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ABSRACT
In this report, we present a generalized and flexible prognostic model for marine biogeochemical-ecosystem processes. This generalized model currently focuses on pelagic dynamics and consists of 7 functional groups of state variables: nutrients, phytoplankton, zooplankton, detritus, dissolved organic matter, bacteria and auxiliary state variables. The number of components in each functional group is flexible varying from 1 to n and their corresponding biological, chemical or detrital features are defined by users. Primarily, categories of dissolved organic matter are classified by their bioavailability, bacteria by their ability to respond to environmental variations, nutrients by their chemical composition, and phytoplankton, zooplankton and detritus by their size. A different classification can be used, however, such as species or stages of zooplankton. Auxiliary state variables represent oceanic properties that can depend directly on other biological features and are thus not always independent prognostic components in food web structure and trophic dynamics. Such auxiliary variables can include for example chlorophyll, bioluminescence, dissolved oxygen, CO2 and phycotoxins. The model was constructed so as to allow easy identification and adaptation, i.e., the state variables, model structures and parameter values can be changed in response to field measurements, ecosystem functions and different scientific objectives. The model is currently coupled with the Harvard Ocean Prediction System (HOPS) for real-time ocean forecasting.

1. INTRODUCTION
Marine ecosystems are usually represented by compartment models, each compartment representing a trophic level or taxonomic group such as phytoplankton, zooplankton or nutrient. In the real ocean, however, there are organisms of unnumbered species, at various stages and of different weights at each trophic level. The structural design of an ecological model is thus critical in determining its adequacy and capability to approach real ecosystems. 
Since the first marine ecological model of phytoplankton (Riley, 1946), the variety of ecological dynamics being modeled has widen and there has been a trend towards increasing complexity in model structure. For example, Andersen et al. (1987) found it necessary to partition phytoplankton into diatoms and flagellates, and zooplankton into copepods and appendicularia. Moloney and Field (1991) partitioned the autotrophic level into pico-, nano- and net-phytoplankton, and the heterotrophic trophic level into bacteria, heterotrophic flagellates, microzooplankton and mesozooplankton. Moisan and Hofmann (1996) simulated gelatinous zooplankton, copepods and euphausiids whereas Pace et al. (1984) considered bacteria, protozoa, grazing zooplankton, carnivorous zooplankton, mucous net feeders and pelagic fishes at the heterotrophic level. Tian et al. (2000) coupled the microbial food web with the traditional mesoplankton food chain. Wroblewski (1982) distinguished five life stages of copepods: eggs, nauplii, early copepodites (CI-III), copepodites (CIV-CV) and adult. Armstrong (1994) proposed a model with n parallel food chains, each consisting of a phytoplankton species Pi and its dedicated zooplankton predator Zi classified by size. Nihoul and Djenidi (1998) presented a conceptual food web model in which phytoplankton are divided into cynobacteria, ultraphytoflagellates, phytoflagellates, diatoms and autotrophic dinoflagellates, and zooplankton are divided into heterotrophic flagellates, ciliates, heterotrophic dinoflagellates, arthropods and gelatinous zooplankton. Although many of the biological models are nitrogen driven, Lancelot et al. (2000) considered five types of nutrients (Si, PO4-, NO3-, NH4+ and Fe). Cousins (1980) suggested a conceptual trophic continuum model in which an ecosystem is divided into three basic components (autotrophs, heterotrophs and detritus), with each component representing a size continuum from small to large organisms or particles. Armstrong (1999) argued that biological models of pelagic ecosystems should reflect both the taxonomic and size structure of the plankton community. Considering all of these advances as a whole, the main modeling challenge relates to the complexity of the physiological, trophic and ecological dynamics. This complexity prohibits the development of a single model with fixed structure that can be applied to various oceanic ecosystems and be used for various scientific objectives. Ideally, generalized and flexible models can be more efficient and useful. Developing such a model is the main objective of the present research.
Another challenge relates to the lack of a common set of equations that represent the source and sink terms of the biological state variables (e.g., Robinson and Lermusiaux, 2002). There are currently no standard parameterizations in marine ecological modeling. A wide variety of mathematical formulations have been developed to describe fundamental biological processes and forcing functions, such as those of light, nutrient and temperature on phytoplankton growth rate and on zooplankton grazing and predation. These formulations are usually based on empirical relationships, for example expressing a correlation with measurable variables. The real ecological or physiological processes underlying the observed correlation are not often explicit in these relationships. Sound statistical or physiological bases to reject one or another parameterization are rare (Sakshaug et al., 1997), but the choice among them can be critical with respect to the model functionality (Franks et al., 1986; Smith et al., 1989; Steele and Hendersen, 1992; Gao et al., 2000; Gentleman et al., 2003). Although we can infinitely divide an ecosystem model, our knowledge of biological dynamics and rates is limited, but evolving. Ecological modeling largely relies on field data to validate simulations. An ideal and intelligent modeling system should thus learn from data and model misfits, and quantitatively identify the most adequate formulations. The present model development is simply a prerequisite to such automated system identification (e.g. Duda et al, 2000). 
Importantly, oceanic states evolve and go through transitions. In the coastal environment, properties can be highly variable and intermittent on multiple scales. The biogeochemical-ecosystem variables, processes and interactions that matter vary with time and space. For efficient forecasting, prognostic models should thus have the same behavior and adapt to the ever-changing dynamics (Lermusiaux et al., 2004). This is especially important for marine ecosystems. With adaptive modeling, model switches and improvements are dynamic and aim to continuously select the best model structures and parameters among different physical or biogeochemical parameterizations. It is a system identification that is dynamic and sustained in time and space. 
In summary, the properties of the modeling system that cope with various ecosystems, multiple scientific objectives, unknown equations and ever-changing dynamics are generality, flexibility, identification and adaptation, respectively. This report is mostly on generality and flexibility of the biogeochemical-ecosystem model. System identification and adaptive modeling, and the corresponding automations, are only touched upon. Of course, even though the model formulation and its computational structure aim to be general, to initiate the functional implementations and survey the relevant literature, some focus is necessary. First, the oceanic region for which the model is being developed is the pelagic (littoral, neritic and open-oceanic) mid-latitude ocean, including coastal-deep sea interactions. Benthic processes and some specifics of low and high latitudes are for example not yet explicitly implemented (even though the new model structure could accommodate the corresponding variables and functionalities). Second, the scales considered are from hundreds of meters to thousands of kilometers, and hours to decades. The Eulerian formulation is thus preferred to the Lagrangian formulation and to the Individual Based Models (IBMs, e.g., DeAngelis and Gross, 1992) and ordinary population dynamics formalisms. All prognostic equations are of the partial differential, advective-diffusive-reactive type.
Our generalized model has been scientifically constructed based on a study of all possible functional groups and parameterizations relevant for mid-latitude coastal ecosystems such as Massachusetts Bay and Monterey Bay. A general set of state variables and of mathematical structures representing the interactions of these variables was selected, based on importance, completeness, efficiency and accuracy. This led to a generalized model with the following functional groups of state variables: nutrients, phytoplankton, zooplankton, detritus, dissolved organic matter, bacteria and auxiliary variables. Firstly, the generalized model is flexible on three levels: (i) the functional groups that are relevant can be determined and selected; (ii) within each functional group, the number of state variables is not fixed but is defined by the user; and (iii) the interactions among state variables within and across functional groups are also variable. Secondly, the generalized model is modular: one can select the model structures and parameterizations that are most adequate for the application of interest. In some cases, changes at each trophic level can also result in automatic changes in specific parameterizations. With this flexibility, the generalized biogeochemical model will be able to adapt to different ecosystems, scientific objectives and availability of field measurements. 
Such a generalized model has several advantages. It can simulate various ecosystems by using a subset of its generalized state variables. It can adapt to the changing ecosystem dynamics by changing its state variables, structures and parameters. Importantly, it provides an efficient numerical tool for real-time ecosystem forecasting. This is because one can downsize the model configuration to the simplest one that is sufficiently accurate to achieve the specific forecasting goals. In general, we expect the utilization of the generalized model for a given application to proceed as follows. First, an a priori model, i.e. the state variables, their interactions, the parameterizations and the parameter values, is chosen. As new data are collected, as events occur, as the dynamics changes or as the scientific objectives are modified, the configuration and specificities of the a priori model are updated, tuned and evolved. The result of this identification and adaptation is a fitted a posteriori model. This process can be manual or automated. The latter case is an advanced application of data assimilation (Robinson and Lermusiaux, 2002; Gregoire et al, 2003). By data assimilation, (non)-observed state variables and parameters are classically constrained or estimated from the observed data, respectively by field estimation and parameter estimation. Similarly, to obtain the a posteriori model, specific parameterizations and model structures are selected among a set of possible choices, based on quantitative criteria that are a function of model-data misfits. Importantly, just as some variables or parameters cannot always be estimated unambiguously by data assimilation (e.g. Matear, 1995; Vallino, 2000), some parameterizations and model structures may appear equivalent to the available data (referred to as equifinality, Duda et al, 2000). The complete automation of the adaptation requires substantial research.
In what follows, biogeochemical-ecosystem modeling efforts up to date are first briefly reviewed (Sect. 2). The dynamical structures, equations and parameterizations of our generalized prognostic biogeochemical-ecosystem model are then defined and described (Sects. 3 and 4). The presentation aims to be comprehensive conceptually and mathematically, but the technical details of the computations and software are not discussed. Finally, the utilization of the generalized and flexible model in an adaptive data-driven modeling mode is briefly discussed (Sect. 5). Our applications of the generalized model and the research towards the automation of model identification and adaptation are not reported.

2. REVIEW OF BIOGEOCHEMICAL-ECOSYSTEM MODELS UP TO DATE 
Hofmann and Lascara (1998) and Hofmann and Friedrichs (2002) recently conducted overall reviews of interdisciplinary modeling for marine ecosystems. They provide a detailed description of the progress in marine ecological modeling. Riley (1946, 1947a,b) first used simple mathematical equations to simulate observed seasonal variations in phytoplankton and zooplankton abundance. Parameterizations of biological dynamics were not developed at that time and mathematical formulations were based on linear assumptions that describe a single state variable. Following his earlier efforts, Riley (1949) developed a trophic dynamics model that included nutrient, phytoplankton and zooplankton, i.e., the so-called NPZ model. This model structure has been widely used since then, as NPZ only (Steele, 1974; Evans and Parslow, 1985; Franks et al., 1986) or as NPZ and a detritus pool (e.g., Ishizaka 1990; Nihoul et al, 1993; McGillicuddy et al., 1995a, b). Riley’s earlier efforts have triggered advances in the parameterization of biological dynamics such as the relationships between photosynthesis and light (e.g., Steele, 1962; Vollenweider, 1965; Webb, 1974; Parker, 1974; Bannister, 1979) and nutrient uptake kinetics (Caperon, 1967; Dugdale 1967, Droop, 1968; 1983; Platt et al., 1977; Goldman and McCarthy, 1978; McCarthy, 1981). 
About a quarter century later, Walsh (1975) developed an ecological model applied to the Peru upwelling ecosystem. His model included nitrate, phosphate, silicate, phytoplankton, zooplankton and planktonic fish (anchoveta) and detritus. Light forcing, ammonium inhibition on nitrate uptake, grazing and current advection (upwelling) were explicitly implemented. This represented a major advance in marine ecological modeling although some of the parameterizations were based on idealized assumptions, such as formulations of phytoplankton growth rate and zooplankton grazing as a sine or cosine function of time.
Fasham et al (1990) further considered bacteria and dissolved organic nitrogen in their biogeochemical model, using more advanced parameterizations such as switching grazing and predation on multiple types of prey. The inclusion of the bacterial pool allowed the explicit simulation of new production versus regenerated production, which is one of the bases of carbon biogeochemical cycles and sequestration. This model of biological dynamics in the surface mixed-layer has been utilized substantially in the past decade and its application range has been extended, for example to study biogeochemical cycles over basin scales by coupling with 3D general circulation models (e.g. Sarmiento et al., 1995).
Tian et al. (2000) recently coupled the microbial food web (small phytoplankton or picophytoplankton, microzooplankton, bacteria, small suspended detritus, DOM and ammonium) with the traditional mesoplankton food chain (large phytoplankton or diatoms, mesozooplankton, large sinking detritus and nitrate). The model can estimate several secondary quantities, including new production versus regenerated production, DOC versus POC export and active export through zooplankton vertical migration (Tian et al., 2001, 2004). The explicit coupling of the microbial food web with the mesozooplankton food wed allows the simulation of seasonal food web succession and variability that occurs due to climate changes (Tian et al., 2003a, b).  
The European Regional Sea Ecosystem Model (ERSEM) is likely the most comprehensive ecosystem simulation model up to date (Vichi et al., 2003). ERSEM consists of 3 sub-models (circulation, pelagic and benthic sub-models). Each sub-model contains several modules (Baretta-Bekker et al., 1995). The pelagic sub-model is composed of phytoplankton, zooplankton, microzooplankton, nutrient, bacteria and fish modules (Baretta et al., 1995). Phytoplankton includes diatoms, flagellates, picophytoplankton and large phytoplankton. Zooplankton includes carnivorous and omnivorous mesozooplankton. Microzooplankton includes heterotrophic flagellates and other microzooplankton. In addition, 5??? nutrients (nitrate, ammonium, phosphate, ??? and silicate), dissolved oxygen, CO2, DOM and POM are all included in the pelagic sub-model (Vichi et al., 2003; Baretta et al., 1995). 
Several research efforts have focused on different life stages of zooplankton, such as eggs, nauplii, copepodites and adults (Wroblewski, 1982; Hofmann and Ambler, 1988). Individual-based models (IBMs) have also been developed to track the life-stage cohorts of organisms. For example, for the life history of copepods, state variables of IBMs can include eggs, 6 stages of nauplii, 5 stages of copepodites and adults (Carlotti, and Sviandra 1989; Carlotti and Nival, 1992). Importantly, IBMs can be stage-, age-, size-, or weight-structured (Bryant et al., 1997; Heath et al., 1998). For ecological and biogeochemical studies, IBMs are often coupled with population dynamic models in order to quantified energy flows between different trophic levels (Carlotti et al., 1996).

3. STRUCTURE
The structure of the generalized biological model is illustrated in Fig. 1. There are 7 functional groups of state variables: Ni (nutrients), Pi (phytoplankton), Zi (zooplankton), Di (detritus), DOMi (dissolved organic matter, e.g., DOC or DON), Bi (bacterioplankton) and Ai (auxiliary state variables). The total number of components is flexible and varies for each functional group, i.e., nn components for nutrients, np for phytoplankton, nz for zooplankton, nd for biogenic detritus, ns for dissolved organic matter, nb for bacteria and na for auxiliary state variables (Fig. 1). The number of components (state variables) in each functional group can be freely assigned from 0 to an any large number. In practice however, we expect that these numbers will range from 0 to an order of 10.
The biological and biogeochemical pools corresponding to the symbolic state variables are also allowed to be freely designed. From the practical point of view, we expect that the biological and biogeochemical pools which can be quantified by measurements will be often more useful because the model can then be effectively compared to and constrained by field data. Nutrient (1) and nutrient (2) designate nitrate and ammonium, respectively. Additional nutrients and micronutrients can be assigned to number 3 or higher, e.g., silicate, phosphorus and iron. All other functional groups are designed to be classified by users for a specific application. For example, phytoplankton (Pi) can range from picophytoplankton through nanophytoplankton and microphytoplankton to macrophytes. Pi can also represent autotrophic cyanobacteria, dinoflagellates and diatoms, or small and large phytoplankton. Zooplankton can range from protozoa through ciliates and copepods to net mucous feeders, or represent different stages and different weights of zooplankton. Detritus is usually classified by size, but it can also be grouped otherwise, e.g., according to chemical composition. DOM is usually divided by chemical composition (DOC, DON, …). For example, in modeling studies, Vallino (2000) and Spitz et al. (2001) have used DOC and DON. Alternatively, DOM classification can be done at the molecule level (e.g., high and low molecular weight DOM; Amon et al., 1994; Gardner et al., 1996). For biogeochemical cycle studies, the bioavailability of DOM is important. Theoretically, DOM can then be considered as a continuum from labile to refractory dissolved organic matter and the number of DOM categories (ns) can be large. Recently, DOM has been separated into two or three categories, labile, semi-labile and refractory DOM, both in data analyses (Carlson and Ducklow, 1995) and 1D/mesoscom modeling studies ( Anderson and Williams, 1999; Vallino, 2000; Tian et al., 2004). However, these categories reflect bioavailability and as such have limited use in a generalized model since they cannot be either routinely quantified with existing analytical methods (data collection) or approximated with confidence. Bacterial compartments are designed to reflect the response to environmental factors such as temperature tolerance (Delile and Perret, 1989). Bacteria are assumed to have the same role in trophic dynamics, i.e., acquiring energy from DOM and being consumed by small or mucous-net-feeding zooplankton. Auxiliary state variables represent oceanic properties that are not independent components in food web structure and trophic dynamics, and their field depends on other biological pools (e.g. chlorophyll, bioluminescence, optics, acoustic properties, dissolved oxygen, CO2, etc). 
In order that the model be flexible, energy flows between food web components are not a priori determined. All zooplankton can feed on all phytoplankton and all zooplankton. The specific energy flow between two biological pools will be determined by users by assigning a specific value to the corresponding preference coefficient (Fig. 2). For example, omnivorous and carnivorous copepods may have raptorial feeding with a narrow-size window of prey whereas mucous-net feeders, such as appendicularia, salps, and doliolids, can collect particles ranging from bacteria (0.2-5 m in diameter) to large diatoms (8x100 m; Madin and Deibel, 1997). Energy flows are quite different between these two types of zooplankton although they can be represented by the same symbol in different applications. 
The basic unit (or currency) of the model varies with regard to specific applications. The commonly used unit in ecological and biogeochemical models is carbon either nitrogen. Conversion factors from one unit (e.g., carbon) to another (e.g., nitrogen) are provided in this generalized model by a specific elemental ratio for each trophic component. 

4. PARAMETERIZATION
The generic equation for state variables in coupled physical-biological models can be written as:

                                           (1)
where i represents a biological state variable, u is the current field, K is the turbulence diffusivity and fi represents biological sources and sinks function for the state variable i (Anderson et al., 2000; Robinson and Lermusiaux, 2002; Besiktepe et al., 2003). In the following text, only the biological sources and sinks (Bi) are presented on the right-hand side of equations. 

4.1. Phytoplankton
The partial differential equation for phytoplankton Pi is written as:

                                  (2)
where ri, rPi, PDi, mPi and sPi are, respectively, growth-dependent active and biomass-dependent passive exudation of DOM, the mortality coefficient and power and sinking velocity. GPji is the grazing amount of zooplankton Zj on phytoplankton Pi, and i is the growth rate of PI which will be discussed in the following sections 
All phytoplankton pools are described by the same equation. In fact, the fundamental biological dynamics governing the phytoplankton temporal variations are the same. For example, net growth of all phytoplankton is controlled by light forcing, nutrient availability, temperature influence, mortality, excretion (or respiration) and grazing loss. What differ are their biological rates, i.e., the parameter values in the equations. However, the changes in the number of phytoplankton components will modify the equation of nutrients, zooplankton, DOM, detritus and certain auxiliary state variables because the number of phytoplankton items in these equations will differ (see the following sections)..

4.1.1. Light forcing on phytoplankton growth rate
Based on early experiments, Blackman (1905) described the relationship between phytoplankton growth and light (-E relationship) as a rectilinear function: the phytoplankton growth rate increases proportionally with light intensity up to a certain level beyond which the growth rate ceases to increase (Table 1 Eq. 1). He interpreted the saturation light level as a result of other limiting factors that overwhelmed the effect of light. Field and laboratory observations later showed that the -E relationship is a hyperbolic curve and can be expressed by the Michaelis-Menten function (Table 1 Eq 2; Baly, 1935; Tamiya et al., 1953). The Michaelis-Menten function was developed to describe enzymatic activities (Michaelis and Menten, 1913). Its application to light limitation was chosen to fit experimental results and is without fundamental physiological underpinnings. Smith (1936) modified the Michaelis-Menten function while trying to improve the fitting of experimental data. Under high light intensity, however, photosynthesis is photoinhibited, most likely through photo-oxidation reactions, i.e., over excited antenna chl a can be combined with oxygen to become chemically altered. (Rabinowitch, 1945; Steele, 1962; Prezelin, 1981). Neither the Michaelis-Menten nor the Smith function parameterizes photoinhibition. Vollenweider (1965) and Peeters and Eilers (1978) further modified the Michaelis-Menten function to take into account photoinhibition (Table 1 Eqs. 4 and 5). Webb (1974) used an exponential function to reproduce the observed -E hyperbolic relationship (Table 1 Eq. 6) and Platt et al. (1980) added a second term to the exponential function to represent photoinhibition observed in field studies. Steele (1962) combined the linear and exponential functions (Table 1 Eq. 8) and Paker (1974) modified the Steele function by adding a power parameter to increase flexibility for data fitting (Table 1 Eq. 9). Jassby and Platt (1976) first used a hyperbolic tangent function (Table 1 Eq. 10) and Bissett et al. (1999) modified this function by adding an exponential photoinhibition term (Table 1 Eq. 11). Finally, Saksaug and Kiefer (1989) developed a mechanistic function for the -E relationship (Table 1 Eq. 12) in which  is the C:chlorophyll ratio, a represents the specific absorption coefficient for chlorophyll a, max is the maximum quantum yield,  is the mean absorption cross section of photosystem II and  is the minimal turnover time of the photosystem. The last exponential term represents the Poisson probability that a photosynthetic unit being hit is open. 
Except for the last mechanistic parameterization, all others are empirical and constructed from curve fitting to data. All these empirical formulations have been used in modelling applications and there is no strong evidence to reject any one of them. It should be pointed out, however, that different formulations may yield different parameter values when fit to the same data set (Sakshaug et al., 1997). Mechanistic models, on the other hand, are based on accepted knowledge about the mechanisms of specific processes. Their parameters are generally interpretable and their application can be extended further than empirical models. Moreover, the Sakshaug and Kiefer’s mechanistic parameterization can be transformed into the Webb exponential formulation. Assuming that the composite term amax represents the initial slope  of the  curve and the composite term  equals to :Pm (Cullin, 1990), Eq. 9 becomes Eq. 6 (Table 1). However, neither of these two formulations simulates photoinhibition. The Platt function (Table 1 Eq. 7) has a specific photoinhibtion term and its parameter values can be derived from other measurable parameters such as the specific absorption coefficient, maximum quantum yield and the mean cross section of photosystem II, which are commonly used in remote-sensing studies. The theoretical maximum growth rate of phytoplankton in the Platt function is higher than the maximum quantum yield. All these formulations have been developed to simulate the same -E relationship without specific environmental conditions or phytoplankton species. 

4.1.2. Nutrient limitation on phytoplankton growth rate
Brandt (1899, 1902) first called attention to the importance of phosphate and nitrate as limiting factors for phytoplankton growth in the ocean and Ketchum (1939) established the of hyperbolic nature of the relation between nutrient absorption and concentration. Monod (1941) introduced the Michaelis-Menten function in marine biology to describe bacterial growth rate as a function of substrate concentration. Based on a review of laboratory and field measurements and following Monod (1941), Caperon (1967) and Dugdale (1967) argued that nutrient uptake can be described by Michaelis-Menten enzyme kinetics (Table 2, Eq. 1). Thus the Michaelis-Menten function is also an empirical formulation that can accommodate experimental data in marine biology. 
Field observations and laboratory experiments showed that nutrient uptake does not start at zero concentration (Caperon and Myer, 1972; Paasche, 1973). Droop (1973, 1983) interpreted this to indicate the presence of an unreactive intercellular nutrient quota below which phytoplankton growth rate is zero. Consequently, Droop (1973, 1983) suggested the Droop equation (Table 2 Eq. 3) for nutrient uptake. Some authors use a sigmoid function to parameterize nutrient thresholds (Table 2 Eq. 2; Fennel, 1995; Newmann, 2002) whereas others suggest a combination of Michaelis-Menten and Droop functions (Table 2 Eq.4; Caperon and Myer, 1972; Paasche, 1973; Dugdale, 1977; Droop, 1983; Flynn et al., 1999). The Droop equation is applicable for minor nutrient elements such as iron, vitamin B12 and phosphorus, but for major nutrient elements such as nitrogen and silicate, its applicability is limited (Goldman and McCarthy, 1977). It should be pointed out that the Droop equation models the relationship between phytoplankton growth rate and the internal cellular nutrient contents whereas the Michaelis-Menten function models the relationship between phytoplankton growth rate and external nutrient concentrations in sea water. Since the cellular nutrient content and the external nutrient concentration differ, these two relationships are not equivalent. The interpretation of the direct combination between the two functions (Table 2 Eq.4) is thus more complex than it has been believed in certain modeling applications.  
There are two main forms of dissolved inorganic nitrogen that can be taken up by phytoplankton, nitrate (NO3-) and ammonium (NH4+). NH4+ is generally preferred over NO3+, most likely due to the low cost of NH4+ uptake and because nitrate reductase activity decreases as NH4+ concentration increases (Dugdale and Goering, 1967; Eppley et al., 1969). Different functions have been developed to parameterize ammonium inhibition on nitrate uptake. Walsh (1975) was the first to consider NH4+ inhibition on NO3- uptake by using the linear function of NH4+ concentration (Table 3, Eq. 1). Wroblewski (1977) proposed an empirical function with an exponential inhibition term (Table 3 Eq. 2). However, this equation can generate values higher than 1 and the growth rate can decrease with increasing NH4+ concentration in combination with NO3- (Eigenheer et al., 1996). Hurrt and Armstrong (1996) proposed a formulation based on the argument that the sum of NH4+ and NO3- uptake should be (NO3-+NH4+ )/(KN+ NH4++NO3-) (Table 3 Eq. 3). This formulation uses the same half-saturation concentration for both NO3- and NH4+ and thus does not reflect the preference of NH4+ over NO3-. O’Neill et al. (1989) deduced from molecular kinetics a substitute formulation between two nutrients (Table 3 Eq. 4; Fasham, 1995; Eigenheer et al., 1996). It does not contain a specific inhibition factor and NO3- can substitute NH4+ uptake in this function. Also based analysis of substitution between two interacting nutrients, Yajnik and Sharada (2003) suggested an alternative formulation to simulate NH4+ inhibition on NO3- uptake (Table 3, Eq. 5). Spitz et al (2001) combined the Wroblewski and O’Neil functions for nitrogen uptake (Table 3 Eq. 6). Alternatively, while taking into account nitrate reductase activity, Parker (1993) developed a formulation for nitrogen uptake based on the Michaelis-Menten function (Table 3 Eq. 7). This function has only the interpretable half-saturation constants of nitrate and ammonium as controlling parameters. 

4.1.3. Temperature forcing on phytoplankton growth rate 
Most biological processes are subject to temperature. Various empirical formulations have been used to reproduce observed relationships between growth rates and temperature. Based on previous studies, Dam and Peterson (1988) used different functions to fit experimental data between zooplankton ingestion and temperature, and no significant difference was found among the formulations used (Table 4 Eqs. 1-4). In many modeling applications, however, temperature forcing on growth rates is described as an exponential function (including the Arrhenius function; Table 4 Eqs. 5,6), or by the operational formulation of Q10, i.e., the increase in biological growth rate over 10 °C (Table 4 Eq. 7). The Arrhenius function is mechanistic (Table 4 Eq. 5), with E presenting the activation energy of the process of reaction (R is the gas constant (8.3 mol-1 K-1),, and T is the absolute temperature; Raven and Geider, 1988). The activation energy can be determined from the corresponding Q10 (E=RTln(Q10)/10; Dixon and Webb, 1979, p. 175). 
A major challenge to these monotonic functions is that in many cases biological growth rates show an optimal temperature above which the rate decreases again (Pomeroy and Deibel, 1986; Wiebe and Dieck, 1989; Zupan and West, 1990 and Yager and Deming, 1999). Different formulations have been developed to parameterize the optimal temperature (Table 4 Eq. 9-11). The formulation proposed by Lancelot et al. (2002) (Table 4 Eq. 11) is symmetric below and above the optimal temperature, and that used by Thebault (1985) (Table 4 Eq. 9) is asymmetric. The exponential product formulation (Table 4 Eq. 10) allows simulation of all these various curves, symmetric or asymmetric (Kamykowski and McCollum, 1986). 

4.1.4 DOC exudation and mortality of phytoplankton
DOC exudation from phytoplankton is generally parameterized as a linear function of phytoplankton biomass (4th term in Eq. 2). This process may be subject to temperature influence so that the exudation rate (rpi) can be scaled to temperature. Bannister (1979) and Laws and Bannister (1980) linked exudation with both phytoplanktom biomass and growth rate:

                                                                      (3)
where  and P are the phytoplankton growth rate and biomass, respectively and a and b are constants. 
Both mortality and aggregation of phytoplankton result in biogenic detritus. Mortality is parameterized as a linear function (mpi term in Eq. 2) whereas aggregation as a quadratic function of phytoplankton biomass (pdi term in Eq. 2). The grazing term (5th term in Eq. 2) will be described in the “Zooplankton” section. 

4.1.5 Combination of light, temperature and nutrient forcing on phytoplankton growth
When multiple types of nutrient are considered, phytoplankton growth rate is generally determined by the availability of the nutrient in the shortest supply relative to the requirement by balanced growth, i.e., the Liebig Law. The Liebig Law of minimum initially concerned only nutrient availability (Liebig, 1840). However, in addition to the nutrient supply, Blackman (1905) also considered light and temperature. Following Blachman’s suggestion, the minimum between light and nutrient limitation is often chosen as the combined effect on phytoplankton growth in certain modeling applications:

                               (4)
where i(T), i(E) and i(N(j)) are temperature, light and nutrient-dependent growth rate of phytoplankton Pi, respectively (Radach and Moll, 1993; Hurrt and Armstrong, 1996; Denman et al., 1998; Napolitano et al., 2000; Oschlies et al., 2000; Carbonel and Valentin, 1999; Oschlies and Koeve, 2000). Alternatively, Baule (1918) expressed the combined effect of limiting factors by a multiplication. Like temperature, light also tends to influence the maximum growth rate of phytoplankton and, as a result, the products of light-, temperature- and nutrient-dependent growth rate is an alternative parameterization for the combination of the three controlling factors:

                                (5)
(Goldman and Carpenter, 1974; Parsons et al., 1984; Andersen and Nival, 1987; Hofmann and Ambler, 1988; Moisan and Hofmann, 1996; Doney et al., 1996; Leonard et al., 1999; Gao et al., 2000; Kawamiya et al., 2000; Tian et al., 2000, 2001; Chifflet et al., 2001; Fennel et al., 2002). Both formulations are hypothetical. Experimental and field data often showed that the combined effect lies between the minimum and multiplication (Rhee and Gotham, 1981a, b; Redalje and Laws, 1983). The minimum and multiplication formulation can be combined as follows:
=1+(1-)2                                                             (6)
where 0<<1. When the Liebig Law is applied to light with nutrient limitation, both light and nutrients should be parameterized in a similar way, e.g. by the Michaelis-Menten function.

4.2 Zooplankton
The general equation for zooplankton Zj is written as:

                (7)
where GPji, GZjk, GDjl and GBjm are the total grazing (or predation) amounts of zooplankton Zj on phytoplankton Pi, zooplankton Zk, detritus Dl and bacteria Bm, respectively, eZPji, eZZjk eZDjl and eZBjm are the corresponding gross growth efficiency of Zj, GZkj is the predation loss of Zj by other zooplankton, mZDj, mZj are the coefficient and power of zooplankton mortality, rZj is the biomass-based respiration coefficient and wj is the vertical migration speed of heterotrophs Zj.
As phytoplankton, all zooplankton pools are described by the same equation whereas parameter values are specific to each zooplankton pools. When the numbers of components of phytoplankton, zooplankton, detritus and bacteria are changed, the summation items in the generalized zooplankton equation are modified. 

3.2.1. Grazing functions
Zooplankton feeding modes can be broadly divided into suspension filter feeding (e.g., herbivorous copepods), raptorial feeding (e.g., carnivorous copepods, euphausiids), and mucous net feeding (e.g., salps, doliolids, appendicularia). These feeding modes are not mutually exclusive, and examples of both filter feeding and raptorial feeding can often be found in one species, especially among planktonic crustaceans. Zooplankton feeding may be herbivorous, omnivorous, carnivorous, phytophagous, zoophagous, euryphagous or detritivorous (Parsons et al., 1984). Calanoid copepods are the most abundant and ecologically significant marine herbivores. They are thought to feed primarily by filtering, and some species demonstrate selectivity in feeding and predation by switching according to food density (Wilson, 1973). There are two kinds of fundamental predator response to changes in prey density: “numerical response” (i.e., the number of predators changes as a function of prey density) and "functional response" (the ingestion rate of the predator changes as a function of prey density; Solomon, 1949; Murdoch, 1969). Generally, there are three types of functional response by predators to prey density (Holling, 1959, 1965, 1969; Real, 1978): The first type of functional response is linear or rectilinear (e.g., mucous net feeding). In this representation there is assumed to be no interference between particles in the capture-ingestion mechanisms until the critical concentration is reached. The rectilinear relationship results from continuous filtration of water unaffected by the concentration of phytoplankton, so that ingestion increases linearly with food concentration, up to an initial concentration above which the rate of passage of food through the gut limits the rate of ingestion. The linear function between uptake and prey concentration is explained by the unsaturated concentration in the ocean and food acclimation of predators. The second type of functional response is curvilinear, which is also called the “invertebrate curve”. Predation is saturated at a certain food density level after which there is no significant increase in food ingestion. The degree of interference increases continuously as the concentration of particle increases, so that the rate of ingestion decelerates. The third type of response is called “switching response” or “vertebrate curve” and is characterized by a threshold of food density at which predation becomes negligible (Murdoch, 1969; Gismerik and Andersen, 1997). Holling (1959) described the phenomenon as a “threshold of security” that stabilizes the prey population, others referred to a “refuge”, or “learning response”, i.e., zooplankton ignore low-density food because of high energy cost (Holling, 1965; Mutrdoch and Oaten, 1973; Mullin et al., 1975). Another hypothesis for the threshold suggests that if the energy cost to the zooplankton in searching and capturing food is high relative to the nonfeeding metabolic rate, it might be advantageous to cease feeding when the concentration of food is very low (Mullin et al., 1975). 
When multiple kinds of prey are involved, feeding modes can be divided into three types: non-selection feeding (i.e., the proportion of different types of prey in the diet is the same as in the food available), passive selection (i.e., the proportion of different types of prey in the diet is different from that of the food available, but with constant selectivity or preference), and switching selection (i.e., the preferences or proportion change as a function of prey density). Predator switching can exert striking effects on the stability of prey population by preventing extinction of rare species, conserving biodiversity and favoring coexistence of different predators (Murdoch, 1969; Murdoch, 1973; Murdoch and Oaten, 1975; Comins and Hassell, 1976; Tansky, 1978; Hutson, 1984). However, shifting of prey occurs under strong preference conditions. In the weak preference case, no shift would occur except where there is an opportunity for the predator to become accustomed to the abundant species. 

The Type I functional response is described by a linear or rectilinear function between prey density and predation (Table 5 Eqs. 1,2). The Type II functional response is usually parameterized using the Ivlev function (Table 5 Eq. 3), the disc function (Table 5 Eq. 7) or the Michaelis-Menten function (Table 5 Eq. 8). Ivlev (1955) showed that the quantity of food eaten increased with the concentration of food available up to some maximum ration, which could not be further increased by increasing food concentration. Thus the grazing rate at a given prey concentration P must be proportional to the difference between the actual and the maximal ration:

                                                                          (8)
and the integration of the above equation yields the Ivlev formulation: 

                                                                         (9)
where  is a constant and P represents food abundance. The Ivlev functon was based on fish feeding activities. A number of authors found that this formulation could be applied to zooplankton feeding (Parsons et al., 1984). Rashevsky (1959) explained the physical and biological meaning of the initial slope  as the ratio between the rate that the prey becomes available to the predator and the maximum rate the predator can feed. Thus the Ivlev function can be modified as: 

                                                                 (10)
According to Rashevsky (1959), the Ivlev curve best describes situations in which a starved animal feeds for a relatively short period, while measurements of well nourished animals whose ingestion has reached some sort of equilibrium with food supply should generate a similar curve of a somewhat different shape. Wroblewski (1977) modified the Ivlev function to parameterize threshold response (Table 5 Eq. 5), whereas Mayzaud and Poulet (1978) combined the linear and Ivlev functions to simulate both Type I and Type II responses. They attributed the increase in ingestion with increasing prey density to herbivore acclimation to variation in prey density (Table 5 Eq. 6). 
	The disc function was based on mechanistic analysis (Table 5 Eq. 7) in which  represents the rate at which the predator attacks the prey and  represents the handling time (Holling, 1959). Fenchel (1980) deduced the same equation for suspension feeders where  represents the feeding current and  represents the handling time or the time that a particle blocks the mouth of the predator. Assuming 1/=K, the disc function is then transformed into the Michaelis-Menten function (Table 5 Eq 8). Caperon (1967) explained the half-saturation constant as the ratio between the rate of freeing the absorption site (e.g. digestion) and the rate of food uptake. The Michaelis-Menten function was modified with a specific threshold (Table 5 Eq. 9, 10) or into a sigmoid function (Table 5 Eq. 11) to mimic the Type III functional response. Real (1977) suggested a generalized Michaelis-Menten function which can parameterize both Type II and Type III responses (Table 5 Eq. 13). A variant functional response that was not included in the Holling’s definition is the toxicity-grazing response, i.e., the grazing rate decreases with the increased food density (Table 5 Eq. 12).

When multiple food types are involved, formulations of non-switching zooplankton grazing on multiple types of prey include rectilinear, Ivlev, disc and Michaelis-Menten functions and their modified forms (Table 6 Eqs. 1-6). There is evidence that some predators concentrate on the more abundant prey, so that the rarer species is mainly ignored, i.e., predators switch prey. Parameterization of switching-predation between different types of prey is essentially based on modified Michaelis-Menten or disc functions (Table 7 Eq.1-5). Gismervik and Andersen (1997) suggested a generalized grazing function on multiple types of prey (Table 7 Eq. 5) where the power index m determines the degree of switching feeding. No switching occurs when m=1 (i.e. Eq. 7 in Table 7) and the higher m is, the more switching occurs. When m, switching occurs exclusively. With this flexible parameterization, zooplankton grazing can be parameterized as: 

                                                                        (11)

             (12)
where gj(T) is the temperature-forced grazing rate using (see Table 4), pPji, pZjk, and pDjl and pBjm are the preference coefficients determined as the inverse of the corresponding half-saturation constants and P0I, Z0k, D0l and B0m are the corresponding thresholds for each type of prey. The grazing terms GZjk , GDjl and GBjm  predation terms in Eq. 11 are also determined using Eq. 12. 

4.2.2. Mortality, excretion and respiration
Zooplankton mortality represents the model closure term and the corresponding parameterizations are listed in Table 8. Zooplankton mortality consists of natural mortality, which may be caused by disease and starvation, and mortality due to predation by higher predators. Both disease and predation are likely density-dependent processes (i.e., quadratic, Eqs. 2-4, 7 in Table 8). Andersen et al. (1987) and Andersen and Nival (1988) considered mortality caused by starvation and parameterized as a function of the food concentration (Table 8 Eqs. 5 and 6). Edwards and Yool (2000) proposed a generalized mortality formulation, which can simulate linear, quadratic or a higher order of mortality terms (Table 8 Eq. 8). 
Respiration and excretion represent the metabolic losses of carbon and nitrogen respectively. Metabolic processes consist of different components such as basic metabolism, locomotion, assimilation, synthesis of somatic and gonad tissue, matter transformation and etc. (Clarke, 1987; Carlotti et al., 2000). Total metabolism is 2-3 times the basic metabolism at resting (Steele and Mullin, 1977; Parsons et al.,1984). The simplest formulation of respiration and excretion is parameterized as a linear function of biomass or food ingestion (Table 9 Eqs. 1,2). It can be divided into basic metabolism which is linearly linked to zooplankton biomass and active metabolism which is related to food ingestion (Table 9 Eq. 3; Steele and Mullin, 1977; Carlotti and Sciandra, 1989; Carlotti et al., 2000). In some applications, zooplankton respiration was linked to temperature and individual dry weight (Table 9 Eqs. 5-8). Wroblewski (1977) suggested an egestion formulation that was exponentially linked to prey density. In a biomass-based model without parameterization of population dynamics, both excretion and respiration can be formulated as a linear function of zooplankton biomass and ingestion (Table 9 Eq. 3). 

4.2.4. Zooplankton diel vertical migration
wl and wf are light- and food-induced vertical migration speed of zooplankton. Light-induced migration speed (wl) is linked to the change in percentage of solar radiation at the sea surface (I0):

                                                              (13)
where wbj is a constant representing the slope between migration speed and light change (Anderson and Nival, 1991; Tian et al., 2003). The absolute value of wlj is set to wmaxj when Eq. 38 gives values >wmaxj and to -wmaxj (i.e. upward) when ∂I0/∂t is undetermined during the night. To preclude zooplankton ascending to the euphotic zone with solar radiation decreasing (e.g. in the afternoon), wlj is set to zero when light intensity in the water column is higher than a critical value (I(z)>0.01I0). Light-induced upward migration velocity is also set to zero when the food gradient is positive, i.e. food abundance increases with depth (Ft/z>0). When upward migrating zooplankton reach the chlorophyll maximum, for example, they are thus assumed to stop migrating further to surface layers where foods are scarce. In this case, the migration speed is determined only by food abundance. Food-dependent vertical migration speed (wfj) is calculated using an exponential function:

                                                    (14)
where ard is randomly equal to 1 or –1 with 50% probability each at each migration time step, and kfj is a constant describing the slope between migration speed and total food abundance (Ft). Seasonal migration and overwintering was modeled using a critical food abundance (Ftmin) below which light-induced migration speed is set to zero. When food abundance in winter is lower than Ftmin, mesozooplankton overwinter at depth. 

4.3 Bacteria
Bacterial trophic dynamics are parameterized in the same way as those of zooplankton, i.e., using the Michaelis-Menten function for substrate uptake and a linear function for respiration rate. Both growth and respiration rates are scaled to temperature. The general equation for bacterial state variables is:

                                 (15)
where UDOMji and UNH4j are the uptake amount of DOMi and NH4+ by the bacterial pool Bj, eBSji and eBNj are the corresponding gross growth efficiency, GBkj is the consumption of bacteria Bj by heterotrophs Hk and rBj is the resiration rate of bacteria Bj.
When the content of dissolved organic nitrogen (DON) in the DOM pools is low, bacteria can take up ammonium to obtain sufficient nitrogen to synthesize cell protein. Thus the amount of NH4+ taken up by bacteria primarily depends on the C:N ratio of the DOMi pools. 

                                                             (16)
where ηji is the uptake ratio between NH4+ and DONi by bacteria Bj, eBSji and eBNj are the gross growth efficiencies of DOCi and DONi, respectively, and (N:C)Bj and (N:C)DOMi are the N:C ratio of bacteria Bj and DOMi pool, respectively (Fasham et al., 1990; Bissett et al., 1999; Tian et al., 2004). ji is zero if the calculated value is negative. In that case, NH4+ will be released from DON uptake. Spitz et al. (2001) split DOM into DOC and DON pools to estimate DON versus NH4+ uptake by bacteria. 

4.4 DOM
The general equation for DOM state variables is: 

               (17)
where rPSji and rPSji are the coefficients of biomass-based and growth-based exudation of DOMi from autotroph Pj. The sum of rPSji and the sum of rPSji  (i=1 to ns) equal the terms rPSj and rPSj in Eq. 1. The second term on the right side of Eq. 17 represents the feeding losses to DOMi from zooplankton including sloppy feeding, defecation and excretion. The third and forth terms are detritus dissolution and bacterial uptakes. The fifth and sixth terms represent transformation between DOM pools, such as aging when DOM is classified according to their bioavailability (Keil and Kirchman, 1994). All DOM pools are described by the same equation (Eq. 17) and changes in the number of DO components can modify the bacterial equation. 
The elemental ratio between nutrients and the unit element (e.g. carbon or nitrogen) in living organisms (i.e. phytoplankton, zooplankton and bacteria) are prescribed with specific value for each organism pools. The elemental ratio in dissolved and detrital pools (i.e., DOM and detritus) are computed according the elemental ratio in each of the source and sink terms. The elemental ratio (aSji) between nutrient Ni and the unit element in DOMj is determined as:

  (18)
where aSji, aPji, aDmi, aZPkji, aZZkli, aZDkmi, aZPkni are the elemental ratio between nutient Ni and carbon in DOMj, in phytoplankton Pj, in detritus Dm, and in feeding losses to DOMj from zooplankton Zk feeding on phytoplankton Pj, on zooplankton Zl, on detritus Dm and on bacteria Bn respetively. The elemental ratios in feeding losses aZPkji from zooplankton Zk feeding on prey Pj is calculated by:

                                                    (19)
where aPji and aZki and aZPkji are the elemental ratio between nutrient Ni and the unit element (e.g. carbon or nitrogen) in prey Pj and zooplankton Zk, and eZPkj is the corresponding growth efficiency (Landry et al., 1993; Tian et al., 2004).

4.5 Detritus
The general equation for detritus is:

    (20)
The first two terms on the right-hand side of Eq. 20 are the mortality of phytoplankton and zooplankton which lead to the formation of biogenic detritus. The third and fourth terms represent aggregation gain and loss formulated as a quadratic function. The fifth the sixth terms are the gain and loss due to particle breakage. The seventh and eighth terms are particle dissolution and sinking and the last term represents zooplankton feeding losses to detritus including both sloppy feeding and defecation and zooplankton consumption. All detritus pools share the same equation with different parameter values such the sinking velocity which is dependent on the size of detritus. The elemental ratio in detritus pools are computed in the same way as for DOM pools.

4.6 Nutrients and micronutrients
The general equation for nutrients Ni is:

   (21)
where aZji, aBki and aPmi are the ratio between element Ni and the unit element in zooplankton Zj, bacteria Bk and phytoplankton Pm respectively. rHj and rBk are the biomass-based respiration of zooplankton Zj and bacteria Bk. rZPjhi, rZZjkh,, rZDjli, rZBjmi are the active respiration coefficient of zooplankton Zj based on grazing amount or assimilation. The active respiration coefficient of nutrient Ni from zooplankton Zj grazing on phytoplankton Ph is determined by:

                                                       (22)
where rHj is the active respiration rate of zooplankton Zj, aPhi and aZji are the ratio between element Ni and the unit element in phytoplankton Ph and zooplankton Zj, and eZPjh is the gross growth efficiency of zooplankton Zj grazing on phytoplankton Ph. The active respiration coefficient of other terms including the active respiration of bacteria aBSkli are also determined by Eq. 22 by using the corresponding terms.
When nitrogen is concerned, NH4+ is released from biological metabolism and respiration. Consequently, Eq. 21 applies to NH4+ and other nutrients except NO3-. NO3- is formed through nitrification of NH4+ as source term and consumed by phytoplankton photosynthesis. The proportion between NH4+ and NO3- uptakes is governed by equations in Table 3. 
Ammonium is nitrified to nitrate through nitrifying bacteria, which is known to be photoinhibited in surface waters (Olson, 1981). Nitrification rate (QAN) is thus linked to light intensity in the model: 

                          (23)
where AN is the nitrification coefficient and Emax is the maximum solar radiation in surface waters (i.e. at noon; Tian et al., 2000). 

4.7 Auxiliary state variables
Auxiliary state variables represent oceanic features that depend on other biological pools, e.g., chlorophyll, bioluminescence, dissolved oxygen, CO2, optics, color, acoustical properties, etc. Only chlorophyll a and bioluminescence are presented below.

3.7.1. Chlorophyll a 
The chlorophyll a concentration depends on phytoplankton biomass and the chlorophyll-a:carbon ratio of phytoplankton. Chl:C ratio can be influenced by daylength (D), irradiance (E), nutrient (N) and temperature (T), i.e., the DENT model. It can also be influenced by other factors such as species and life history (Cullen, 1993; Claustre et al., 1994). Based on 219 paired data from various regions, Cloern et al. (1995) obtained the following empirical relationship between Chl:C ratio and the controlling factors:

                                                    (24)
where A,  and  and empirical constants and N represent nutrients. Laws and Bannister (1980) formulated the Chl:C ratio as a linear function of the phytoplankton growth rate ():

                                                                          (25)
Based on mechanistic analysis, Geider and MacIntyre (1996) deduced a function of Chl:C ratio of phytoplankton photosynthesis as:

                                                                    (26)
where i is the growth rate of phytoplankton Pi, which is forced by nutrient, light (PAR) and temperature (Eq. 2),  is the initial slope between PAR and phytoplakton growth rate (Eq. 5) and max and  are the maximum and actual Chl:C ratio (Geider and MacIntyre, 1996; Geider et al., 1997; Spitz et al., 2001). With this algorithm as the a priori parameterization, the general equation for chlorophyll a can be written as:

            (27) 
The four terms on the right-hand side represents changes in chlorophyll concentration due to phytoplankton growth, aggregation (or mortality), respiration (or exudation), cell sinking and zooplankton grazing, respectively. All the symbols are defined in Eqs. 2 and 26.

4.7.2. Bioluminescence
Bioluminescence is the emission of visible light by living organisms through chemiluminescent reaction. Bioluminescent organisms range from bacteria through protozoa, fungi and copepods to fishes. However, the percentage of bioluminescent to total marine organisms is relatively low (<10% in most cases), and varies depending on exogenous factors (e.g., light intensity, depth, temperature and dissolved oxygen), interspecies reaction (e.g., predation, defense) and biological cycles (e.g., foraging, mating, nursing and schooling; Deheyn et al., 2000). As a primary approximation, bioluminescence potential (BLi) can be represented as a linear function of bacteria and zooplankton biomass, using a specific bioluminescence coefficient for each bacterial (BLj) and zooplankton pool (ZLi):

                                                              (27)

5. ADAPTIVE MODELING AND REAL TIME ECOSYSTEM FORECASTING
Flexible and adaptive modeling implies that models can change in response to ecosystem functioning, with respect to scientific objectives and according to data availability from field observations. Presently, a model is considered to be adaptive if its formulation, classically assumed constant, is made variable as a function of data flows. Adaptive changes can be made in model structure, equations and/or parameter values. For example, a marine ecosystem can be nitrogen, silicate, phosphorus or iron limited. Ecosystem models need to parameterize explicitly the limiting factor in order to simulate adequately the function of the ecosystem under investigation. Seasonal succession in food web structure and ecosystem shift due to climate change and anthropogenic stress require subsequent adaptation from numerical models. 
Marine ecosystems consist of a complex network comprising inorganic nutrients, phytoplankton, bacteria, zooplankton, fish and marine mammals. There is a huge number of species at each trophic level that interact with each other through various physical, chemical and biological processes. It is unrealistic to include all chemical elements and biological populations in a single numerical model. One challenge in ecological modeling is to integrate state variables and to combine processes. Even within a single ecosystem, integration of state variables and combination of processes can be carried out in different ways in respect to different scientific objectives. A specific scientific question can also be addressed at different levels, using minimum, optimal and maximum critical state variables and processes. 
Our generalized model can be adaptive at different levels. For example, when ns (number of DOM state variables), nb (bacterial state variables), nd (detritus state variables) and na (auxiliary state variables) are assigned to zero and nn (nutrients), np (phytoplankton) and nz (zooplankton) are assigned to 1, the generalized biological model becomes the classical NPZ model. If nn is assigned to 2, the generalized model represents the McGillicuddy model (McGillicuddy et al., 1995), and if nd is assigned to 1, the generalized represents the Anderson model (Anderson et al., 2000). The Dussenberry model (Besiktepeet al., 2003) necessitates the addition of the chlorophyll a auxiliary state variable and the Fasham model (Fasham et al., 1990) requires the addition of one DOM, bacteria and detritus state variable, respectively (i.e. ns=nb=nd=1). When np, nz and nd are assigned to 2 (i.e., two state variables of phytoplankton, zooplankton and detritus, respectively), the generalized model becomes the Tian model (Tian et al., 2000, 2001). 
Four types of functional response to prey density have been observed and parameterized in previous studies: rectilinear, hyperbolic, sigmoid or threshold and prey-toxic responses. Different taxonomic groups have different feeding modes and the feeding mode of one taxonomic group can change with respect to prey type and density. Thus, different parameterization of zooplankton feeding can be used when there is a shift in zooplankton communities and prey availability. Mucous net feeders (e.g., salps, doliolids and appendicularia) passively collect food available in the feeding current without any selection so that a rectilinear response can be applied. Herbivorous grazers (e.g., calanoid copepods) are typically suspension feeders, which can be described by a hyperbolic function, i.e., the Ivlev or Michaelis-Menten function. Carnivorous predators (e.g., Euphausiids) can be more adequately described by a sigmoid function (Moisan and Hofmann, 1996). Field studies suggest that certain copepods are opportunistic feeders, concentrating their feeding efforts on the most abundant prey (Wilson, 1973; Richman et al., 1977; Pollet, 1978 and Gismerik and Andersen, 1997), although no-selectivity grazing of copepods has also been reported (Mullin et al., 1975; Kleppel, 1993). Several copepod species have turned out to be omnivores, switching between a secondary and a tertiary position in the food web (Stoecker and Capuzzo, 1990). Kiorboe et al. (1996) observed that the copepod Acartia tonsa has two feeding modes: generating a feeding current for immobile prey (diatom) and ambushing mobile prey (ciliates). These different feeding behaviors provide the biological background for adaptive modeling at the parameterization level.
Real-time forecasting of marine ecosystems is of increasing importance in marine sciences. Climate changes and anthropogenic stresses are becoming more and more acute, and these coupled with the potential destabilization resulting from extreme weather events have the potential to disturb ecosystem functioning and health. Mesoscale eddies can generate episodic and complex distribution of biological features. Harmful algal development (redtides), aquaculture farms, oil spills, environmental perturbation, marine resource management, conservation and exploitation and certain military applications all necessitate real-time ecosystem forecasting. 
A generalized biological model can be specifically conceived and developed for this purpose. Our version of this generalized model is coupled with the Harvard Ocean Prediction System (HOPS). HOPS is an integrated system of data assimilation schemes and a suite of coupled interdisciplinary (physical, optical, biogeochemical –ecosystem) dynamic models (Robinson et al., 1998; Robinson, 1999). Real-time and at sea forecasting have been conducted for more than a decade at twenty sites in the Atlantic and Pacific Oceans and the Mediterranean Sea (Robinson, 1996; Robinson et al., 1996). The flexibility and adaptability of this generalized model will enable significant progress in real-time forecasting of marine ecosystems.

6. CONCLUSIONS
Data-driven adaptive modeling and real-time forecast of marine ecosystems is an increasing challenge in marine sciences. In the context of global climate warming and increasing anthropogenic stress, marine ecosystems are becoming more and more vulnerable and uncertain. Eutrophication, harmful algal blooms, red tide, oil spills, toxic element pollution can all deteriorate the health and functioning of marine ecosystems. 
Traditionally marine ecosystems are modeled with simulation models of fixed structure and static data inputs. However, forecasting evolving marine ecosystems, in space and time, in response to environmental perturbation, necessitate rapid response of dynamic data-driven adaptive simulation models. 
We have developed the first version of a generalized and flexile prognostic model for marine biogeochemical-ecosystem processes. The model structure was specifically designed for adaptive modeling and real-time ecosystem forecast, with an initial focus on pelagic mid-latitude oceans. Marine ecosystems function through a series of highly integrated interactions between biota and the habitat and dynamic links among food web components. Based on the trophic and biogeochemical dynamics, the generalized model is composed of 7 functional groups: nutrients, phytoplankton, zooplankton, detritus, dissolved organic matter, bacteria and auxiliary state variables.  In most biological models, the number of compartments is fixed, with each compartment representing a specific biological community or species. In our generalized model however, the number of components in each functional group is a variable and can be chosen by users for each application. By using a subset of the state variables, one can simulate various ecosystems. The potential combinations and actual structures of the generalized model are large. Importantly, the model can be adaptive, i.e. the state variables, model structures and parameter values can change in response to field measurements, ecosystem function and scientific objectives. The computational version of the model has been implemented and coupled with HOPS. The resulting coupled forecasting system is currently applied to the Monterey Bay area to study biological response to upwelling events at the ecosystem level.
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Table 1. Parameterization of Light forcing on Phytoplankton growth rate ((E): phytoplankton growth rate; E: PAR; Pm: Maximum growth rate; Eopt: optimal PAR; : Chlorophyll a: carbon ratio; : initial slope; a, ,  , n and  are constants). (N.B.: Pm/ a =Eopt so both were used in the literature; Drawback: More parameters, more flexibles, but more unknowns). 

	Function
	References

	
	

	(1) Rectilinear function:


	Blackman, 1905; Riley, 1946; Jassby and Platt, 1976; Platt et al., 1977

	(2) Michaelis-Menten (MM) function:


	Baly, 1935; Tamiya et al., 1953; Caperon; 1967; Hofmann and Ambler, 1988; Kiefer and Mitchell, 1993; Semovski et al., 1996; 

	(3) Smith function:


	Smith, 1936; Laws and Bannister, 1980; Evans and Parslow, 1985; Fasham et al., 1990; Hurrt and Armstrong, 1996; Spitz et al., 2001; Fennel et al., 2002

	(3) Generalized MM function:


	Bannister, 1979; Laws and Bannister, 1980 (n=1 eqivalent to Baly, n= eqivalent Backman linear)

	(4) Vollenweider function:


	Vollenweider, 1965; Fee, 1969; Wroblewski, 1977; Parsons et al., 1984

	(5) Peeters and Eilers function:


	Peeters and Eilers, 1978; Andersen and Nival, 1987; Vichi, ERSEM report

	(6) Webb function:


	Webb et al., 1974; Doney et al., 1996; Denman et al., 1998; Gao et al., 2000

	(7) Platt function:


	Platt et al., 1980; Moisan and Hofmann, 1996; Leonard et al., 1999; Lancelot et al., 2000; Chifflet et al., 2001

	(8) Steele function: 


	Steele, 1962; Radach and Moll, 1993; Backhaus et al., 1999; Kawamiya et al., 2000

	(9) Parker function:


	Parker, 1974

	(10) Hyperbolic tangent function:


	Jassby and Platt, 1976; Keller and Riebesell, 1989; Frost, 1993

	(11) Modified hyperbolic function:


	Bissett et al., 1999

	(12) Mechanistic function:


	Saksaug and Kiefer (1989); Green et al., 1991Proceedingd of Indian Academy of Sciences



Table 2. Parameterization of nutrient limitation on Phytoplankton growth rate (N: nutrient concentration in sea water; K: half-saturation constant; Q: internal nutrient content in cells (or nutrient cell quota); KQ: threshold of internal nutrient content below which phytoplankton growth rate is zero; N0: threshold of nutrient concentration is sea water below which phytoplankton growth rate is zero;). The Michaelis-Menten function (Eq. 1) calculates the phytoplankton growth rate based on nutrient concentration in sea water whereas the Droop function (Eq. 3) is based on internal nutrient content in cells. 

	Function
	References

	
	

	(1) Michaelis-Menten (MM) function:

 
	Caperon, 1967; Dugdale (1967); Kiefer and Mitchell, 1993; Semovski et al., 1996; Evans and Garc Marra et al., 1990; Radach and Moll, 1993; Davidson, 1996; Flynn, 1998; Backhaus et al., 1999; Napolitano et al., 2000; Chifflet et al., 2001; Franks an Chen, 2001on, 1997; Gao et al., 2000

	(2) Modified MM function:


	Fennel, 1995; Newmann, 2002

	(3) Droop function :


	Droop, 1973; Marra et al., 1990; Haney and Jackson, 1996; Lange, K. and F.J. Oyarzun 1992; Oyarzun, F.J. and K. Lange 1994

	(4) Combined MM and Droop function:


	Caperon and Myer, 1972; Paasche; 1973; Dugdale, 1977; Lynn et al., 1999



Table 3. Parameterization of ammonium inhibition on nitrate uptake (KNH4+ and KNO3- are half-saturation constants and NH0 and NO0 are thresholds for NH4+ and NO3- uptake, respectively). 
	Function
	References

	
	

	(1) Walsh fucntion:


	Walsh, 1975

	(2) Wroblewski:


	Wroblewski, 1977; Hofmann and Ambler, 1988; Fasham et al., 1990; Bissett et al., 1999; Leonard et al., 1999; Napolitano et al., 2000; Chifflet et al., 2001; Skliris et al., 2001

	(3) Hurrt and Armstrong:


	Hurrt and Armstrong, 1996

	(4) O’Neil et al.:


	O’Neill et al., 1989; Fasham, 1995; Eigenheer et al., 1996

	(5) Spitz:


	Spitz et al. (2001)

	(6) Parker:


	Parker, 1993; Loukos et al., 1997; Christian et al.,202; Moore et al., 2002; Tian et al., 2001

	(7) Yajnik:


	Yajnik and Sharada, 2003




 Table 4. Parameterization of temperature forcing on biological rate (Topt: optimal temperature; T0 (T0L, T0H): temperature (low, high) under which the corresponding biological rate is zero; Q10: the rate at which biological rate increases over 10 degree increase of temperature; a, b, c R: contants).

	Function
	References

	
	

	(1) Linear function:
(T) =a+bT
	Dam and Peterson, 1988

	(2) Log linear function;
(T) =a+blog(T+c)
	Dam and Peterson, 1988

	(3) Power function:
(T) =a(T+c)b
	Eppley, 1972; Dam and Peterson, 1988

	(4) Exponential:
i=a(b)T
	Dam and Peterson, 1988; Anderson et al., 2000

	(5) Arrhenius function:


	Monod, 1941; Packard et al., 1971; Goldman and Capenter, 1974; Dugdale, 1977; Raven and Geider 1988

………………………………………………………………….

	(8) Exponential function:


	Riley, 1944; Huntley and Lopez, 1992; Radach and Moll, 1993; Bissett et al., 1999; Leonard et al., 1999; Kawamiya et al., 2000; Tian et al., submitted

	(7) Q10 :


	Toda et al., 1987; Doney et al., 1996; Gao et al., 2000

	(9) Temperature inhibition:


, 
	Thebault (1985), Andersen and Nival (1988) and Skliris et al. (2001)

	(6) Beta function:
(T)=(T-T0L)a(T0H-T)b
	Carlotti et al., 2000

	(10) Exponential product:


	Kamykowski and McCollum, 1986.

	(11) Modified exponential:


	Lancelot et al. (2002)




Table 5. Parameterization of grazing on a single type of prey (gmax: maximum grazing rate; P0 threshold below which grazing is zero; , : constant).
	Function
	References

	
	

	(1) Linear function:


	Riley, 1946; Gamble, 1978; Dagg and Grill 1980; Klein and Steele, 1985; Gao et al., 2000

	(2) Rectilinear function:


	Frost, 1972; Armstrong, 1994; Mayzaud et al., 1998

	(3) Ivlev function:


	Ivlev, 1955; Andersen and Nival, 1988; McGillicuddy et al., 1995; Doney et al., 1996; Robinson, 1996; Besiketepe et al., 2003

	(4) Modified Ivlev function:


	Rashevsky, 1959; Kiorboe et al., 1982

	(5) Ivlev function with threshold:


	Worblewski, 1977; Parsons, 1984; 

	(6) Combined linear and Ivlev function:


	Rogers, 1972; Mayzaud and Poulet, 1978; Franks et al., 1986

	(7) Mechanistic disc function:


	Holling, 1959; Chesson, 1983; Verity, 1991; Gentleman et al., 2003

	(8) Michaelis Menten Function:


	Monod, 1949; Caperon and Myer, 1872; 1967; Radach and Moll, 1993; Strom and Loukos, 1998; Gao et al., 2000; Napolitano et al., 2000

	(9) Threshold MM function:


	Walsh, 1975; Evans, 1988; Frost, 1993

	(10) Weight dependent function:


	Steele and Mullin, 1977

	(11) Modified MM function:


 or
	Denman et al., 1998; Oschilies et al., 2000

	(12) Prey toxicity grazing


	Van Gemerden, 1974; Gentleman et al., 2003

	(13) Generalized MM function:


	Real, 1977; Steele and Henderson 1981; Fasham, 1995




Table 6. Parameterization of grazing on multiple types of prey with passive selection (gmax: maximum grazing rate; K: Half-saturation constant (but saturation constant in Eq. 1); P0 threshold below which grazing is zero; pi: preference coefficient; , a, : constant). 
	Function
	References

	
	

	(1) Rectilinear


, 
	Armstrong, 1994

	(2) Combined linear and Ivlev function:


	Leonard et al., 1999

	(3) Ivlev function with interference between prey types:


, with  
	Hofmann and Ambler, 1988

	(4) Mechanistic disc function:


	Murdoch, 1973; Murdoch and Oaten, 1975; Holt, 1983; Verity, 1991;

	(5) Michaelis Menten Function:


	Moloney and Field, 1991

	(6) Threshold MM function:


, with 
	Evans, 1988; Lancelot et al., 2000; Leising et al., 2003

	(7) Modified MM function:


	Verity, 1991; Fasham et al. (1999); Strom and Loukos, 1998; Tian et al. (2001)





Table 7. Parameterization of grazing on multiple types of prey with active switching selection (gmax: maximum grazing rate; K: Half-saturation constant; P0 threshold below which grazing is zero; pi: preference coefficient; , a, : constant). 
	Function
	References

	
	

	(1) Switching MM predation:


	Fasham et al., 1990; Strom and Loukos, 1998; Pitchford and Brindley, 1999; Spitz et al., 2001

	(2) Mechanistic disc switching predation:


	Chesson, 1983

	(3) Generalized switching function:


	Tansky, 1978; Matsuda et al., 1986

	(4) Generalized switching function:


	Vance, 1978

	(5) Generalized switching MM function:


	Gismervik and Andersen (1997)

	(6) Generalized switching MM function:


	This work




Table 8. Parameterization of zooplankton mortality (m: mortality; m0: minimum mortality; K: half-saturation constant; P0: threshold below which zooplankton suffer from starvation).
	Function
	References

	
	

	(1) Linear


	Evans and Parslow, 1985; Tian et al., 2000

	(2) Quadratic


	Steele and Henderson, 1981; Denman and Gargett, 1981; Fasham, 1995.

	(3) Hyperbolic


	Frost, 1987; Ross et al., 1994; Tian et al., 2003

	(4) Sigmoidal:


	Malchow, 1994; Edwards and Yool, 2000

	(5) Food-dependent rectilinear mortality:


	Andersen and Nival, 1988 (due to starvation)

	(6) Food-dependent exponential moartality:


	Andersen et al., 1987

	(7) Temperature-dependent:


	Kawamiya et al., 2000

	(8) Generalized:


	Edwards and Yool, 2000




Table 9. Parameterization of zooplankton excretion/respiration (g(P): ingestion; W: body dry weight; T: temperature; P0: threshold; Emax and Emin: maximum and minimum of egestion rate; a, b,and c: constants).
	Function
	References

	
	

	(1) Linear function


	Fasham et al., 1990

	(2) Food ingestion dependent:


	Walsh, 1975; Tian et al., 2001

	(3) Linear and ingestion dependent:


	Steele, 1974; Carlotti and Sciandra, 1989

	(4) Food concentration dependent:


	Hofman and Ambler, 1988

	(5) Temperature dependent:


	Andersen et al., 1987

	(6) Temperature dependent (phyopl.):


	Kawamiya et al., 2000

	(7) Body weight dependent:


	Moloney and Field, 1989

	(8) Egestion:


	Wroblewski, 1977; Ohuchi et al., 1986





Table A-1. A priori model equations without physical processes.
	Phytoplankton
	

	


where 








	(A1)

	Zooplankton
	

	


where 












	(A2)

	Bacteria
	

	







where  ; ;  ; ;    ; 
	(A3)

	DOM
	

	

	(A4)

	Detritus
	

	
 
	(A5)

	Nutrients
	

	

	(A6)

	Auxiliary state variables
	

	Chlorophyll a


Bioluminescence


	(A7)



	
Table A-2. Model variables (listed first) and parameters (units are to be defined for each application so that they can be different from that listed). 

	Symbol
	State variable
	Value (unit)

	
	
	

	Ai
	Auxiliary state variables
	To define

	Bi
	Bacteria
	mmol C m-3

	Li
	Bioluminescence
	W

	Chl
	Chlorophyll a
	mg Chl m-3

	Di
	Detritus
	mmol C m-3

	DOMi
	Dissolved organic carbon
	mmol C m-3

	Ni
	Nutrients
	mmol Ni m-3

	Pi
	Phytoplankton
	mmol C m-3

	Zi
	Zooplankton
	mmol C m-3

	
	
	

	Symbol
	Functional variable
	Value (unit)

	
	
	

	aDi
	Ratio between nutrient Ni and the unit element in D
	Dimensionless

	aSi
	Ratio between nutrient Ni and the unit element in DOM
	Dimensionless

	rd
	Random number equals to 1 or -1
	Dimensionless

	Rj
	Total food abundance for mesozooplankton Zj
	Dimensionless

	gj
	Grazing rate of zooplankton Zj or Bj
	

	GBlj
	Consumption of Bj by Z1
	mg C s-1

	GDOMji
	Consumption of DOMi by Bj
	mg C s-1

	GDji
	Grazing amount of Zj on Di
	mg C s-1

	GPji
	Grazing amount of Zj on Pi
	mg C s-1

	GZjj-1
	Predation amount of Zj on Zj-1
	mg C s-1

	E0
	PAR at the sea surface 
	W m-2 (watt)

	E(z)
	PAR at depth z
	W m-2 (watt)

	Ntf
	Nitrification
	mmol N m-3 s-1

	i
	Chl:carbon ratio of phytoplankton Pi
	Dimentionless

	t
	Time
	s (hour)

	T
	Temperature
	°C

	i
	Growth rate of phytoplankton Pi
	mg C mgChl-1 s-1

	i(0)
	Growth rate of phytoplankton Pi at 0 C
	mg C mgChl-1 s-1

	i(Nj)
	Nutrient Nj limitation of the growth rate of Pi
	Dimensionless

	i(E)
	PAR-dependent growth rate of Pi
	mg C mgChl-1 s-1

	i(T)
	Temperature forcing on the growth rate of Pi
	Dimentionless

	wF
	Food-induced MeZ vertical migration
	m s-1

	wL
	Light-induced MeZ vertical migration
	m s-1

	z
	Depth 
	m

	
	
	

	Symbol
	Parameter
	Value (unit)

	
	
	

	aPi
	Ratio between nutrient Ni and the unit element in P
	Dimensionless

	aZi
	Ratio between nutrient Ni and the unit element in Z
	Dimensionless

	aBi
	Ratio between nutrient Ni and the unit element in B
	Dimensionless

	
	Initial slope of photosynthesis-radiation function for Pi
	mgC mgchl-1 s-1 (Wm-2)-1

	aPDi
	Mortality and aggregation of phytoplankton Pi
	s-1

	aZDj
	Mortality of zoooplankton Zj
	s-1

	DDj
	Aggregation coefficient of Dj
	(mg C m-3)-1 s-1

	AN
	Nitrification rate
	s-1

	BLj
	Bioluminescence of bacteria Bj
	W (mmol C)-1

	Ddj
	Disaggregation coefficient of Dj
	s-1

	DS11
	DOM1 formation from dissolution of D1. 
	s-1

	rPSi1
	DOM1 exudation from phytoplankton Pi. 
	s-1

	SSjj+1
	Aging of DOMj to DOMj+1 
	s-1

	ZLj
	Bioluminescence of bacteria Zj
	W (mmol C)-1

	
	Photoinhibition coefficient of phytoplankton Pi
	mgC mgchl-1 s-1 (Wm-2)-1

	eBSji
	Gross growth efficiency of Bj on DOMi
	Dimensionless

	eZDjk
	Gross growth efficiency of Zj grazing on Dk
	Dimensionless

	eZPji
	Gross growth efficiency of Zj grazing on Pi
	Dimensionless

	eZZjj-1
	Gross growth efficiency of Zj predation on Zj-1
	Dimensionless

	gmaxj
	Maximum grazing rate of zooplankton Zj or Bj
	s-1

	Kij
	Half-saturation constant of Nj for Pi
	mmol Nj m-3

	nb
	Total number of bacterial state variables
	dimensionless

	nd
	Total number of detrital state variables
	dimensionless

	nn
	Total number of nutrient state variables
	dimensionless

	np
	Total number of phytoplankton state variables
	dimensionless

	ns
	Total number of DOM state variables
	dimensionless

	nz
	Total number of zooplankton state variables
	dimensionless

	Pmi
	Theoretical maximum growth rate of Pi
	mg C (mg Chl)-1 s-1

	pDjk
	Preference coefficient of Zj on Dk
	(mmol C m-3)-1

	pSji
	Preference coefficient of Bj on DOMi
	(mmol C m-3)-1

	pPji
	Preference coefficient of Zj on Pi
	(mmol C m-3)-1

	pZjj-1
	Preference coefficient of Zj on Zj-1
	(mmol C m-3)-1

	
	Exponential coefficient of NH4+ inhibition on NO3-
	(mmol N m-3)-1

	maxi
	Maximum Chl:carbon ratio of phytoplankton Pi
	dimensionless

	Q10i
	Q10 of the growth rate of a biological pool
	dimensionless

	QDk
	Threshold of Dk for grazing
	mmol C m-3

	QSi
	Threshold of DOMi for bacterial consumption
	mmol C m-3

	QPi
	Threshold of Pi for grazing and mortality
	mmol C m-3

	QZj-1
	Threshold of Zj-1 for predation and mortality
	mmol C m-3

	rBj
	Metabolism of bacteria Bj. 
	s-1

	rPi
	DOM exudation from phytoplankton Pi
	s-1

	rZj
	Respiration of zoooplankton Zj
	s-1

	j
	Exponential coefficient of Zj grazing
	Dimensionless

	si
	Sinking velocity of detritus Di
	m s-1

	Topti
	Optimal temperature for Pi (or Zi or Bi)
	C

	wbj
	Slope between light change and Zj migration
	0.04 m h-1

	wmaxj
	Maximum speed Zj vertical migration
	20 m h-1



[image: Gmodel2.jpg]
Fig. 1. Generalized biological model. N: Nutrients; P: Phytoplankton; Z: Zooplankton; D: Biogenic detritus; DOM: Dissolved organic matter; B: Bacteria; A: Auxiliary state variables; nn, np, nz, nd, ns and na are total numbers of state variables of the corresponding functional groups. 
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Fig. 2: Example of processes interface: zooplankton grazing on phytoplankton (: preference coefficient). 
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