive relation-
ship between chlorophyll a and bioluminescence (Swift et al.,
1995; Lapota, 1998). In addition, it has been found that
dinoflagellate blooms increased the amounts of luminescent
marine snow (Alldredge et al., 1998; Haddock, 1998), which can
be a dominant source of bioluminescence (Herren et al., 2003).
Likewise, when bioluminescence is high with little fluorescence,
traditional interpretations would suggest a dominance of hetero-
trophic organisms. These assumptions have been shown to be
generally valid, given the large differences across coastal ecosys-
tems in the percent of both heterotrophs and autotrophs that are
bioluminescent (Lapota, 1998). While this is a common approach
for delineating plankton communities, it is difficult to apply
objectively across space and time. As the flash kinetics (intensity
and duration) differ with size, and size generally delineates
between phytoplankton and secondary producers (Fig. 1), we
attempted to use the bioluminescence signal intensity as a single
measure to identify the coarse structure of the planktonic
community. Dinoflagellates generally have a lower flash intensity
than zooplankton and, integrated over a large region, are generally
more abundant in number and uniform in their distribution.
Zooplankton (i.e. copepods), conversely, are fewer in number in an
equivalent volume, but have a more intense flash. These
differences are hypothesized here to lead to variation in signal
outputs from the bathyphotometer.
3.2. Planktonic communities

Using the data collected by the REMUS in Monterey Bay in
2002, we compared the average bioluminescence intensity to the
square root of variance in signals, or CV, as a way to distinguish
these communities. There was, in fact, a distinct bifurcation of the
data, with one distribution of points showing a higher CV (slope)
than the other grouping of points (Fig. 5). Given the assumptions
above, the grouping with high CV was consistent with zooplank-
ton; decreased flash frequency being however more intense. To
attempt to validate this hypothesis, the concurrent fluorescence
measures were overlaid on the distribution of bioluminescence
data (Fig. 5). Fluorescence was grouped with the lower CV signal,
suggesting these were either autotrophic dinoflagellates or
heterotrophic dinoflagellates associated with autotrophic species.
High fluorescence was absent in the high-CV data cluster,
suggesting zooplankton. Lapota et al. (1989) demonstrated that
eal structure and interaction of coastal planktonic communities.
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Table 1
Identification and abundance (number L�1) of phytoplankton and zooplankton and

in samples collected by Schindler trap in Monterey Bay, CA on August 20, 2002

along transect line shown in Fig. 4

Distance offshore (km) 0.5 1.0 1.0 6.7 11.9 11.9 16.1 16.1 21.7 21.7

Depth (m) 6 9 20 9 5 37 7 35 8 35

Dinoflagellates

Autotrophic

G. sanguineum 530 240

Gymnodinium sp.a,b 10 10 10 30 350 540 120 120

Ceratium fususb 20 20 20

Ceratium sp.b 20 20 20 10 10 150 100

Alexandrium cantenellab 20 20 20 120

Prorocentrum micans 20 20 20 50 50 310 230

Prorocentrum sp.b 50 30 30 20 20 420 320

Gyrodinium sp.a 10 10 10 10 420 10

Pyrocystis sp.b 130 20

L. polyedrab 220 270

Oxytoxum sp. 40

Heterotrophic

Protoperidinium sp.b 130 160 20

Polykrikos schwartzii 10

Noctiluca scintillansb 20 20

Oxyphysis sp. 30

Dinophysis sp.b 10 30

Diatoms

Chaetoceros sp. 10 10 10 10 10 10 10 10

Eucampia sp. 10 10 10 100 10 100 100 10

Pseudonitzschia sp. 10 10 100 10 100 1000 100 1000 1000 100

Thalassionema sp. 10 10 10 10 10 10 10 10

Coscinodiscus sp. 10 10 10 10 10 10 10 10 10 10

Other 70 30 10 30 30 50 20 70 40 80

Zooplankton

Ciliates 80 30 30 160 110 110 470 80 70 70

Copepod 10 10 10

Copepod Nauplii 10 20 20 20 20 60 40 20 20

Veliger 10 10

Pluterus larvae 10

a Species can be heterotrophic or mixotrophic.
b Bioluminescent or can have bioluminescent species.

Table 2
Identification and abundance (number L�1) of zooplankton and dinoflagellates in

samples collected through the bathyphotometers in San Luis Obispo Bay, CA on

June 9, 2004 between 23:45 and 00:31 PDT

No screen 190mm prescreen

Zooplankton

Copepods

Metridia sp.a 29 (18) –

Calanoid 31 (11) –

Cyclopoid 4 (2) 5

Nauplii 68 (27) 33 (9)

Other

Siphonophorea 2 (1) –

Polychaete 18 (5) 3 (3)

Polychaete larva 30 (16) 22 (7)

Crustacean larva – 3

Dinoflagellates

Alexandrium sp.a 600 (500) 300 (300)

Ceratium furcaa 100 (100) 0

Dinophysis sp.a 100 (100) 200 (100)

Gonyaulax sp.a 600 (200) 700 (400)

Gymnodinium sp.a 400 (300) 0

Lingulodinium polyedruma 0 100 (100)

Protoperidiniuma 5800 (1500) 5100 (1800)

Other 400 (0) 0

Samples were collected from a bathyphotometer unscreened and prescreened with

190 mm mesh. The numbers are the totals of three replicate samples. Numbers in

parenthesis are the subset from one of the trials shown in Fig. 6.
a Bioluminescent or can have bioluminescent species.
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even when correlations between fluorescence and biolumines-
cence are strong, it does not necessarily confirm that the
fluorescence has been due to the luminescent organisms as
heterotrophic dinoflagellates may often dominate the planktonic
community. The plankton collected along the transect clearly
showed the majority of phytoplankton cells were diatoms;
however, a high fraction of the cells were dinoflagellates and a
significant portion of those were bioluminescent (Table 1). Of the
bioluminescent fraction, �70% were autotrophic. It is clear that all
the fluorescence is not related to luminescent organisms with
lower CV; however, the amount of fluorescence in this group is
higher than seen in the high-CV distribution. Therefore, for this
location and time, fluorescence provides some confirmation that
the variance in bioluminescence measurements can discriminate
between planktonic communities in this data set.

To further validate the use of CV, a number of controlled
experiments were conducted. In June 2004, a bathyphotometer
was suspended in the water column in San Luis Obispo Bay (Figs. 2
and 3). The bathyphotometer was alternately pre-screened with a
190-mm screen to exclude zooplankton or not screened. Micro-
scopic identification of the samples going through the bath-
yphotometer confirmed this approach (Table 2). The CV of
screened bathyphotometer measurements was lower and sig-
nificantly different than the non-screened condition containing
zooplankton community (Fig. 6). This experiment was repeated in
triplicate with the same findings. A similar approach was used
with the REMUS vehicle in September 2004 to validate the
Please cite this article as: Moline, M.A., et al., Bioluminescence to rev
Deep-Sea Research II (2008), doi:10.1016/j.dsr2.2008.08.002
approach spatially (Fig. 2C; see Methods). The vehicle went on
two identical missions within an hour of each other; one mission
with 190-mm screen at the water intake and the other without.
The vehicle maintained two depths over the mission to sample
above and below the thermocline (Fig. 7A). The bioluminescence
was almost twofold higher at depth and the difference in BP
measured with (Fig. 7B) and without the screen (Fig. 7C) over the
intake indicated that signals at depth were generated by
organisms larger than 190mm. The CV of bioluminescence signal
also indicated the presence of zooplankton at depth with a
eal structure and interaction of coastal planktonic communities.

dx.doi.org/10.1016/j.dsr2.2008.08.002
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Fig. 7. Results of REMUS deployment in San Luis Obispo Bay in September 2004. The linear distance represents the roundtrip mission of the AUV along the transect. As seen
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n ¼ 763).
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significant difference between depths (Fig. 7). Given the validation
of this technique with concurrent measures of fluorescence, and
temporal and spatial exclusion experiments with screens, we
applied the approach to the larger AOSN II data set.
3.3. Dynamic structure of planktonic communities

Data from nine successive nighttime transects across Monterey
Bay show spatial differences with depth and distance offshore, as
well as time evolution of physical and biological structure of the
bay (Fig. 8A). The atmospheric forcing and physical dynamics in
this region are well characterized for this time period. The time
sequence of data collected by the REMUS catches a slow transition
from a strong upwelling event to a relaxation condition (Shulman
et al., 2005). Upwelling, affecting the study area, occurred along
the coast north of the bay. Upwelled water entered the southern
part of the bay and displaced coastal water from north and
northeastern sections of the bay, where the sampling took place
(Fig. 3). This effectively set up a cyclonic eddy that pushed water
onto the coast. This was clear in the temperature data beginning
on the fourth night of sampling (August 13, 2004), where the
thermocline on both shorelines shallows (Fig. 8A). As time
progressed in the sampling, the thermocline deepened on the
shore side of transect ‘‘a’’, while remaining relatively shallow on
transect ‘‘b’’, consistent with the entrainment of bay water along
the upwelling front to the west of transect ‘‘a’’. Fluorescence data
showed higher concentrations along the coastline, with significant
layering of the phytoplankton community (Fig. 8A). The offshore
extent of fluorescence distribution was similar to the data
collected in 2002, where higher values were generally restricted
to the inner 5 km along the shelf break (Fig. 4). As time
Please cite this article as: Moline, M.A., et al., Bioluminescence to re
Deep-Sea Research II (2008), doi:10.1016/j.dsr2.2008.08.002
progressed, the depth and offshore extent of fluorescence
increased, which is consistent with the physical dynamics.
Intermittent high fluorescence was evident in the center of the
bay extending to 30 m, and corresponded to the deepening of the
thermocline.

Bioluminescence distributions and dynamics showed simila-
rities with fluorescence, with peak values of 2.3�1010 photons
s�1 L�1 along the shoreline (Fig. 8B). The temporal pattern of
entrainment into the upwelling front was also evident along
transect ‘‘a’’, with the BP signal deepening and extending from 5 to
10 km offshore. The bioluminescent communities in the northeast
appeared concentrated along the coast during this process when
compared to the initial condition, where the communities
extended �10 km offshore. There was high BP from 20 to 40 m
in the center of the bay, extending inshore at the beginning of the
experiment with the highest signal below the thermocline and
fluorescence layer. While there were high BP signals in the center
of the bay during the entire study, their distribution and intensity
changed significantly. Most evident was the apparent separation
between the nearshore surface BP signals and the deeper signals
in the middle of the bay as the upwelling intensified. This was
perhaps due to the intensification of the eddy, as suggested by the
vertical distribution of BP, and to some degree fluorescence, on the
last two sampling days (Figs. 8A and B) and the strength of the
eddy (Shulman et al., 2005). The oscillations in depth distribu-
tions of the physical and biological parameters, for example
inshore on transect ‘‘a’’ on the last night, are consistent with
internal waves known to persist in this area (Petruncio et al.,
1998).

The depth distribution of CV of the bioluminescence signal
during the AOSN II experiment is consistent with the dynamics
described above, with low CV indicative of dinoflagellates,
veal structure and interaction of coastal planktonic communities.

dx.doi.org/10.1016/j.dsr2.2008.08.002
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restricted primarily to the coast and corresponding to regions of
high fluorescence. The highest CV values were either below high
fluorescent areas nearshore at the beginning of the experiment or
distributed throughout the center of the bay and the thermocline
interface. What was also clear in CV distribution was the gradual
separation of nearshore communities from those in the center of
Please cite this article as: Moline, M.A., et al., Bioluminescence to rev
Deep-Sea Research II (2008), doi:10.1016/j.dsr2.2008.08.002
the bay. While CV remained high under the nearshore fluores-
cence, it decreased in the center of the bay as the distribution of
bioluminescent organisms became more uniformly distributed
both vertically and horizontally, decreasing the variance in the
signal. Whether the separation between nearshore and bay
communities was simply displacement driven primarily by the
eal structure and interaction of coastal planktonic communities.

dx.doi.org/10.1016/j.dsr2.2008.08.002
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circulation pattern or by behavior, it is clear that the potential for
coupling and trophic interaction decreased as the upwelling
intensified. Using this approach for separating dinoflagellates and
zooplankton, the total BP over the 9 days was proportioned as 66%
and 34%, respectively, similar to previous findings (Lapota et al.,
1988; Swift et al., 1995).
Please cite this article as: Moline, M.A., et al., Bioluminescence to re
Deep-Sea Research II (2008), doi:10.1016/j.dsr2.2008.08.002
3.4. Applications

There are several scenarios where the application of CV and its
interpretation could be difficult. First, as CV is a ratio, the average
bioluminescence signal needs to be sufficiently above the back-
ground measured by the instrument as evident in Fig. 8B. Second,
veal structure and interaction of coastal planktonic communities.

dx.doi.org/10.1016/j.dsr2.2008.08.002
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although not apparent in these data, if the communities are
thoroughly mixed the ratio will not be able to differentiate
between groups. In addition, some dinoflagellate species can be
mixotrophic or heterotrophic, but exhibit the same spatial
distributions and flash kinetics as autotrophic dinoflagellates
(Lapota et al., 1988), making the application of CV as an absolute
method of delineating trophic status of a community problematic.
Third, the percent of a given phytoplankton or zooplankton
community that is bioluminescent has been shown to vary
significantly in time and space (Lapota, 1998), making CV as a
quantitative measure that is universally applicable improbable.
Lastly, like the measure of apparent optical properties (i.e.
irradiance) restricting sampling during daylight hours, biolumines-
cence requires sampling at night. As shown here, despite these
real limitations, this single measure in different coastal regions and
at different times of the year may provide qualitative and in
some cases quantitative separation between dinoflagellates and
zooplankton.

Rapid delineation of these groups in the field could serve to
significantly advance the integration of biology into dynamic
ocean models. Data-assimilative hindcast/forecast and nowcast
models are beginning to couple simple biological models that
depend on time and space knowledge of growth and loss terms
between bulk communities (i.e. phytoplankton, zooplankton) and
assumptions on rates of remineralization (McGillicuddy et al.,
1995a, b; Chai et al., 2003; Shulman et al., 2005). In order to
advance these model approaches, systematic measures of the
modeled quantities and their spatial and temporal scales of
distributions are needed for initialization and model validation.
Chlorophyll fluorescence and acoustics have been used to validate
phytoplankton and zooplankton distributions, respectively; how-
ever, there is presently no straightforward single measurement to
accomplish this over large domains. This study identifies a
potential biological measurement that can be made on the space
(kilometers) and time (days) scales relevant for model data
assimilation. As with formulating oceanographic models, the
upstream conditions need to be considered when defining
boundary conditions. This is known for the physical domain, but
Please cite this article as: Moline, M.A., et al., Bioluminescence to rev
Deep-Sea Research II (2008), doi:10.1016/j.dsr2.2008.08.002
is also true, and most likely different, for the biological commu-
nity structure in a regional context.
3.5. Planktonic interaction

In addition to discriminate between planktonic communities,
data collected in 2002 suggest that this approach has potential to
address the interaction of the two groups. As evident in Fig. 5,
there was a distinct low but slightly elevated fluorescence signal
in the high-CV cluster attributed to zooplankton. Two probable
conditions could account for this data distribution. The first
possibility is that the zooplankton were mixed with low
phytoplankton biomass. However, this appears unlikely because
the signal was uniform with no elevated fluorescence values in the
high-CV data grouping. Additionally, there was a clear separation
in fluorescence, with little to no fluorescence signal between the
two CV distributions (Fig. 5). The second possible explanation is
that the fluorometer on board the REMUS AUV was detecting
fluorescence from the zooplankton guts. Zooplankton gut fluor-
escence has been a standard measurement for quantifying
ingestion, grazing, growth, and fecundity in copepods and
gelatinous zooplankton in both lab and field settings (Mackas
and Bohrer, 1976; Baars and Oosterhuis, 1984; Dam et al., 1994;
Pasternak, 1994; Atkinson et al., 1996; Landry et al., 1997; Harris
et al., 2000). Jaffe et al. (1998) and Franks and Jaffe (2001, 2008)
simultaneously imaged phytoplankton and zooplankton using a
fluorescence-imaging system and identified fluorescing zooplank-
ton guts in situ. It follows, therefore, that a portion of in situ

fluorescence measurement would be attributable to zooplankton
gut fluorescence, with that contribution varying based on the level
of trophic interaction and grazing. A systematic method of
separating the fluorescence of living phytoplankton from zoo-
plankton guts, however, has not been identified. The depth
distribution of the 2002 fluorescence data from the high-CV data
(Fig. 5) showed a pattern supportive of fluorescence being
attributed to gut contents of the zooplankton (Fig. 9). The
distribution of these data framed the nearshore autotrophic
eal structure and interaction of coastal planktonic communities.

dx.doi.org/10.1016/j.dsr2.2008.08.002
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community from both the bottom and vertical fluorescence front
10 km offshore. Four percent of the total fluorescence along the
transect was found to be associated with the zooplankton CV
signal.

This finding has a number of significant implications. Fluores-
cence is used by the oceanographic community as a bulk measure
of phytoplankton biomass and subsequently used in estimates of
primary production. If a significant fraction of this biomass was
actually in zooplankton guts and no longer viable for carbon
fixation, there would be an overestimation of carbon productivity.
Additionally, these interactions are not distributed uniformly in
the water column, leading to further complexity in application.
Fig. 10 illustrates this further when the approach is applied to the
AOSN II data set from Monterey Bay. As with the distribution of CV
(Fig. 8B), it is clear that initially there was connectivity in grazing
between the coast and the center of the bay. As the eddy
intensified, the coastal zooplankton separated from those in the
center of the bay and developed distinct regions of trophic
transfer. By the last sampling night (into the relaxation period),
there is some indication of the grazing connectivity returning. In a
modeling context, delineating these fields has the potential to
advance coupled physical–biological models and refine the space
and time scales of trophic interactions, carbon transfer, and rates
of biogeochemical cycling. Although controlled experiments are
clearly needed to fully validate the ability to discriminate
zooplankton gut fluorescence from viable phytoplankton biomass,
results from this study suggest that the combined measurement
of bioluminescence and fluorescence may be used to delineate
regions of trophic interaction.

4. Conclusions

This study takes advantage of the general differences in
bioluminescence flash kinetics between dinoflagellates and
zooplankton to measure the relative abundances of the two
groups within the same time space volume. Results demonstrate
this as an approach for distinguishing these general classifications
using a single sensor, which was validated in this study using
fluorescence and exclusion experiments. Applied to large field
data sets, this approach has the potential to provide models with
distributions of these planktonic communities for initialization
and validation leading to mechanisms governing the patch
distribution, coherence, and their biological interactions. The
organismal diversity and variability represented in the measure of
bioluminescence at a given time and place prevents this approach
from being quantitatively applied universally, but may be useful
on relatively short time and space scales. Despite these limita-
tions, the measure of BP may afford the oceanographic commu-
nity a complimentary tool to observe and understand planktonic
communities in the ocean.
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