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Abstract

Biological modeling is an important investigation tool in oceanography, which can provide an insight into biological dynamics,
integrate multi-disciplinary processes and predict ecological events. However, the lack of a common set of parameterizations of
fundamental biological processes hinders progresses in simulation skill, reliability and predictability. There exist 13 functions for
light forcing on phytoplankton growth, 5 for nutrient limitation, 6 for ammonium inhibition on nitrate uptake, 10 for temperature
forcing on biological rates, 20 for zooplankton feeding on a single type of prey, 15 for feeding on multiple types of prey, 8 for
mortality and 6 for respiration. All of these functions are actually in use in modeling applications. This paper presents an overview
of the existing functions. Based on their functionality, flexibility and reliability, a subset of functions has been selected as an a
priori set of parameterizations. | suggest to use these selected parameterizations when they can fit well the data. By doing this, we
can reduce the number of biological parameters that need to be estimated and provide a better opportunity for intercomparison.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction ocean sciences. Ocean science is, by its nature, sci-
ence of systems that integrates dynamics in various

After half a century from the early effort dRiley disciplines: physics, chemistry, biology and geology.
(1946, 1947a,l|ndRiley et al. (1949)biological mod- Numerical modeling represents an essential and effi-

eling has become a research method widely used in cient tool to provide an insight into the interactions
between different disciplines and integrate dynamics

- at a system level. Numerical modeling can help to pre-
* Eresentaddress: School of Marine Science and Technology, Uni- dict ecological events over an appropriate time scale
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fax: +1 508 910 6342. ment and exploitation. Certain fundamental processes
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ecosystems that numerical models need to adequatelyall of these equations is a confused practice that make
parameterize. Light and nutrients are two fundamental doubtful the rigor and reliability of biological and eco-
factors in determining the productivity of the ocean. logical modeling.
Trophic dynamics are key energy links from primary Methodological standardization represents pro-
production to high trophic levels. gresses in scientific research. Standardization has been
Various mathematical formulations have been achieved in many subdisciplines in marine science,
developed to describe fundamental biological pro- such as standard sampling and analytical procedure,
cesses and forcing functions, such as those of light, standard environmental criteria, standard seawater den-
nutrient and temperature. Since the beginning of the sity functions and standard fish stock assessment mod-
20th century wherBlackman (1905described CQ els. The primitive equations are used in most physical
fixation as a rectilinear function of light intensity, 13 circulation models with well-established controlling
equations have been developed to describe the samegarameter values. Standardization can reduce ambigu-
relationship, i.e., the growth—light g—E function. All ity and redundant effort in scientific research, promotes
these equations have been used in modeling applica-working efficiency and applications, and provides a
tions. unique framework for communication and intercom-
There are two basic functions of nutrient limitation parisons.
on phytoplankton growth, the Michaelis—Menten func- Standardization in ecological modeling has been
tion and the Droop function, but different formulations suggested over the yea@ohen et al. (1993)alled for
have been developed and used in numerical simulation, standardization in food web studies. Effort has been
with 6 functions of ammonium inhibition on nitrate conducted for standard model structure, parameteri-
uptake. More confusing are parameterizations of zoo- zation and documentatiorKéluzny and Swartzman,
plankton feeding, 20 equations for feeding on a single 1985; Wilhelm and Biggemann, 2000; Williams et
type of prey and 15 for feeding on multiple types of al., 2002; Wilhelm, 2003, 2005; Hoch et al., 2005
prey. Trophic dynamics are complex at the secondary However, the intrinsic complexity in trophic dynam-
production level and different feeding modes and func- ics and diversity in ecosystem function prohibit the
tional responses may require different mathematical progress in standardizing parameterization in eco-
approaches. In numerical simulation, however, zoo- logical and biological models. Tropphic preferences,
plankton are often represented by aggregated state vari-strength, omnivory, path length, trophic level and bio-
ables, e.g., zooplankton, mesozooplankton and micro- diversity all influence the trophic dynamics in marine
zooplankton. Species and feeding modes are usuallyecosystemsWilliams and Martinez, 2000; Montoya
not specific. All these various equations have been usedand Soé, 2003. Numerical models have the limitation
in the same way for the same purpose, i.e., trophic link in simulating and predicting the complexity of marine
and energy flow fromlowto high trophiclevels. Inaddi- ecosystems. In practice the accuracy of numerical sim-
tion to these various equations of zooplankton feeding, ulation depend on the quality of the data set used to con-
there exist eight functions describing zooplankton mor- strain the model. Parameterizations are often selected
tality and six functions describing respiration. according to the goodness-of-fit with the data set avail-
These various functions are mostly based on empiri- able. Standardization of biological parameterization
cal relationships that express correlation between mea-resides in the development of mechanistic formula-
surable variables. The real ecological or physiological tions based on physiological and biological dynamics
processes underlying the observed correlation are notinstead of empirical forms from data fitting.
explicit. There is no sound statistical or physiolog- Although it may not be realistic nowadays to stan-
ical basis to reject one or another parameterization dardize biological parameterizations given the lack of
(Sakshaug et al., 1997but the choice among them physiological and mechanistic functions, itis necessary
can be critical with respect to the model functionality to give an overview of these functions and to evalu-
(Gao et al., 2000; Gentleman et al., 2D0Bhe lack of ate their suitability for biological simulation. In this
a common set of parameterizations of the most funda- paper, | have reviewed the existing functions describ-
mental biological dynamics hinders intercomparison, ing light and temperature forcing and nutrient limita-
adequacy and skills of simulation and prediction. Using tion on phytoplankton growth, ammonium inhibition
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on nitrate uptake, zooplankton feeding, mortality and be expressed by the Michaelis—Menten functiBaly,
respiration. Based on analyses of their functionality, a 1935; Tamiya et al., 1953; Caperon, 1967; Kiefer and
subset of functions has been selected as the a priori seiMitchell, 1983:
of parameterizations. The selection was based on the oE
correctness, flexibility and generality of the existing w(E) = Pp———— (2)
functions. For example, parameterizations of light forc- Pm+oE
ing on phytoplankton growth rate with photoinhibition The Michaelis—Menten function was developed to
have been selected over that without photoinhibition. describe enzymatic activitiedljchaelis and Menten,
Functions with photoinhibition have the advantage to 1913. Its application to light limitation was chosen
apply to alarge range of ecosystems both with and with- to fit experimental results and is without fundamen-
out photoinhibition by assigning an appropriate value tal physiological underpinningSmith (1936)used a
to the photoinhibition coefficient. Grazing functions modified Michaelis—Menten function while trying to
which can simulate various functional responses have improve the fitting of experimental data:
been selected over monotonous functions due to their

. - " . oFE
large applicability. Mechanistic parameterizations have ;,(E) = Pp————— 3
been selected over empirical relationships. Mechanis- P&+ a?E?
tic functions are based on accepted knowledge abo“tLater, Bannister (1979)and Laws and Bannister

the mechanisms of a specific process. Their parameters(lgso) proposed a more flexible form of the
are generally interpretable and their application can be pjichaelis—Menten function:

extended further than empirical models. The purpose
of this paper is not to reject certain of the existing func- ,,(g) = me
tions, but to suggest an a priori set of parameterizations (P + (@Ey)™"
as a selection.

(4)

Changes in the powern can generate different
responses of phytopankton growth to light intensity.
Whenn =1, the Bannister formulation is equivalent to
2. Light forcing on phytoplankton growth rate the Michaelis—Menten function (E(R)), whenn = 2, it
is equivalent to the Smith function (E€)), and when
n~ oo, this formulation approximates the rectilinear
function.

Under high light intensity, photosynthesis is pho-

Based on early experiment®lackman (1905)
described the relationship between phytoplankton
growth and light (t—F relationship) as a rectilinear

function: toinhibited, most likely through photo-oxidation reac-
1 < Py tions, i.e., over excited antenna chlcan be com-

al for o bined with oxygen to become chemically altered

wl) = I> P (D) (Rabinowitch, 1945; Steele, 1962; Prezelin, 1981

P for o None of the previous functions parameterize pho-

. . toinhibition (Fig. 1A, curves 1-4). Consequently,
where_Pm is the maximum phytoplankion growth rate Vollenweider (1965andPeeters and Eilers (1978jy-
a.nda. IS the. slope between phytop!ankton growth and ther modified the Michaelis—Menten function to take
light intensity Blackman, 1905; Riley, 1946; Jassby into account photoinhibition:

and Platt, 1976; Platt et al., 197 According to this

equation, the phytoplankton growth rate increases lin- aE 1

e - : W(E) = Pm (5)
early with light intensity up to a certain leveP /o) 2 212 2\1/2
beyond which the growth rate ceasestoincrease. Black-
man interpreted the saturation light level as a result of E 2+«
other limiting factors that overwhelmed the effect of #(E) = Pm (6)

2
light. Eopt1+ aE/Eopt+ (E/Eopt)

Field and laboratory observations later showed that whereEqp represents the optimal light intensity under
theu—E relationship follows a hyperbolic curve and can  which phytoplankton growth rate reaches its maximum
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Fig. 1. Relationships between photosynthetically available radiation and phytoplankton growth rate: (1) rectilinear funct{ay), (&).
Michaelis—Menten function (Eq2)), (3) Smith function (Eq(3)), (4) generalized Michaelis—Menten function (&4) with n=3), (5) Vollen-
weider function (Eq(5)), (6) Peeters and Eilers function (€&)), (7) Webb function (Eq(7)), (8) Platt function (Eq(8)), (9) Steele function
(Eq.(9)), (10) Parker function (Eq10)), (11) hyperbolic function (Eq11)) and (12) Bissett function (E¢12)).

(Vollenweider, 1965; Peeters and Eilers, 1978; Parsons Jasshy and Platt (1976uggested the hyperbolic tan-

etal., 1984. Varying the parameters Eqpt ando: mod- gent function to describe the-F relationship:

ifies the shape of the curve and thus the photosynthetic oE

response to light intensity including photoinhibition in  w(E) = P tanh<> (11)

light ranges beyond the optimal intensiyy (Fig. 1A, Pm

curves 5 and 6). which does not include photoinhibitiofig. 1B, curve
Webb et al. (1974)sed an exponential function to  11). Bissett et al. (1999)modified this function by

reproduce the observed data on light and@igation adding an exponential photoinhibition term:

used as a measure of photosynthesis: o(E — Eo)

/’L(E) — Pm(l . efotE/Pm) (7) M(E) = Pnm tanh<Pm) eﬁ(Eopt—E) (12)

Platt et al. (1980)added a second term to the whereEp represents the compensation light intensity
Webb exponential function to represent photoinhibi- under which the net growth rate of phytoplankton
tion observed in field studies: is null, i.e., photosynthesis and respiration neutralize
each other an@ determines the photoinhibition effect

_ _ a—@E/PmY o—BE/ Pm
W(E) = Pm(1—e )e ) (Fig. 1B, curve 12).
where the exponential coefficiefitletermines the pho- Finally, Sakshaug et al. (198@eveloped a mecha-
toinhibition effect Fig. 1B, curve 8).Steele (1962)  nistic function for theu~E relationship:
combined the linear and exponential functions: _ g0t 1_ gotE
E) = 9a¢maxE7 = Qad)max
E 1 g/ & otE
E) = Phao——¢€ opt 9
W(E) = Pm Fop 9) (13)

where the exponential term determines the photoinhi- where# is the chlorophyll:carbon ratio (Chl:Cy,rep-
bition (Fig. 1B, curve 9). The shape of the curve of resents the specific absorption coefficient for chloro-
this equation is essentially fixed in high light intensity phyll a, ¢maxthe maximum quantum yield, the mean
ranges. This rigid property makes it relatively difficult absorption cross-section ands the minimal turnover
to fit this equation to datéParsons et al., 1984Parker time of the photosystem. The last exponential term rep-
(1974)modified the Steele function by adding a power resents the Poisson probability that a photosynthetic
parametep to increase the flexibility for data fitting: unit being hit is open.
£ 8 Except for the last mechanistic function, all others

w(E) = pma( el—E/Eopt> (10) are empirical and obtained from data fitting. All these

Eopt formulations have been developed and used to simulate
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the sameu—E relationship without specific environ-
mental conditions or phytoplankton species. Given the
diversity of the formulations that are used to describe
the same biological process (i.e., fheE relationship)
without specific environmental or biological condi-
tions, it is desirable to select some of the functions
according to certain criteria so that intercomparisons
between models are feasible. Also this will reduce the
number of biological parameters that need to be esti-
mated for modeling applications.

Photoinhibtion has been observed. This fact can
allow us to rule out the functions, which do notinclude
photoinhibition, i.e., functions 1-4, 7 and 11kig. 1
Flexible functions can provide better fitting to data than
functions with fixed forms, e.g., the Parker function
(Eq. (10)) versus the Steele function (E(R)). How-
ever, the flexibility of some functions requires more
free parameters that are usually difficult to estimate
and biologically uninterpretable. The Sakshaug—Kiefer
mechanistic function (Eq13)) is the only one based
on analysis of biological processes. However, it does
not contain the photoinhibition term. This mechanistic
function is equivalent to the Webb function. Assum-
ing that the composite teraypmax represents the initial
slopea of the u—F curve and the composite tersi
equals toa:Pm, the Sakshaug—Kiefer function (Eg.
(13)) becomes the Webb function (E)). The Platt
function (Eq.(8)) is based on the Webb function with a
specific photoinhibtion term. Its controlling parameters

367

kinetics:

(14)

where N is the concentration of a nutrient element
andKs is the half-saturation constarfi. 2A, curve

1). The Michaelis—Menten function is thus an empir-
ical formulation that can accommodate experimental
data of nutrient uptakel-ennel (1995)modified the
Michaelis—Menten function in a quadratic formulation:

N2
N)= ——— 15
N = e (15)
andFlynn et al. (1997proposed a more generic form:
Nm
N)= —— 16a
N = S (162)

Field observations and laboratory experiments
sometimes showed a critical concentration of certain
nutrients below which the uptake rate is virtually null
(Caperon and Meyer, 1972; Paasche, )9T800p
(1973, 1983)nterpreted the phenomenon as the pres-
ence of an unreactive intercellular nutrient quota below
which phytoplankton cease to grow. Consequently,
Droop (1973, 1983%uggested the Droop function for
nutrient uptake:

K
ua(Q)=1- -2

b
0 (16b)

are interpretable and their values can be derived from where Q is the cell quota of nutrient an&, rep-
measurable parameters such as the specific absorpresents the critical cell quota below which phyto-

tion coefficient, maximum quantum yield and the mean

cross-section. Consequently, | propose the Platt func-

tion (Eq. (8)) as the a priori parameterization for the
u—E relationship.

3. Nutrient limitation on phytoplankton growth
rate

Brandt (1899, 1902first called attention to the
importance of phosphate and nitrate as limiting factors
for phytoplankton growth in the ocean aK&tchum
(1939)established the relationship of hyperbolic nature

plankton growth is 0 Kig. 2A, curve 3). Both the
Michaelis—Menten function (e.g<iefer and Mitchell,
1983; Radach and Moll, 1993; Semovski et al., 1996;
Davidson, 1996; Flynn, 1998; Backhaus et al., 1999;
Napolitano et al., 2000; Chifflet et al., 2001; Franks
and Chen, 2001and the Droop function (e.gMarra

et al., 1990; Lange and Oyarzun, 1992; Oyarzun and
Lange, 1994; Haney and Jackson, 198 in use in
modeling applicationGoldman and McCarthy (1978)
argued that the Droop equation is applicable for minor
nutrients such as iron, Vitamin B12 and phosphorus,
but for major nutrients such as nitrogen and silicate, its
applicability is limited.

between nutrient uptake and concentration. Based ona The sigmoidal function (Eq.15)) can provide cer-

review of laboratory and field measuremei@aperon
(1967)andDugdale (1967argued that nutrient uptake
can be described by the Michaelis—Menten enzyme

tain simulation stability, but cannot theoretically ensure
the parameterization of thresholig. 2A, curve 2).
Some authors suggested a simple combination of the
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Fig. 2. (A) Relationships between nutrient concentration and nutrient limitation factor applied to phytoplankton growth rate: (1)
Michaelis—Menten function (Eq14)), (2) quadratic Michaelis—Menten function (E(.5)), (3) Droop function (Eq(16)), (4) combined
Michaelis—Menten and Droop function (E@.7)). (B) NH4* inhibition factor on N@~ uptake: (1) Wroblewski function (E18)), (2) Hurrt

and Armstrong function (Eq19)), (3) O’Neil function (Eq.(20)), (4) Spitz function (Eq(21)), (5) Parker function (E¢22)), (6) Yajnik and
Sharada function (E§23)). (C) NHs* and NG~ total limitation factor on phytoplankton growth rate under NQeplete condition (1QM1~1)

with a half-saturation constant of 1y 1~1. Function numbers are the same as that in panel (B).

Michaelis—Menten and the Droop functior@aperon waterNp in Eq. (17) differs from the critical cell quota
and Meyer, 1972; Paasche, 1973; Dugdale, 1977; Ky inthe Droop function (Eq.16)). In many cases, the
Droop, 1983; Flynn et al., 1999 threshold of nutrient concentration is below the detec-
N — No tion limit of the currently used analytical methods so
u(N) = ——— a7 that Ny can be assigned to 0 in modeling applications.
N+ Ks—No Given the importance of iron limitation in ocean pro-
Martin (1992)demonstrated the threshold effect of dis- ductivity and the diversity of phytoplankton species,
solved iron concentration in seawater. When the con- the combined function with both a half-saturation con-
centration of dissolved iron is below a critical level stantand threshold (E€L7)) has the potential of wider
(0.3-0.5nmol in the open ocean), the diffusion of applicationthanthe simple Michaelis—Menten function
iron to the cell surface is so slow that phytoplankton or the Droop function.
growth is severely limited. It should be pointed out that There are two main forms of dissolved inorganic
the Droop equation models the relationship between nitrogen that can be taken up by phytoplankton, nitrate
phytoplankton growth rate and the internal cellular (NOs~) and ammonium (Ng). NOs~ assimila-
nutrient contents whereas the Michaelis—Menten func- tion requires reduction to Nff which is an energy-
tion describes the relationship between phytoplankton expensive process. Nitrate reductase activity (NR),
growth rate and external nutrient concentrations in sea- which regulates the first step of NO reduction, is
water. The threshold of nutrient concentration in sea- decisive in determining the rate of nitrate reduction and
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assimilation §olomonson and Barber, 199INO3~
uptake induces NR whereas NHuptake can repress
NR and, thus, inhibits N@ uptake Dugdale and
Goering, 1967; Eppley et al., 1969; Dortch, 1990;
Flynn et al., 199Y. Various functions have been devel-
oped to parameterize ammonium inhibition of nitrate
uptake. Wroblewski (1977)proposed an empirical
function with an exponential inhibition term:

NOg~ e ¥NHa"
NO37 + KNOg_

NH4T
NH4t + KNH,

w(N) = (18)

whereKnh, andKno, are the half-saturation constants
for NHs* and NG~ uptakes and) is the exponen-
tial coefficient determining Nigt" inhibition for NO3™
uptake.Hurrt and Armstrong (1996proposed a for-
mulation based on the argument that the sum ofNH
and NG~ uptake should follow the Michaelis—Menten
function (NG~ + NH4*)/(Kn + NH4* +NO3™):

NH4t
N J—
N = RAa™ + Kn
n KnNNO3™
(NHz™ + KN)(NO3™ 4+ NHg™ + KN)

(19)

O’Neill et al. (1989)deduced from molecular kinetics
a substitution formulation between two nutrients that
have been applied to NO and NH;~ uptakes:

NO3_/KN03— + NH4+/KNH4_

N) =
W) =173 NOs~/Kno, + NHa™/Knp,+

(20)

Spitz et al. (2001)combined the Wroblewski and
O’Neil functions for nitrogen uptake:

NH4+/KNH4+ + NO3_/KNO3— e_lllNH4

N) =
W) = =7 NO3~/Kno, + NHa™ /Knp,+

(21)

While taking into account nitrate reductase activity,
Parker (1993)developed a formulation for nitrogen
uptake based on the Michaelis—Menten function:

KNH, NO3™
NHst + KnNH, NO3™ 4+ Knog

(22)

369

Alternatively, Yajnik and Sharada (2003)roposed a
modified Michaelis—Menten form in which a new free
parameter was added to regulate the inhibition factor:

NH4T
NH4" 4+ KnH

14 aNHg™ NO3™
1+ bNH4T NO3™ + Kno;
(23)

n(N) =

where bothu andb are constants which determine the
NH4* inhibition factor for NQ3~ uptake.

| have calculated the NH inhibition factors for
each formulation by assuming that nitrate uptake fol-
lows the Michaelis—Menten hyperbolic curve when no
inhibition occurs Fig. 2B). All these functions gen-
erate increasing inhibition factor with Nfl concen-
tration. The slopes of these curves can be adjusted
by the corresponding parameters so that the differ-
ent slopes do not necessarily mean different inhibition
effects. However, the total nitrogen uptake rate (i.e.,
NH4* uptake + NQ~ uptake rates) is specific to each
formulation §ig. 2C). The Wroblewski function (Eq.
(18)) generates a sigmoidal curve with the total nitro-
gen uptake rate increasing first, then decreasing with
increase in N* concentration. The Spitz function
(Eq.(21)) generates high values of total nitrogen uptake
rate when NH* approaches to zero and low value at
intermediate Ni* concentration Kig. 2C, curve 4).
This kind of irregular response of the total nitrogen
uptake rate to increases in WHconcentration has not
been reported and can lead to instability in numerical
simulations.

The Yajnik function (Eq.(23)) generates a total
nitrogen uptake factor >1. According to the Michaelis—
Menten and Droop functions, the maximum value of
the limitation factor is 1 under nutrient replete condi-
tion, whereas the actual maximum value of phytoplank-
ton growth rate is determined by the maximum growth
rate of phytoplanktorP, (see Sectiori). The Yajnik
function can generate phytoplankton growth rate higher
than the maximum growth rate and the simulation can
be out of control. Moreover, the Liebig minimum law is
applied when multiple nutrients are considered, i.e., the
minimum of the uptake factor is applied among mul-
tiple types of nutrients. If the nitrogen uptake factor is
>1 whereas that of other nutrients are <1, the limita-
tion effect of nitrogen will not be effectively taken into
account and negative value can be simulated for this
element.
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The O’Neil, Hurrt and Parker functions all pro-
duce plausible total nitrogen uptake rate that slightly
increases with respect to NHconcentrationKig. 2C,
curves 2, 4 and 5). The relatively high total nitrogen
uptake rate at low Nl concentration ranges is due

to the fact that nitrate is assumed replete so that the

calculated total nitrogen uptake rate is not subject to
nitrogen limitation. The O’Neil function (Eq20)) is a
substitution formulation between two nutrients. It does
not contain a specific inhibition factor and NYHcan

be equally substituted by NO under nitrate replete
condition. The NH* inhibition on NG;~ uptake is not

a substitution phenomenon. Itis governed by biochem-
ical and physiological processes.

Besides inhibition, preference is another factor con-
trolling NO3~ versus NH* uptakes Dortch, 1990.
NH4* is generally preferred over N, most likely
due to the low energy cost of N uptake. The pref-
erence for NH* over NG;~ is believed to be accentu-
ated at low light and low nitrogen condition®drtch,
1990. This preference is usually parameterized by
a lower half-saturation constant or a higher prefer-
ence coefficient for Nig" uptake than that for Ng
uptake. The Hurrt and Armstrong function (E49))

R.C. Tian / Ecological Modelling 193 (2006) 363-386

e Log linear function:

w(T)=a+blog(T + ¢) (25)
e Power function:

w(T) = a(T +c)’ (26)
e Exponential function:

w(T) =&’ (27)
e Q19 function:

wT) = 015" (28)
e Arrhenius function:

w(T) = lE/R)((Y/ Top)—(1/T)) (29)

Most of these functions are empirical and their con-
trolling parameter values are so determined to fit a
specific data setHppley, 1972; Dam and Peterson,
1988. The exponential function is the most frequently
used in marine biological modeling (e.gppley, 1972;
Dam and Peterson, 1988; Huntley and Lopez, 1992;
Radach and Moll, 1993; Bissett et al., 1999; Leonard
et al., 1999; Kawamiya et al., 2000; Tian et al., 2001,

does not contain parameters that control the preference2003. The Q10 function is an operational expression

between NH* and NQ~. The Parker function (Eq.

which can be measured as the change in biological rate

(22)) appears thus more adequate than other functions©Ver 10°C (Toda et al.,, 1987; Doney et al., 1996 he

with respect to inhibition effect, total nitrogen uptake
rate and preference of Nfi over NG;~. Flynn et al.
(1997)presented a complete model to simulateH
inhibition for NO3~ uptake, which contains external
and internal pools of Ng@ and NH;*, respectively,
glutamine, amino acids, cellular nitrogen, nitrite reduc-

Arrhenius function is mechanistic for enzyme activties,
with E presenting the activation energy of a reaction,
R being the gas constant (8.3 PAKT 1 mol~1), and

T being the absolute temperatufRafven and Geider,
1989. The activation energy can be determined from
the corresponding)1g value with E=RTIn(Q10)/10

tase and nitrate reductase. The model is mechanistic,(Pixon and Webb, 1979. 175).

but its application in biological and ecological models
is limited due to its complexity.

4. Temperature forcing on phytoplankton
growth rate

Various formulations have been used to describe the

relationships between biological growth rates and tem-
perature:

e Linear function:

w(T) = a + bT (24)

According to these functions, biological rates
increase infinitely as a function of temperature( 3,
curves 1-6). A major challenge to these monotonous
functions is that, in many cases, biological rates show
an optimal temperature above which rates decreases
(Pomeroy and Deibel, 1986; Wiencke and Dieck, 1989;
Zupan and West, 1990; Yager and Deming, 1999;
Pomeroy and Wiebe, 20D1Different formulations
have been developed to parameterize the optimal tem-
perature, including:

e Thebault function:

wi(T) = 2(1+ a)——

s+2as+1’

T —To
S=—
Topt —To
(30)
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Fig. 3. Relationships between temperature and phytoplankton growth rate: (1) Linear functi¢84fEq2) log-linear function (Eq(25)),
(3) power function (Eq(26)), (4) exponential function (Eq27)), (5) Q10 function (Eq.(28)), (6) arrhenius function (Eq29)), (7) Thebault
function (Eq.(30)), (8) Beta function (Eq(31)), (9) exponential product function (E(B2)) and (10) modified exponential function (E§3)).

wherea is a constantTop represents the optimal
temperature andy is the temperature under which
the corresponding biological rate is zefih€bault,
1985; Andersen and Nival, 1988; Skliris etal., 2R01
Beta function:

w(T) = (T — ToL)*(Ton — T)° (31)

wherea and b are constant andp_ and Toy are
the low and high temperature under which the cor-
responding biological rate is zer&drlotti et al.,
2000.

Exponential product{amykowski and McCollum,
1986:

() = (1 —e Ty — e on) - (32)
e Modified exponential function:
u(T) = & T Ton AT (33)

where AT is a constant determining the slope
between biological rates and temperature (Lancelot,
2002).

There is no explicit biological interpretation of the
temperatures at which biological rates are 0 in the
Thebault, beta and exponential product functions. The
values of these parameters are also difficult to evalu-
ate. The modified exponential function has the opti-
mal temperature and is flexible to produce different
curves of temperature function. Moreover, the con-
trolling parameteiAT is readily determined from the
measurable paramet@¥o.

5. Combination of light, temperature and
nutrient forcing on phytoplankton growth

Temperature tends to influence the maximum
growth rate so that its effect is multiplicative with the
effects of light and nutrientSteele, 1962; Webb et al.,
1974. When multiple types of nutrients are considered,
phytoplankton growth rate is generally determined by
the availability of the nutrient in the shortest supply
relative to the requirement by balanced growth, i.e.,
the Liebig Law. The Liebig Law of minimum was ini-
tially based on nutrient availability_{ebig, 1842. In
addition to nutrient supplieBlackman (1905)lso
considered light. Following Blackman’s suggestion,
the minimum between light and nutrient limitation is
often used as the combined effect on phytoplankton
growth in modeling applications:

p1 = w(T) min(u(E), w(N(1, 2)),
H(N(3)). . ... (N (nn)))

wherepu;(T), wi(E) andu;(N(j)) are temperature, light
and nutrient limiting factors on phytoplankton growth
rate Radach and Moll, 1993; Hurrt and Armstrong,
1996; Carbonel and Valentin, 1999; Napolitano et al.,
2000; Oschlies et al., 2000; Denman and Pena, 2002
Alternatively, Baule (1918)expressed the combined
effect of limiting factors by a multiplication. As aresult,
the product of light, temperature and nutrient forcing
factors is also used in modeling applicatio@m{dman
and Carpenter, 1974; Parsons et al., 1984; Andersen
et al., 1987; Hofmann and Ambler, 1988; Moisan and
Hofmann, 1996; Doney et al., 1996; Leonard et al.,

(34)
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1999; Gao et al., 2000; Kawamiya et al., 2000; Tian The first type of functional response is described by
et al., 2000, 2001; Chifflet et al., 2001; Fennel et al., linear or rectilinear functions:

2002:

g=aP (37)
p2 = p(E)u(T) min(u(N(1, 2)), gmaxe for P< K )
nn §=
m(N(@@)). ... u(N(nn))) (39) g for P> K

Both formulations are hypothetical. Experimental and where gmay is the maximum grazing rate andand
field data often showed that the combined effect lies k are constantsFig. 4A; Riley, 1946; Frost, 1972;
between the minimum and multiplicatioRRifee and  Gamble, 1978; Dagg and Grill, 1980; Klein and Steele,
Gotham, 1981; Redalie and Laws, 198%onse-  1985; Mayzaud et al., 1998The rectilinear relation-
quently, I suggest to combine the minimum and multi- ship is explained by continuous filtration of water unaf-
plication forms: fected by the concentration of phytoplankton, so that
ingestion increases linearly with food concentration up
to a critical concentration above which the rate of pas-
sage of food through the gut limits the rate of ingestion
(e.g., mucous net feeding).

The second type of functional response is curvilin-
ear, whichis also called the “invertebrate curve”. While
studying fish feeding dynamicsylev (1955) found
that the quantity of food ingested increases with the

Zooplankton feeding modes can be broadly divided concentration of food available up to some maximum
into filter feeding (e.g., herbivorous copepods), rap- ration beyond which the ingestion ceases to increase
torial feeding (e.g., carnivorous copepods, euphausi- With food concentration. Thus, the feeding rate at a
ids), and mucous net feeding (e.g., salps, doliolids, 9iven prey concentratioR must be proportional to the
appendicularia). These feeding modes are not mutu- difference between the actual and the maximal ration:
ally exclusive, and examples of both filter feeding and 9g
raptorial feeding can often be found in one species, 3p — o(gmax— 8)
especially among planktonic crustaceans. On the basis
of diet, zooplankton may be herbivorous, carnivorous, L

o : function:
detritivorous, omnivorous, phytophagous, zoophagous
or euryphagousRarsons et al., 1984There are two 8= gmadl— e P
kinds of fundamental predator response to changes in
prey density: “numerical response” (i.e., the number whereq is a constant anft represents prey concentra-
of predators changes as a function of prey density) and tion (Fig. 4A, curve 2). Anumber of authors found that
“functional response” (the ingestion rate of the predator this formulation could be applied to zooplankton feed-
changes as a function of prey densitgplomon, 1949; ing (Parsons et al., 1984Rashevsky (195%xplained
Murdoch, 1969. Functional responses can be influ- the physical and biological meaning of the initial slope
enced by the predator’s ability to perceive and capture @ s the ratio between the rate that the prey becomes
the specific prey, the time scales for handling and assim- @vailable to the predator and the maximum rate the
ilating the prey and the nutritional content of the prey Predator canfeed. Consequently, the Ivlev functionwas
(Fenchel, 1980; Greene, 1986; Jonsson, 1986; Jonssornodified as
and Tiselius, 1990; DeMott and Waston, 199f gen- ¢ = gmax(l— efozP/gmax)
eral, there are three types of functional response of

pw=cap1+ (1 —a)u (36)

where 0w < 1.

6. Zooplankton feeding on a single type of prey

(39)

The integration of the above equation yields the Ivlev

(40)

(41)

predators to prey densityblling, 1959a, 1965, 1966;
Real, 1977: linear and rectilinear, hyperbolic (curvi-
linear) and threshold (sigmoidal) responses.

According toRashevsky (1959the Ivlev curve best
describes situations in which a starved animal feeds
for a relatively short period of time. Measurements of
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Fig. 4. (A) Zooplankton feed on a single type of prey: (1) rectilinear function (B8)), (2) Ivlev function (Eq.(40)), (3) combined linear
and Ivlev function (Eq(42)), (4) disc and Michaelis—Menten function (E¢45) and (49), (5) generalized Michaelis—Menten function (Eq.
(53) with n=2), (6) inhibitory-substrate response (E§5)). (B) Grazing on multiple types of preys based on the Michaelis—Menten function:
(1) passive grazing with abundant prey of type 2 (E&2) with P2=100), (2) passive grazing with limited prey of type2E 1), (3) active
switching grazing with abundant prey of type 2 (E£Q) with m =2, P2 =100), (4) active switching grazing with limited prey of typeF2(= 1).

(C) Grazing on multiple types of preys based on the disc function (&§3$.and (67). Function numbers are the same as that in panel (B).

well-nourished animals whose ingestion has reached Holling (1959b) In his artificial predator—prey sce-
equilibrium with food supply should generate a curve nario, sandpaper discs served as prey and a blind-folded
of different shapesvlayzaud and Poulet (1978pm- subject as the predator who removed the discs from the
bined the linear and Ivlev functions to simulate both experiment table once found one. Assuming tkas
Types | and Il responses: the total number of discs angdis the number of discs
removed (i.e., predation or grazing in modeling prac-
g = gmaeP(1— e FF) (42) tice), it can be expected then:
where « and g are constantsHg. 4A, curve 3)
(Mayzaud and Poulet, 1978; Franks et al., 198®&ey
attributed the increase in ingestion with increasing prey whereTs is the time available for searching ands a
density to herbivore acclimation. constant representing the rate of finding a disc in a unit
Holling (1959a)conducted a series of observations time interval.Ts should be the difference between the
on predation dynamics using sawfly cocoons as prey total time intervall'r and the time used to remove discs
and small mammals (shrew and deer mice) as preda-found. If b represents the time to remove one disc (or
tor. Based on these observations, he set up an artificialhandling time), then:
predator—prey scenario to analyze the mathematical
relationship between prey density and predation rates 7s = Tt — bg (44)

g =aTsN (43)
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Substituting Eq(44)into Eq.(43) and adding th@max sity at which predation becomes negligibMurdoch,
which is specific to a predator category results in the 1969; Gismervik and Andersen, 1997; Strom, 1991

Holling’s disc function: Holling (1959b) described the phenomenon as a
“threshold of security” that stabilizes the prey pop-
aN . .
g= gmaxm (45) ulation, others referred to a “refuge”, or “learning
a

response”, i.e., zooplankton ignore low-density food
Fenchel (19803leduced a similar equation for suspen- (Holling, 1965; Mullin et al., 1975; Murdoch and
sion feeding. Assuming thétis the clearing rate (i.e.,  Oaten, 1975 Another hypothesis for the threshold
the volume of water that the organisms can clear par- is that if the energy cost to zooplankton in searching
ticles per unit time at low concentrations) aRds the and capturing food is high relative to energy gain, it is
concentration of particles (i.e., prey concentration), the advantageous to cease feeding when foods are scarce
feeding rate should be (Mullin et al., 1975.

The Michaelis—Menten function has been modi-
fied with a specific threshold to simulate the Type IlI
If each particle or unit volume of particles ingested response:
blocks the mouth during time, then the feeding rate

g=FP (46)

P— Py
should be = _— 50
8 gmaXP—Po—i-Ks (50)
g=FP(l-1) (47) wherePg represents the threshoM/élsh, 1975; Evans,
and as a result: 1988; Frost, 1998 Steele and Mullin (197 Anodified
Fp the previous equation to take into account the predator
= —_— 48 i i i ics:
8= 8max pp (48) weight in feeding dynamics
In biological modeling, however, the most used for- ¢ = gmax P—Po we (51)
mulation to describe feeding on a single prey type is P—Py+ K
the Michaelis—-Menten fucntion (also called the Monod \ynere W is the weight of the predator and is a
function). While studying bacterial culturéflonod  constant. Certain authors used sigmoidal functions for

(1941, 1949pbserved the hyperbolic nature of the bac- zooplankton predatiorF{g. 4A, curve 5) Denman and
terial growth rate as a function of substrate concentra- pana 2002: Oschiies et al. 2000

tions. Various functions can produce curves similar to

that he had observed. By convenience, he had adapted P2 B P?
the Michaelis—Menten function which was then widely & = gmaXK%+ p2 01 8= gmaxKéJrap 1 p2
used to describe the saturation of hemoglobin with (52)

respect to the partial pressure of oxygen. Following
Monod, the Michaelis—Menten function is widely used Real (1977)and Steele and Henderson (1984)g-

to describe Zoop|ankton grazing and predation: gested ageneralized MiChaeIiS—Menten fUnCtion Wh|Ch
p can parameterize both Types Il and Ill responses:
8 = 8max (49) pm
P+ KS g = max—— (53)

m
wereK is the half-saturation constarfi@y. 4A, curve Ks+ P

4) (Caperon, 1967; Walsh, 1975; Evans and Parslow, where the powet: determines the functional response
1985; Radach and Moll, 1993; Strom and Loukos, of zooplankton feeding to prey density. With=1,
1998; Gao et al.,, 2000; Napolitano et al., 2R00 Eg. (53)is equivalent to the Michaelis—Menten func-
Caperon (196 7¢xplained the half-saturation constant tion and thus corresponds to hyperbolic functional
as the ratio between the rate of freeing the absorption response. Withm =2, Eq. (53) turns to be the sig-
site and the rate of food uptake. moidal function and thus corresponds to the vertebrate
The third type of response, also called “vertebrate functional response. Note that the value of the half-
curve”, is characterized by a threshold of food den- saturation constarks also depends om in Eg. (53).
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Alternatively, Wroblewski (1977) modified the abundant nutrient supply, i.e., a numerical extinction.
Ivlev function to parameterize threshold response: The generalized Michaelis—Menten function (Ez8))
is attractive because it can simulate different func-

g = gma(1 — e (54) tional responses, but it does not contain a parameter

A fourth functional response that was not included specifying the threshold. Following E¢50) in which
in the Holling's definition is the inhibitory-substrate & threshold is added in the Michaelis—-Menten func-
response: (e.g., grazing of toxic algae) in which the tion, a threshold term can be added in the generalized
grazing rate decreases with increasing food density Michaelis—Menten function:

after an optimal food concentration:
P
Ks+ P+ aP?

wherew is a constant determining the inhibitory effect
(Van Gemerden, 1974; Gentleman et al., 200dis

(55)

8 = 8max

(P — Po)"
&= gmaxK,Sn (56)

KL+ (P— Ry

In this form the half-saturation constakig is no more

m-dependent as it is in the original formulation (Eq.

(53)). This equation has the flexibility to simulate dif-

equation does not generate monotonous increases irferent functional response and can prevent numerical
ingestion with increasing prey density. Instead, the extinction of prey populations by the specific thresh-
ingestion rate reaches a maximum at an intermediate old. Consequently, | suggest this equation as the a priori
prey density (or optimal density) after which the inges- choice for balk parameterization of predation on a sin-
tion rate decreases agaffid. 4A, curve 6).Gentleman gle type of prey. This function does not include the
et al. (2003)nterpreted this decrease as a result of tox- inhibitory uptake which can be treated as a particular

icity (e.g., toxic algae) or predator confusion.
In the linear or rectilinear representation there is

assumed to be no interference between particles in the

capture—ingestion mechanisms until the critical con-

case using E(55).

7. Zooplankton feeding on multiple types of

centration is reached. In most cases however, ingestionprey

and assimilation occur within a time duration, which
slow down the capture rate or the availability of the
receptor sites. The linear and rectilinear functions can
be valid only in the low range of prey density below
the saturation. The modified Ivlev function (H§4))

has the threshold of prey density, but it cannot mathe-
matically ensure null intake below that threshold and
in some circumstances, it can yield negative feeding
unless another conditional equation is imposed.

The disc function (Eq(45)), the suspension feed-
ing function (Eg.(48)) and the Michaelis—Menten
function (Eg. (49)) are almost equivalent, with the
Michaelis—Menten function having fewer free param-
eters. Assuming &b=K in the disc function and
1/Ft =K in the suspension feeding function, these two
forms become the Michaelis—Menten function. The
sigmoidal function (Eq(52)) cannot fully simulate the

Many zooplankton species have been found to be
omnivorous, i.e., they feed upon multiple types of
prey instead on a single type of preydullet, 1978;
Landry, 1981; Gifford and Dagg, 1988; Stoecker and
Capuzzo, 1990; Turner and Roff, 1993; Kiorboe et al.,
1996. Mesozooplankton (e.g., copepods and dinoflag-
ellates) can feed on phytoplankton, microzooplankton
and detritus while microzooplankton (e.g., ciliates and
heterotrophic nanoflagellates) can feed on picophyto-
plankton, bacteria and suspended particles.

When multiple types of prey are involved, feed-
ing modes can be divided into three categories: non-
selection feeding (i.e., the proportion of different types
of prey in the diet is the same as in the food avail-
able), passive selection (i.e., the proportion of different
types of prey in the diet differs from that of the food

threshold of prey. The threshold has been interpreted available, but with constant selectivity or preference),
as a “threshold of security” that stabilizes prey popu- and switching selection (i.e., the preferences or propor-
lations. Such a security threshold is also important in tion change as a function of prey density&(amoto et
numerical simulation. If zooplankton grazing resultsin al., 1979; Goldman and Dennett, 1990; Strom, 1991;
zero concentration of phytoplankton in a model, phy- Wickham, 1995; Strom et al., 20p0Feeding selec-
toplankton blooms will never be possible even with tion depends on the abundance, size, shape, nutritional
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status, motility, toxicity, and chemical composition of ton were allowed to feed upon netplankton and micro-
the prey Andersson et al., 1986Biological traits of zooplankton, i.e., two prey types. They used the com-
the predators also influence their ability in food selec- bined linear and Ivlev function for each prey type:
tion, such as size, mouth width, chemosensory and _4.p.

mechanosensory abilityVérity, 1991; Naoki et al., 8 = gmaxi i Pi(1 — €771 (58)
200)). Predator switching can exert striking effects |n their application, all the controlling parameters
on the stability of prey populations by preventing (including the maximum grazing raggnax;) were spe-
extinction of rare species, preserving biodiversity and cific for each type of prey and there is no interference
favoring coexistence of different predatoMuyrdoch, between different types of prey.

1969; Murdoch, 1973; Murdoch and Oaten, 1975;  Hofmannand Ambler (198%yoposed another form
Cousins and Hassell, 1976; Tansky, 1978; Hutson, to compute grazing on multiple types of prey based on
1984. Switching feeding has been showed even more the Ivlev function. Zooplankton grazing on small and

important than trophic cascade in determining popula- |arge phyoplankton was computed as
tion dynamics of marine organism#é/ickham, 1995;

n
Kiorboe et al., 1995 —yr\PiPi -
; - 1-¢€ ——, with R= iP;
Passive selection (no switching) feeding is usually 8i = gma ) R ;p I
parameterized by a constant preference coefficient for (59)

each type of prey. Based on the functions of predation )
on a single type of prey (see the preceding section), WhereR represents the total effective food concentra-

formulations for passive selection feeding include rec- tion andy is the Ivlev coefficient. The total ingestion

and their modified forms. exponential coefficient whereas the intake of each phy-

Armstrong (1994)developed a model of multiple ~ toplankton poolP; is determined by its proportion in
food chains, with each food chain consisting of a size the total food and the preference coefficignt
class of phytoplankton and zooplankton. Zooplank-  Murdoch (1973)and Holt (1983) extended the
ton of each food chain grazes only upon the specific Holling disc function to feeding on multiple types of
type of phytoplankton. Following/loloney and Filed prey:

(1991) he allowed predation on zooplankton of the a;N;

next smaller class so that two types of food were §i = 8max3— "S~n ———5 (60)

. - . . + Zj:lajT]N

involved. He used a rectilinear function to determine _
feeding selection and trophic dynamics: where a; and r; are the capture rate and handling

time specific to the prey itemv;. Similarly, the

gmaxpipi for R<K n Michaelis—Menten function applied to predation on
g = K R = E :p P, multiple types of prey is usually written as
' piPi ’ I

8gmax R for R > K j=1 . P;

p
8 = 8max o w5 (61)
Gn - K+ 1piP
whereg; is the intake on pre®; by a specific zooplank-  where the preference coefficigntis specific for each
ton category,p; the corresponding preference coef- prey type whereas the half-saturation constant is rela-
ficient, K represents the saturation constant (not the tive to the total prey concentratiolploney and Filed,

half-saturation constant) artlis the total food avail- 1991). The Michaelis—Menten function was also used
able to a specific zooplankton category. as

Leonard et al. (1999%onducted a modeling study piPi
on a high-nitrate, low-chlorophyll ecosystem, the cen- & = gmax] S b (62)
tral equatorial Pacific. In their model, there are two J=1070

categories of phytoplankton (nanoplankton and net- where the preference coefficients,(p;) correspond
plankton) and two categories of zooplankton (micro- to that in Eq.(61) divided by the half-saturation con-
zooplankton and mesozooplankton). Mesozooplank- stantk (Verity, 1991; Fasham et al., 1999; Strom and
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Loukos, 1998; Tian et al., 20Q1Alternatively, the
Michaelis—Menten function was modified as

R— Py
gi:gmaX(K+R—P0>
n
R=1 pjP
j=1

where R represents the total food available aRgd
presents the threshold of total food below which feed-
ing ceasesHvans, 1988; Lancelot et al., 2000; Leising
etal., 2003. According to this equation, the total inges-

pi P

, with
R

(63)

377

the capture rate is linked to the relative abundance of
each type of prey:

_ a;N;

1 + ¢;N;
Assumingc; = a;t;, this relationships is similar to the
disc function (Eq(45)). Substituting the constant cap-

ture rateq; in Eq. (60) by the varying effective capture
rateb; in Eq.(66), the switching disc function is then:

b;

(66)

aiNl-z
(L+eiN)(L+ X oq(ajTiNF /(L + ¢jN%))

8i = &max

tion is determined by the total food available whereas (67)

the intake from each type to prey is determined by its \1oanwhile, some authors developed generalized forms
relative abundance among total food and its preference by which the degree of selection or switching among

coefficient. various types of prey can be simulat@dnsky (1978)

All thg above equations are ch_aracterized by the cht andMatsuda et al. (198&Jeveloped the following for-
that the intake ratios among various types of prey dif- ., \|ation for predation on multiple types of prey:
fer from their ratios of abundance due to their specific

(piP)"

preference coefficients. However, the preference coef-
ficients do not change with the relative abundance of &~ ™S (;, By
different types of prey, i.e., passive selection.
Functions of active selection feeding are character-
ized by varying effective preferences according to the (pi P
relative abundance of préjasham et al. (199@evel- 81 = gmax(z,?_l(pi P))"
oped a biological model in which zooplankton feed = _ _
upon phytoplankton, bacteria and detritus, parameter- where the powem determines the degree of selection
ized by a switching feeding function among the three @mong various types of prey. Both equations apply to
types of prey. They parameterized the effective pref- feeding on multiple types of prey, but when only a sin-

erence as a function of the relative abundance of eachdl€ type of prey is involved, these equations result in

Gismervik and Andersen (199@gveloped a more gen-
eralized formulation:

(piP)"

(68)
andVance (1978fuggested a similar equation:

(69)

p/ _ PiPi
b XapiPi

. . 8i = 8max n m
where p; represents the effective preference coeffi- 1437 1(piP)
cient (_)f the preyp; _and pi is the nominal prefer-  \nich can simulate various switching predation and
ence, i.e., the effective preference when all the types ¢, ~iional responses. Whem=1, this equation
of prey have equal abundance. Substituipgn the  po omes the Michaelis—Menten function for passive
Michaelis—Menten function for multiple types of prey selection feeding (Eq62)). Whenm =2, it is similar

. /o . . . 7

(Eq. (61)) with pi in Eq. (64), the switching feeding 4, the Fasham's function for switching feeding (Eq.
function is then: (65)). The higher the power is, the higher the degree
of switching occurs among various types of prey. When
m~ o0, EQ.(70) generates exclusive or unique selec-
tion among various types of prey, i.e., feeding only on
In a similar way,Chesson (1983Jeduced a switching  the most abundant prey and ignoring all other types
feeding function based on the Holling disc function. of prey. This equation also applies to a single type of
Instead using a constant capture rate, he assumed thaprey. When the number of types of pregquals to 1,

(64)
(70)

piP?
K> _1pjPi+ Y j_1pj P/

(65)

8i = 8max
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Eqg. (70) is equivalent to the generalized function for ing a feeding current when presented with diatoms to
feeding on a single type of prey (E(6)). raptorial feeding mode by ambushing when exposed
Feeding threshold is an observed fdetgst, 1975; to ciliates. The various feeding behaviors may require
Strom, 1991; Strom et al., 20p@Which is not specif- different mathematical description. In modeling prac-
ically included in Eq.(70). As in the generalized tice, however, zooplankton are usually represented by

Michaelis—Menten function for feeding on asingle type aggregated state variables such as zooplankton com-
of prey, a specific threshold for each type of prey can be partment or mesozooplankton and microzooplankton.
added in Eq(70), which results in the following form:  Different feeding behaviors among various species are
not explicitly considered. Various mathematical func-

(pi(Pi — Poi))" tions have been used for the same purpose. In this

81 = Smaxy ST (i (P — Po))” (1) context, narrowing down the mathematical choices is
plausible.
wherePy; represents the threshold of the pigy The disc function and the Michaelis—Menten func-

Passive and active selection feeding described by tion are almost equivalent. Given thatthe later has fewer
using the Michaelis—Menten functionand the discfunc- free parameters than the former, it has been widely
tion are illustrate irFig. 4B and C, respectively. Four  used in modeling applications. The Ivlev function has
scenarios of ingestion of a type of prey are simulated been successfully applied for feeding on a single type
by each function with the presence of a second type of of prey. However, its flexibility and adaptability for
prey: passive selection under low and high density of feeding on multiple types of prey show certain lim-
the second type of prey (E@2)for Michaelis—Menten itation. On the other hand, the generalized form of
function and Eq(60) for the disc function) and active  the Michaelis—Menten function (E¢{1)) can simulate
selection under low and high density of the second various feeding behaviors and functional responses. It
type of prey (Eq(70) for Michaelis—Menten function  applies to feedings on both a single type and on mul-
with m =2 and Eq(67)for the disc function). For pas- tiple types of prey. Given its generality and flexibility,
sive selection, both functions simulated much higher | suggest this parameterization as the a priori selection
intake of the prey 1 under low density of preyr2d. 4, for trophic dynamics.
curves B2 and C2) than under high density of prey
2 (Fig. 4, curves B1 and C1). Even without specific
parameterization of switching feeding, both functions 8. Mortality
simulates intake shift from the preys 2 to 1 when prey
2 becomes scarce. This simulated Shifting is due to Zooplankton mortality usually represents the model
the changes in the relative abundance between the twoclosure term. Zooplankton mortality consists of natural
types of prey while the half-saturation constants or mortality, which may be caused by disease and starva-
preference coefficients remain unchanged. However, tion, and mortality due to predation by predators and
the active-switching forms simulated more important cannibalism within the same compartment. Different
shift from preys 2 to 1Kig. 4, curves B3 and B4 and  parameterizations of plankton mortality have been used
C3 and C4) than the passive-selection equations. Thein modeling applications:
switching functions generated sigmoidal curveig/(4,
curves B3 and B4 and C3 and C4) which correspond e Linear function (e.g.Evans and Parslow, 1985; Tian

to the Type Il functional respons€ig. 4, curve A5), etal., 2000:

whereas passive-selection functions generated hyper- 97

bolic curves Fig. 4, curves B1 and B2 and C1 and C2) — = —-mZ (72)
which correspond to the Type Il functional response o

(Fig. 4, curves A2 and A4). e Quadratic function (e.g.Steele and Henderson,

Zooplankton have various feeding behaviors and  1981; Denman and Gargett, 1995; Fasham, 1995
can shift from one feeding mode to another. For exam-

ple, Kiorboe et al. (1996jound that copepodcartia 9z — _m72? (73)
tonsa shifted from suspension feeding mode by creat- ot
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Fig. 5. (A) Biomass-dependent mortality: (1) linear function (&@)), (2) quadratic function (Eq74)), (3) sigmoidal function (Eq(75)), (4)
generalized function (Eq79)with n =1.5). (B) Food-dependent mortality: (5) reciprocal function (E£&)) and (6) exponential function (Eq.
(77).

Hyperbolic function (e.g.Frost, 1987; Ross and
Gurney, 1994; Tian et al., 20p4

ZZ

0z
=-m
K+Z

i

(74)

Sigmoidal function (e.gMalchow, 1994; Edwards
and Yool, 2000

0z
o

ZZ

K2t 22 (79)

Food-dependent rectilinear functioAr(dersen and
Nival, 1988:

—-mZ for P> Py

9z
o —(g+m)Z for P < P (76)
P 0 0

Food-dependent exponential functiokn@ersen et
al., 1987%:

0Z

— = —me 2 + mo)z (77)
Temperature-dependent quadratic function
(Kawamiya et al., 2000

0Z

- =mo T 72 (78)

Generalized formulatiorHdwards and Yool, 2000

0z

— =-mZ"
ot

(79)

In the above equationg, represents the zooplankton,
P the prey,T the temperatures, mo, K, Pg, andn are
constants. Eq476) and (77)ink zooplankton mortal-

ity to food availability to represent starvation. K@6)
generates more rapid increase in mortality thar(Eg).

at low ranges of prey densit§ig. 5B). The assump-
tion behind these food-dependent parameterizations is
that zooplankton do not have important lipid storage.
In many cases, however, adult zooplankton have lipid
storage that can be used for diapause and reproduction.
Kawamiya et al. (200d)nked the zooplankton mortal-

ity to temperature by an exponential function, but they
did not provide the rationale and assumption under-
pinning. The linear function means that zooplankton
mortality is not influenced by its density. In model-
ing practice, however, the mortality includes several
terms, such as natural mortality, predation and canni-
balism (both true cannibalism and intratrophic preda-
tion because zooplankton in models usually aggregate
a large number of species of different sizes). Predation
and cannibalism are most likely density-dependent.
The generalized form (Ed.79)) is more flexible in
which the power determines the dependency of mor-
tality on population density. It can be used as linear,
guadratic or in between (which is closer to the hyper-
bolic and sigmoidal function in high density ranges,
Fig. 5A). | propose this generalized form as the a priori
parameterization of mortality which can approximate
other formulations. It can be used for both zooplank-
ton and phytoplankton. In the case of phytoplankton,
aggregation which leads to the formation of large sink-
ing particles justifies the usage of density-dependent
functions.
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9. Respiration and excretion Among these various respiration functions, the
combination between the linear function of biomass
Respiration and excretion represent the metabolic and ingestion (E(81)) appears to be the most explicit
losses of carbon and nitrogen, respectively. Metabolic description of respiration processes. The linear
processes consist of different components such as basidunction of biomass represents the basic respiration
metabolism, locomotion, assimilation, synthesis of whereas that of ingestion represents the active respira-
somatic and gonad tissue, material transformation, etc. tion. Body weight and temperature influence ingestion
(Clarke, 1987; Carlotti et al., 20p0Total metabolism rate so that their effects on respiration can be included
is two to three times higher than the basic metabolism at in the ingestion. This equation has also been applied
resting Steele and Mullin, 1977; Parsons et al., 1984 to phytoplankton exudation of dissolved organic
In general, respiration can be divided into basic res- matter, i.e., DOM exudation has been parameterized
piration and active respiration (the later includes all as a combined linear function of both phytoplankton
respiration resulting from biological activities). The biomass and primary production:
simplest formulation of respiration and excretion is a 5DOM
linear function of biomass (Eq72), Fasham et al., ——
1990. Walsh (1975andTian et al. (2001)inked res-
piration to ingestion instead to biomass by considering wherea andb are the constantg, the phytoplankton
that active respiration dominates over basic respiration: growth rate andP is the phytoplankton biomass
97 (Bannister, 1979; Spitz et al., 2001

= — _ae(P 80

” ag(P) (80)

wherea is a constant angd(P) is the ingestionSteele 10. Conclusion

(1974) and Carlotti and Sviandra (198%ombined

biomass- and ingestion-dependent functions by con-  Standardization of biological parameterization

= (a+bu)P (85)

sidering both basic and active respiration: resides in the development of mechanistic formula-
tions based on physiological and biological dynamics
9z = —ag(P) — bZ (81) instead of empirical forms from data fitting. How-
ot ever, few mechanistic functions have been developed
Alternatively, Hofmann and Ambler (1988)inked in marine biological modelingSakshaug et al. (1989)
the active respiration to prey concentration instead of have developed a mechanistic formulation of the:
ingestion: relationship based on photosynthetic processes (Eqg.
(13)), but they did not consider photoinhibition phe-
24 = —(aP+b)Z (82) nomenon. The disc function for zooplankton grazing
ot is based on feeding dynamics on a single type of prey

wherea and b are constants anft and Z represent  (Ed.(45)), but it does not include omnivorous feeding
prey and predator abundance, respectivislgloney and preference. Based on the correctness, functional-
and Field (1989xpressed respiration as a function of ity and generality of the existing empirical function, |

zooplankton weight: have selecte(_j 1Q parameterizations as the a priori set
of parameterizationsT@ble 1. In most cases, these

% — —aWw? (83) selected parameterizations can reproduce other func-

ot tions by adjusting the controlling parameters. The Platt

whereW represents zooplankton weight or individual function (Eq.(8)) appears to be the most adequate to

biomassAndersen et al. (198@ndHirst and Sheader ~ describe theu—E relationship. The first term of this
(1997)scaled respiration as an exponential function of function is the same as the mechanistic function (Eq.

temperaturd™ (13)) and its photoinhibition term allows it to apply
to a large range of different ecosystems. When the
Z _ _ 75 (84) photoinhibition coefficiens is assigned to 0, the pho-

o toinhibition effect will be removed from the simulation
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Table 1
Selected a priori parameterizations for marine biological modeling
Function Symbols Reference
(1) n—E relationship w: phytoplankton growth rateés: PAR, Platt et al. (1980)
W(E) = Pp(1 — e @E/Pmy @=PE/Pm P, theoretical maximum of:, «: initial
slope,B: photoinhibition coefficient
(2) Nutrient limitation: N;: nutrient concentratiork’: Caperon and Meyer (1972)Paasche (1973)
w(N) = Nﬁf{;ﬁ’/‘\’lo half-saturation constanijp: threshold Dugdale (1977andDroop (1983)
(3) NH4* inhibition on NO;~ uptake: NHz*: NH4* concentration, N@: Parker (1993)
w(N) = % 4 concentrationKnn, half-saturation
K, NO3- constant of NH*, Kno,: half-saturation
NH*+KnH, NO3~+Knog constant of N@~
(4) Temperature forcing: T temperatureTopt: optimal Lancelot et al. (2002)
w(T) = e*((T*Topt)/AT)Z temperatureAT: constant
(6) Feeding on a single type of prey: Gmax. maximum feeding rate?: prey Real (1977) Steele and Henderson (1984nd
g= gmax% concentrationpPy: prey thresholdk: this work for Pg
half-saturation constant.
(7) Feeding on inhibitory prey: P: prey concentratiornk: half-saturation Van Gemerden (1974pand Gentleman et al.
g= gmaxm constantg: constant (2003)
(8) Feeding on multiple t%pes of prey: P: prey concentratiorPq: prey threshold, Gismervik and Andersen (1997)his work for
8i = gmax("é(’)’;ﬂ”) p: preference coefficient;: constant Po.
WYy o (piPi=Po))"
(9) Mortality: ‘f,—f =-mZ" Z: zooplankton biomassy, n: constants Edwards and Yool (2000)
(10) Respiration% = —ag(P)—bZ Z: zooplankton biomasg(P): ingestion, Steele (1974andCarlotti and Sviandra (1989)

a, b: constants

for ecosystems in which photoinhibition has not been mated from observed values 6f;p. A new formu-
observed. This parameterization has been widely usedlation has been put forward to combine temperature,
in modeling applicationdMoisan and Hofmann, 1996; light and nutrient forcing on phytoplankton growth,
Leonardetal., 1999; Tian etal., 2000, 2004; Lancelotet i.e., to use an intermediate value between the mini-
al., 2000; Chifflet et al., 2001 The combination ofthe  mum and production of light and nutrient limitation
Michaelis—Menten and Droop functions (Hd.7)) is factors (Eq(36)). For zooplankton feeding on a single
selected to describe nutrient limitation on phytoplank- type of prey and multiple types of prey, the generalized
ton growth rate. This formulation has the advantage to forms (Egs.(56) and (71) were selected over other
parameterize both the half-saturation constant and therelatively rigid and monotonous forms. These gener-
threshold of nutrient, whereas other functions parame- alized functions allow simulating different functional
terize only the half-saturation or the threshold of nutri- responses and variable degrees of switching feeding
ents, but not both. It should be pointed outthatthe initial among various types of prey. Also, a generalized form
threshold of nutrient in the Droop equation was used of mortality was chosen as the a priori parameteriza-
for internal nutrient cell quota whereas in Ed.7), tion (Eq.(79)). The combined linear function of both

it is designated for external nutrient concentration in biomass and ingestion simulates the basic and active
seawater. Even though the threshold can be assigned taespiration together, whereas other forms parameterize

zero for major nutrients (e.g., NO, Si(OH)y), thresh- only one fraction of respiration. Most of these a priori

olds are necessary to simulate minor nutrient (e.g., parameterizations have been widely used in previous
Fe) limitation of phytoplankton growth ratéM@artin, modeling applications. They are subject to further tests
1992. The modified exponential function (E¢33)) in modeling practice and can be replaced by more

can simulate the optimal temperature at which biologi- advanced parameterizations in the future. | suggest to
calgrowth rates reach amaximum value. The parameteruse these selected parameterizations when they can
AT determining the initial slope between biological reproduce well the observations. By doing this, we can

rates and temperature in E@3) can be readily esti-  reduce the number of biological parameters that need
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to be estimated and provide a better opportunity for
intercomparison.
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