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On the theory of advective effects on biological
dynamics in the sea. II. Localization, light

limitation, and nutrient saturation

By Allan R. Robinson

Division of Engineering and Applied Sciences, Department of Earth and Planetary
Sciences, Harvard University, Cambridge, MA 02138, USA

Received 27 October 1998; accepted 5 January 1999

The theory of advective effects is extended to include localization effects, due both
to the attenuation of light with depth in the ocean and to nutrient transport into
the euphotic zone of finite duration in time and/or over a limited horizontal domain.
Nutrient uptake is also generalized to nonlinear Michaelis–Menten kinetics. The char-
acteristic curves are solved for explicitly, and a symbolic general solution is obtained
for arbitrary biological dynamics. Some exemplary results are presented for the effect
of light, nutrient, and grazing limitations on primary productivity in an NPZ model.
The theory is now applicable to further studies of more realistic oceanic processes.

Keywords: advection; reaction dynamics; NPZ dynamics; euphotic zone; upwelling

1. Introduction

Interactive physical–biological dynamical processes in the sea are of central impor-
tance to fundamental and applied research in many areas of interdisciplinary ocean
science today, including, for example, the dynamics of ecosystems and biogeochemi-
cal cycles. Three major interactive processes are physiological thermodynamics (the
effects of environmental conditions upon biological rates), diffusion and mixing, and
advection. This study is focused on the advective process and attempts to provide
an idealized general theoretical framework for the exploration of effects of various
phenomenological flow fields that occur in the ocean over a broad range of time and
space scales. It is intended to complement related process research based upon exper-
imentation and simulation. Additionally, this theoretical approach may be of some
general interest for applications to analogous problems of the reactive dynamics of
advected tracers in other fluids, e.g. in chemical and engineering problems.

The first part of this study (Robinson 1997, hereafter referred to as Part I) intro-
duced a biological dynamical model consisting of growth, self-interaction and bilinear
interactions among n-state variables occurring in the presence of a stretching defor-
mation flow field. A general theoretical approach via the theory of characteristics
was formulated and some solutions were obtained for dynamical processes homoge-
neous in space and impulsive in time. In this second part, the nonlinear dynamics is
extended to include the Michaelis–Menten nonlinear formulation for the uptake of
nutrients by phytoplankton. The ocean is divided into an upper ocean, where sun-
light is available for photosynthesis (euphotic zone), and a deeper ocean, which is not
illuminated (aphotic zone). Kinematic flow fields are introduced that allow for the
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localization of advective effects both horizontally and in time. A general solution is
obtained for these kinematics and dynamics, and some idealized illustrative examples
are presented. These developments should serve as the basis for theoretical studies
of realistic oceanic processes.

Section 2 presents the model, § 3 solves for the characteristics and § 4 solves for
the dynamics. Section 5 derives the general solution, § 6 provides examples and § 7
summarizes and concludes.

2. The model

The general model to be studied is that of equation (2.3) of Part I (which we will refer
to as equation (I.2.3)) for n biological state variables φi in two spatial dimensions
with diffusion neglected:

∂φi
∂t

+ u
∂φi
∂x

+ v
∂φi
∂y

= Bi(φ1, . . . , φi, . . . , φn). (2.1)

The flow field is specified kinematically in terms of a stream function ψ(x, y, t) such
that (see equation (I.2.9))

u = −∂ψ
∂y

, v =
∂ψ

∂x
. (2.2 a)

Dφi
Dt
≡ ∂φi

∂t
+ u

∂φi
∂x

+ v
∂φi
∂y

=
∂φi
∂t
− ∂ψ

∂y

∂φi
∂x

+
∂ψ

∂x

∂φi
∂y

. (2.2 b)

and the continuity equation ux + vy = 0 for mass conservation in an almost incom-
pressible Boussinesq fluid (Tritton 1988, Appendix to ch. 14) is satisfied. The kine-
matics of this section are applicable to general biological dynamics Bi.

For the study of light limitation and to illustrate the effects of flow kinemat-
ics on biological dynamics we adopt the general NPZ model of Part I, § 4 d, but
with Michaelis–Menten kinetics of nutrient uptake and light attenuation (Parsons
et al . 1984; Kirk 1994). Then for phytoplankton (φ1 = P ), zooplankton (φ2 = Z)
and nutrient (φ3 = N), the governing equations are (with reference to (I.2.10) and
(I.4.11)

DP
Dt

= U − a21PZ, (2.3 a)

DZ
Dt

= a21PZ, (2.3 b)

DN
Dt

= −U, (2.3 c)

where

U ≡ a13λ(y)PN
K +N

. (2.3 d)

The independent variable 0 < y < ∞ represents depth into the ocean from the
sea surface; λ(y) is a non-dimensional light attenuation coefficient. The base of the
euphotic zone is located at y = ye with λ(y > ye) ≡ 0. The interaction coefficient a21
(dimensions [l3(mt)−1], where m, l and t are units of mass, length and time, respec-
tively) is the zooplankton grazing rate; a13([t−1]) is the phytoplankton maximum
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specific rate of growth, and K([ml−3]) is the half-saturation constant for nutrient
uptake.

The dependent variables N , P , Z ([ml−3]) are all dimensionalized by a biomass
density M , where M is to be chosen as a characteristic value of N advected into
the euphotic zone during any injection event of interest. The independent variables
(x, y, t) are scaled, respectively, by (x0, y0 = ye, t0 = K(Ma13)−1), where x0 is
a horizontal length characterizing a localized upwelling event. The horizontal and
vertical velocities (u, v) are scaled, respectively, by (u0, v0 with u0 = v0x0y

−1
0 ), which

yield a non-dimensional continuity equation ux + vy = 0. This implies a scaling of
ψ0 = u0y0 = v0x0.

The kinematic flow field is chosen such that the horizontal velocity is independent
of y and the product of a function of x times a function of t. As in Part I, both
dimensional and non-dimensional variables are represented by the same symbols.
Thus non-dimensionally,

ψ = −yf(t)g(x), u = fg, v = −yf dg
dx
, (2.4 a)

D
Dt

=
∂

∂t
+ α

[
−∂ψ
∂y

∂

∂x
+
∂ψ

∂x

∂

∂y

]
, (2.4 b)

DP
Dt

= U − βPZ, (2.4 c)

DZ
Dt

= βPZ, (2.4 d)

DN
Dt

= −U, (2.4 e)

U =
λ(y)NP
1 + δN

. (2.4 f)

The three non-dimensional parameters characterizing advection (α), grazing (β), and
uptake kinetics (δ) are defined by

α ≡ v0t0
y0

=
uot0
x0

=
v0K

yea13M
, β ≡ a21t0 =

a21K

a13M
, δ ≡ M

K
. (2.4 g)

3. Kinematics and characteristics

For the flow system given by the stream function of equation (2.4 a), the characteristic
equations (I.2.12 a) take the form

dt
ds

= 1, (3.1 a)

dx
ds

= αu = αf(t)g(x), (3.1 b)

dy
ds

= αv = −αy dg
dx
f, (3.1 c)

with initial conditions taken as†
s = 0: t = p, x = r, y = q. (3.2)

† This notation is equivalent to equation (I.2.13) but simpler.
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The set (3.1) can be solved by two exact integrals and a quadrature. Integrating
(3.1 a) directly, and after equating ds from (3.1 b, c), we obtain

t = s+ p, (3.3 a)
yg(x) = qg(r), (3.3 b)

and after equating ds from (3.1 a, b)

G(x, r) = αF(t, p), G(x, r) ≡
∫ x

r

dx′

g(x′)
, F(t, p) ≡

∫ t

p

f(t′) dt′. (3.3 c)

The function f(t) is chosen so as to represent either (i) a steady-state flow (S), or
(ii) a time-periodic flow with non-dimensional frequency ω, which over a half-period
may be taken to represent an advective event (E). Thus

S: f = 1, FS = t− p, (3.4 a)

E: f = sinωt, FE =
1
ω

[cosωp− cosωt]. (3.4 b)

Three flow forms are evaluated for the function g(x): (i) a simple stretching defor-
mation (D) as in Part I of this study; (ii) a localized (exponentially decaying) defor-
mation (L); (iii) a simply periodic wave form (W). Whence

D: g = x, xy = qr, GD = ln
x

r
(3.4 c)

L: g = 1− e−x(x > 0), y(1− e−x) = q(1− e−r), GL = ln
[

(ex − 1)
(er − 1)

]
(3.4 d)

W: g = sinx, y sinx = q sin r, GW = ln
[

tanx/2
tan r/2

]
. (3.4 e)

Consider the half-plane x > 0; then (3.4 d) provides a simple kinematic model for
coastal upwelling. To study an open ocean isolated and localized upwelling the flow
may be completed by g = −1 + ex (x < 0). Similarly, (3.4 e) represents a periodic
pattern of upwelling and downwelling cells. The upwelling region −π/2 6 x 6 π/2
can serve as a simple two-dimensional kinematic model of a cyclonic (cold core) eddy.

Two initial value problems in s are necessary to carry out the dynamical studies
of the next sections. We assume that light penetrates, and biological activity occurs,
only to the base of the euphotic zone located at y = 1. The first problem is the time
initial value problem (T) as in Part I. The second problem is the boundary value
problem (B), which specifies the values of the state variables as they are advected
across the base of the euphotic zone from the deeper aphotic zone, where λ = 0.
As will be seen below, the T problem is relevant to the deep pure advection (TA),
and to the biological dynamics in the water located initially in the upper euphotic
zone (TE). Most interestingly, the B problem describes the biological activity, in the
euphotic zone, of water located initially below the euphotic zone. Under equations
(I.2.13) and (3.2)

T: when s = 0, t = 0; thus p = 0 and φi(x, y, 0) ≡ φi0(x, y)⇒ φi0(r, q), (3.5 a)
B: when s = 0, y = 1; thus q = 1 and φi(x, 1, t) ≡ φi0(x, t)⇒ φi0(r, p). (3.5 b)

The functions following the arrows indicate the forms (see equations (I.2.13)–(I.2.15))
in which the initial conditions will appear in the solutions to the dynamical equations
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Table 1. Kinematic flows

designation structure

DS steady upwelling
DE upwelling event
LS steady coastal upwelling
LE coastal upwelling event
WS steady wave or eddy field
WE wave or eddy event

of the next section. The domain of interest is restricted to positive y and t. Thus
φi0(r, p) is defined only for p > 0. This implies a boundary (or front) located at
y = ŷ(x̂, t̂), separating water initially (t = 0) above or below the euphotic zone,
which is advected upward towards the sea surface in time. Thus the domain of the
B problem is defined by

ŷ < y < 1, where p(x̂, ŷ, t̂) ≡ 0. (3.5 c)

The domain of the TA problem is y > 1 and that of TE is 0 < y < ŷ.
Combining the space-time kinematics, i.e. solving equations (3.3) with the struc-

tures of (3.4), yields six flow fields summarized in table 1. The 12 sets of characteristic
curves corresponding to the T and B problems for each flow are presented in table 2.
To study light limitation effects, it is necessary to evaluate the light attenuation
coefficient and its integral in s, i.e. λ(y) of equation (2.3 d) in terms of y(s; p, r, q),
which is given in table 3. The F(s, p) are obtained from equations (3.4 a, b) evaluated
with t = s+ p for the S and E flows; p = 0 and q = 1, respectively, for the T and B
problems.

4. Biological dynamics

The s-domain biological dynamics for the NPZ system to be studied here satisfies
the non-dimensional equations,

dP
ds

=
λ(y)NP
1 + δN

− βPZ, (4.1 a)

dZ
ds

= βPZ, (4.1 b)

dN
ds

=
−λNP
1 + δN

, (4.1 c)

with first integral

N + P + Z ≡ B = N0 + P0 + Z0, (4.1 d)

since mortality has been neglected.
The presence of the light attenuation (λ) and nutrient saturation (δ) parameters

in addition to the grazing parameter (β) generalize the NPZ system of equations
(I.4.11). To elucidate basic processes we shall consider the dynamics of systems of
one-, two- and three-state variables.
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Table 2. Characteristics

flow s p

DST t 0

DSB t− p t− 1
α

ln
[

1
y

]
DET t 0;FE0 =

1
ω

[1− cosωt]

DEB t− p 1
ω

cos−1{cosωt− ln[yω/α]}
LST t 0

LSB t− p t− 1
α

ln
[
ex
(

1
y
− 1
)

+ 1
]

LET t 0;FE0 =
1
ω

[1− cosωt]

LEB t− p 1
ω

cos−1
{

cosωt+
ω

α
ln
[
ex
(

1
y
− 1
)

+ 1
]}

WST t 0

WSB t− p t− 1
α

ln
[

1 + (1− y2 sin2 x)1/2

y(1 + cosx)

]
WET t p = 0;FE0 =

1
ω

[1− cosωt]

WEB t− p 1
ω

cos−1
{

cosωt+
ω

α
ln
[

1 + (1− y2 sin2 x)1/2

y(1 + cosx)

]}
flow r q

DST xe−αt yeαt

DSB xy 1

DET xe−αFE0 yeαFE0

DEB xy 1

LST ln[1 + e−αt(ex − 1)] y[1 + e−x(eαt − 1)]

LSB − ln[1− y(1− e−x)] 1

LET ln[1 + e−αFE0(ex − 1)] y[1 + e−x(eαFE0 − 1)]

LEB − ln[1− y(1− e−x)] 1

WST 2 tan−1[e−αt tanx/2] 1
2y[eαt(1 + cosx) + e−αt(1− cosx)]

WSB sin−1(y sinx) 1

WET 2 tan−1[e−αFE0 tanx/2] 1
2y[eαFE0(1 + cosx) + e−αFE0(1− cosx)]

WEB sin−1(y sinx) 1
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Table 3. Light attenuation

flow y(s; p, r, q)

D qe−αF F = F(s, p)
L q[e−αFe−r + (1− e−r)]
W 1

2q sin r[e−αF tan(r/2) + eαF tan(r/2)]

(a) P model

The Malthusian growth of phytoplankton with unlimited nutrient and no predation
(Z = 0) satisfies (4.1 a) with δ � 1

P = P0eσ/δ, σ ≡
∫ s

0
λ(y(s′; p, r, q)), (4.2)

with reference to table 3.

(b) NP model

We retain Z = 0, insert P from (4.1 d) into (4.1 c) and integrate, whence

(B −N)1+δB = AN, A ≡ P 1+δB
0

N0
eBσ (4.3 a)

with σ as in (4.2). For δ = 0 the solutions are as in equation (I.4.12 i)

P =
P0B

N0e−Bσ + P0
, N =

N0Be−Bσ

N0e−Bσ + P0
. (4.3 b)

(c) NPZ model

To continue analytically following the procedure of equations (I.4.12 a–c), it is
necessary to restrict consideration to a uniformly illuminated euphotic zone overlying
a deep completely aphotic ocean, i.e.

λ = λ0, 0 < y < 1; λ = 0, 1 < y. (4.4)

Without loss of generality, we may set λ0 = 1 by rescaling the parameters of (2.4 g),
i.e. by replacing a13 by λ0a13. Then equating ds from (4.1 b, c) yields another first
integral, which together with (4.1 d) reduces (4.1 c) to quadrature, i.e.

ZNβeβδN ≡ C, (4.5 a)∫
(1 + δN) dN

−N2 + BN − CN (1−β)e−δβN
= −s. (4.5 b)

For the case of β = 1, we can generalize the results of (I.4.12 d, e) for δN 6 1. Keep-
ing three terms in the Taylor series expansion of the exponential, the denominator
of (4.5 b) becomes

−(1 + 1
2Cδ2)N2 + (B + Cδ)N − C, (4.5 c)

and integration is straightforward.
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The case of δ = 0 reduces to (I.4.12 d, e)

N =
E(B −D) + (B +D)e−Ds

2(E + e−Ds)
, D = (B2 − 4C)1/2

B = N0 + P0 + Z0, C = N0Z0, E =
B +D − 2N0

2N0 − (B −D)
.

 (4.5 d)

5. General solution

For the n-state variables of equation (2.1), there are n-dynamical equations,

dφi
ds

= Bi(φj), i, j = 1, . . . , n 0 < y < 1, (5.1 a)

dφi
ds

= 0, 1 < y, (5.1 b)

to be solved together with the characteristics (3.1). Recall the three regions intro-
duced preceding equation (3.5). The TE problem is an independent time initial value
problem, but the B problem is coupled to the TA problem. For the characteristic
solutions (table 2) we introduce both for the (s, r, p, q) and φi variables a subscript
a for the advective aphotic zone (1 < y) and e for the dynamically active euphotic
zone (ŷ < y < 1). Let

φia(x, y, 0) ≡ φiao(x, y). (5.2 a)

Then by (5.1 b)

φia(x, y, t) = φiao(ra(x, y, t), qa(x, y, t)), (5.2 b)

and at the base of the euphotic zone

φia(x, 1, t) = φiao(ra(x, 1, t), qa(x, 1, t)) ≡ φieo(x, t) = φie(x, 1, t). (5.2 c)

Thus the initial condition functions for the solution of (5.1 a) in ŷ < y < 1 are given
by

φieo(re, pe) = φiao(ra(re, 1, pe), qa(re, 1, pe)). (5.2 d)

The general solution to (5.1 a) is expressed as

φie(x, y, t) = φie(se;φjeo(re, pe)), j = 1, . . . , n, (5.3 a)

with the φjeo as given by (5.2 d).
Consider now the case of pure advection everywhere, i.e. set Bi = 0 in (5.1 a).

Then the advective solution (5.2 b) is valid also in ŷ < y < 1. Also, however, for pure
advection the state variables are uncoupled and the general solution (5.3 a) reduces
to

φie(x, y, t) = φieo(re, pe), (5.3 b)

i.e. to (5.2 d). Since the advective solutions (5.2 b) and (5.2 d) must be the same, the
identities

ra(re, 1, pe) = ra(x, y, t), qa(re, 1, pe) = qa(x, y, t) (5.3 c)

must hold.
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Thus the general solution (5.3 a) with biological dynamics has the final form

φie(x, y, t) = φie(se;φjao(ra(x, y, t), qa(x, y, t))), j = 1, . . . , n, (5.3 d)

or omitting subscripts

= φi(s;φjo(r, q)), ŷ < y < 1. (5.3 e)

At the base of the euphotic zone y = 1 and s = 0. At the shoaling front y = ŷ and
s = t̂ by (3.5 c) and (3.3 a).

6. Examples

The general results derived here are intended to provide the basis for a number of
theoretical studies relevant to real ocean processes. Here we will simply illustrate
effects in terms of a few idealized simple examples.

(a) Light limitation

We will first consider the localization effects arising from biological activity being
restricted to the euphotic zone, in terms of the time initial value problem and defor-
mation field flow of Part I, i.e. the DSB and DST flows of table 2. We assume initially
no nutrient in the euphotic zone but a reservoir of nutrient and seed populations of
plankton below the euphotic zone. The TE problem is trivially advective. For y > 1
(5.2 b) takes the form, e.g.

P (x, y, t) = P0(r, q) = P0(xe−αt, yeαt) (6.1 a)

and equations (5.2 c, d) become at y = 1

P (x, 1, t) = P0(xe−αt, eαt), P0(r, p) = P0(rēαp, eαp). (6.1 b)

From table 2,

reαp = xye−α[t−1/α ln 1/y] = xe−αt, eαp = yeαt, (6.1 c)

consistently with (5.3 c); thus

P0(r, p) = P0(xe−αt, yeαt), (6.1 d)

and similarly for N0, Z0. From (3.5 c) the advancing front is given by

t̂ =
1
α

ln
1
ŷ

or ŷ = e−αt̂, P0(x, ŷ, t̂) = P0(xe−αt̂, 1). (6.1 e)

The simplest example is the Malthusian growth of equation (4.2). Without loss of
generality we can set δ = 1, i.e. by replacing a13 in (2.4 g) by δ−1a13. We consider
two cases: (i) uniform light;† (ii) linearly decreasing light. Then

(i) λ = λ0, σ = λ0s =
λ0

α
ln

1
y
, eσ =

(
1
y

)λ0/α

,

(ii) λ = 1− y, σ =
1
α

[
ln

1
y

+ (y − 1)
]
, eσ =

[
1
y

e(y−1)
]1/α

.

 (6.2 a)

† These idealized dependencies yield simpler analytical solutions than the more accurate exponential
decay which can be treated later.
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For the case of no x-dependence, the solutions (4.2) are

(i) P (y, t) = P0(yeαt)
(

1
y

)λ0/α

, P (1, t) = P0(eαt),

P (ŷ, t) = P0(1)eλ0t,

(ii) P (y, t) = P0(yeαt)
[

1
y

e(y−1)
]1/α

, P (1, t, ) = P0(eαt),

P (ŷ, t) = P0(1)et+(e−αt−1)/α.


(6.2 b)

Consider first the case of a deep reservoir of seed plankton which is independent
of depth, P0 = 1. Then for ŷ < y < 1 there is a steady-state solution, since water
parcels reaching a given depth at any time have spent the same amount of time in the
euphotic zone. The shallowest parcels have spent the longest time under illumination,
resulting in the simple exponential growth at ŷ, independent of α, for case (i). For
short times and depths near unity, the two solutions are dominated by advection.
If the time-interval of interest is t < t̂ and αt̂ � 1, then the choice of an effective
uniform illumination λ0 = 1− (αt̂)−1 equates P (ŷ, t̂) for the two cases. Any criteria
to determine an effective λ0, e.g. integrated net production, must take into account
the flow (α) and duration (t̂).

(b) Uniform deep reservoirs

We extend the case of uniform deep reservoirs with DS flow to biological systems
with two- (2) and three- (3) state variables, and consider essentially a unit source of
nutrient together with very small amount(s) of background plankton(s). The solu-
tions retain the character of establishing a steady state below a shoaling front. The
analytical solutions to equations (4.3 a) and (4.5 d) are particularly simple with (2)
B = 1, and (3) D = 1, respectively, which is achieved by choosing

(2): N0 = 1− ε, P0 = ε� 1, B = 1,
(3): N0 = 1, P0 = ε(1− ε), Z0 = ε(1 + ε)

B = 1 + 2ε, C = ε(1 + ε), D = 1 E = ε(1− ε)−1.

 (6.3)

For the NP model, (4.3 a) now becomes

η(1− ε)(1−N)1+δ = ε1+δN, η ≡ e−σ, (6.4 a)

with σ given by (6.2 a). Simple exact analytical solutions exist for δ = (0, 1), namely

δ = 0, P =
ε

ε+ (1− ε)η ;

δ = 1, P =
ε2

2(1− ε)η
[(

1 +
4

ε2(1− ε)η
)1/2

− 1
]
.

 (6.4 b)

When η = 0, N = 0 and P = 1, all of the biomass is in the phytoplankton. The
maximum of P is always located at the front.

For the NPZ model, the solutions (4.5 d) reduce to

N =
f

g
, P =

ε(1− ε)η
fg

, Z = ε(1 + ε)
g

f
, (6.5 a)
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Figure 1. Profiles of N (dot-dash line), P (solid line), Z (dashed line) versus depth. Dependencies
upon (a) advection for fixed ε = 0.1, (α = 1: upper Pm, α = 0.1; middle Pm, α = 0.01; lower
Pm); (b) seed plankton for fixed α = 0.1 (ε = 0.1: larger Pm, ε = 0.01; smaller Pm). Nm=Zm at
Pm identifies the associated curves. The t̂ scale to the right of (a) is for α = 1; for α = 0.1(0.01)
multiply by 10 (102).
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where

f(η) ≡ ε2 + (1− ε2)η, g(η) ≡ ε+ (1− ε)η, η = e−s = (y1/α).

At the advancing front ŷ = e−αt, η̂ = e−t and asymptotically in time

η = 0, N∞ = ε, P∞ = 0, Z∞ = 1 + ε, (6.5 b)

a result consistent with (I.4.12h). The solutions and their dependencies upon (α, ε)
are illustrated on figure 1. As time progresses P grows, eventually achieving a maxi-
mum (Pm at ym, where Nm = Zm). Subsequently, as the front advances P decreases,
as Z increases towards the sea surface. The time t̂ at which the front arrives at a given
level is shown on the scale on the right. An interesting result is that the shapes and
subsurface locations of the nutricline and of the phytoplankton maximum depend
sensitively on the parameter α. For rapid advection (α = 1, figure 1a) ym = 0.3,
whereas for slow advection (α = 0.01) ym = 0.97. The magnitude of Pm depends
solely upon the fractional biomass of seed plankton ε. Note (e.g. ε = 0.1, figure 1b) a
Pm considerably less than B can mediate the conversion of almost the entire biomass
to Z. Analytically,

ηm =
[

ε3

(1− ε)(1− ε2)

]1/2

, ym = ηαm,

Nm = Zm = [ε(1 + ε)]1/2, Pm = 1 + 2{ε− [ε(1 + ε)]1/2}.

 (6.5 c)

In general, for uniform deep reservoirs with β = 1, it can be shown that

Nm = Zm = (N0Z0)1/2, Pm = N0 + P0 + Z0 − 2(N0Z0)1/2. (6.6)

Thus the sensitivity is primarily related to the amount of seed zooplankton. Although
this is a very simple example, the results indicate the potential applicability of the
theory to important phenomena, including deep chlorophyll maxima (Parsons et al .
1984) and zooplankton control of blooms (Steele & Henderson 1995). This mid-depth
phytoplankton bloom Pm is of course dynamically analogous to the temporal bloom,
e.g. the solution given by equation (I.4.12).

(c) Deep nutricline

Now consider the case that at t = 0 nutrient increases linearly with depth from
zero at the base of the euphotic zone to unity at a non-dimensional depth (H) in
the aphotic zone. We retain the assumptions of no x-dependence, no nutrient in the
euphotic zone initially in time, and a uniform deep reservoir of seed phytoplankton.
Thus

y < 1, N(y, 0) = 0; y > 1, N(y, 0) =
[

(y − 1)
H − 1

]
, (6.7 a)

and

y 6 1, N0 =
[
yeαt − 1
H − 1

]
, P0 = ε, (6.7 b)

for solution to equation (4.3) following the arguments of equation (6.1). The depen-
dencies upon the parameters α, ε, δ has been studied numerically with λ = 1−y. The
results are summarized on figure 2 for the case H = 2 such that N0(y = 2, t = 0) = 1.

Proc. R. Soc. Lond. A (1999)

 on May 29, 2012rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


On the theory of advective effects. II 1825

0

0.2

0.4

0.6

0.8

1

0.11 0.
12

0.
14

0.
18 0.

24

0.5 1 2 4 8

0.
10

050
.101

0.102

0.104

0.
10

8

8

0

0.2

0.4

0.6

0.8

1

0.5 1 2
4

0.5 1 2 4 8
0.

25

0.
5

1

2

0.5 1 2 4 8

0 50 100

  = 1     = 0     = 0.1α δ ε

  = 0.01     = 10     = 0.1α δ ε

  = 1     = 10     = 0.1α δ ε

  = 0.01     = 0     = 0.1α δ ε

150 200

0

0.2

0.4

0.6

0.8

1

t

y

y

y

0.5 1
2

4

0.5

1 2 4 8

0 50 100 150 200
t

0 50 100 150 200
t

0 50 100 150 200
t

0 0.5 1 1.5 2
t

0 0.5 1 1.5 2
t

0.1 0.2
0.4 0.7 1.

4

0.5 1 2 4 8

  = 0.01     = 0     = 0.01α δ ε   = 0.01     = 10     = 0.01α δ ε

Figure 2. Isolines of N (dashed line), P (solid line) in the y–t-plane as a function of α, δ, ε. The
dynamically inert upper euphotic zone is shaded.

The greatest sensitivity is again related to α. The important result here is the exis-
tence of a subsurface maximum of phytoplankton (Pm) in the absence of grazing
loss to zooplankton. At any given time t̂, the water in the vicinity of ŷ entered the
euphotic zone with negligible nutrient. The water just above y = 1 has been illumi-
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Figure 3. As in figure 2 for P , but in the y–t-plane for fixed t as indicated.

nated at a low light level and for only a short time. Thus the mid-depth Pm. The
existence of subsurface phytoplankton maxima in this theory will in general be due
both to this dynamical process and that of the preceding paragraph.

Finally, spatial localization is illustrated by the solution of this problem with
idealized coastal upwelling kinematics (LS flow). Figure 3 shows sections (xy plots)

Proc. R. Soc. Lond. A (1999)

 on May 29, 2012rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


On the theory of advective effects. II 1827

of phytoplankton concentration as a function of α, ε, δ also with λ = 1−y and H = 2.
These plots are for the last time shown on the corresponding plots of figure 2. The
P (y) at x = 0 on figure 3 are thus identical to the final profiles of figure 2. The front
is advancing as

ŷ = [1 + e−x̂(eαt̂ − 1)]−1. (6.8)

Note the development of two-dimensional subsurface phytoplankton distributions,
which can be described as subsurface patches extending along the front. Subsurface
patches of chlorophyll are features common to many fronts (Franks & Walstad 1997).

7. Summary and conclusions

A general theoretical solution has been obtained for a model ocean in which a dynam-
ically active near-surface euphotic zone overlies a deeper region in which biological
material is passively advected by the physical flow field. Illustrative dynamical solu-
tions have been presented in one-to-three-state variables for an NPZ model in which
nutrient uptake is nonlinearly modelled by Michaelis–Menten kinematics. Paramet-
ric dependencies are represented in terms of four non-dimensional parameters: (i)
the ratio of the nutrient uptake rate to the advection rate (α); (ii) the ratio of the
zooplankton grazing rate to the uptake rate (β); (iii) the ratio of biomass to the satu-
ration constant (δ); and (iv) the ratio of the seed plankton biomass to nutrient mass
in the aphotic zone (ε). A sensitivity analysis has been initiated. Interesting results
are indicated for the location, shape and magnitude of phytoplankton maximum
and associated nutricline in the euphotic zone, and for the dynamical mechanism by
which phytoplankton mediate the conversion of nutrient to zooplankton biomass. For
general biological dynamics, kinematic flow fields have been introduced representa-
tive of coastal upwelling, isolated open ocean eddies and wave fields; and upwelling
events, which set-up in time over a finite time-interval. Explicit solutions for the
associated family of characteristic curves have been obtained.

These results provide a theoretical framework for further studies of more realistic
oceanic processes. Weak background mixing in the lower euphotic zone will merely
provide some smoothing of the solutions. For the upper euphotic zone, a mixed layer
model has been added to the model. Work is in progress extending the model to
include zooplankton mortality (Steele & Henderson 1992). Interesting application
areas include mesoscale eddy nutrient injection events (McGillicuddy et al . 1998),
wind-driven upwelling events (Franks & Walstad 1997), equatorial upwelling (Murray
et al . 1995) and spring blooms (Fasham 1995).
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