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On the theory of advective effects on biological
dynamics in the sea. III. The role of

turbulence in biological–physical interactions

BY LOUIS GOODMAN
1,* AND ALLAN R. ROBINSON

2

1School for Marine Science and Technology, University of Massachusetts
Dartmouth, New Bedford, MA 02744, USA

2School of Engineering and Applied Sciences, Harvard University,
Cambridge, MA 02138, USA

A nonlinear model for biological and physical dynamical interactions in a laminar
upwelling flow field in parts I and II of this study is extended to turbulent flow. In the
previous studies, a prescription for obtaining quadrature solutions to the fundamental
biodynamical equations was developed. In this study, we use a probability density
function approach on these solutions to obtain statistics of the biodynamical state
variables and their self-interaction for the case of turbulent advection. To illustrate the
theory, a simple nutrient (N ), phytoplankton (P) problem is considered, that of upwelling
into a surface turbulent layer. Biological interaction is modelled as bilinear, representing
the uptake of N by P in a uniform light euphotic zone. A random walk model is used to
obtain the appropriate probability density function for the advective turbulent field. The
mean quantities,N ,P, as well as the biological interaction termFZhNP i are calculated.
The termF has two contributions, ðNPÞ, and the turbulence-induced interaction term,
hN 0P 0 i. It is shown that the often neglected turbulence-induced coupling term hN 0P 0 i is of
the order ðNP Þ and opposite in sign. This results in, over a wide range of Peclet numbers,
the mean interaction term hNP i being significantly smaller than either of its constituent
terms, ðNP Þ and hN 0P 0 i.
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1. Introduction

There is great interest in understanding the role that turbulence plays in affecting
the dynamics of upper ocean plankton ecosystems. Recent research has focused on
the relative dominance of physical forcing and biological processes in controlling
coupled biological–physical dynamics. Yamazaki et al. (2002) provide a general
overview and cite new evidence for small-scale turbulence influencing the
population dynamics of plankton. Random small-scale turbulence and associated
small-scale coherent structures can affect primary production, feeding, predation,
aggregation and mating. Spectra of turbulence and patchiness of plankton have
been reviewed by Okubo & Mitchell (2001). The spectra of the plankton follow
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that of the turbulence for shorter time scales (1–102 min), but not for longer scales
where growth and grazing become important. Denman et al. (1977) derived
theoretical spectra for both scale ranges. Cullen et al. (2002) developed the
classification structure of pelagic ecosystems in terms of high/low turbulence and
high/low nutrients, a concept first introduced by Margalef (1978).

Modelling coupled physical/biogeochemical-ecosystem dynamics in the sea is
complex and highly nonlinear. Nonlinearities arise not only from physical
advection of the biological state variables, but also from a number of interactions
among the biological state variables representing nutrient uptake by phyto-
plankton, grazing, predation, etc. Fundamental modelling ambiguities and issues
occur because: (i) there is no counterpart for biological dynamics to the Navier–
Stokes equations for physical fluid dynamics, (ii) the continuum limit for
concentration distributions of plankton involves finite-sized individuals, and
(iii) the number of biological state variables in the real ocean is very large (e.g.
numerous species with age classes, many macro- and micro-nutrients, etc.).
Nonetheless, coupled dynamical modelling research is being vigorously pursued in
terms of: four-dimensional Eulerian field equations; individual- (or cohort) based
Lagrangian models; and hybrid models. (See reviews by Hofmann & Friedrichs
2002; Robinson & Lermusiaux 2002; Yamazaki et al. 2002; Runge et al. 2005.)

Introduction of turbulence in coupled ecosystem models further complicates an
already very complex problem. Owing to the nonlinearities noted above,
turbulence affects plankton biodynamics in two general ways. These are by:
(i) advective stirring and mixing and (ii) inducing zero average fluctuations
about the mean biological fields in the nonlinear biodynamical interactions.
Products of such fluctuations generally correlate and are non-zero in the mean.
The first effect is typically modelled by a type of eddy diffusivity for the diffusion
of the biological state variables, such as K profile parameterization (Large et al.
1994) or Mellor/Yamada (Mellor & Yamada 1982). The second effect represents
some very complex interactions induced on the biodynamical coupling of the
ecosystem. To model this latter effect, an additional assumption beyond that of
the eddy diffusivity assumption for the turbulent field has to be made in order to
close the coupled physical–biological mean field equations. However, this is
rarely done formally and explicitly.

Commonly, only mean-field/mean-field interactions are taken into account and
fluctuation correlation effects ignored.Donaghay&Osborn (1997) do recognize this
problem and recommend treating these difficult terms (in their case, mean
nonlinear birth and mortality rates of plankters) as input information or forcings.
However, they proceed only qualitatively thereafter. Okubo et al. (2001) adopt a
deterministic viewpoint to study the nonlinear instability of a diffusive predator–
prey system in terms of finite amplitude perturbations of an equilibrium state.

Numerical simulations of the effect of turbulence in biodynamical coupling
problems is typically approached by using some type of random walk model for
the turbulent fluid element displacement (Visser 1997; Yamazaki et al. 2002).
Care must be taken when using a spatially varying diffusivity for the random
walk (Hunter et al. 1993; Ross & Sharples 2004) to insure that a spurious build-
up of particles does not occur.

Alternative analytical approaches to solving the general advective–diffusive
problem have recently been explored by Pope (1994) and Wilson & Sawford
(1996). These approaches involve obtaining the probability density function,
Proc. R. Soc. A (2008)
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which is then applied to the field variables for their statistics. However,
development of analytical solutions for advective–diffusive–reactive problems
such as those modelling the effect of turbulence on primary production depends
upon the ability to be able to formulate this problem both in Lagrangian as well
as Eulerian coordinates. The diffusive aspect of the problem is essentially
Lagrangian, while the measurement aspect and much of the theoretical
underpinning are essentially Eulerian.

In this study, we develop an analytical approach to obtaining the statistics of
the biodynamical variables and their coupling by extending a formalism
developed in parts I and II of this series, Robinson (1997, 1999); hereafter
known as R97, R99. Robinson uses the method of characteristics to obtain a set
of symbolic solutions to the advective–reactive equations associated with a
general reaction of n-tuple biodynamical interactions in the presence of general
nonlinear advective flow. Then, he details a number of particular solutions
relevant to the NP and NPZ (nutrient–phytoplankton–zooplankton) problems
for a variety of flow field cases including coastal and open-ocean upwelling into an
upper ocean euphotic zone. Here, we use the formalism developed in R97, R99 for
the case of purely laminar-advective upwelling as a starting point and extend the
theory to include the superposition of turbulence on the advecting flow field.

A key factor in allowing the extension of the Robinson theory to include
turbulence arises from the fact that the fundamental set of equations imposes
minimal restrictions on the form of the advection velocity. A constraint on the
form of the advection velocity arises when the solutions for the biological state
variables need to be expressed in terms of Eulerian coordinates. This restriction
is handled for the turbulence case by using a probability density function
approach to obtain ensemble averages of the biodynamical variables and their
coupled interaction.

Section 2 of this study develops the theory. Section 3 applies that theory to a
simple example problem, NP upwelling into a uniform light turbulent euphotic
zone. Section 4 discusses the results obtained for the ensemble averaged mean
quantities,N ,P, and the biodynamical coupling hNPi with detailed emphasis on
the significance of the turbulence-induced coupling term hN 0P 0i. A summary and
conclusions are presented in §5.
2. Fundamental theory

(a ) Robinson model

A nonlinear NPZ model for laminar upwelling into a euphotic zone has been
developed in the series of studies by R97 and R99. The fundamental equations
used in the model are

dfi

dt
Z

vfi

vt
Cuj

vfi

vxj
ZFi½fj ;x; t�; i Z 1;.; n; ð2:1Þ

where repeated indices are summed. The continuity equation for the flow field
has been invoked. The variables fi are the biological state variables and Fi

represents the interactions between these biological state variables.
Proc. R. Soc. A (2008)
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Note that

Fi ZF ½fj ;x; t�ZF ½fj ;X; t; t0�

can be expressed as a function of both x and t in Eulerian coordinates and as a
function of X; t; t0 in Lagrangian coordinates. Here,

x ZxLðX; t; t0Þ ð2:2Þ
describes the Lagrangian trajectory of a fluid element at position x at time t,
which was at position X at time tZt 0. Robinson employs the method of
characteristics for a variety of laminar advective flow fields to obtain solutions.
The subscript L on a spatial variable indicates a Lagrangian functional
dependence. An upper case letter is used to indicate the initial position of a
fluid element trajectory, i.e. XiZðX ;Y ;ZÞ. For the case of no interaction, FiZ0,
the fi are not coupled and (2.1) represents the advection of a passive scalar.

It is straightforward to see that the formal solution to (2.1) can be written in
terms of Lagrangian coordinates, whence

fi ZfiðX; t; t0;f0iÞ; ð2:3Þ
where f0iZf0iðX; tÞjXZ0;tZt 0 are the values of the biological state variables at

tZt0 at position X. The Eulerian solution to (2.1)

fi Zfiðx; t;f0iÞ ð2:4Þ
is obtained by using the Lagrangian trajectory (2.2) in (2.3).

(b ) Formalism for adding turbulence

Now, we show the prescription for formally extending the Robinson model to
include a turbulent field superposed on a laminar advective field. Equations (2.3)
and (2.4) remain solutions to (2.1) for both the turbulent and laminar cases. For
the turbulence case, the problem with using the fluid trajectory given by (2.2) to
obtain the Eulerian solution (2.4), fiZfiðx; t;f0iÞ is twofold. First, equation
(2.2) cannot, in general, be expressed in closed form. Second, for the turbulence
case, the trajectory xZxLðX; t; t0Þ is a random variable.

Our approach is to obtain ensemble averages of the solution of the
biodynamical variables fiZfiðx; tÞ (equation (2.4)) using Eulerian statistics.
In the Eulerian frame, defined at a fixed point x and time t, we need to obtain the
statistics of the initial position X in terms of the final fixed point position, x,
time, t, and initial time, t0. That is, we need to obtain the probability density
function (PDF) for

X ZXEðx; t; t0Þ; ð2:5Þ
which is just the inverse of (2.2). We introduce the subscript E to indicate an
Eulerian or, fixed point, coordinate. Thus, for the turbulent case, we will use the
general solution (2.4) along with the conditional PDF

pE hpEðX; t0=x; tÞ ð2:6Þ
to obtain ensemble averaged statistics of fiZfi(x, t). The variables to the right
of the slash in (2.6) are the conditioned variables.
Proc. R. Soc. A (2008)
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The mean of the state variables are given by

fi Z hfiiZ
ð
dX pEðX; t0=x; tÞfi ð2:7Þ

and the cross variance by

hfifjiZfi fj Chf0
if

0
ji; ð2:8Þ

where f0ZfiKfi is the fluctuating component. The second term on the r.h.s. of
(2.8) is given by

hf0
if

0
jiZ

ð
dX pEðX; t=xÞf0

if
0
j : ð2:9Þ

We will use both the overbar as well as bracket notation to indicate an ensemble
average.

To obtain pE, some assumption needs to be made about the statistics of the
turbulent field itself. This is accomplished here by assuming that at each point a
fluid element undergoes a random increment or ‘walk’. This results in
determining the Lagrangian PDF

pL Z pLðx; t=X; t0Þ: ð2:10Þ

Bayes’ theorem (Papoulis 1965) is used to relate pE to pL, namely

pEðX; t0=x; tÞZ
pLðx; t=X; t0ÞÐ

dX pLðx; t=X; t0Þ
: ð2:11Þ

Equation (2.11) is also seen as the ratio of the fractional number of ensembles of
paths that arrive at x at time t from the initial position X divided by the total
number of such paths.

Finally, it is interesting to contrast this approach of explicitly using the PDF
(2.11) on the solution (2.4) with the standard approach of taking the ensemble
average of (2.1), which results in

Lfi Z
vfi

vt
C

v

vxj
ð�ujfiÞC

v

vxj
hu 0

jf
0
iiZ hFi½fj ;x; t�i: ð2:12Þ

The eddy diffusivity approximation (Okubo & Mitchell 2001) is typically
invoked, whence

v

vxj
hu 0

jf
0
iiZK

v

vxj
k�

v

vxj
f0
i; ð2:13Þ

where k� is the diffusivity, with the asterisk indicating that it is in dimensional
form. If Fi½fj ;x; t�Z0, then the usage of (2.13) in (2.12) results in the advective–
diffusion equation for fi.

However, in order to proceed in the case of hFi½fj ; x; t�is0, some additional
assumption has to be made. Often this consists of assuming that the interaction
of the total state variable can be approximated by the interaction of only its
Proc. R. Soc. A (2008)
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Figure 1. Two-dimensional Lagrangian fluid element streamlines (solid lines) and fluid velocity
vectors (arrows) of the laminar linear strain upwelling model (Robinson 1999).
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ensemble mean (Donaghay & Osborn 1997), i.e.

hFi½fj ; x; t�izFi½fj ;x; t�: ð2:14Þ

Usage of (2.13) and (2.14) in (2.12) results in the advective–diffusive reaction
equation for fi. However (2.14) is, in general, not valid and involves neglecting
terms of the form of (2.9), i.e. setting

hf0
if

0
jiZ 0: ð2:15Þ

In §3, we illustrate the application of the PDF approach to a very simple
example problem considered by Robinson, namely that of a two-component
f1ZP, f2ZN nutrient, phytoplankton (NP) bilinear interaction in a linear
strain upwelling field. We will explicitly evaluate the mean interaction termFi

given by (2.14), which for this example becomes

F1 Z hPN iZPNChP 0N 0i: ð2:16Þ
We will show that, not only is hP 0N 0is0 but that, in fact, it is comparable in
magnitude over a wide range of turbulence values toPN . Thus, the turbulence
interaction term hP 0N 0i plays a significant role in the biodynamics of P,N
interaction and cannot, in general, be neglected.
3. Example problem: bilinear NP interaction in linear strain upwelling

In order to focus on turbulence-induced biological fluctuation interactions, we
will illustrate and apply the theoretical approach developed in §2 to a very
simple NP problem considered in R99. Figure 1 provides an illustration of the
problem. Seed phytoplankton and nutrients contained in an infinitely deep and
wide reservoir are upwelled into a euphotic zone of depth Ze. There, the
phytoplankton and nutrients undergo a simple bilinear interaction. No
zooplankton grazing occurs and there is no mortality. The light field in the
euphotic zone is taken to be uniform in the vertical, which in R99 is shown to be
qualitatively similar to attenuated light.
Proc. R. Soc. A (2008)
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For this model, using (2.1) with f1ZP and f2ZN, it follows that

dP

dt
h

vP

vt
CV$ðuP ÞZF1 ZF Z aPN ; z!Ze;

dP

dt
Z 0; zRZe ð3:1Þ

and

dN

dt
h

vN

vt
CV$ðuN ÞZF2 ZKF ZKaPN ; z!Ze;

dN

dt
Z 0; zRZe;

ð3:2Þ
where z is the vertical coordinate, taken as positive indicating increasing depth;
Ze is the depth of the euphotic zone. The quantity a is the phytoplankton growth
rate coefficient, which has units of volume/(time)(mass). Adding (3.1) and (3.2)
yields the conservation of biomass equation

dM

dt
Z 0; ð3:3Þ

where the total biomass density is given by MZPCN. Note that (3.3) has the
simple solution

M ZM0 ZP0 CN0; ð3:4Þ
where the subscript ‘0’ indicates its initial value at time tZt0. Following R99, we
normalize P and N by M0, length scales by Ze, time scales by M0/a, the nutrient
uptake rate. Solutions for equations (3.1) and (3.2) with this normalization are
readily seen as

P Z
P0

N0 exp½KðtK teÞ�CP0

ð3:5Þ

and

N Z
N0

N0 CP0 expðtK teÞ
; ð3:6Þ

where te is the time that a fluid element is located at zZ1, the base of the
euphotic zone.
(a ) Pure advection

Following R99, to obtain the spatial dependence of P and N, we need to assume
some type of flow field. Consider the purely advective linear strain case of R99

u Zax ð3:7Þ
and

w ZKaz; ð3:8Þ
where aZa�M0/a, with a

� as the dimensional strain rate. Equations (3.7) and (3.8)
have the Lagrangian trajectories

x Z x adv ZX exp½aðtK t0Þ� ð3:9Þ
and

z Z z adv ZZ exp½KaðtK t0Þ�; ð3:10Þ
Proc. R. Soc. A (2008)
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B

Figure 2. Two possible fluid element trajectories that arrive at point B at time t. One begins below
the euphotic zone layer, at A1, the other within the euphotic zone at A2. The dotted lines are the
mean Lagrangian paths z advZZ exp½KaðtK t0Þ�; t0Z0.
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whereX and Z are the initial positions.We will use the subscript ‘adv’ to indicate a
variable associatedwith the laminar advective flow. Substitutionof (3.10) into (3.5)
and (3.6) results in

P Z
P0

N0z
1=a
advCP0

ð3:11Þ

and

N Z
N0

N0 CP0z
K1=a
adv

: ð3:12Þ

Solution (3.11)with zadvZz is equation (4.3b) of R99. Note that withP0ZP0ðZ ; t0Þ
and N0ZN0ðZ ; t0Þ, equations (3.11) and (3.12) have the Lagrangian functional
dependence PZP(Z, t, t0) and NZN(Z, t, t0).

(b ) Combining advection and turbulence

Now, we will superpose within the euphotic zone a turbulent field on the
advective velocity field (figure 1). Below the euphotic zone the flow is laminar
and is given by (3.7)–(3.10). Equations (3.11) and (3.12) remain as solutions for
P and N but, located at the Lagrangian vertical position,

z Z z advCz 0; ð3:13Þ
whence, in (3.11) and (3.12) z advZzKz 0. Figure 2 shows for the turbulence case
two possible Lagrangian trajectories, A1B and A2B. The dotted lines are the
mean Lagrangian paths zadv.

Following the theory shown in §2, we need to obtain the Eulerian PDF, pE. Then,
we will apply this to solutions (3.11) and (3.12) to calculate ensemble averaged
statistics of P and N. As discussed in §2, to obtain pE we will first obtain the
LagrangianPDF, pL, and then useBayes’ theorem, equation (2.1), to relate pE to pL.

Owing to the horizontal symmetry of our problem, solutions (3.11) and (3.12)
have spatial dependence only in the vertical. The vertical velocity can be
decomposed into a mean and turbulent fluctuation component, namely

w Z �wCw 0; ð3:14Þ
Proc. R. Soc. A (2008)
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where
�wðz; tÞZwadvðzÞZKaz: ð3:15Þ

Differentiating (3.13) with respect to time t and using (3.10) yields

dz

dt
Z

dz adv
dt

C
dz 0

dt
ZKazadvC

dz 0

dt
: ð3:16Þ

However, using (3.14) and (3.15) gives

dz

dt
hw Zwadvðz; tÞCw 0ðz; tÞZKaðzadvCz 0ÞCw 0: ð3:17Þ

Comparing (3.17) and (3.16) results in

dz 0

dt
ZKaz 0 Cw 0; ð3:18Þ

which has the solution

z 0 Z

ðt
dt 0 w 0 exp½KaðtKt 0Þ�: ð3:19Þ

At this point, no assumption on the nature of the turbulent field has been made.
To model the vertical turbulent velocity fluctuation w 0, consider a one-
dimensional random walk model

hw 0ðz1; t1Þw 0ðz2; t2ÞiZ
2kdðt2Kt1Þ for z1Z z2;

0 for z1sz2;

(
ð3:20Þ

where k is the normalized diffusivity, taken to be constant. Using the random
walk model (3.20) for a vertically unbounded geometry, the solution for the
perturbed random displacement z 0 from (3.19) is seen as a sum of uncorrelated
weighted random increments ðdt 0Þw 0. Thus, by the central limit theorem
(Papoulis 1965) zZ�zCz 0 has the Gaussian distribution

pLðz; t=Z ; t0ÞZ
1ffiffiffiffiffiffiffiffiffiffi
2pb2

p exp K
ðzK �zÞ2

2b2

� �
; ð3:21Þ

where themean displacement �zZz adv is given by (3.10) and the variance b
2Zhðz 0Þ2i

is given by

b2 Z hðz 0Þ2iZ ðPeÞK1½1KexpfK2aðtK teÞg�; ZO1 ð3:22aÞ
and

b2 Z hðz 0Þ2iZ ðPeÞK1½1KexpfK2atg�; Z%1: ð3:22bÞ
Subsequent in the study, we take t0Z0. The Peclet number PeZa/kZa�Z2

e /k
� in

(3.22a) and (3.22b) represents the ratio of the turbulent time scale to the advective
time scale.

The difference in the form of the variances shown in (3.22a) and (3.22b) arise
from the difference in the amount of time in which a fluid element has spent in
the turbulent euphotic zone. In figure 2, this is illustrated by showing two paths
that arrive at the same point but originate either below or above the euphotic
zone, respectively, and will be each associated with variances (3.22a) and (3.22b),
respectively.
Proc. R. Soc. A (2008)
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For our case we have a turbulent layer of finite domain between zZ0 and 1,
which requires replacing (3.21) with the form appropriate for a bounded domain
by applying the no turbulent flux boundary conditions (Papoulis 1965)

vpL
vz

Z 0 at z Z 0; z Z 1: ð3:23Þ

This boundary condition insures that, for each ensemble, the turbulent
displacement perfectly reflects from both the top and bottom boundaries,
beyond which there is no turbulent fluid.

Using the method of images on (3.21) to satisfy boundary conditions (3.23)
results in

pLðz; t=Z ; t0ÞZ
1ffiffiffiffiffiffiffiffiffiffi
2pb2

p
XN
jZKN

exp K
ðzCz advK2jÞ2

2b2

� �
Cexp K

ðzKz advK2jÞ2

2b2

� �� �
:

ð3:24Þ
Note that, as required from the definition of a PDF, boundary conditions (3.23)
result in the constraint

Ð 1
0 dz pLðz; za; tÞZ1 being satisfied. It should also be

noted that both (3.21) and (3.24) satisfy the advective–diffusion equation. The
Eulerian PDF is obtained by the prescription given by (2.11), which for our one-
dimensional case can be written as

pEðZ=z; tÞZ
pLðz; t=ZÞÐ
dZ pLðz; t=ZÞ

: ð3:25Þ
4. Results

The Eulerian PDF pE (3.25), together with solutions (3.11) and (3.12), will now
be used to obtain the vertical profiles ofP andN , and the turbulence-induced
interaction term hP 0N 0i, whence

P Z

ð
dZ pEðZ=z; tÞPðZ ; tÞ; ð4:1aÞ

N Z

ð
dZ pEðZ=z; tÞNðZ ; tÞ ð4:1bÞ

and

hP 0N 0iZ
ð
dZ pEðZ=z; tÞðP 0N 0Þ; ð4:1cÞ

with
P 0 ZPKP

and
N 0 ZNKN :

Note that the mean of the biodynamical total interaction term F of (3.1) and
(3.2) is given by

F Z hPN iZPN ChP 0N 0i: ð4:2Þ
In the series of figures below, we will show profiles of the biomass quantities

given by (4.1a)–(4.1c) and (4.2). Owing to their dependence on turbulence, all of
these quantities are functions of the Peclet number. In addition, they are also
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Figure 3. Profiles of (a)P and (b)N for PeZ10. For each figure, the solid line is the steady-state
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N0Z0.99, aZ0.1 and t0Z0.
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functions of the same input parameters that would arise in the no turbulence
pure advective upwelling case considered in R99. These input parameters are P0,
N0, the normalized seed nutrient and phytoplankton density, taken to be
constant in the reservoir where ZR1, and a is the normalized strain rate.

For the figures given below, we will choose one set of the input parameters
used extensively in examples presented in R99, namely P0Z0.01 and N0Z0.99,
which represent an initial seed density of phytoplankton of 1% of the total
nutrient and phytoplankton biomass density. We will also use aZ0.1, which, for
a nutrient uptake time of 12 hours, corresponds to a linear strain rate of a�Z2!
10K6 sK1, a reasonable value of open-ocean upwelling (R99).

To determine values of the Peclet numbers to use, we note that the typical
turbulent vertical eddy diffusivity k� in an ocean surface mixed layer ranges from
k�Z10K4 to 10K2 m2 sK1 (Large et al. 1994). Using a mixed-layer depth of 30 m
and an upwelling strain rate of a�Z2!10K6 sK1, we obtain expected values of
Pe(10. Thus, we will use the three values PeZ0, 1 and 10, as well as a fourth
value, PeZN; the latter corresponds to the no turbulence pure advection case
considered in R99. Note that the PeZ0 case corresponds to infinitely large
turbulence relative to the advection.
(a ) Time-dependent solutions

In figure 3a,b we show the solutions of P and N for PeZ10, a moderate
turbulence case, for different times t, taking the initial time t0Z0. Shown in
these figures as a solid line is the steady-state limit t/N. At the bottom
boundary, PðzÞjzZ1 and NðzÞjzZ1 initially increase with time t. Note the
discontinuity across zZ1. This results from our model of upwelling into a
turbulent mixing region confined to a finite depth range of zZ0 to 1. The no
turbulent flux boundary conditions (3.23) insures that bothP andN have zero
vertical gradients at zZ0 and 1, with the result that no mean turbulent flux of
biomass material occurs across these boundaries.

From the form of the solutions (3.11) and (3.12) using (3.10), it is known that,
for the laminar case, P and N profiles asymptote to a steady state over a time
period tZ lnðN0=P0Þ, where, for our example problem input parameters,
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tZ lnðN0=P0ÞZ lnð99ÞZ4:6. For theN profile in figure 3b this appears to be the
case, but it is clearly not the case for theP profile of figure 3a, which asymptotes
to a steady state at the much later time, tz50, not shown in figure 3a. To
understand this, note that after a time t[t, the nutrient composition within a
fluid element becomes depleted and the fluid element contains only
phytoplankton. In a turbulent field, the fluid elements are rearranged to depths
different from that which would occur under pure advection. In the steady state,
contributions to the nutrient profile principally come from fluid elements that
have resided in the mixed layer for the residence time ~tZ tK te(t. The
phytoplankton density P has continued to increase beyond tZt due to the
continual input of the new fluid elements carrying nutrients into the turbulent
layer. These nutrients are taken up by phytoplankton as turbulence mixes these
new fluid elements throughout the region z%1, with the degree of mixing
dependent upon the Peclet number.

To illustrate further the nature of this process, consider the intense turbulence
limiting casePe/0,which,with the change of variable z advZZ expðKatÞ in (3.25),
leads to

pEðZ=z; tÞ/pEðz adv=z; tÞ/1: ð4:3Þ
Using (4.3) in (4.1a)–(4.1c) with solutions (3.11) and (3.12) results in

P Z

ð1
0
dz adv Pðz adv; tÞ; ð4:4aÞ

N Z

ð1
0
dz adv Nðz adv; tÞ ð4:4bÞ

and

F Z

ð1
0
dz adv Pðz adv; tÞNðz adv; tÞ; ð4:4cÞ

where, for this limiting case of infinitely intense turbulence, the mean values shown
in (4.4a)–(4.4c) are just the vertically averaged values of the purely advective case.
This result, as expected, implies that the intense turbulence case ofPeZ0 perfectly
mixes P, N and the interaction term (PN ).

In figure 4 for PeZ0, we show such plots of P, hðP 0Þ2i1=2, N and hðN 0Þ2i1=2
versus time, where

hðP 0Þ2iZ hP2iKhPi2

and
hðN 0Þ2iZ hN 2iKhNi2:

N and hðN 0Þ2i1=2 asymptote to a steady state at time of order tZ lnðN0=P0ÞZ4:6,

a similar time whenN asymptotes to a steady state for the moderate turbulence
case shown in figure 3b. From figure 4, we see that the quantitiesP and hðP 0Þ2i1=2
asymptote to a steady state about an order of magnitude later than N and
hðN 0Þ2i1=2, again a similar result to the moderate turbulence (PeZ10) case

of figure 3a. Note the interesting results of figure 4 that for all time hðN 0Þ2i1=2ON

and for time t(aK1ðZ10Þ, hðP 0Þ2i1=2OP, while for t[aK1ðZ10Þ, hðP 0Þ2i1=2z
hðN 0Þ2i1=2. This latter result follows from the fact that total biomass is conserved
and that as t/NP 0zKN 0 throughout the turbulent layer.
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(b ) Steady-state solutions

We show in figure 5 the steady-state (t/N) profiles of mean phytoplankton
densityP as a function of the Peclet number Pe. Figure 5 exhibits the expected
behaviour: the more intense turbulence (smaller Pe) mixes the phytoplankton
more effectively than the less intense (higher Pe) turbulence does. This results in
smaller gradients for the profiles with decreasing Pe. Figure 6a,b shows the mean
interaction termF and the two terms of which it is composed,PN and hP 0N 0i
(equation (4.2)). Figure 6a shows the expected behaviour of F as a function of
Pe. Decreasing Pe decreases the gradient ofF. Note that, in figure 5, the depth
of convergence of the solutions ofP is about zz0.6. This depth is close to the
depth where the mean interaction term,F, shown in figure 6a, is a maximum.

In figure 6b, we show contributions of PN and hP 0N 0i to F. For all of the
values of Pe, except the non-turbulent value of PeZN, the magnitude of hP 0N 0i
is of the orderPN , and opposite in sign,

KhP 0N 0iwPN[F Z hPN i: ð4:5Þ
This result clearly demonstrates that neglecting the turbulent interaction term
hP 0N 0i would result in an order of magnitude overestimate ofF.

To understand the overall effect of turbulence on net phytoplankton growth,
we plot, in figure 7 as a function of Pe, the vertically integrated net
phytoplankton density defined by

PI h

ð1
0
ðPðzÞKP0Þ; ð4:6Þ

along with the vertically integrated local growth rate term ð1=aÞF I, where

F Ih

ð1
0
dzFðzÞ; ð4:7Þ
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withF given by (4.1a)–(4.1c) and (4.2). In the extreme limits ofPe/0 andPe/N,
as indicated in figure 7, there is a balance between these two terms

PI Z
1

a
F I: ð4:8Þ

A maximum inPI is seen to occur at Pez5. To understand this behaviour of
PIðPeÞ, note that the case of PeZ0 is characterized by uniform mixing and zero
vertical gradients forP andN , with the result that

PIðPeZ 0ÞZPIðPeZNÞ: ð4:9Þ
This can also be seen in figure 5, where the vertical integral of the light line, the
PeZN case, equals that of the vertical integral of the dark line, the PeZ0 case.
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For the intermediate values of Pe, vertical gradients ofP andN are maintained
and turbulent transport makes locally available more nutrients for uptake than
would occur in either the non-turbulent case or the extreme turbulent case.
5. Summary and conclusions

A major research area of contemporary interdisciplinary ocean science research is
understanding and quantifying biological–physical interactions. Such
interactions occur on multiple space and time scales and are typically
characterized by nonlinear feedback. Fundamental processes that arise from
the nonlinear biodynamical interactions of biological state variables in the
presence of turbulent flow, for the most part, have been ignored in mean field
dynamical studies. To include such effects by closure in terms of mean fields and
gradients presents a formidable problem. However, if the statistics of the
turbulence are known or parameterized, turbulence-induced fluctuation corre-
lations of biological variables can, in principle, be obtained by using requisite
probability density functions. This approach can also deal directly with the more
familiar problem of turbulent diffusion of biological state variables. In the case
that the turbulence arises from physical dynamics without biological feedbacks,
considerable knowledge exists for its statistical parametrization. In the case that
biodynamical interactions cause, or significantly influence, turbulent or chaotic
flow, much more research is required.

In this study, we have shown that the analytical formalism developed by R97,
R99 for modelling the biodynamical interaction of seed plankton and nutrients
upwelling into a euphotic zone can be extended to include a turbulent layer.
This results from the fact that in R97, R99, the biodynamical interaction terms
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Fi½fj ;x; t� on the r.h.s. of (2.1) are isolated from the fluid advection terms, which
appear on the l.h.s. of (2.1). The separation of these terms allows quadrature
solutions for the biological state variables to be obtained in terms of Lagrangian
coordinates. Using the method of characteristics, R97, R99 has shown that these
solutions can also be expressed in terms of Eulerian coordinates. This latter step
is critical since observations and theories on which they are based are typically
made in the Eulerian reference frame.

We extend the Robinson approach by considering the total advection flow field
to consist of the superposition of a laminar and turbulent component. As in R97
and R99 for the advective case, we obtain the Eulerian solution (2.4) to the
fundamental equation (2.1). To obtain the solution for the mean biological state
variables and their coupled interaction, we use the probability density approach
given in equations (2.10) and (2.11). Note that the alternative approach of using
the equations for the mean biological state variables (2.12) and then modelling
the turbulent flux terms by an eddy diffusivity (2.13) does not correctly or fully
model the effect of the turbulent field and requires some additional assumption
similar to that of (2.14). In other words, because the mean biodynamical
interaction termFi is, in general, nonlinear and does not necessarily have some
analytical prescription that allows it to be expressed in terms of the mean
biological state variables, i.e.FisFiðfjÞ.

For the NP example in this study, we use a random walk model given in (3.20)
and Bayes’ theorem (3.25) to obtain the Eulerian probability density function.
Then, we can use the solution to the fundamental equations to explicitly obtain
the mean quantities P and N and the turbulence-induced interaction term
hP 0N 0i. These quantities are functions of the Peclet number, which represents the
ratio of the turbulent time scale to the advective time scale. Small values of Pe
occur when turbulence dominates, large values occur when advection dominates.

Figures 3 and 5 show the expected effect of turbulent mixing in smoothing
property profiles. Recall that the problem has been formulated to insure horizontal
independence of the vertical profiles. Turbulence plays a critical role in making
more nutrients available for uptake throughout the water column thanwould occur
for the non-turbulent case. The continual advection of new nutrients into the
euphotic zone, coupled with the effect of turbulence on nutrient uptake by the
phytoplankton, results in the phytoplankton profile reaching a steady state at a
later time than that of the nutrient profile. This effect can be seen in figures 3 and 4.

The critical result of this study has been to show that the turbulence-induced
interaction term that, for the case of our simple model, is hP 0N 0i cannot be
neglected. In fact, for the example discussed here, as shown in figure 6, it is
comparable and opposite in sign to the mean field interaction term PN . In
formulating solvable advection–diffusion reaction equations from (2.1), it is the
latter type of term that is often retained and the turbulence-induced interaction
terms neglected (Donaghay & Osborn 1997).

To elucidate some of the basic principles of nonlinear biodynamical
interactions and the importance of fluctuation correlations, we have considered
here a very simple NP interaction model. This model allows a clear elucidation of
the two roles played by turbulence, that of random property flux or diffusion and
that of perturbing the growth through nonlinear interaction. This study serves as
a simple first step in examining in more detail the turbulent advective effects on
biophysical dynamics in the sea. Extensions of this study might include: (i) using
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more realistic attenuation of light, (ii) improved representation of uptake and
competitive nonlinear interactions of biological state variables such as the
Michaelis–Menton kinetics of nutrient uptake (wPN(KCN )K1), zooplankton

grazing (PZ ) and quadratic mortality (Z2), (iii) more complicated mean
advection, and (iv) more realistic turbulent statistics representing larger scale
anisotropic turbulent eddies.
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