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Fast iterative multigrid solvers in fluid mechanics have been the subject of a
large amount of research since the 1980’s [Barros et al., 1990; Benzi et al., 2005;
Elman et al., 2005; Saad et al., 1986]. In ocean modeling, the development of
numerical techniques is important to improve the implicit treatment of the stiff
dynamics. For example, an efficient iterative solver for the computation of the
sea surface could allow for getting rid of time step constraints imposed by grav-
ity waves. The computational cost would be highly reduced, using a multi-scale
numerical approach. Then, the ocean global circulation could be simulated by
finite element models such as the Second-generation Louvain-la-Neuve Ice-ocean
Model (SLIM) [White et al., 2008]. Simulating a three-dimensional stratified flow
using unstructured grids with finite element methods requires the development
of new accurate and stable discrete formulations [Blaise et al., 2010; Comblen et
al., 2010] waves or advective transport), while finite element methods were first
developed for problems dominated by elliptic terms. Unstructured grid marine
modeling is an active area of research for coastal applications (e.g. [Deleersnijder
et al., 2008]). Indeed, the coastlines must be accurately represented, as they have
a much stronger influence at the regional scale than at the global scale.

The three-dimensional baroclinic free-surface marine SLIM model relies on a hy-
drostatic Boussinesq equation discretized with a Discontinuous Galerkin method
on a mesh of prisms extruded in several layers from an unstructured two-dimensional
mesh of triangles. As the prisms are vertically aligned, the calculation of the
vertical velocity and the baroclinic pressure gradient can be implemented in an
efficient and accurate way. All discrete fields are defined in discontinuous finite el-
ement spaces, in order to take advantage of the well-known good properties of the
Discontinuous Galerkin methods for advection dominated problems and for wave
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problems. The discretization of the three-dimensional horizontal momentum and
the continuity equations are defined in such a way that their discrete integration
along the vertical axis would degenerate in a stable discrete formulation of the
shallow-water equations. We stabilize the discrete equations by using the exact
Riemann solver of the linear shallow-water equations for the gravity waves. Such
a Riemann solver for the two-dimensional equations can be then viewed as a quite
good approximate Riemann solver for the three-dimensional baroclinic equations.
For internal waves, an additional stabilizing term is derived from a Lax-Friedrich
solver. Consistency is ensured [White et al., 2008]. The model is able to advect
exactly a tracer with a constant concentration, meaning that the discrete transport
term is compatible with the continuity equation.

As a first step in the development of an efficient preconditioned Krylov solver
of the three-dimensional baroclinic ocean model, we propose to design an efficient
multigrid-based solver for the two-dimensional shallow-water equations

∂u

∂t
+ u · ∇u+ fez × u = −g∇η +

1
H
∇ · (Hνt∇u) +

τw

ρH
,

∂η

∂t
+∇ · (Hu) = 0,

where the unknown fields u, and η are the velocity and the sea surface elevation,
respectively. The latter can be viewed as a simple translation of the total depth
H = η + h where h is the depth at rest. The Coriolis factor, the gravitational
acceleration and the density are denoted by f, g and ρ, respectively. The wind
forcing is provided by τw and the dissipation is ensured through a turbulent vis-
cosity νt. To obtain a numerical solution, a linearization of the equations is usually
performed. In order to ensure the convergence of the Newton scheme, it is manda-
tory to introduce a pseudo-time stepping algorithm that will guide the iterative
global scheme toward the solution while avoiding unphysical intermediate steps
that could lead to numerical unstabilities. The selection of the pseudo time step
can be critical for the convergence of both the preconditioned GMRES and the
Newton schemes. The fact that the linearized system is approximately solved is
also a key issue. To perform a mathematical analysis, let us assume a constant
bathymetry h and remove the inertia terms and all nonlinear free surface terms.
Then, the equations degenerate into an usual saddle-point problem [Benzi et al.,
2005] exhibiting a similar mathematical structure as the Stokes equations

−∇ · (νt∇u) + fez × u+ g∇η =
τw

ρh
,

∇ · u = 0,

where the sea surface elevation η plays here the role of the pressure. The finite
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element discretization of this simplified model yields the linear equations[
A BT

B 0

] [
u
gη

]
=

[
f
0

]
where A contains the discrete diffusion and Coriolis operator; B and BT are the
discrete divergence and gradient operators, respectively.

To solve such a discrete saddle-point problem with a rate of convergence in-
dependent of the mesh size, we use a block approach. An approximation of an
ideal preconditioner based on the Schur complement is obtained from a geometric
multigrid approach [Elman et al., 2005; Hackbush, 1985]. We consider approxi-
mate L2 projections between non-nested meshes and multi-directional smoothers
using block Gauss–Seidel splittings Special care for the design of the preconditioner
is required to take the impact of both the Coriolis force and the discontinuous dis-
cretization into account. Nevertheless, our approach is general and can then be
applied on both standard and non-conforming Galerkin finite element methods.

References
S.R.M. Barros, D.P. Dee, and F. Dickstein, ”A Multigrid Solver for Semi-Implicit
Global Shallow-Water Models”, Atmosphere-Ocean, v. 28, p. 24-47, 1990.
M. Benzi, G.H. Golub, J. Liesen, ”Numerical solution of saddle point problems”,
Acta Numerica, Cambridge University Press, p. 1-137, 2005.
S. Blaise, R. Comblen, V. Legat, J.-F. Remacle, E. Deleersnijder, J. Lambrechts,
”A discontinuous finite element baroclinic marine model on unstructured prismatic
meshes. Part I: spatial discretization”, Ocean Dynamics (submitted)
R. Comblen, S. Blaise, V. Legat, J.-F. Remacle, E. Deleersnijder, J. Lambrechts,
”A discontinuous finite element baroclinic marine model on unstructured prismatic
meshes. Part II: implicit/explicit time discretization”, Ocean Dynamics (submit-
ted)
E. Deleersnijder, P.F.J. Lermusiaux, ”Multi-scale modeling; nested-grid and
unstructured-mesh approaches”, Ocean Dynamics (special issue), v. 58, p. 335-498,
2008.
H.C. Elman, D.J. Silvester, A.J. Wathen, ”Finite Elements and Fast Iterative
Solvers”, Oxford University Press, Oxford, UK, 2005.
W. Hackbusch, ”Multi-grid Methods and Applications”, Springer-Verlag , Berlin,
1985.
Y. Saad, M.H. Schultz, ”GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems”, SIAM Journal on Scientific and Statistical
Computing , v. 7, p. 856-869, 1986.
L. White, V. Legat, E. Deleersnijder, ”Tracer conservation for three-dimensional,
finite-element, free-surface, ocean modeling on moving prismatic meshes”, Monthly

IMUM-2010, MIT August 17-20, 2010



Weather Review , v. 136, p. 420-442, 2008.

IMUM-2010, MIT August 17-20, 2010


