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Abstract

Biological modeling is an important investigation tool in oceanography, which can provide an insight into biological dynamics,
integrate multi-disciplinary processes and predict ecological events. However, the lack of a common set of parameterizations of
fundamental biological processes hinders progresses in simulation skill, reliability and predictability. There exist 13 functions for
light forcing on phytoplankton growth, 5 for nutrient limitation, 6 for ammonium inhibition on nitrate uptake, 10 for temperature
forcing on biological rates, 20 for zooplankton feeding on a single type of prey, 15 for feeding on multiple types of prey, 8 for
mortality and 6 for respiration. All of these functions are actually in use in modeling applications. This paper presents an overview
of the existing functions. Based on their functionality, flexibility and reliability, a subset of functions has been selected as an a
priori set of parameterizations. I suggest to use these selected parameterizations when they can fit well the data. By doing this, we
c omparison.
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an reduce the number of biological parameters that need to be estimated and provide a better opportunity for interc
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. Introduction

After half a century from the early effort ofRiley
1946, 1947a,b)andRiley et al. (1949), biological mod-
ling has become a research method widely used in
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ocean sciences. Ocean science is, by its nature
ence of systems that integrates dynamics in va
disciplines: physics, chemistry, biology and geolo
Numerical modeling represents an essential and
cient tool to provide an insight into the interactio
between different disciplines and integrate dynam
at a system level. Numerical modeling can help to
dict ecological events over an appropriate time s
and provide strategies for marine resource man
ment and exploitation. Certain fundamental proce
are of particular importance in the function of mar
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ecosystems that numerical models need to adequately
parameterize. Light and nutrients are two fundamental
factors in determining the productivity of the ocean.
Trophic dynamics are key energy links from primary
production to high trophic levels.

Various mathematical formulations have been
developed to describe fundamental biological pro-
cesses and forcing functions, such as those of light,
nutrient and temperature. Since the beginning of the
20th century whenBlackman (1905)described CO2
fixation as a rectilinear function of light intensity, 13
equations have been developed to describe the same
relationship, i.e., the growth–light orµ–E function. All
these equations have been used in modeling applica-
tions.

There are two basic functions of nutrient limitation
on phytoplankton growth, the Michaelis–Menten func-
tion and the Droop function, but different formulations
have been developed and used in numerical simulation,
with 6 functions of ammonium inhibition on nitrate
uptake. More confusing are parameterizations of zoo-
plankton feeding, 20 equations for feeding on a single
type of prey and 15 for feeding on multiple types of
prey. Trophic dynamics are complex at the secondary
production level and different feeding modes and func-
tional responses may require different mathematical
approaches. In numerical simulation, however, zoo-
plankton are often represented by aggregated state vari-
ables, e.g., zooplankton, mesozooplankton and micro-
zooplankton. Species and feeding modes are usually
n used
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all of these equations is a confused practice that make
doubtful the rigor and reliability of biological and eco-
logical modeling.

Methodological standardization represents pro-
gresses in scientific research. Standardization has been
achieved in many subdisciplines in marine science,
such as standard sampling and analytical procedure,
standard environmental criteria, standard seawater den-
sity functions and standard fish stock assessment mod-
els. The primitive equations are used in most physical
circulation models with well-established controlling
parameter values. Standardization can reduce ambigu-
ity and redundant effort in scientific research, promotes
working efficiency and applications, and provides a
unique framework for communication and intercom-
parisons.

Standardization in ecological modeling has been
suggested over the years.Cohen et al. (1993)called for
standardization in food web studies. Effort has been
conducted for standard model structure, parameteri-
zation and documentation (Kaluzny and Swartzman,
1985; Wilhelm and Br̈uggemann, 2000; Williams et
al., 2002; Wilhelm, 2003, 2005; Hoch et al., 2005).
However, the intrinsic complexity in trophic dynam-
ics and diversity in ecosystem function prohibit the
progress in standardizing parameterization in eco-
logical and biological models. Tropphic preferences,
strength, omnivory, path length, trophic level and bio-
diversity all influence the trophic dynamics in marine
ecosystems (Williams and Martinez, 2000; Montoya
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n the same way for the same purpose, i.e., trophic
nd energy flow from low to high trophic levels. In ad

ion to these various equations of zooplankton feed
here exist eight functions describing zooplankton m
ality and six functions describing respiration.

These various functions are mostly based on em
al relationships that express correlation between
urable variables. The real ecological or physiolog
rocesses underlying the observed correlation ar
xplicit. There is no sound statistical or physiol

cal basis to reject one or another parameteriza
Sakshaug et al., 1997), but the choice among the
an be critical with respect to the model functiona
Gao et al., 2000; Gentleman et al., 2003). The lack o
common set of parameterizations of the most fu
ental biological dynamics hinders intercomparis
dequacy and skills of simulation and prediction. Us
nd Soĺe, 2003). Numerical models have the limitati
n simulating and predicting the complexity of mar
cosystems. In practice the accuracy of numerical
lation depend on the quality of the data set used to
train the model. Parameterizations are often sele
ccording to the goodness-of-fit with the data set a
ble. Standardization of biological parameteriza
esides in the development of mechanistic form
ions based on physiological and biological dynam
nstead of empirical forms from data fitting.

Although it may not be realistic nowadays to st
ardize biological parameterizations given the lac
hysiological and mechanistic functions, it is neces

o give an overview of these functions and to ev
te their suitability for biological simulation. In th
aper, I have reviewed the existing functions desc

ng light and temperature forcing and nutrient lim
ion on phytoplankton growth, ammonium inhibiti
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on nitrate uptake, zooplankton feeding, mortality and
respiration. Based on analyses of their functionality, a
subset of functions has been selected as the a priori set
of parameterizations. The selection was based on the
correctness, flexibility and generality of the existing
functions. For example, parameterizations of light forc-
ing on phytoplankton growth rate with photoinhibition
have been selected over that without photoinhibition.
Functions with photoinhibition have the advantage to
apply to a large range of ecosystems both with and with-
out photoinhibition by assigning an appropriate value
to the photoinhibition coefficient. Grazing functions
which can simulate various functional responses have
been selected over monotonous functions due to their
large applicability. Mechanistic parameterizations have
been selected over empirical relationships. Mechanis-
tic functions are based on accepted knowledge about
the mechanisms of a specific process. Their parameters
are generally interpretable and their application can be
extended further than empirical models. The purpose
of this paper is not to reject certain of the existing func-
tions, but to suggest an a priori set of parameterizations
as a selection.

2. Light forcing on phytoplankton growth rate

Based on early experiments,Blackman (1905)
described the relationship between phytoplankton
growth and light (µ–E relationship) as a rectilinear
f
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be expressed by the Michaelis–Menten function (Baly,
1935; Tamiya et al., 1953; Caperon, 1967; Kiefer and
Mitchell, 1983):

µ(E) = Pm
αE

Pm + αE
(2)

The Michaelis–Menten function was developed to
describe enzymatic activities (Michaelis and Menten,
1913). Its application to light limitation was chosen
to fit experimental results and is without fundamen-
tal physiological underpinnings.Smith (1936)used a
modified Michaelis–Menten function while trying to
improve the fitting of experimental data:

µ(E) = Pm
αE√

P2
m + α2E2

(3)

Later, Bannister (1979)and Laws and Bannister
(1980) proposed a more flexible form of the
Michaelis–Menten function:

µ(E) = Pm
αE

(Pnm + (αE)n)1/n
(4)

Changes in the powern can generate different
responses of phytopankton growth to light intensity.
Whenn = 1, the Bannister formulation is equivalent to
the Michaelis–Menten function (Eq.(2)), whenn = 2, it
is equivalent to the Smith function (Eq.(3)), and when
n ∼ ∞, this formulation approximates the rectilinear
function.
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(1)

herePm is the maximum phytoplankton growth ra
ndα is the slope between phytoplankton growth

ight intensity (Blackman, 1905; Riley, 1946; Jass
nd Platt, 1976; Platt et al., 1977). According to this
quation, the phytoplankton growth rate increases
arly with light intensity up to a certain level (Pm/α)
eyond which the growth rate ceases to increase. B
an interpreted the saturation light level as a resu
ther limiting factors that overwhelmed the effect

ight.
Field and laboratory observations later showed

heµ–E relationship follows a hyperbolic curve and c
Under high light intensity, photosynthesis is p
oinhibited, most likely through photo-oxidation re
ions, i.e., over excited antenna chla can be com
ined with oxygen to become chemically alte
Rabinowitch, 1945; Steele, 1962; Prezelin, 19).
one of the previous functions parameterize p

oinhibition (Fig. 1A, curves 1–4). Consequent
ollenweider (1965)andPeeters and Eilers (1978)fur-
her modified the Michaelis–Menten function to ta
nto account photoinhibition:

(E) = Pm
αE√

E2
opt + α2E2

1

(1 + (βE/Eopt)2)
n/2 (5)

(E) = Pm
E

Eopt

2 + α

1 + αE/Eopt + (E/Eopt)2
(6)

hereEopt represents the optimal light intensity un
hich phytoplankton growth rate reaches its maxim
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Fig. 1. Relationships between photosynthetically available radiation and phytoplankton growth rate: (1) rectilinear function (Eq.(1)), (2)
Michaelis–Menten function (Eq.(2)), (3) Smith function (Eq.(3)), (4) generalized Michaelis–Menten function (Eq.(4) with n = 3), (5) Vollen-
weider function (Eq.(5)), (6) Peeters and Eilers function (Eq.(6)), (7) Webb function (Eq.(7)), (8) Platt function (Eq.(8)), (9) Steele function
(Eq.(9)), (10) Parker function (Eq.(10)), (11) hyperbolic function (Eq.(11)) and (12) Bissett function (Eq.(12)).

(Vollenweider, 1965; Peeters and Eilers, 1978; Parsons
et al., 1984). Varying the parametersn, Eopt andαmod-
ifies the shape of the curve and thus the photosynthetic
response to light intensity including photoinhibition in
light ranges beyond the optimal intensityEopt (Fig. 1A,
curves 5 and 6).

Webb et al. (1974)used an exponential function to
reproduce the observed data on light and CO2 fixation
used as a measure of photosynthesis:

µ(E) = Pm(1 − e−αE/Pm) (7)

Platt et al. (1980)added a second term to the
Webb exponential function to represent photoinhibi-
tion observed in field studies:

µ(E) = Pm(1 − e−αE/Pm) e−βE/Pm (8)

where the exponential coefficientβ determines the pho-
toinhibition effect (Fig. 1B, curve 8).Steele (1962)
combined the linear and exponential functions:

µ(E) = Pmα
E

Eopt
e1−E/Eopt (9)

where the exponential term determines the photoinhi-
bition (Fig. 1B, curve 9). The shape of the curve of
this equation is essentially fixed in high light intensity
ranges. This rigid property makes it relatively difficult
to fit this equation to data (Parsons et al., 1984). Parker
(1974)modified the Steele function by adding a power
parameterβ to increase the flexibility for data fitting:

µ

Jassby and Platt (1976)suggested the hyperbolic tan-
gent function to describe theµ–E relationship:

µ(E) = Pm tanh

(
αE

Pm

)
(11)

which does not include photoinhibition (Fig. 1B, curve
11). Bissett et al. (1999)modified this function by
adding an exponential photoinhibition term:

µ(E) = Pm tanh

(
α(E − E0)

Pm

)
eβ(Eopt−E) (12)

whereE0 represents the compensation light intensity
under which the net growth rate of phytoplankton
is null, i.e., photosynthesis and respiration neutralize
each other andβ determines the photoinhibition effect
(Fig. 1B, curve 12).

Finally, Sakshaug et al. (1989)developed a mecha-
nistic function for theµ–E relationship:

µ(E) = θaφmaxE
1 − e−στE

στE
= θaφmax

1 − e−στE

στ
(13)

whereθ is the chlorophyll:carbon ratio (Chl:C),a rep-
resents the specific absorption coefficient for chloro-
phyll a, φmax the maximum quantum yield,σ the mean
absorption cross-section andτ is the minimal turnover
time of the photosystem. The last exponential term rep-
resents the Poisson probability that a photosynthetic
unit being hit is open.
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Eopt
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)β
(10)
Except for the last mechanistic function, all oth
re empirical and obtained from data fitting. All th

ormulations have been developed and used to sim
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the sameµ–E relationship without specific environ-
mental conditions or phytoplankton species. Given the
diversity of the formulations that are used to describe
the same biological process (i.e., theµ–E relationship)
without specific environmental or biological condi-
tions, it is desirable to select some of the functions
according to certain criteria so that intercomparisons
between models are feasible. Also this will reduce the
number of biological parameters that need to be esti-
mated for modeling applications.

Photoinhibtion has been observed. This fact can
allow us to rule out the functions, which do not include
photoinhibition, i.e., functions 1–4, 7 and 11 inFig. 1.
Flexible functions can provide better fitting to data than
functions with fixed forms, e.g., the Parker function
(Eq. (10)) versus the Steele function (Eq.(9)). How-
ever, the flexibility of some functions requires more
free parameters that are usually difficult to estimate
and biologically uninterpretable. The Sakshaug–Kiefer
mechanistic function (Eq.(13)) is the only one based
on analysis of biological processes. However, it does
not contain the photoinhibition term. This mechanistic
function is equivalent to the Webb function. Assum-
ing that the composite termaφmax represents the initial
slopeα of theµ–E curve and the composite termστ
equals toα:Pm, the Sakshaug–Kiefer function (Eq.
(13)) becomes the Webb function (Eq.(7)). The Platt
function (Eq.(8)) is based on the Webb function with a
specific photoinhibtion term. Its controlling parameters
are interpretable and their values can be derived from
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kinetics:

µ(N) = N

N +KS
(14)

where N is the concentration of a nutrient element
andKS is the half-saturation constant (Fig. 2A, curve
1). The Michaelis–Menten function is thus an empir-
ical formulation that can accommodate experimental
data of nutrient uptake.Fennel (1995)modified the
Michaelis–Menten function in a quadratic formulation:

µ(N) = N2

N2 +K2
S

(15)

andFlynn et al. (1997)proposed a more generic form:

µ(N) = Nm

Nm +KS
(16a)

Field observations and laboratory experiments
sometimes showed a critical concentration of certain
nutrients below which the uptake rate is virtually null
(Caperon and Meyer, 1972; Paasche, 1973). Droop
(1973, 1983)interpreted the phenomenon as the pres-
ence of an unreactive intercellular nutrient quota below
which phytoplankton cease to grow. Consequently,
Droop (1973, 1983)suggested the Droop function for
nutrient uptake:

µ3(Q) = 1 − KQ

Q
(16b)

where Q is the cell quota of nutrient andKQ rep-
r to-
p
M ,
1 96;
D 99;
N nks
a
e and
L
m 8)
a inor
n rus,
b , its
a

-
t ure
t
S f the
easurable parameters such as the specific ab
ion coefficient, maximum quantum yield and the m
ross-section. Consequently, I propose the Platt f
ion (Eq. (8)) as the a priori parameterization for t
–E relationship.

. Nutrient limitation on phytoplankton growth
ate

Brandt (1899, 1902)first called attention to th
mportance of phosphate and nitrate as limiting fac
or phytoplankton growth in the ocean andKetchum
1939)established the relationship of hyperbolic na
etween nutrient uptake and concentration. Based
eview of laboratory and field measurements,Caperon
1967)andDugdale (1967)argued that nutrient upta
an be described by the Michaelis–Menten enz
esents the critical cell quota below which phy
lankton growth is 0 (Fig. 2A, curve 3). Both the
ichaelis–Menten function (e.g.,Kiefer and Mitchell
983; Radach and Moll, 1993; Semovski et al., 19
avidson, 1996; Flynn, 1998; Backhaus et al., 19
apolitano et al., 2000; Chifflet et al., 2001; Fra
nd Chen, 2001) and the Droop function (e.g.,Marra
t al., 1990; Lange and Oyarzun, 1992; Oyarzun
ange, 1994; Haney and Jackson, 1996) are in use in
odeling application.Goldman and McCarthy (197
rgued that the Droop equation is applicable for m
utrients such as iron, Vitamin B12 and phospho
ut for major nutrients such as nitrogen and silicate
pplicability is limited.

The sigmoidal function (Eq.(15)) can provide cer
ain simulation stability, but cannot theoretically ens
he parameterization of threshold (Fig. 2A, curve 2).
ome authors suggested a simple combination o
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Fig. 2. (A) Relationships between nutrient concentration and nutrient limitation factor applied to phytoplankton growth rate: (1)
Michaelis–Menten function (Eq.(14)), (2) quadratic Michaelis–Menten function (Eq.(15)), (3) Droop function (Eq.(16)), (4) combined
Michaelis–Menten and Droop function (Eq.(17)). (B) NH4

+ inhibition factor on NO3
− uptake: (1) Wroblewski function (Eq.(18)), (2) Hurrt

and Armstrong function (Eq.(19)), (3) O’Neil function (Eq.(20)), (4) Spitz function (Eq.(21)), (5) Parker function (Eq.(22)), (6) Yajnik and
Sharada function (Eq.(23)). (C) NH4

+ and NO3
− total limitation factor on phytoplankton growth rate under NO3

− replete condition (10�M l−1)
with a half-saturation constant of 1.0�M l−1. Function numbers are the same as that in panel (B).

Michaelis–Menten and the Droop functions (Caperon
and Meyer, 1972; Paasche, 1973; Dugdale, 1977;
Droop, 1983; Flynn et al., 1999):

µ(N) = N −N0

N +KS −N0
(17)

Martin (1992)demonstrated the threshold effect of dis-
solved iron concentration in seawater. When the con-
centration of dissolved iron is below a critical level
(0.3–0.5 nmol in the open ocean), the diffusion of
iron to the cell surface is so slow that phytoplankton
growth is severely limited. It should be pointed out that
the Droop equation models the relationship between
phytoplankton growth rate and the internal cellular
nutrient contents whereas the Michaelis–Menten func-
tion describes the relationship between phytoplankton
growth rate and external nutrient concentrations in sea-
water. The threshold of nutrient concentration in sea-

waterN0 in Eq.(17)differs from the critical cell quota
KQ in the Droop function (Eq.(16)). In many cases, the
threshold of nutrient concentration is below the detec-
tion limit of the currently used analytical methods so
thatN0 can be assigned to 0 in modeling applications.
Given the importance of iron limitation in ocean pro-
ductivity and the diversity of phytoplankton species,
the combined function with both a half-saturation con-
stant and threshold (Eq.(17)) has the potential of wider
application than the simple Michaelis–Menten function
or the Droop function.

There are two main forms of dissolved inorganic
nitrogen that can be taken up by phytoplankton, nitrate
(NO3

−) and ammonium (NH4+). NO3
− assimila-

tion requires reduction to NH4+ which is an energy-
expensive process. Nitrate reductase activity (NR),
which regulates the first step of NO3

− reduction, is
decisive in determining the rate of nitrate reduction and
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assimilation (Solomonson and Barber, 1990). NO3
−

uptake induces NR whereas NH4
+ uptake can repress

NR and, thus, inhibits NO3− uptake (Dugdale and
Goering, 1967; Eppley et al., 1969; Dortch, 1990;
Flynn et al., 1997). Various functions have been devel-
oped to parameterize ammonium inhibition of nitrate
uptake. Wroblewski (1977)proposed an empirical
function with an exponential inhibition term:

µ(N) = NH4
+

NH4
+ +KNH4

+ NO3
− e−ψNH4

+

NO3
− +KNO3

−
(18)

whereKNH4 andKNO3 are the half-saturation constants
for NH4

+ and NO3
− uptakes andψ is the exponen-

tial coefficient determining NH4+ inhibition for NO3
−

uptake.Hurrt and Armstrong (1996)proposed a for-
mulation based on the argument that the sum of NH4

+

and NO3
− uptake should follow the Michaelis–Menten

function (NO3
− + NH4

+)/(KN + NH4
+ + NO3

−):

µ(N) = NH4
+

NH4
+ +KN

+ KNNO3
−

(NH4
+ +KN)(NO3

− + NH4
− +KN)

(19)

O’Neill et al. (1989)deduced from molecular kinetics
a substitution formulation between two nutrients that
have been applied to NO3− and NH4

− uptakes:

µ

S d
O

µ

W ity,
P n
u

µ

Alternatively, Yajnik and Sharada (2003)proposed a
modified Michaelis–Menten form in which a new free
parameter was added to regulate the inhibition factor:

µ(N) = NH4
+

NH4
++KNH

+ 1 + aNH4
+

1 + bNH4
+

NO3
−

NO3
− +KNO3

(23)

where botha andb are constants which determine the
NH4

+ inhibition factor for NO3
− uptake.

I have calculated the NH4+ inhibition factors for
each formulation by assuming that nitrate uptake fol-
lows the Michaelis–Menten hyperbolic curve when no
inhibition occurs (Fig. 2B). All these functions gen-
erate increasing inhibition factor with NH4+ concen-
tration. The slopes of these curves can be adjusted
by the corresponding parameters so that the differ-
ent slopes do not necessarily mean different inhibition
effects. However, the total nitrogen uptake rate (i.e.,
NH4

+ uptake + NO3
− uptake rates) is specific to each

formulation (Fig. 2C). The Wroblewski function (Eq.
(18)) generates a sigmoidal curve with the total nitro-
gen uptake rate increasing first, then decreasing with
increase in NH4+ concentration. The Spitz function
(Eq.(21)) generates high values of total nitrogen uptake
rate when NH4+ approaches to zero and low value at
intermediate NH4+ concentration (Fig. 2C, curve 4).
This kind of irregular response of the total nitrogen
uptake rate to increases in NH4

+ concentration has not
been reported and can lead to instability in numerical
s
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r
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t can
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(N) = NO3
−/KNO3

− + NH4
+/KNH4

−

1 + NO3
−/KNO3

− + NH4
+/KNH4

+
(20)

pitz et al. (2001)combined the Wroblewski an
’Neil functions for nitrogen uptake:

(N) = NH4
+/KNH4

+ + NO3
−/KNO3

− e−ψNH4

1 + NO3
−/KNO3

− + NH4
+/KNH4

+
(21)

hile taking into account nitrate reductase activ
arker (1993)developed a formulation for nitroge
ptake based on the Michaelis–Menten function:

(N) = NH4
+

NH4
+ +KNH

+ KNH4

NH4
+ +KNH4

NO3
−

NO3
− +KNO3

(22)
imulations.
The Yajnik function (Eq.(23)) generates a tot

itrogen uptake factor >1. According to the Michae
enten and Droop functions, the maximum value

he limitation factor is 1 under nutrient replete con
ion, whereas the actual maximum value of phytopla
on growth rate is determined by the maximum gro
ate of phytoplanktonPm (see Section1). The Yajnik
unction can generate phytoplankton growth rate hi
han the maximum growth rate and the simulation
e out of control. Moreover, the Liebig minimum law
pplied when multiple nutrients are considered, i.e.
inimum of the uptake factor is applied among m

iple types of nutrients. If the nitrogen uptake facto
1 whereas that of other nutrients are <1, the lim

ion effect of nitrogen will not be effectively taken in
ccount and negative value can be simulated for
lement.
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The O’Neil, Hurrt and Parker functions all pro-
duce plausible total nitrogen uptake rate that slightly
increases with respect to NH4

+ concentration (Fig. 2C,
curves 2, 4 and 5). The relatively high total nitrogen
uptake rate at low NH4+ concentration ranges is due
to the fact that nitrate is assumed replete so that the
calculated total nitrogen uptake rate is not subject to
nitrogen limitation. The O’Neil function (Eq.(20)) is a
substitution formulation between two nutrients. It does
not contain a specific inhibition factor and NH4

+ can
be equally substituted by NO3− under nitrate replete
condition. The NH4+ inhibition on NO3

− uptake is not
a substitution phenomenon. It is governed by biochem-
ical and physiological processes.

Besides inhibition, preference is another factor con-
trolling NO3

− versus NH4+ uptakes (Dortch, 1990).
NH4

+ is generally preferred over NO3+, most likely
due to the low energy cost of NH4+ uptake. The pref-
erence for NH4+ over NO3

− is believed to be accentu-
ated at low light and low nitrogen conditions (Dortch,
1990). This preference is usually parameterized by
a lower half-saturation constant or a higher prefer-
ence coefficient for NH4+ uptake than that for NO3−
uptake. The Hurrt and Armstrong function (Eq.(19))
does not contain parameters that control the preference
between NH4+ and NO3

−. The Parker function (Eq.
(22)) appears thus more adequate than other functions
with respect to inhibition effect, total nitrogen uptake
rate and preference of NH4+ over NO3

−. Flynn et al.
(1997)presented a complete model to simulate NH4

+
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• Log linear function:

µ(T ) = a+ b log(T + c) (25)

• Power function:

µ(T ) = a(T + c)b (26)

• Exponential function:

µ(T ) = eaT (27)

• Q10 function:

µ(T ) = Q
T/10
10 (28)

• Arrhenius function:

µ(T ) = e(E/R)((1/Topt)−(1/T )) (29)

Most of these functions are empirical and their con-
trolling parameter values are so determined to fit a
specific data set (Eppley, 1972; Dam and Peterson,
1988). The exponential function is the most frequently
used in marine biological modeling (e.g.,Eppley, 1972;
Dam and Peterson, 1988; Huntley and Lopez, 1992;
Radach and Moll, 1993; Bissett et al., 1999; Leonard
et al., 1999; Kawamiya et al., 2000; Tian et al., 2001,
2003). TheQ10 function is an operational expression
which can be measured as the change in biological rate
over 10◦C (Toda et al., 1987; Doney et al., 1996). The
Arrhenius function is mechanistic for enzyme activties,
with E presenting the activation energy of a reaction,
R being the gas constant (8.3 Pa m3 K−1 mol−1), and
T r,
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nhibition for NO3
− uptake, which contains extern

nd internal pools of NO3− and NH4
+, respectively

lutamine, amino acids, cellular nitrogen, nitrite red
ase and nitrate reductase. The model is mechan
ut its application in biological and ecological mod

s limited due to its complexity.

. Temperature forcing on phytoplankton
rowth rate

Various formulations have been used to describ
elationships between biological growth rates and t
erature:

Linear function:

µ(T ) = a+ bT (24)
being the absolute temperature (Raven and Geide
988). The activation energy can be determined f

he correspondingQ10 value with E = RT ln(Q10)/10
Dixon and Webb, 1979, p. 175).

According to these functions, biological ra
ncrease infinitely as a function of temperature (Fig. 3,
urves 1–6). A major challenge to these monoton
unctions is that, in many cases, biological rates s
n optimal temperature above which rates decre
Pomeroy and Deibel, 1986; Wiencke and Dieck, 19
upan and West, 1990; Yager and Deming, 19
omeroy and Wiebe, 2001). Different formulations
ave been developed to parameterize the optimal
erature, including:

Thebault function:

µi(T ) = 2(1+ a)
s

s + 2as+ 1
, s = T − T0

Topt − T0
(30)
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Fig. 3. Relationships between temperature and phytoplankton growth rate: (1) Linear function (Eq.(24)), (2) log-linear function (Eq.(25)),
(3) power function (Eq.(26)), (4) exponential function (Eq.(27)), (5) Q10 function (Eq.(28)), (6) arrhenius function (Eq.(29)), (7) Thebault
function (Eq.(30)), (8) Beta function (Eq.(31)), (9) exponential product function (Eq.(32)) and (10) modified exponential function (Eq.(33)).

wherea is a constant,Topt represents the optimal
temperature andT0 is the temperature under which
the corresponding biological rate is zero (Thebault,
1985; Andersen and Nival, 1988; Skliris et al., 2001).

• Beta function:

µ(T ) = (T − T0L)a(T0H − T )b (31)

wherea and b are constant andT0L and T0H are
the low and high temperature under which the cor-
responding biological rate is zero (Carlotti et al.,
2000).

• Exponential product (Kamykowski and McCollum,
1986):

µ(T ) = (1 − e−a(T−T0L))(1 − e−b(T0H−T )) (32)

• Modified exponential function:

µ(T ) = e−(T−Topt/�T )2 (33)

where �T is a constant determining the slope
between biological rates and temperature (Lancelot,
2002).

There is no explicit biological interpretation of the
temperatures at which biological rates are 0 in the
Thebault, beta and exponential product functions. The
values of these parameters are also difficult to evalu-
ate. The modified exponential function has the opti-
mal temperature and is flexible to produce different
c on-
t e
m

5. Combination of light, temperature and
nutrient forcing on phytoplankton growth

Temperature tends to influence the maximum
growth rate so that its effect is multiplicative with the
effects of light and nutrient (Steele, 1962; Webb et al.,
1974). When multiple types of nutrients are considered,
phytoplankton growth rate is generally determined by
the availability of the nutrient in the shortest supply
relative to the requirement by balanced growth, i.e.,
the Liebig Law. The Liebig Law of minimum was ini-
tially based on nutrient availability (Liebig, 1842). In
addition to nutrient supplies,Blackman (1905)also
considered light. Following Blackman’s suggestion,
the minimum between light and nutrient limitation is
often used as the combined effect on phytoplankton
growth in modeling applications:

µ1 = µ(T ) min(µ(E), µ(N(1,2)),

µ(N(3)), . . . , µ(N(nn))) (34)

whereµi(T), µi(E) andµi(N(j)) are temperature, light
and nutrient limiting factors on phytoplankton growth
rate (Radach and Moll, 1993; Hurrt and Armstrong,
1996; Carbonel and Valentin, 1999; Napolitano et al.,
2000; Oschlies et al., 2000; Denman and Pena, 2002).
Alternatively, Baule (1918)expressed the combined
effect of limiting factors by a multiplication. As a result,
the product of light, temperature and nutrient forcing
factors is also used in modeling applications (Goldman
a rsen
e and
H al.,
urves of temperature function. Moreover, the c
rolling parameter�T is readily determined from th
easurable parameterQ10.
nd Carpenter, 1974; Parsons et al., 1984; Ande
t al., 1987; Hofmann and Ambler, 1988; Moisan
ofmann, 1996; Doney et al., 1996; Leonard et
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1999; Gao et al., 2000; Kawamiya et al., 2000; Tian
et al., 2000, 2001; Chifflet et al., 2001; Fennel et al.,
2002):

µ2 = µ(E)µ(T ) min(µ(N(1,2)),

µ(N(3)), . . . , µ(N(nn))) (35)

Both formulations are hypothetical. Experimental and
field data often showed that the combined effect lies
between the minimum and multiplication (Rhee and
Gotham, 1981; Redalje and Laws, 1983). Conse-
quently, I suggest to combine the minimum and multi-
plication forms:

µ = αµ1 + (1 − α)µ2 (36)

where 0 <α< 1.

6. Zooplankton feeding on a single type of prey

Zooplankton feeding modes can be broadly divided
into filter feeding (e.g., herbivorous copepods), rap-
torial feeding (e.g., carnivorous copepods, euphausi-
ids), and mucous net feeding (e.g., salps, doliolids,
appendicularia). These feeding modes are not mutu-
ally exclusive, and examples of both filter feeding and
raptorial feeding can often be found in one species,
especially among planktonic crustaceans. On the basis
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The first type of functional response is described by
linear or rectilinear functions:

g = αP (37)

g =


gmax

P

K
for P < K

gmax for P > K

(38)

wheregmax is the maximum grazing rate andα and
K are constants (Fig. 4A; Riley, 1946; Frost, 1972;
Gamble, 1978; Dagg and Grill, 1980; Klein and Steele,
1985; Mayzaud et al., 1998). The rectilinear relation-
ship is explained by continuous filtration of water unaf-
fected by the concentration of phytoplankton, so that
ingestion increases linearly with food concentration up
to a critical concentration above which the rate of pas-
sage of food through the gut limits the rate of ingestion
(e.g., mucous net feeding).

The second type of functional response is curvilin-
ear, which is also called the “invertebrate curve”. While
studying fish feeding dynamics,Ivlev (1955) found
that the quantity of food ingested increases with the
concentration of food available up to some maximum
ration beyond which the ingestion ceases to increase
with food concentration. Thus, the feeding rate at a
given prey concentrationP must be proportional to the
difference between the actual and the maximal ration:

∂g

∂P
= α(gmax − g) (39)
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f diet, zooplankton may be herbivorous, carnivoro
etritivorous, omnivorous, phytophagous, zoophag
r euryphagous (Parsons et al., 1984). There are tw
inds of fundamental predator response to chang
rey density: “numerical response” (i.e., the num
f predators changes as a function of prey density)
functional response” (the ingestion rate of the pred
hanges as a function of prey density) (Solomon, 1949
urdoch, 1969). Functional responses can be in
nced by the predator’s ability to perceive and cap

he specific prey, the time scales for handling and as
lating the prey and the nutritional content of the p
Fenchel, 1980; Greene, 1986; Jonsson, 1986; Jo
nd Tiselius, 1990; DeMott and Waston, 1991). In gen-
ral, there are three types of functional respons
redators to prey density (Holling, 1959a, 1965, 196
eal, 1977): linear and rectilinear, hyperbolic (curv

inear) and threshold (sigmoidal) responses.
he integration of the above equation yields the Iv
unction:

= gmax(1 − e−αP ) (40)

hereα is a constant andP represents prey concent
ion (Fig. 4A, curve 2). A number of authors found th
his formulation could be applied to zooplankton fe
ng (Parsons et al., 1984). Rashevsky (1959)explained
he physical and biological meaning of the initial slo

as the ratio between the rate that the prey beco
vailable to the predator and the maximum rate
redator can feed. Consequently, the Ivlev function
odified as

= gmax(1 − e−αP/gmax) (41)

ccording toRashevsky (1959), the Ivlev curve bes
escribes situations in which a starved animal fe

or a relatively short period of time. Measurement
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Fig. 4. (A) Zooplankton feed on a single type of prey: (1) rectilinear function (Eq.(38)), (2) Ivlev function (Eq.(40)), (3) combined linear
and Ivlev function (Eq.(42)), (4) disc and Michaelis–Menten function (Eqs.(45) and (49)), (5) generalized Michaelis–Menten function (Eq.
(53) with n = 2), (6) inhibitory-substrate response (Eq.(55)). (B) Grazing on multiple types of preys based on the Michaelis–Menten function:
(1) passive grazing with abundant prey of type 2 (Eq.(62) with P2 = 100), (2) passive grazing with limited prey of type 2 (P2 = 1), (3) active
switching grazing with abundant prey of type 2 (Eq.(70)with m = 2,P2 = 100), (4) active switching grazing with limited prey of type 2 (P2 = 1).
(C) Grazing on multiple types of preys based on the disc function (Eqs.(60) and (67)). Function numbers are the same as that in panel (B).

well-nourished animals whose ingestion has reached
equilibrium with food supply should generate a curve
of different shapes.Mayzaud and Poulet (1978)com-
bined the linear and Ivlev functions to simulate both
Types I and II responses:

g = gmaxαP(1 − e−βP ) (42)

where α and β are constants (Fig. 4A, curve 3)
(Mayzaud and Poulet, 1978; Franks et al., 1986). They
attributed the increase in ingestion with increasing prey
density to herbivore acclimation.

Holling (1959a)conducted a series of observations
on predation dynamics using sawfly cocoons as prey
and small mammals (shrew and deer mice) as preda-
tor. Based on these observations, he set up an artificial
predator–prey scenario to analyze the mathematical
relationship between prey density and predation rates

Holling (1959b). In his artificial predator–prey sce-
nario, sandpaper discs served as prey and a blind-folded
subject as the predator who removed the discs from the
experiment table once found one. Assuming thatN is
the total number of discs andg is the number of discs
removed (i.e., predation or grazing in modeling prac-
tice), it can be expected then:

g = aTSN (43)

whereTS is the time available for searching anda is a
constant representing the rate of finding a disc in a unit
time interval.TS should be the difference between the
total time intervalTT and the time used to remove discs
found. If b represents the time to remove one disc (or
handling time), then:

TS = TT − bg (44)
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Substituting Eq.(44) into Eq.(43)and adding thegmax
which is specific to a predator category results in the
Holling’s disc function:

g = gmax
aN

1 + abN
(45)

Fenchel (1980)deduced a similar equation for suspen-
sion feeding. Assuming thatF is the clearing rate (i.e.,
the volume of water that the organisms can clear par-
ticles per unit time at low concentrations) andP is the
concentration of particles (i.e., prey concentration), the
feeding rate should be

g = FP (46)

If each particle or unit volume of particles ingested
blocks the mouth duringτ time, then the feeding rate
should be

g = FP(1 − τg) (47)

and as a result:

g = gmax
FP

1 + FτP
(48)

In biological modeling, however, the most used for-
mulation to describe feeding on a single prey type is
the Michaelis–Menten fucntion (also called the Monod
function). While studying bacterial culture,Monod
(1941, 1949)observed the hyperbolic nature of the bac-
terial growth rate as a function of substrate concentra-
tions. Various functions can produce curves similar to
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sity at which predation becomes negligible (Murdoch,
1969; Gismervik and Andersen, 1997; Strom, 1991).
Holling (1959b) described the phenomenon as a
“threshold of security” that stabilizes the prey pop-
ulation, others referred to a “refuge”, or “learning
response”, i.e., zooplankton ignore low-density food
(Holling, 1965; Mullin et al., 1975; Murdoch and
Oaten, 1975). Another hypothesis for the threshold
is that if the energy cost to zooplankton in searching
and capturing food is high relative to energy gain, it is
advantageous to cease feeding when foods are scarce
(Mullin et al., 1975).

The Michaelis–Menten function has been modi-
fied with a specific threshold to simulate the Type III
response:

g = gmax
P − P0

P − P0 +KS
(50)

whereP0 represents the threshold (Walsh, 1975; Evans,
1988; Frost, 1993). Steele and Mullin (1977)modified
the previous equation to take into account the predator
weight in feeding dynamics:

g = gmax
P − P0

P − P0 +K
Wα (51)

where W is the weight of the predator andα is a
constant. Certain authors used sigmoidal functions for
zooplankton predation (Fig. 4A, curve 5) (Denman and
Pena, 2002; Oschlies et al., 2000):
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hat he had observed. By convenience, he had ad
he Michaelis–Menten function which was then wid
sed to describe the saturation of hemoglobin
espect to the partial pressure of oxygen. Follow
onod, the Michaelis–Menten function is widely us

o describe zooplankton grazing and predation:

= gmax
P

P +KS
(49)

ereK is the half-saturation constant (Fig. 4A, curve
) (Caperon, 1967; Walsh, 1975; Evans and Pars
985; Radach and Moll, 1993; Strom and Louk
998; Gao et al., 2000; Napolitano et al., 200).
aperon (1967)explained the half-saturation const
s the ratio between the rate of freeing the absorp
ite and the rate of food uptake.

The third type of response, also called “verteb
urve”, is characterized by a threshold of food d
= gmax
P2

K2
S + P2

or g = gmax
P2

K2
S + αP + P2

(52)

eal (1977)and Steele and Henderson (1981)sug-
ested a generalized Michaelis–Menten function w
an parameterize both Types II and III responses:

= gmax
Pm

KS + Pm
(53)

here the powerm determines the functional respon
f zooplankton feeding to prey density. Withm = 1,
q. (53) is equivalent to the Michaelis–Menten fun

ion and thus corresponds to hyperbolic functio
esponse. Withm = 2, Eq. (53) turns to be the sig
oidal function and thus corresponds to the verteb

unctional response. Note that the value of the h
aturation constantKS also depends onm in Eq.(53).
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Alternatively, Wroblewski (1977) modified the
Ivlev function to parameterize threshold response:

g = gmax(1 − e−α(P−P0)) (54)

A fourth functional response that was not included
in the Holling’s definition is the inhibitory-substrate
response: (e.g., grazing of toxic algae) in which the
grazing rate decreases with increasing food density
after an optimal food concentration:

g = gmax
P

KS + P + αP2 (55)

whereα is a constant determining the inhibitory effect
(Van Gemerden, 1974; Gentleman et al., 2003). This
equation does not generate monotonous increases in
ingestion with increasing prey density. Instead, the
ingestion rate reaches a maximum at an intermediate
prey density (or optimal density) after which the inges-
tion rate decreases again (Fig. 4A, curve 6).Gentleman
et al. (2003)interpreted this decrease as a result of tox-
icity (e.g., toxic algae) or predator confusion.

In the linear or rectilinear representation there is
assumed to be no interference between particles in the
capture–ingestion mechanisms until the critical con-
centration is reached. In most cases however, ingestion
and assimilation occur within a time duration, which
slow down the capture rate or the availability of the
receptor sites. The linear and rectilinear functions can
be valid only in the low range of prey density below
the saturation. The modified Ivlev function (Eq.(54))
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abundant nutrient supply, i.e., a numerical extinction.
The generalized Michaelis–Menten function (Eq.(53))
is attractive because it can simulate different func-
tional responses, but it does not contain a parameter
specifying the threshold. Following Eq.(50) in which
a threshold is added in the Michaelis–Menten func-
tion, a threshold term can be added in the generalized
Michaelis–Menten function:

g = gmax
(P − P0)m

KmS + (P − P0)m
(56)

In this form the half-saturation constantKS is no more
m-dependent as it is in the original formulation (Eq.
(53)). This equation has the flexibility to simulate dif-
ferent functional response and can prevent numerical
extinction of prey populations by the specific thresh-
old. Consequently, I suggest this equation as the a priori
choice for balk parameterization of predation on a sin-
gle type of prey. This function does not include the
inhibitory uptake which can be treated as a particular
case using Eq.(55).

7. Zooplankton feeding on multiple types of
prey

Many zooplankton species have been found to be
omnivorous, i.e., they feed upon multiple types of
prey instead on a single type of prey (Poullet, 1978;
Landry, 1981; Gifford and Dagg, 1988; Stoecker and
C al.,
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a 991;
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t tional
as the threshold of prey density, but it cannot ma
atically ensure null intake below that threshold

n some circumstances, it can yield negative fee
nless another conditional equation is imposed.

The disc function (Eq.(45)), the suspension fee
ng function (Eq. (48)) and the Michaelis–Mente
unction (Eq. (49)) are almost equivalent, with th
ichaelis–Menten function having fewer free para
ters. Assuming 1/ab = K in the disc function an
/Fτ = K in the suspension feeding function, these

orms become the Michaelis–Menten function. T
igmoidal function (Eq.(52)) cannot fully simulate th
hreshold of prey. The threshold has been interpr
s a “threshold of security” that stabilizes prey po

ations. Such a security threshold is also importan
umerical simulation. If zooplankton grazing result
ero concentration of phytoplankton in a model, p
oplankton blooms will never be possible even w
apuzzo, 1990; Turner and Roff, 1993; Kiorboe et
996). Mesozooplankton (e.g., copepods and dino
llates) can feed on phytoplankton, microzooplan
nd detritus while microzooplankton (e.g., ciliates
eterotrophic nanoflagellates) can feed on picoph
lankton, bacteria and suspended particles.

When multiple types of prey are involved, fee
ng modes can be divided into three categories:
election feeding (i.e., the proportion of different ty
f prey in the diet is the same as in the food av
ble), passive selection (i.e., the proportion of diffe

ypes of prey in the diet differs from that of the fo
vailable, but with constant selectivity or preferen
nd switching selection (i.e., the preferences or pro

ion change as a function of prey density) (Teramoto e
l., 1979; Goldman and Dennett, 1990; Strom, 1
ickham, 1995; Strom et al., 2000). Feeding selec

ion depends on the abundance, size, shape, nutri
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status, motility, toxicity, and chemical composition of
the prey (Andersson et al., 1986). Biological traits of
the predators also influence their ability in food selec-
tion, such as size, mouth width, chemosensory and
mechanosensory ability (Verity, 1991; Naoki et al.,
2001). Predator switching can exert striking effects
on the stability of prey populations by preventing
extinction of rare species, preserving biodiversity and
favoring coexistence of different predators (Murdoch,
1969; Murdoch, 1973; Murdoch and Oaten, 1975;
Cousins and Hassell, 1976; Tansky, 1978; Hutson,
1984). Switching feeding has been showed even more
important than trophic cascade in determining popula-
tion dynamics of marine organisms (Wickham, 1995;
Kiorboe et al., 1996).

Passive selection (no switching) feeding is usually
parameterized by a constant preference coefficient for
each type of prey. Based on the functions of predation
on a single type of prey (see the preceding section),
formulations for passive selection feeding include rec-
tilinear, Ivlev, disc and Michaelis–Menten functions
and their modified forms.

Armstrong (1994)developed a model of multiple
food chains, with each food chain consisting of a size
class of phytoplankton and zooplankton. Zooplank-
ton of each food chain grazes only upon the specific
type of phytoplankton. FollowingMoloney and Filed
(1991), he allowed predation on zooplankton of the
next smaller class so that two types of food were
involved. He used a rectilinear function to determine
f
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ton were allowed to feed upon netplankton and micro-
zooplankton, i.e., two prey types. They used the com-
bined linear and Ivlev function for each prey type:

gi = gmaxiβiPi(1 − e−βiPi ) (58)

In their application, all the controlling parameters
(including the maximum grazing rategmaxi) were spe-
cific for each type of prey and there is no interference
between different types of prey.

Hofmann and Ambler (1988)proposed another form
to compute grazing on multiple types of prey based on
the Ivlev function. Zooplankton grazing on small and
large phyoplankton was computed as

gi = gmax(1 − e−ψR)
piPi

R
, with R =

n∑
j=1

pjPj

(59)

whereR represents the total effective food concentra-
tion andψ is the Ivlev coefficient. The total ingestion
is determined by the total effective food and the Ivlev
exponential coefficient whereas the intake of each phy-
toplankton poolPj is determined by its proportion in
the total food and the preference coefficientpi.

Murdoch (1973)and Holt (1983) extended the
Holling disc function to feeding on multiple types of
prey:

gi = gmax
aiNi

1 + ∑n
j=1ajτjNj

(60)
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piPi

K
for R ≤ K

gmax
piPi

R
for R > K

, R =
n∑
j=1

pjPj

(57)

heregi is the intake on preyPi by a specific zooplank
on category,pi the corresponding preference co
cient, K represents the saturation constant (not
alf-saturation constant) andR is the total food avail
ble to a specific zooplankton category.

Leonard et al. (1999)conducted a modeling stu
n a high-nitrate, low-chlorophyll ecosystem, the c

ral equatorial Pacific. In their model, there are
ategories of phytoplankton (nanoplankton and
lankton) and two categories of zooplankton (mic
ooplankton and mesozooplankton). Mesozoopl
here ai and τi are the capture rate and handl
ime specific to the prey itemNi. Similarly, the
ichaelis–Menten function applied to predation
ultiple types of prey is usually written as

i = gmax
piPi

K + ∑n
j=1pjPj

(61)

here the preference coefficientpi is specific for eac
rey type whereas the half-saturation constant is

ive to the total prey concentration (Moloney and Filed
991). The Michaelis–Menten function was also u
s

i = gmax
piPi

1 + ∑n
j=1pjPj

(62)

here the preference coefficients (pi, pj) correspond
o that in Eq.(61) divided by the half-saturation co
tantK (Verity, 1991; Fasham et al., 1999; Strom a
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Loukos, 1998; Tian et al., 2001). Alternatively, the
Michaelis–Menten function was modified as

gi = gmax

(
R− P0

K + R− P0

)
piPi

R
, with

R =
n∑
j=1

pjPj (63)

where R represents the total food available andP0
presents the threshold of total food below which feed-
ing ceases (Evans, 1988; Lancelot et al., 2000; Leising
et al., 2003). According to this equation, the total inges-
tion is determined by the total food available whereas
the intake from each type to prey is determined by its
relative abundance among total food and its preference
coefficient.

All the above equations are characterized by the fact
that the intake ratios among various types of prey dif-
fer from their ratios of abundance due to their specific
preference coefficients. However, the preference coef-
ficients do not change with the relative abundance of
different types of prey, i.e., passive selection.

Functions of active selection feeding are character-
ized by varying effective preferences according to the
relative abundance of prey.Fasham et al. (1990)devel-
oped a biological model in which zooplankton feed
upon phytoplankton, bacteria and detritus, parameter-
ized by a switching feeding function among the three
types of prey. They parameterized the effective pref-
e each
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the capture rate is linked to the relative abundance of
each type of prey:

bi = aiNi

1 + ciNi
(66)

Assumingci = aiτi, this relationships is similar to the
disc function (Eq.(45)). Substituting the constant cap-
ture rateai in Eq.(60)by the varying effective capture
ratebi in Eq.(66), the switching disc function is then:

gi = gmax
aiN

2
i

(1+ciNi)(1 + ∑n
j=1(ajτjN2

j /(1 + cjN
2
j )))

(67)

Meanwhile, some authors developed generalized forms
by which the degree of selection or switching among
various types of prey can be simulated.Tansky (1978)
andMatsuda et al. (1986)developed the following for-
mulation for predation on multiple types of prey:

gi = gmax
(piPi)m∑n
i=1(piPi)m

(68)

andVance (1978)suggested a similar equation:

gi = gmax
(piPi)m(∑n
i=1(piPi)

)m (69)

where the powerm determines the degree of selection
among various types of prey. Both equations apply to
feeding on multiple types of prey, but when only a sin-
gle type of prey is involved, these equations result in
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′
i = piPi∑n

j=1pjPj
(64)

herep′
i represents the effective preference co

ient of the preyPi and pi is the nominal prefe
nce, i.e., the effective preference when all the t
f prey have equal abundance. Substitutingpi in the
ichaelis–Menten function for multiple types of pr

Eq. (61)) with p′
i in Eq. (64), the switching feedin

unction is then:

i = gmax
piPi

2

K
∑n
j=1pjPj + ∑n

j=1pjPj
2 (65)

n a similar way,Chesson (1983)deduced a switchin
eeding function based on the Holling disc functi
nstead using a constant capture rate, he assume
 t

ndependent feeding from prey densities. Alternativ
ismervik and Andersen (1997)developed a more ge
ralized formulation:

i = gmax
(piPi)m

1 + ∑n
i=1(piPi)m

(70)

hich can simulate various switching predation
unctional responses. Whenm = 1, this equatio
ecomes the Michaelis–Menten function for pas
election feeding (Eq.(62)). Whenm = 2, it is similar
o the Fasham’s function for switching feeding (
65)). The higher the powerm is, the higher the degre
f switching occurs among various types of prey. W
∼ ∞, Eq. (70) generates exclusive or unique se

ion among various types of prey, i.e., feeding only
he most abundant prey and ignoring all other ty
f prey. This equation also applies to a single typ
rey. When the number of types of preyn equals to 1
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Eq. (70) is equivalent to the generalized function for
feeding on a single type of prey (Eq.(56)).

Feeding threshold is an observed fact (Frost, 1975;
Strom, 1991; Strom et al., 2000) which is not specif-
ically included in Eq.(70). As in the generalized
Michaelis–Menten function for feeding on a single type
of prey, a specific threshold for each type of prey can be
added in Eq.(70), which results in the following form:

gi = gmax
(pi(Pi − P0i))m

1 + ∑n
i=1(pi(Pi − P0i))

m (71)

whereP0i represents the threshold of the preyPi.
Passive and active selection feeding described by

using the Michaelis–Menten function and the disc func-
tion are illustrate inFig. 4B and C, respectively. Four
scenarios of ingestion of a type of prey are simulated
by each function with the presence of a second type of
prey: passive selection under low and high density of
the second type of prey (Eq.(62)for Michaelis–Menten
function and Eq.(60) for the disc function) and active
selection under low and high density of the second
type of prey (Eq.(70) for Michaelis–Menten function
with m = 2 and Eq.(67) for the disc function). For pas-
sive selection, both functions simulated much higher
intake of the prey 1 under low density of prey 2 (Fig. 4,
curves B2 and C2) than under high density of prey
2 (Fig. 4, curves B1 and C1). Even without specific
parameterization of switching feeding, both functions
simulates intake shift from the preys 2 to 1 when prey
2 e to
t e two
t or
p ever,
t ant
s d
C . The
s
c ond
t
w yper-
b 2)
w nse
(

and
c am-
p
t eat-

ing a feeding current when presented with diatoms to
raptorial feeding mode by ambushing when exposed
to ciliates. The various feeding behaviors may require
different mathematical description. In modeling prac-
tice, however, zooplankton are usually represented by
aggregated state variables such as zooplankton com-
partment or mesozooplankton and microzooplankton.
Different feeding behaviors among various species are
not explicitly considered. Various mathematical func-
tions have been used for the same purpose. In this
context, narrowing down the mathematical choices is
plausible.

The disc function and the Michaelis–Menten func-
tion are almost equivalent. Given that the later has fewer
free parameters than the former, it has been widely
used in modeling applications. The Ivlev function has
been successfully applied for feeding on a single type
of prey. However, its flexibility and adaptability for
feeding on multiple types of prey show certain lim-
itation. On the other hand, the generalized form of
the Michaelis–Menten function (Eq.(71)) can simulate
various feeding behaviors and functional responses. It
applies to feedings on both a single type and on mul-
tiple types of prey. Given its generality and flexibility,
I suggest this parameterization as the a priori selection
for trophic dynamics.

8. Mortality

del
c ural
m rva-
t and
c ent
p used
i

• an

• n,
5

becomes scarce. This simulated shifting is du
he changes in the relative abundance between th
ypes of prey while the half-saturation constants
reference coefficients remain unchanged. How

he active-switching forms simulated more import
hift from preys 2 to 1 (Fig. 4, curves B3 and B4 an
3 and C4) than the passive-selection equations
witching functions generated sigmoidal curves (Fig. 4,
urves B3 and B4 and C3 and C4) which corresp
o the Type III functional response (Fig. 4, curve A5),
hereas passive-selection functions generated h
olic curves (Fig. 4, curves B1 and B2 and C1 and C
hich correspond to the Type II functional respo

Fig. 4, curves A2 and A4).
Zooplankton have various feeding behaviors

an shift from one feeding mode to another. For ex
le, Kiorboe et al. (1996)found that copepodAcartia

onsa shifted from suspension feeding mode by cr
Zooplankton mortality usually represents the mo
losure term. Zooplankton mortality consists of nat
ortality, which may be caused by disease and sta

ion, and mortality due to predation by predators
annibalism within the same compartment. Differ
arameterizations of plankton mortality have been

n modeling applications:

Linear function (e.g.,Evans and Parslow, 1985; Ti
et al., 2000):

∂Z

∂t
= −mZ (72)

Quadratic function (e.g.,Steele and Henderso
1981; Denman and Gargett, 1995; Fasham, 199):

∂Z

∂t
= −mZ2 (73)
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Fig. 5. (A) Biomass-dependent mortality: (1) linear function (Eq.(72)), (2) quadratic function (Eq.(74)), (3) sigmoidal function (Eq.(75)), (4)
generalized function (Eq.(79)with n = 1.5). (B) Food-dependent mortality: (5) reciprocal function (Eq.(76)) and (6) exponential function (Eq.
(77)).

• Hyperbolic function (e.g.,Frost, 1987; Ross and
Gurney, 1994; Tian et al., 2004):

∂Z

∂t
= −m Z2

K + Z
(74)

• Sigmoidal function (e.g.,Malchow, 1994; Edwards
and Yool, 2000):

∂Z

∂t
= −m Z2

K2 + Z2 (75)

• Food-dependent rectilinear function (Andersen and
Nival, 1988):

∂Z

∂t
=




−mZ for P ≥ P0

−
( α
P

+m0

)
Z for P < P0

(76)

• Food-dependent exponential function (Andersen et
al., 1987):

∂Z

∂t
= −(me−α(P/Z) +m0)Z (77)

• Temperature-dependent quadratic function
(Kawamiya et al., 2000):

∂Z

∂t
= −m0 eαTZ2 (78)

•

In the above equations,Z represents the zooplankton,
P the prey,T the temperature,m, m0, K, P0, andn are
constants. Eqs.(76) and (77)link zooplankton mortal-
ity to food availability to represent starvation. Eq.(76)
generates more rapid increase in mortality than Eq.(77)
at low ranges of prey density (Fig. 5B). The assump-
tion behind these food-dependent parameterizations is
that zooplankton do not have important lipid storage.
In many cases, however, adult zooplankton have lipid
storage that can be used for diapause and reproduction.
Kawamiya et al. (2000)linked the zooplankton mortal-
ity to temperature by an exponential function, but they
did not provide the rationale and assumption under-
pinning. The linear function means that zooplankton
mortality is not influenced by its density. In model-
ing practice, however, the mortality includes several
terms, such as natural mortality, predation and canni-
balism (both true cannibalism and intratrophic preda-
tion because zooplankton in models usually aggregate
a large number of species of different sizes). Predation
and cannibalism are most likely density-dependent.
The generalized form (Eq.(79)) is more flexible in
which the powern determines the dependency of mor-
tality on population density. It can be used as linear,
quadratic or in between (which is closer to the hyper-
bolic and sigmoidal function in high density ranges,
Fig. 5A). I propose this generalized form as the a priori
parameterization of mortality which can approximate
other formulations. It can be used for both zooplank-
ton and phytoplankton. In the case of phytoplankton,
a ink-
i dent
f

Generalized formulation (Edwards and Yool, 2000):

∂Z

∂t
= −mZn (79)
ggregation which leads to the formation of large s
ng particles justifies the usage of density-depen
unctions.
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9. Respiration and excretion

Respiration and excretion represent the metabolic
losses of carbon and nitrogen, respectively. Metabolic
processes consist of different components such as basic
metabolism, locomotion, assimilation, synthesis of
somatic and gonad tissue, material transformation, etc.
(Clarke, 1987; Carlotti et al., 2000). Total metabolism
is two to three times higher than the basic metabolism at
resting (Steele and Mullin, 1977; Parsons et al., 1984).
In general, respiration can be divided into basic res-
piration and active respiration (the later includes all
respiration resulting from biological activities). The
simplest formulation of respiration and excretion is a
linear function of biomass (Eq.(72); Fasham et al.,
1990). Walsh (1975)andTian et al. (2001)linked res-
piration to ingestion instead to biomass by considering
that active respiration dominates over basic respiration:

∂Z

∂t
= −ag(P) (80)

wherea is a constant andg(P) is the ingestion.Steele
(1974) and Carlotti and Sviandra (1989)combined
biomass- and ingestion-dependent functions by con-
sidering both basic and active respiration:

∂Z

∂t
= −ag(P) − bZ (81)

Alternatively, Hofmann and Ambler (1988)linked
the active respiration to prey concentration instead of
i

w t
p
a of
z

w ual
b r
( n of
t

Among these various respiration functions, the
combination between the linear function of biomass
and ingestion (Eq.(81)) appears to be the most explicit
description of respiration processes. The linear
function of biomass represents the basic respiration
whereas that of ingestion represents the active respira-
tion. Body weight and temperature influence ingestion
rate so that their effects on respiration can be included
in the ingestion. This equation has also been applied
to phytoplankton exudation of dissolved organic
matter, i.e., DOM exudation has been parameterized
as a combined linear function of both phytoplankton
biomass and primary production:

∂DOM

∂t
= (a+ bµ)P (85)

wherea andb are the constants,µ the phytoplankton
growth rate andP is the phytoplankton biomass
(Bannister, 1979; Spitz et al., 2001).

10. Conclusion

Standardization of biological parameterization
resides in the development of mechanistic formula-
tions based on physiological and biological dynamics
instead of empirical forms from data fitting. How-
ever, few mechanistic functions have been developed
in marine biological modeling.Sakshaug et al. (1989)
have developed a mechanistic formulation of theµ–E
r (Eq.
( e-
n ing
i prey
( ing
a onal-
i , I
h ri set
o se
s func-
t latt
f e to
d is
f (Eq.
( ly
t the
p o-
t on
ngestion:

∂Z

∂t
= −(aP + b)Z (82)

herea and b are constants andP and Z represen
rey and predator abundance, respectively.Moloney
nd Field (1989)expressed respiration as a function
ooplankton weight:

∂Z

∂t
= −aWb (83)

hereW represents zooplankton weight or individ
iomass.Andersen et al. (1987)andHirst and Sheade
1997)scaled respiration as an exponential functio
emperatureT:

∂Z

∂t
= −abTZ (84)
elationship based on photosynthetic processes
13)), but they did not consider photoinhibition ph
omenon. The disc function for zooplankton graz

s based on feeding dynamics on a single type of
Eq. (45)), but it does not include omnivorous feed
nd preference. Based on the correctness, functi

ty and generality of the existing empirical function
ave selected 10 parameterizations as the a prio
f parameterizations (Table 1). In most cases, the
elected parameterizations can reproduce other
ions by adjusting the controlling parameters. The P
unction (Eq.(8)) appears to be the most adequat
escribe theµ–E relationship. The first term of th

unction is the same as the mechanistic function
13)) and its photoinhibition term allows it to app
o a large range of different ecosystems. When
hotoinhibition coefficientβ is assigned to 0, the ph

oinhibition effect will be removed from the simulati
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Table 1
Selected a priori parameterizations for marine biological modeling

Function Symbols Reference

(1)µ–E relationship
µ(E) = Pm(1 − e−αE/Pm) e−βE/Pm

µ: phytoplankton growth rate,E: PAR,
Pm: theoretical maximum ofµ, α: initial
slope,β: photoinhibition coefficient

Platt et al. (1980)

(2) Nutrient limitation:
µ(N) = Nj−N0

N+K−N0

Nj: nutrient concentration,K:
half-saturation constant,N0: threshold

Caperon and Meyer (1972), Paasche (1973),
Dugdale (1977)andDroop (1983)

(3) NH4
+ inhibition on NO3

− uptake:

µ(N) = NH4
+

NH4
++KNH

+
KNH4

NH4
++KNH4

NO3
−

NO3
−+KNO3

NH4
+: NH4

+ concentration, NO3−:
concentration,KNH4: half-saturation
constant of NH4+,KNO3: half-saturation
constant of NO3−

Parker (1993)

(4) Temperature forcing:

µ(T ) = e−((T−Topt)/�T )2
T: temperature,Topt: optimal
temperature,�T: constant

Lancelot et al. (2002)

(6) Feeding on a single type of prey:
g = gmax

(P−P0)n

K+(P−P0)n

Gmax: maximum feeding rate,P: prey
concentration,P0: prey threshold,K:
half-saturation constant.

Real (1977), Steele and Henderson (1981)and
this work forP0

(7) Feeding on inhibitory prey:
g = gmax

P

K+P+αP2

P: prey concentration,K: half-saturation
constant,a: constant

Van Gemerden (1974)and Gentleman et al.
(2003)

(8) Feeding on multiple types of prey:
gi = gmax

(pi(Pi−P0i))
m

1+
∑n

i=1
(pi(Pi−P0i))m

P: prey concentration,P0: prey threshold,
p: preference coefficient,m: constant

Gismervik and Andersen (1997); This work for
P0.

(9) Mortality: ∂Z
∂t

= −mZn Z: zooplankton biomass,m, n: constants Edwards and Yool (2000)
(10) Respiration:∂Z

∂t
= −ag(P) − bZ Z: zooplankton biomass,g(P): ingestion,

a, b: constants
Steele (1974)andCarlotti and Sviandra (1989)

for ecosystems in which photoinhibition has not been
observed. This parameterization has been widely used
in modeling applications (Moisan and Hofmann, 1996;
Leonard et al., 1999; Tian et al., 2000, 2004; Lancelot et
al., 2000; Chifflet et al., 2001). The combination of the
Michaelis–Menten and Droop functions (Eq.(17)) is
selected to describe nutrient limitation on phytoplank-
ton growth rate. This formulation has the advantage to
parameterize both the half-saturation constant and the
threshold of nutrient, whereas other functions parame-
terize only the half-saturation or the threshold of nutri-
ents, but not both. It should be pointed out that the initial
threshold of nutrient in the Droop equation was used
for internal nutrient cell quota whereas in Eq.(17),
it is designated for external nutrient concentration in
seawater. Even though the threshold can be assigned to
zero for major nutrients (e.g., NO3−, Si(OH)4), thresh-
olds are necessary to simulate minor nutrient (e.g.,
Fe) limitation of phytoplankton growth rate (Martin,
1992). The modified exponential function (Eq.(33))
can simulate the optimal temperature at which biologi-
cal growth rates reach a maximum value. The parameter
�T determining the initial slope between biological
rates and temperature in Eq.(33) can be readily esti-

mated from observed values ofQ10. A new formu-
lation has been put forward to combine temperature,
light and nutrient forcing on phytoplankton growth,
i.e., to use an intermediate value between the mini-
mum and production of light and nutrient limitation
factors (Eq.(36)). For zooplankton feeding on a single
type of prey and multiple types of prey, the generalized
forms (Eqs.(56) and (71)) were selected over other
relatively rigid and monotonous forms. These gener-
alized functions allow simulating different functional
responses and variable degrees of switching feeding
among various types of prey. Also, a generalized form
of mortality was chosen as the a priori parameteriza-
tion (Eq.(79)). The combined linear function of both
biomass and ingestion simulates the basic and active
respiration together, whereas other forms parameterize
only one fraction of respiration. Most of these a priori
parameterizations have been widely used in previous
modeling applications. They are subject to further tests
in modeling practice and can be replaced by more
advanced parameterizations in the future. I suggest to
use these selected parameterizations when they can
reproduce well the observations. By doing this, we can
reduce the number of biological parameters that need
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to be estimated and provide a better opportunity for
intercomparison.

References

Andersen, V., Nival, P., 1988. A pelagic ecosystem model simulating
production and sedimentation of biogenic particles: role of salps
and copepods. Mar. Ecol. Prog. Ser. 44, 37–50.

Andersen, V., Nival, P., Harris, R.P., 1987. Modelling of planktonic
ecosystem in an enclosed water column. Mar. Biol. Assoc. U.K.
67, 407–430.

Andersson, A., Larsson, U., Hagstrom, A., 1986. Size-selective graz-
ing by a microflagellate on pelagic bacteria. Mar. Ecol. Prog. Ser.
33, 51–57.

Armstrong, R.A., 1994. Grazing limitation and nutrient limitation
in marine ecosystems: Steady state solutions of an ecosystem
model with multiple food chains. Limnol. Oceanogr. 39, 597–
608.

Backhaus, J.O., Wehde, H., Hegseth, E.N., Kaempf, J., 1999. ‘Phyto-
convection’: the role of oceanic convection in primary produc-
tion. Mar. Ecol. Prog. Ser. 189, 77–92.

Baly, E.C.C., 1935. The kinetics of photosynthesis. Proc. R. Sco.
Lond. Ser. B 117, 218–239.

Bannister, T.T., 1979. Quantitative description of steady state,
nutrient-saturated algal growth, including adaptation. Limnol.
Oceanogr. 24, 76–96.

Baule, B., 1918. Zu mitscherlichs gesetz der physiologischen
beziehungen. Landw. Jahrb. 51, 363–385.

Bissett, W.P., Walsh, J.J., Dieterle, D.A., Carter, K.L., 1999. Carbon
cycling in the upper waters of the Sargasso Sea. I. Numerical
simulation of differential carbon and nitrogen fluxes. Deep-Sea
Res. I 46, 205–269.

Blackman, F.F., 1905. Optima and limiting factors. Ann. Bot. 9,
281–295.

B eere-

B ere-

C d by

C phy-
ted

C of
Frio

C kton
.R.,
al.

C
id-
56,

C and its

Chifflet, M., Andersen, V., Prieur, L., Dekeyser, I., 2001. One-
dimensional model of short-term dynamics of the pelagic ecosys-
tem in the NW Mediterranean Sea: effects of wind events. J. Mar.
Syst. 30, 89–114.

Clarke, A., 1987. Temperature, latitude and reproductive effort. Mar.
Ecol. Prog. Ser. 38, 89–99.

Cohen, J.E., Beaver, R.A., Cousins, S.H., DeAngelis, D.L., Gold-
wasser, L., Heong, K.L., Holt, R.D., Kohn, A.J., Lawton, J.H.,
Martinez, N., O’Malley, R., Page, L.M., Patten, B.C., Pimm,
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