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Parameter Estimation and Adaptive Modeling Studies in

Ocean Mixing

by

Eric Vincent Heubel

Submitted to the Department of Mechanical Engineering
on August 8, 2008, in partial fulfillment of the

requirements for the degree of
Master of Science in Mechanical Engineering

Abstract

In this thesis, we explore the different methods for parameter estimation in straightfor-
ward diffusion problems and develop ideas and distributed computational schemes for the
automated evaluation of physical and numerical parameters of ocean models. This is one
step of “adaptive modeling.” Adaptive modeling consists of the automated adjustment of
self-evaluating models in order to best represent an observed system. In the case of dy-
namic parameterizations, self-modifying schemes are used to learn the correct model for a
particular regime as the physics change and evolve in time.

The parameter estimation methods are tested and evaluated on one-dimensional tracer
diffusion problems. Existing state estimation methods and new filters, such as the unscented
transform Kalman filter, are utilized in carrying out parameter estimation. These include
the popular Extended Kalman Filter (EKF), the Ensemble Kalman Filter (EnKF) and other
ensemble methods such as Error Subspace Statistical Estimation (ESSE) and Ensemble
Adjustment Kalman Filter (EAKF), and the Unscented Kalman Filter (UKF). Among the
aforementioned recursive state estimation methods, the so-called “adjoint method” is also
applied to this simple study.

Finally, real data is examined for the applicability of such schemes in real-time fore-
casting using the MIT Multidisciplinary Simulation, Estimation, and Assimilation System
(MSEAS). The MSEAS model currently contains the free surface hydrostatic primitive
equation model from the Harvard Ocean Prediction System (HOPS), a barotropic tidal
prediction scheme, and an objective analysis scheme, among other models and developing
routines. The experiment chosen for this study is one which involved the Monterey Bay
region off the coast of California in 2006 (MB06). Accurate vertical mixing parameteriza-
tions are essential in this well known upwelling region of the Pacific. In this realistic case,
parallel computing will be utilized by scripting code runs in C-shell. The performance of
the simulations with different parameters is evaluated quantitatively using Pattern Corre-
lation Coefficient, Root Mean Squared error, and bias error. Comparisons quantitatively
determined the most adequate model setup.

Thesis Supervisor: Pierre F. J. Lermusiaux
Title: Associate Professor
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Chapter 1

Introduction

1.1 Background and Motivation

In the past several decades the stochastic methods of control have found more

and more application in the fields of prediction and forecasting, parameter estima-

tion, and model identification. With improvements in estimation methods and the

growing complexity of existing models, it is necessary to establish the applicability

of various schemes with respect to their complexity and computational efficiency. In

the particular study, the uncertainty in the appropriate model, nonlinear nature of

the parameter estimation problem for dynamically evolving systems, and the need for

adequate means of measuring skill provide several issues to address in the selection

of the ideal ocean modeling system. This, coupled with what resources are at hand

and the desire for complete system automation, will set the proving ground for the

system design of a fully automated adaptive model. The foundation which will be

built upon is the Havard Ocean Prediction System (HOPS) Primitive Equation code

developed at Harvard for regional ocean forecasts. The new MIT Multidisciplinary

Simulation, Estimation, and Assimilation System (MSEAS) adds a new Objective

Analysis package and barotropic tidal component model, among other packages. The

software has been installed on a 266 CPU Verari system computer tower.
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1.2 Goals

The main objectives in this thesis are to learn about parameter estimation meth-

ods through their implementation in simple idealized diffusion problems, then to im-

plement a first version of the computational system for the automated performance

evaluation of four-dimensional ocean models for various parameters using distributed

computing. Specifically, the state estimation algorithms introduced in the next chap-

ter are applied for the purpose of parameter estimation and results are compared to

numerical and analytical solutions of straightforward test cases in one-dimensional

tracer diffusion. The results of the simple application are utilized as guidance for

the quantitative selection of physical and numerical parameters in the case of a four-

dimensional ocean modeling system, MSEAS. Distributed computing software is uti-

lized on advanced high performance computing machines in order to produce and

analyze a variety of MSEAS ocean simulation options. For the analysis of the results

MATLAB R© software (Lermusiaux and Haley, Personal communication) is used and

further developed as a means to compare complex four-dimensional ocean model out-

put fields to irregularly-sampled, non-equispaced ocean data. These tools are used

specifically to evaluate quality of barotropic tidal estimates in Monterey Bay 2006

regional ocean experiment. Results obtained will also help identify the quality of the

set of numerical and physical parameters in Monterey Bay. The analysis of this par-

ticular region will aid in structuring a standard method in quantitative performance

evaluation for selection of the best model parameters or models in various aspects of

multidisciplinary ocean modeling.

14



Chapter 2

Parameter Estimation Methods

The purpose of this chapter is to explore the various existing methods of parameter

estimation. In the future, these methods could be used for quantitatively selecting the

most adequate closure, or sub-grid mixing model, in ocean simulations for adaptive

modeling. The future goal is to reach the level at which the chosen model will be

altered in accord with gathered observations as the dynamics evolve. Though this

may be computationally intensive for the purpose of on-line adaptation, off-line results

should at least identify the most prominent models for different regimes in various

types of regions in the world oceans. The chosen parameter estimation methods

and adaptive schemes are the popular Extended Kalman Filter (EKF), a recursive

algorithm; the so-called “adjoint method,” a type of “batch” algorithm; as well as

Ensemble-based, and Unscented Transform methods. The first two require some

linearization of the underlying dynamics of the system modeled. The latter methods,

on the other hand, learn to represent the true nonlinear system by analyzing inputs

and outputs of a variety of runs and parameters.

2.1 Background

As noted by Gelb et al. (1974) the problem of identifying constant parameters in

a system of equations can be considered a special case of the general state estimation

problem. The state of the system is augmented to include the unknown parameters of

15



interest in the dynamics. Naturally, such a procedure will make the state estimation

problem non-linear, as will be made apparent in the following chapter. When utilizing

this extension of state estimation methods, parameters involved in the system in

question need not be constant; these may also be represented as a dynamic function

of a stochastic forcing. By appropriately choosing the variance of this element of

noise, the unknown parameter may be roughly limited to its expected range. Gelb

et al. (1974) suggests a variance of the square of the expected range of deviation in

the parameter divided by a characteristic time interval (Qi =
∆a2

i

∆t
). An overview of

the general state estimation methods is therefore in order.

2.1.1 Linear Dynamics

Continuous

If a linear dynamic system is concerned, a set of equations in the form of (2.1)

is to be solved. Where the notation of Professor Harry Asada in his Identification,

Estimation, and Learning course (MIT course ID 2.160) is used.

ẋ(t) = F(t)x(t) + G(t)w(t) + L(t)u(t)

z(t) = H(t)x(t) + v(t)
(2.1)

Where z is the observed output, v is measurement noise, x is the state, w is process

noise, u is a control vector variable, which will quickly be ignored for the purposes

of this study. The control term is dropped in the extension of the state estimation

methods to parameter estimation as the goal is to minimize model uncertainty, rather

than control the ocean response. To obtain the system state transition matrix of

interest, the dynamic equations are first simplified. Assuming that all noise terms are

zero and setting all control variables to zero, the homogeneous state equation remains

(2.2).

ẋ(t) = F(t)x(t) (2.2)

16



Taking all inputs to be originally zero, a unit impulse is applied to the state

xi(t0) =



0
...

δ(t0)
...

0



1
...

i
...

n

and the system is integrated to obtain the response

ϕi(t, t0) =



x1(t, t0)i

x2(t, t0)i
...

xn(t, t0)i


By properties of linearity, superposition and scaling can be used to determine the

complete state of the system for any initial condition. These response vectors can be

combined into a matrix as

Φ = [ϕ1(t, t0), ϕ2(t, t0), . . . , ϕn(t, t0)] ,

and so the full response is simplified to a matrix multiplication

x(t) = Φ(t, t0)x(t0).

17



In the above formulas Φ(t, t0) is known as the transition matrix. A few properties of

this particular matrix are

dϕi(t, t0)

dt
= F(t)ϕi(t, t0)

dΦ(t, t0)

dt
= F(t)Φ(t, t0)

Φ(t, t) = I

Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0)

Φ(t, t0)−1 = Φ(t0, t)

for the homogeneous equation in the absence of external forcings. For stationary

systems, F(t) = F and is time invariant. In this case, the Taylor series expansion of

x(t) about x(t0) using ẋ(t0) = Fx(t0), ẍ(t0) = Fẋ(t0) = F2x(t0), and so forth leads

to

x(t) = x(t0) + F(t− t0)x(t0) +
F2(t− t0)2

2!
x(t0) + . . . .

That is

x(t) =

[
I + F(t− t0) +

F2(t− t0)2

2!
+ . . .

]
x(t0)

= exp {F(t− t0)}x(t0).

So Φ(t− t0) = eF(t−t0).

Discrete Time

Transitioning to the discrete case, the dynamical and measurement models are

(2.3) in the absence of control term (u) and taking the process noise propagation

matrix as the identity.

xk = Φk−1xk−1 + wk−1

zk = Hkxk + vk
(2.3)

Where Φk−1 is the discretized version of the transition or propagation matrix (Φk−1 =

Φ(tk, tk−1)). A disruption of the homogeneous state equation occurs when a controlled

input or noise is introduced to the system through u or w that excites the system

response. Looking at (2.1) these inputs are disruptions of dx
dt

and as such can be carried

18



through the integrator as perturbations in the state. The response to a control input,

following the methodology presented in Gelb, 1974, is represented by

∆xi(τ) = (L(τ)u(τ))i ∆τ.

It is an impulse input in the state for a differential element of time ∆τ . The propa-

gated effect can then be represented by carrying this impulse through the integration

(represented as ∆x(t)).

∆x(t) = Φ(t, τ)L(τ)u(τ)∆τ

The complete effect of the control input on the state can be viewed as a sum of short

duration impulse disruptions and in the limit of ∆τ → 0, this becomes an integral.

For the forced system:

x(t) =
∫ t

−∞
Φ(t, τ)L(τ)u(τ)dτ

If an initial state is known prior to the start of the control input at t0, then the

solution can be represented as

x(t) = x(t0) +
∫ t

t0
Φ(t, τ)L(τ)u(τ)dτ

The continuous system can thus be easily rewritten in a discrete form where the

dynamic equation in (2.1) is integrated and measurements are made discretely to

obtain

x(t) = Φ(t, t0)x(t0) +
∫ t

t0
Φ(t, τ)G(τ)w(τ)dτ +

∫ t

t0
Φ(t, τ)L(τ)u(τ)dτ

xk+1 = Φkxk + Γkwk + Λkuk

zk = Hkxk + vk

(2.4)

The integrals in (2.4) have been evaluated at tk+1, where Φk = Φ(tk+1, tk), Γkwk =∫ tk+1
tk Φ(tk+1, τ)G(τ)w(τ)dτ , and Λkuk =

∫ tk+1
tk Φ(tk+1, τ)L(τ)u(τ)dτ (Gelb et al.,

1974).

19



2.1.2 Least Squares

In direct least-squares estimation, the minimum of the cost function

J = (z−Hx̂)T (z−Hx̂)

is sought, when provided with a perfect measurement z (i.e. v̂ = 0). If the mea-

surement vector is of equal or greater dimension than the state vector, this problem

simplifies to
∂J

∂x̂
= 0

yielding

x̂ = (HTH)−1HTz.

If the minimum of a weighted sum of squares (weighted least square) is desired instead,

J becomes

J = (z−Hx̂)TR−1(z−Hx̂)

and

x̂ = (HTR−1H)−1HR−1z.

The problem of solving for the minimum cost with this metric can be derived de-

terministically and is the manner in which the “adjoint method” performs state es-

timation (Bannister, 2001). Here, an analogy is drawn from the above mentioned

performance metric (objective function) to the Kalman Filter. The Kalman Filter is

derived to minimize the trace of the a posteriori error covariance matrix and does

so recursively by only carrying forward information about the current estimate and

error covariance. As such, both methods seek to minimize some form of an L2 norm.

2.1.3 Kalman Filter

In the Kalman filter approach, a better estimate is sought in a recursive manner by

combining the current state estimate in a linear fashion with the current measurement

in the form of (2.5).

x̂k(+) = K1
k x̂k(−) + K2

kzk (2.5)
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where x̂(−) is the a priori state estimate and x̂(+) the a posteriori. Taking the

estimates to be a deviation about the truth (x̂k = xtk + x̃k), the equation can be

rewritten for the estimation error as (2.6).

x̃k(+) =
[
K1
k + K2

kHk − I
]
xtk + K1

k x̃k(−) + K2
kvk (2.6)

Having unbiased measurements sets E[vk] = 0. Additionally, if the a priori error,

x̃(−), is unbiased, the formulation requires that the a posteriori error also be unbi-

ased, thus forcing the remaining nonzero term xtk to have a coefficient of zero, i.e.

K1 = I −K2H. Making this substitution into (2.5) and replacing K2 with K, the

equation is simplified.

x̂k(+) = (I−KkHk)x̂k(−) + Kkzk

or

x̂k(+) = x̂k(−) + Kk(zk −Hkx̂k(−))

(2.7)

By subtracting from (2.7) the true state the equation for the estimate error is obtained.

x̃k(+) + xk︸ ︷︷ ︸
x̂k(+)

= x̃k(−) + xk︸ ︷︷ ︸
x̂k(−)

+Kk(Hkxk + vk︸ ︷︷ ︸
zk

−Hk(x̃k(−) + xk︸ ︷︷ ︸
x̂k(−)

))

x̃k(+) + xk = x̃k(−) + xk + Kk(Hkxk + vk −Hk(x̃k(−) + xk))

x̃k(+) = x̃k(−) + Kk(Hkxk + vk −Hkx̃k(−)−Hkxk)

x̃k(+) = x̃k(−) + Kk(vk −Hkx̃k(−))

From this result, it is then possible to compute the new error covariance from the old

by taking the expectation of this difference multiplied by its transpose (2.8).

E
[
x̃k(+)x̃k(+)T

]
= E

{
[(I−KkHk)x̃k(−) + Kkvk][(I−KkHk)x̃k(−) + Kkvk]

T
}

Pk(+) = E
{

(I−KkHk)x̃k(−)x̃k(−)T (I−KkHk)
T

+(I−KkHk)x̃k(−)vTk KT
k + Kkvkx̃k(−)T (I−KkHk)

T

+ Kkvkv
T
k KT

k

}
(2.8)
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Where the substitution of E[x̃k(−)x̃k(−)T ] = Pk(−) can then be made, along with

that of the error variance, E[vkv
T
k ] = Rk, and the simplifying assumption that mea-

surement errors are uncorrelated with estimation errors, reducing (2.8) to (2.9).

Pk(+) = (I−KkHk)Pk(−)(I−KkHk)
T + KkRkK

T
k

Pk(+) = (I−KkHk)Pk(−)− (I−KkHk)Pk(−)HT
kKT

k + KkRkK
T
k

Pk(+) = (I−KkHk)Pk(−)−Pk(−)HT
kKT

k + KkHkPk(−)HT
kKT

k + KkRkK
T
k

Pk(+) = (I−KkHk)Pk(−) + [KkHkPk(−)HT
k + KkRk −Pk(−)HT

k ]KT
k

Pk(+) = (I−KkHk)Pk(−) + {Kk[HkPk(−)HT
k + Rk]−Pk(−)HT

k }KT
k

(2.9)

Minimizing the earlier discussed least-squares cost function, Jk = E[x̃k(+)TSx̃k(+)],

weighted by any positive semidefinite scaling matrix S is equivalent to minimizing

Jk = trace[Pk(+)]. Taking the derivative of the trace of (2.9) with respect to K and

making use of the property ∂
∂A

[trace(ABAT )] = A(B + BT ) the equation for K, the

Kalman gain, is obtained when ∂J
∂K

is set to zero, (2.10).

0 = −Pk(−)THT
k −Pk(−)HT

k + 2KkHkPk(−)HT
k + Kk(Rk + RT

k )

0 = −2(I−KkHk)Pk(−)HT
k + 2KkRk

Kk = Pk(−)HT
k [HkPk(−)HT

k + Rk]
−1

(2.10)

This Kalman gain is then substituted back into (2.9) for further simplification and to

remove one of the variables relating the a posteriori covariance to the measurement

matrix and a priori error covariance.

Pk(+) = (I−KkHk)Pk(−) + {Pk(−)HT
k [HkPk(−)HT

k + Rk]
−1

×[HkPk(−)HT
k + Rk]−Pk(−)HT

k }KT
k

Pk(+) = (I−KkHk)Pk(−) + [Pk(−)HT
k −Pk(−)HT

k ]KT
k

Pk(+) = (I−KkHk)Pk(−) + 0 KT
k

Pk(+) = (I−KkHk)Pk(−)

Pk(+) = (I−Pk(−)HT
k [HkPk(−)HT

k + Rk]
−1Hk)Pk(−)

Pk(+) = Pk(−)−Pk(−)HT
k [HkPk(−)HT

k + Rk]
−1HkPk(−)

(2.11)
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From (2.3) the time-integrated estimate of the state for zero mean process noise, w,

is (2.12).

x̂k(−) = Φk−1x̂k−1(+) (2.12)

Subtracting (2.12) from (2.3) and taking the expectation of this result transposed

with itself, the extrapolated covariance becomes (2.13).

Pk(−) = Φk−1Pk−1(+)ΦT
k−1 + Qk−1 (2.13)

2.1.4 Nonlinear Systems

Up until this point, linear systems of equations have been explored. The appli-

cation of the EKF and other nonlinear estimation (Data Assimilation or Parameter

Estimation) schemes comes when dealing with dynamic equations that are not linear.

Now instead of (2.1), the system of equations is of the form of (2.14)

ẋ(t) = f(x(t), t) + w(t)

zk = hk(x(tk)) + vk
(2.14)

where the dynamics are continuous, and measurements are discrete. By integration,

an equation for the future state can be obtained (2.15).

x(t) = x(tk−1) +
∫ t

tk−1

f(x(τ), τ)dτ +
∫ t

tk−1

w(τ)dτ (2.15)

Taking the expectation of (2.15) followed by a derivative in time the equation reduces

to (2.16).

d

dt
E[x(t)] =

d

dt
E

[
x(tk−1) +

∫ t

tk−1

f(x(τ), τ)dτ +
∫ t

tk−1

w(τ)dτ

]
d

dt
E[x(t)] =

d

dt
x̂(tk−1) +

d

dt

∫ t

tk−1

E[f(x(τ), τ)]dτ +
d

dt

∫ t

tk−1

E [w(τ)] dτ

d

dt
E[x(t)] = E[f(x(t), t)]

d

dt
x̂(t) = f̂(x(t), t)

(2.16)
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From the above equations, the expectation of x can be integrated with which the

covariance can then be computed (2.17).

P(t) ≡ E
[
[x̂(t)− x(t)][x̂(t)− x(t)]T

]
P(t) = E[x̂(t)x̂(t)T ]− E[x̂(t)x(t)T ]− E[x(t)x̂(t)T ] + E[x(t)x(t)T ]

P(t) = E[x(t)x(t)T ]− x̂(t)x̂(t)T

(2.17)

The equation that defines the propagation of the state covariance is then defined

based on (2.15) and (2.16).

d

dt
P(t) =

d

dt
E
[
[x̂(t)− x(t)][x̂(t)− x(t)]T

]
d

dt
P(t) =

d

dt
E
[
x(tk−1)x(tk−1)T

]
+
d

dt
E

[
x(tk−1)

∫ t

tk−1

f(x(τ), τ)Tdτ

]

+
d

dt
E

[
x(tk−1)

∫ t

tk−1

w(τ)Tdτ

]
+
d

dt
E

[∫ t

tk−1

f(x(τ), τ)dτx(tk−1)T
]

+
d

dt
E

[∫ t

tk−1

f(x(τ), τ)dτ
∫ t

tk−1

f(x(τ), τ)Tdτ

]

+
d

dt
E

[∫ t

tk−1

f(x(τ), τ)dτ
∫ t

tk−1

w(τ)Tdτ

]

+
d

dt
E

[∫ t

tk−1

w(τ)dτx(tk−1)T
]

+
d

dt
E

[∫ t

tk−1

w(τ)dτ
∫ t

tk−1

f(x(τ), τ)Tdτ

]

+
d

dt
E

[∫ t

tk−1

w(τ)dτ
∫ t

tk−1

w(τ)Tdτ

]
− d

dt

(
x̂(t)x̂(t)T

)
d

dt
P(t) = E

[
x(t)f(x(t), t)T

]
+ E

[
f(x(t), t)x(t)T

]
+ Q(t)

−f̂(x(t), t)x̂(t)T − x̂(t)̂f(x(t), t)T

(2.18)

2.2 Extended Kalman Filter

The EKF has become an algorithm that is often used and is well known in the

field of system control (Julier and Uhlmann, 2004). It makes use of a linearization

of the system dynamics to which it applies Rudolf E. Kalman’s linear filter (Kalman,

1960). The algorithm is a set of equations designed to recursively minimize the trace
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of the a posteriori covariance matrix of the state variables in question.

Whereas for linear systems

f̂(x(t), t) = E[F(t)x(t)]

= F(t)x̂(t)

= f(x̂(t), t)

in the case of nonlinear systems

f̂(x(t), t) =
∫∞
−∞ . . .

∫∞
−∞ f(x(t), t)p(x, t)dx1 . . . dxn

6= f(x̂(t), t)

The EKF is obtained by simplifying these equations through the linearization of

the dynamics via a first order Taylor expansion about the conditional mean of the

state.

f(x(t), t) = f(x̂(t), t) +
∂f

∂x

∣∣∣∣∣
x=x̂

(x− x̂) + . . . (2.19)

In this fashion, the expectation of the dynamic equation reduces to f̂(x(t), t) =

f(x̂(t), t). Then, introducing these terms into (2.18) and using the simplified notation

for the Jacobian

F(x̂(t), t) = {fij(x̂(t), t)}

fij(x̂(t), t) =
∂fi(x(t), t)

∂xj(t)

∣∣∣∣∣
x(t)=x̂(t)

The differential equation for the covariance matrix (the Riccati equation) can be

evaluated.

d

dt
P(t) = E

[
x(t)f(x(t), t)T

]
+ E

[
f(x(t), t)x(t)T

]
+ Q(t)

−f̂(x(t), t)x̂(t)T − x̂(t)̂f(x(t), t)T

d

dt
P(t) = x̂(t)f(x̂(t), t)T + E

[
x(t)(x− x̂)TF(x̂(t), t)T

]
+ f(x̂(t), t)x̂(t)T

+E
[
F(x̂(t), t)(x− x̂)x(t)T

]
+ Q(t)− f(x̂(t), t)x̂(t)T − x̂(t)f(x̂(t), t)T

d

dt
P(t) = P(t)F(x̂(t), t)T + F(x̂(t), t)P(t) + Q(t)

(2.20)

With these equations it is assumed that the propagated state and state covariance
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can be obtained as an a priori estimate of the future state. It is then necessary to

update these variables with measurement information to produce a better estimate.

Using the same procedure as for the linear case, a linear function of the a priori and

measurement values for the a posteriori updated value of the form of (2.5) is desired.

x̂k(+) = K1
k x̂k(−) + K2

kzk

Again used with the estimation errors prior to and after the update, defined as

x̃k(−) ≡ x̂k(−)− xk

x̃k(+) ≡ x̂k(+)− xk

substituting

x̂k(+)− xk = K1
k x̂k(−) + K2

kzk − xk

x̃k(+) = K1
k x̂k(−) + K2

kzk + x̃k(−)− x̂k(−)︸ ︷︷ ︸
−xk

x̃k(+) = K1
k x̂k(−) + K2

khk(xk) + K2
kvk︸ ︷︷ ︸

K2
k
zk

+x̃k(−)− x̂k(−)

.

An unbiased estimate a posteriori is required and E[x̃k(−)] = E[vk] = 0 is recalled.

The expectation of the above equation then yields:

0 = K1
k x̂k(−) + K2

k ĥk(xk)− x̂k(−)

K1
k x̂k(−) = x̂k(−)−K2

k ĥk(xk)

Back-substituting and changing K2
k to Kk, as in the linear case produces the EKF

version of the state update

x̂k(+) = x̂k(−)−Kkĥk(xk) + Kkzk

x̂k(+) = x̂k(−) + Kk[zk − ĥk(xk)]

x̃k(+) = x̃k(−) + Kk[hk(xk)− ĥk(xk) + vk]

x̃k(+) = x̃k(−) + Kk[hk(xk)− ĥk(xk)] + Kkvk

(2.21)
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Then the a posteriori state error covariance can be obtained from the above by taking

the expectation of the x̃k(+) multiplied by its transpose.

Pk(+) = E[x̃k(+)x̃k(+)T ]

Pk(+) = E
{
x̃k(−)x̃k(−)T + Kk[hk(xk)− ĥk(xk)]x̃k(−)T + Kkvkx̃k(−)T

+x̃k(−)[hk(xk)− ĥk(xk)]
TKT

k

+Kk[hk(xk)− ĥk(xk)][hk(xk)− ĥk(xk)]
TKT

k

+Kkvk[hk(xk)− ĥk(xk)]
TKT

k

+x̃k(−)vTk KT
k + Kk[hk(xk)− ĥk(xk)]v

T
k KT

k + Kkvkv
T
k KT

k

}
Pk(+) = Pk(−) + KkE

[
[hk(xk)− ĥk(xk)]x̃k(−)T

]
+E

[
x̃k(−)[hk(xk)− ĥk(xk)]

T
]
KT
k

+KkE
[
[hk(xk)− ĥk(xk)][hk(xk)− ĥk(xk)]

T
]
KT
k + KkRkK

T
k

(2.22)

Where Pk(−) = E[x̃k(−)x̃k(−)T ], Rk = E[vkv
T
k ], and independence of vk with re-

spect to other terms has been assumed. As before, if the mean square error function

Jk = E[x̃k(+)TSx̃k(+)]

is to be minimized for any positive definite S this is the same as minimizing

Jk = E[x̃k(+)T x̃k(+)] = trace[Pk(+)].

To identify the Kalman gain that minimizes this covariance during the assimilation

process, the derivative of this cost function with respect to K is set to zero.

0 ≡ ∂Jk
∂Kk

=
∂trace[Pk(+)]

∂Kk

0 = E
[
x̃k(−)[hk(xk)− ĥk(xk)]

T
]

+ E
[
x̃k(−)[hk(xk)− ĥk(xk)]

T
]

+2KkE
[
[hk(xk)− ĥk(xk)][hk(xk)− ĥk(xk)]

T
]

+ 2KkRk

0 = E
[
x̃k(−)[hk(xk)− ĥk(xk)]

T
]

+KkE
[
[hk(xk)− ĥk(xk)][hk(xk)− ĥk(xk)]

T
]

+ KkRk
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yielding

Kk = −E
[
x̃k(−)[hk(xk)− ĥk(xk)]

T
]

×
{
E
[
[hk(xk)− ĥk(xk)][hk(xk)− ĥk(xk)]

T
]

+ Rk

}−1 (2.23)

Back-substituting into the original covariance update equation results in a simpler

form of the EKF error covariance update.

Pk(+) = Pk(−) + KkE
[
[hk(xk)− ĥk(xk)]x̃k(−)T

]
+E

[
x̃k(−)[hk(xk)− ĥk(xk)]

T
]
KT
k

+Kk

{
E
[
[hk(xk)− ĥk(xk)][hk(xk)− ĥk(xk)]

T
]

+ Rk

}
KT
k

Pk(+) = Pk(−) + KkE
[
[hk(xk)− ĥk(xk)]x̃k(−)T

]
+E

[
x̃k(−)[hk(xk)− ĥk(xk)]

T
]
KT
k

+E
[
x̃k(−)[hk(xk)− ĥk(xk)]

T
]

×
{
E
[
[hk(xk)− ĥk(xk)][hk(xk)− ĥk(xk)]

T
]

+ Rk

}−1

×
{
E
[
[hk(xk)− ĥk(xk)][hk(xk)− ĥk(xk)]

T
]

+ Rk

}
×
{
E
[
[hk(xk)− ĥk(xk)][hk(xk)− ĥk(xk)]

T
]

+ Rk

}−T
×E

[
x̃k(−)[hk(xk)− ĥk(xk)]

T
]T

Pk(+) = Pk(−) + KkE
[
[hk(xk)− ĥk(xk)]x̃k(−)T

]
+E

[
x̃k(−)[hk(xk)− ĥk(xk)]

T
]
KT
k + E

[
x̃k(−)[hk(xk)− ĥk(xk)]

T
]

×
{
E
[
[hk(xk)− ĥk(xk)][hk(xk)− ĥk(xk)]

T
]

+ Rk

}−T
×E

[
x̃k(−)[hk(xk)− ĥk(xk)]

T
]T

Pk(+) = Pk(−) + KkE
[
[hk(xk)− ĥk(xk)]x̃k(−)T

]
−E

[
x̃k(−)[hk(xk)− ĥk(xk)]

T
]

×
{
E
[
[hk(xk)− ĥk(xk)][hk(xk)− ĥk(xk)]

T
]

+ Rk

}−T
×E

[
x̃k(−)[hk(xk)− ĥk(xk)]

T
]T

+ E
[
x̃k(−)[hk(xk)− ĥk(xk)]

T
]

×
{
E
[
[hk(xk)− ĥk(xk)][hk(xk)− ĥk(xk)]

T
]

+ Rk

}−T
×E

[
x̃k(−)[hk(xk)− ĥk(xk)]

T
]T

Pk(+) = Pk(−) + KkE
[
[hk(xk)− ĥk(xk)]x̃k(−)T

]
(2.24)

The extended Kalman filter algorithm then further simplifies the nonlinearity of the
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measurement function (which depends on the probability density function of the state

variable x) by a truncation of the Taylor series expansion of this function.

hk(xk) = hk(x̂k(−)) + Hk(x̂k(−))(xk − x̂(−)) + . . .

Again, denoting the Jacobian of the nonlinear function hk(xk) as Hk(xk).

Hk(x̂k(−)) =
∂hk(x)

∂x
|x=x̂k(−)

Substituting these first two terms into the equations for the Kalman gain, Kk (2.23),

and covariance update (2.24) gives the final form:

Kk = −E
[
x̃k(−)[Hk(x̂k(−))(xk − x̂k(−))]T

]
×
{
E
[
[Hk(x̂k(−))(xk − x̂k(−))][Hk(x̂k(−))(xk − x̂k(−))]T

]
+ Rk

}−1

Kk = −E
[
x̃k(−)(xk − x̂k(−))THk(x̂k(−))T

]
×
{
E
[
Hk(x̂k(−))(xk − x̂k(−))(xk − x̂k(−))THk(x̂k(−))T

]
+ Rk

}−1

Kk = −E
[
x̃k(−)(−x̃k(−))T

]
Hk(x̂k(−))T

×
{
Hk(x̂k(−))E

[
(−x̃k(−))(−x̃k(−))T

]
Hk(x̂k(−))T + Rk

}−1

Kk = Pk(−)Hk(x̂k(−))T
[
Hk(x̂k(−))Pk(−)Hk(x̂k(−))T + Rk

]−1

(2.25)

Pk(+) = Pk(−) + KkE
[
[hk(xk)− ĥk(xk)]x̃k(−)T

]
Pk(+) = Pk(−) + KkE

[
Hk(x̂k(−))(xk − x̂k(−))x̃k(−)T

]
Pk(+) = Pk(−) + KkHk(x̂k(−))E

[
(−x̃k(−))x̃k(−)T

]
Pk(+) = Pk(−)−KkHk(x̂k(−))Pk(−)

Pk(+) = [I−KkHk(x̂k(−))]Pk(−)

(2.26)

The EKF differs from the linearized Kalman filter in that this recursive algorithm uses

the previous best estimate and linearizes the equations about this particular state to

predict the a priori estimate. In contrast, the linearized Kalman filter simply uses

an original state estimate about which it simplifies the complex dynamics to a set of

linear equations.

Though a very common method, the EKF does have its limitations. The lin-
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earization of the nonlinear system dynamics and the computation of the full error

covariance matrix are significant computational expenses, especially for the purpose

of on-line parameter estimation.

2.3 Adjoint Method

Adjoint models are used in optimal analysis, in sensitivity analysis, and in stability

analysis. Unlike previous methods, use of a model adjoint allows increased computa-

tional speed and sensitivity measures that would otherwise require an ensemble of test

cases. That is, for little added cost to a tangent linear model (TLM) the application

of the so-called “adjoint method” can determine the sensitivity of a cost functional

(through that of the model output) with respect to the model input, or model pa-

rameters. The TLM is termed as such because linearization is performed about each

control input parameter at distinct time step; that is, the model consists of linear

segments everywhere tangent to the trajectory the control. In this manner, a com-

plex nonlinear system is made linear, at least in the piecewise sense. A fundamental

assumption to the adjoint method is that the above linearity holds for the underlying

dynamics of the model. Model solutions focus on determining and reducing a cost

or objective function, J, of outputs (forecasts) compared to measurements. What

has been termed sensitivity analysis in the past is derived by comparing a control

solution’s cost functional for a specific input to that of perturbed input parameters,

a (or state). In this manner, an approximation to the sensitivity (i.e. ∆J/∆a) is

obtained. However, a perturbation, ∆a, in the inputs may differ vastly from another

introduced disturbance of similar amplitude and structure in a slightly different loca-

tion; such is often the case in short term forecasts. The adjoint, on the other hand,

starts again with a control solution, but instead of introducing a perturbation in the

input, the sensitivity of the cost function with respect to the output is determined.

This is often a simpler process as typically the cost functional is a simple user defined

metric; whereas the dependence of the chosen statistic on input parameters is defined

by the complex nature of the physics or dynamics represented by the model. The
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sensitivity of the cost metric with respect to system outputs (or model data misfits)

may then be found as easily as taking the derivative of J with respect to the output

state, b. Then the change in J with respect to any perturbation location in b can

be obtained by ∆J ≈ ∑
k
∂J
∂bk

∆bk which is a first-order Taylor series approximation

to ∆J. Yet this is not the solution sought. Interest lies in the changes in the cost

function with respect to alterations in the input a (boundary and initial conditions,

or other model parameters). That is, the equation ∆J ≈ ∑
k
∂J
∂ak

∆ak is desired. To

determine the relationship between ∂J
∂a

and ∂J
∂b

, since b is obtained from a one simply

needs to determine the function relating the two. A model is denoted as b = B(a)

with input a model operator B and output b. If a′ represents a perturbation of the

inputs, then ∆bj ≈ b′j =
∑
k
∂bj
∂ak
a′k is an approximation of the output perturbation

in b. The vector first derivative
(
∂bj
∂ak

)
is known as the Jacobian, in this case, of the

model equation B(a).

Considering the model runs in time with a sequence of operations

B(a) = Bn(Bn−1(. . . B1(B0(a)) . . .)), the chain rule allows the perturba-

tion in b after n steps of the model run to be obtained (from the pertur-

bation in a) with the following:

b′j = b
′(n)
j ; b

′(i)
j

∑
k

∂b
(i)
j

∂b
(i−1)
k

b
′(i−1)
k =

 ∂b
(i)
j

∂b(i−1)

T b′(i−1); b
′(0)
j =

∑
k

∂b
(0)
j

∂ak
a′k

Thus it is possible to compute

b′j =
∑
k

 ∂b
(n)
j

∂b
(n−1)
k

∑
l

∂b(n−1)
k

∂b
(n−2)
l

. . .
∑
k

∂b(0)
l

∂am
a′m

 . . .
.

This allows the sufficient condition that the model only needs to be dif-

ferentiable along the trajectory from a through b(n) (Errico, 1997).

Using the chain rule once more, then the desired relation between the cost function

and input perturbations is:
∂J

∂aj
=
∑
k

∂bk
∂aj

∂J

∂bk
(2.27)
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Note that in this case ∂bk
∂aj

is the transpose of the Jacobian (i.e. the model’s adjoint

operator). This function will map the sensitivity of the cost function with respect to

system output backward in time to the input.

The advantage of the adjoint method arises when the original cost function is

augmented into its associated Lagrangian through the introduction of Lagrange mul-

tipliers. These multipliers exist in the dual of the model domain and are termed

adjoint variables. They are independent of the model parameters. The introduction

of these Lagrange multipliers simplify the problem of finding stationary points of

the gradient in the cost function abiding to model constraints to an unconstrained

problem. The general procedure is explained in Plessix (2006). Each adjoint variable

carries with it a global measure of the perturbation of the problem with respect to the

state variables. In the case of least square, these variables are a measure of the misfits

between the model and the observed truth. These are propagated backward through

time with the use of the model adjoint operator, seen in (2.27), which corresponds to

the transpose of the Jacobian. The back-propagation of this information is further

simplified by the repeated use of adjoint operators as a result of the application of

the chain rule on the linearized system. Reverting back to the previous notation and

in minimizing the least squares cost function (2.28), the equations are summarized

by Robinson et al. (1998)

JN =
1

2
(x̂0(+)− x̂0(−))TP−1

0 (x̂0(+)− x̂0(−))

+
N∑
k=1

1

2
(zk −Hx̂(+)k)

TR−1
k (zk −Hx̂(+)k)

(2.28)

The augmented Lagrangian form becomes

JN =
1

2
(x̂0(+)− x̂0(−))TP−1

0 (x̂0(+)− x̂0(−))

+
N∑
k=1

1

2
(zk −Hx̂(+)k)

TR−1
k (zk −Hx̂(+)k)

+
N∑
k=1

λTk−1(x̂(+)k −Φk−1x̂(−)k−1)

(2.29)

where λ are the adjoint variables or Lagrange multipliers.
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The state update follows from (2.30), the final Lagrange multiplier is taken to

have no model data misfit (where no measurement is taken), and is back-propagated

to λ0, which is proportional to the gradient in J with respect to x̂0(+). Then (2.33)

may be used to iteratively alter the initial guess x̂0(−) by assigning it the new value

x̂0(+).

x̂(−)k = Φk−1x̂(−)k−1 (2.30)

λN = 0 (2.31)

λk−1 = ΦT
k−1λk + HT

kR−1
k (zk −Hkx̂k(−)) (2.32)

x̂0(+) = x̂0(−) + P0Φ
T
0 λ0 (2.33)

where data is assumed to be collected from time t1 to tN .

The adjoint model has vast application as adjoint operators can be derived for any

equations having first derivatives (i.e. any model linearizable by first order Taylor

expansion), but specific attention needs to be given to possible inaccuracies. Tangent

linear and adjoint models make linearizations for use with infinitesimal inputs. The

accuracy of tangent linear models and adjoint models depend on the approximations

made in linearizing the dynamics of the problem as well as the size of the perturbation

or step utilized. If the model is driven by highly nonlinear equations, large pertur-

bations used at locations where the nonlinearity of the problem becomes significant

(around critical points) will generate erroneous sensitivity results or output pertur-

bations. How “large” the perturbations may be prior to the failure of the linearized

model will depend on the particular application (Errico, 1997). If the control term in

this method is set to the initial estimate, the TLM used in this parameter estimation

scheme is comparable to the propagation matrix utilized by the linearized Kalman

filter.
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2.4 Ensemble-Bayesian Methods

From the previous sections regarding the Kalman filter, it was established that

the optimal linear combination of the measurement and forecast is given by (2.7)

with the gain, Kk defined by (2.10). Whereas the EKF utilizes a linearization of the

system dynamics, the Ensemble Kalman Filter (EnKF) utilizes, as the name implies,

ensemble statistics to obtain the covariance matrices involved in these equations.

Computational cost is reduced for sparsely measured systems by limiting the calcula-

tion of the covariance matrix only to observed portions of the state. In this fashion,

the product HkPk(−)HT
k is treated as the expectation of the a priori state estimate

mapped to the observation space multiplied with its transpose, i.e. E[yk(−)yTk (−)]

(where yk(−) = Hkxk(−) is the model output mapped onto the observation domain),

and Pk(−)HT
k = E[xk(−)yTk (−)]. The first real-time ensemble data assimilation done

at seas was in the Strait of Sicily in 1996 utilizing an Error Subspace Statistical Es-

timation (ESSE) method that will be presented shortly (Lermusiaux, 1999).

Evensen (1994) applied this ensemble technique to a quasi-geostrophic ocean

model, thus showing promising results in an alternative to the EKF with no clo-

sure problems in forecast error statistics, and in his particular study, to the benefit of

a reduced computation cost. Houtekamer and Mitchell (1998) describe this filtering

method and identify the ensemble statistic equations utilized in scheme presented

by Evensen (1994). First, an ensemble is generated using an initial central estimate

of the state to which a random field satisfying prior covariance conditions is added.

Then, for each assimilation period, an ensemble is created about the available obser-

vation based on the best current representation of the observation error covariance.

A twin experiment for the evaluation of this technique is examined by Houtekamer

and Mitchell (1998). The central value of the first estimate is chosen based on the

actual state used in the model dynamics, to which a realization of the desired noise

characteristics is added. Observations are created from the simulated truth using an

observation matrix H and observation noise. The computation of the error covariance
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consists of

P(−)HT =
1

N − 1

N∑
i=1

(x̂i(−)− x̂(−))[H(x̂i(−)− x̂(−))]T

HP(−)HT =
1

N − 1

N∑
i=1

H(x̂i(−)− x̂(−))[H(x̂i(−)− x̂(−))]T
(2.34)

and mean

x̂(−) =
1

N

N∑
i=1

x̂i(−). (2.35)

The rank of the above covariance matrices is less than or equal the size of the ensemble

used. By considering ensemble size larger than the number of observations, the rank

deficiency problem is avoided (or alleviated for the case of small ensemble sizes)

resulting in full rank covariance matrices.

Anderson describes an Ensemble Adjustment Kalman Filter (EAKF) for Data As-

similation, an apparent improvement to the traditional EnKF. The Ensemble Kalman

Filter is typically derived from the Extended Kalman Filter equations, which hides

the versatility of the EnKF in its ability to handle arbitrary probability distributions,

which are non-Gaussian. The goal of the EAKF is to reduce the noise incorporated

into the prior ensemble as a result of assimilating observations with distant correlation

(in time and space). To alleviate this problem, the EAKF generates a set ensemble

matching the state observation noise, which it utilizes for the remainder of the recur-

sive inverse method. As such, the EAKF, unlike the EnKF, requires no generation of

random vectors after initialization and becomes a deterministic filtering scheme from

the start (Anderson, 2001). A means by which the cost of such recursive methods may

be reduced is through the truncation of the structure present in the error covariance

matrix. However, by using the method presented in the EAKF, this would fix the

error statistics in time. It would be advantageous to diminish the complexity of this

matrix without enforcing stationarity.

As opposed to using an ensemble set to determine the full covariance matrix,

Lermusiaux 1999a, 1999b suggests reducing the analysis to a subspace of the er-

ror covariance in his Error Subspace Statistical Estimation (ESSE) scheme. In this
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method, the first step is to obtain the dominant structures of the error covariance.

These are obtained through the orthonormal decomposition of the matrix in ques-

tion. Then the prominent vector, those corresponding to the largest singular values

of the decomposition are multiplied to form a matrix of equivalent dimension as the

original, but lacking in the less pronounced structures. Since the covariance matrix is

by nature positive semi-definite, such a decomposition is equivalent to the eigenvalue

decomposition. By limiting attention to the dominant errors, the computational cost

can then be accordingly focused and lessened to capturing this reduced space. In

the ESSE scheme, the melding criterion used consists of the linear Kalman update.

That is, the state estimate update is as in (2.21), uncertainty update as in (2.26), and

Kalman gain as in (2.25). These equations are then slightly altered in appearance by

introducing the eigen-decomposed error covariance matrices (2.36)

P(−) = E−Λ(−)ET
−

P(+) = E+Λ(+)ET
+

(2.36)

Where the subscripted E matrices are orthonormal matrices of eigenvectors because

the uncertainty matrices from which they are derived, P, are symmetric. Introducing

these definitions into (2.10) and (2.11)

K = P(−)HT [HP(−)HT + R]−1

K = E−Λ(−)ET
−HT [HE−Λ(−)ET

−HT + R]−1

K = E−Λ(−)H̃T [H̃Λ(−)H̃T + R]−1

(2.37)

where the k subscripts have been omitted and the substitution of the definition H̃ ≡

36



HE− has been made.

P(+) = P(−)−P(−)HT [HP(−)HT + R]−1HP(−)

E+Λ(+)ET
+ = E−Λ(−)ET

− − E−Λ(−)ET
−HT [HE−Λ(−)ET

−HT + R]−1

×HE−Λ(−)ET
−

E+Λ(+)ET
+ = E−Λ(−)ET

− − E−Λ(−)H̃T [H̃Λ(−)H̃T + R]−1H̃Λ(−)ET
−

E+Λ(+)ET
+ = E−{Λ(−)−Λ(−)H̃T [H̃Λ(−)H̃T + R]−1H̃Λ(−)}ET

−

E+Λ(+)ET
+ ≡ E−Λ̃(+)ET

−

(2.38)

with Λ̃(+) = Λ(−)−Λ(−)H̃T [H̃Λ(−)H̃T +R]−1H̃Λ(−) The eigen-decomposition of

Λ̃(+) yields the same eigenvalues of Λ(+) for P(+) as in (2.39)

Λ̃(+) = TΛ(+)TT (2.39)

where the matrix T consists of orthonormal column vectors and transforms the eigen-

vectors of E− into E+. Thus far, the equations presented only consist of a rewritten

form with the eigen-decomposition of the actual covariance matrices. The eigen-

decomposition of the sample covariances will be identified by the eigenvector and

eigenvalue matrices U− and Π(−) a priori and U+ and Π(+) a posteriori. Addition-

ally, in the ESSE approach, the rank of the covariance is truncated to the dominant

components. The reduced space is identified by the size of its rank in a superscript.

The reduced rank is identified by p. An ensemble of size q unbiased state estimates is

denoted by x̂i(−) a priori. The corresponding errors of these samples form a matrix

M(−) of q state column vectors less their mean estimate. Here di (i = 1, . . . , q) de-

notes an ensemble of size q of observations perturbed by noise of covariance R. The

sample error covariance denoted by Ps is obtained by Ps = MMT/q. From (2.7) the

update equation for the ensembles and the ensemble mean can be written.

x̂i(+) = x̂i(−) + Ks[di −Hx̂i(−)]

x̂(+) = x̂(−) + Ks[d−Hx̂(−)]
(2.40)
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Through subtraction, the above becomes

M(+) = (I−KsH)M(−) + KsD (2.41)

where D = [vj] = [dj − d]. Multiplying this equation through by its transpose and

taking the expectation, or rather dividing through by the ensemble size q

Ps(+) = (I−KsH)Ps(−)(I−KsH)T + KsRsKsT

+(I−KsH)ΩsKsT + KsΩsT (I−KsH)T

Ps(+) = Ps(−)−KsHPs(−)−Ps(−)HTKsT + KsHPs(−)HTKsT

+KsRsKsT + ΩsKsT −KsHΩsKsT + KsΩsT −KsΩsTHTKsT

(2.42)

where the definition of Ps has been used and Rs ≡ DDT/q and Ωs ≡M(−)DT/q have

been introduced. (In the limit of an infinite ensemble size, the matrices superscripted

with s tend toward the actual covariance and cross-covariances). For the gain Ks,

which minimizes the trace of this expression, taking the derivative with respect to Ks

(as with (2.22) in the EKF section) and setting to zero gives:

0 = 0−PsT (−)HT −Ps(−)HT + KsH(Ps(−) + PsT (−))HT

+Ks(Rs + RsT ) + Ωs −KsHΩs −KsΩsTHT + Ωs

−KsΩsTHT −KsHΩs

0 = −2Ps(−)HT + 2KsHPs(−)HT + 2KsRs

+2Ωs − 2KsHΩs − 2KsΩsTHT

Ps(−)HT −Ωs = KsHPs(−)HT + KsRs −KsHΩs −KsΩsTHT

Ks = (Ps(−)HT −Ωs)[HPs(−)HT + Rs −HΩs −ΩsTHT ]−1

(2.43)

With the assumption that the measurement noise is uncorrelated to the dynamic

process, as the ensemble size tends toward infinity, Ωs tends toward zero, leading to

the simplified equations.

Ps(+) = Ps(−)−KsHPs(−)−Ps(−)HTKsT+KsHPs(−)HTKsT+KsRsKsT (2.44)
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Ks = Ps(−)HT [HPs(−)HT + Rs]−1 (2.45)

And, as in the case of (2.9) and (2.10), reduce to

Ps(+) = (I−KsH)Ps(−) (2.46)

The error subspace is derived from the dominant rank-p reduction of the sample

space involved in the above equations. Lermusiaux 1999a identifies the singular value

decomposition (SVD) as an efficient way of determining this reduce error space. By

selecting the left-hand side singular vectors of the corresponding p highest singular

values of the decomposition to generate a field of simplified structure.

SVDp[M(−)] = U−Σ(−)VT
−

SVDp[M(+)] = U+Σ(+)VT
+

(2.47)

It is then easily seen that by the definition of the sample covariance, that the left

singular vectors form the orthonormal eigenvectors of the reduced error space, and

the reduced space eigenvectors correspond to

Π(−) = Σ2(−)/q

Π(+) = Σ2(+)/q.
(2.48)

It is then possible to carry out an update with the substitution of this reduced space

into (2.40). Noting the change by altering the superscripts from s to p, the ensemble

mean estimate is then.

x̂(+) = x̂(−) + Kp[d−Hx̂(−)] (2.49)
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with the Kalman gain from (2.45)

Kp = Pp(−)HT [HPp(−)HT + Rs]−1

Kp = U−Π(−)UT
−HT [HU−Π(−)UT

−HT + Rs]−1

Kp = U−Π(−)H̃pT [H̃pΠ(−)H̃pT + Rs]−1

Kp ≡ U−K̃p

(2.50)

where it was maintained that the covariance in observation remains at its full structure

(not reduced) and the substitution H̃p ≡ HU− was introduced. The update of the

covariance can be carried out in two steps: updating the eigenvalues and eigenvectors

separately. From (2.46)

Pp(+) = (Ip −KpH)Pp(−)

UT
−Pp(+)U− = UT

−(Ip −KpH)Pp(−)U−

Π̃(+) = (UT
− −UT

−KpH)U−Π(−)UT
−U−

Π̃(+) = (UT
−U− −UT

−U−K̃pHU−)Π(−)

Π̃(+) = (Ip − K̃pH̃p)Π(−)

where

Pp(+) = U+Π(+)UT
+

Pp(+) = U−Π̃(+)UT
−

U+ = U−T

Π̃(+) = TΠ(+)TT

(2.51)

where T is as in (2.39). Lermusiaux 1999a concludes “Scheme A” at the update of the

ensemble mean and ensemble covariance. After this point a new ensemble set has to

be created. Scheme A utilizes these new equations to update the error subspace and

ensemble estimate through the eigenvalues and eigenvectors (obtaining the covariance,

Kalman gain, and new ensemble estimate). It does not update the ensemble itself.

As a result, either a new ensemble should be generated, leading to resampling with

the newly obtained covariance matrix, or “Scheme B” should be utilized. Lermusiaux

1999a introduces this extension to the above method to calculate the right hand side
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singular vectors (V). These can then be used to carry out an update of each ensemble

member without the need of using another Monte Carlo resampling step.

2.5 Unscented Kalman Filter

Central to the EKF method are the assumptions that the noise present in the

system dynamics and observations are Gaussian random variables of small amplitude

and that the physics can adequately be represented through linearization. The EKF

relies on the analytical propagation of the random variable information through a set

of simplified state equations. Whereas a Monte Carlo ensemble approach would seek

to improve the a posteriori estimate by propagating a large number of values repre-

sentative of the noise through the nonlinear dynamics, a class of Kalman filters termed

Sigma-Point Kalman Filter (SPKF) choose the representative set deterministically,

reducing the required ensemble size to a minimal set capturing the properties of the

distribution. Julier and Uhlmann (1996) discuss this novel method of deterministic

sampling to calculate the terms in (2.7). This method allows a linearization of the

system that accounts for the actual uncertainty. Where, as opposed to linearizing the

dynamics, a linearization of the true nonlinear statistics is made.

Thus, considering a function y = g(x), where y is a vector random variable output

of the nonlinear transformation (through g(·)) of the vector random variable input

x, Bayesian estimation methods are applied. A set of r points (χi, υi) are evaluated

as υi = g(χi). The sigma points, χi, are a deterministically chosen ensemble of

vectors representative of x, and υi are their nonlinearly transformed counterparts,

representative of y. The χi sigma points are selected so as to satisfy the mean and

covariance of x (2.52)

x̄ =
r∑
i=1

wiχi

Pxx =
r∑
i=1

wi(χi − x̄)(χi − x̄)T
(2.52)
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after which output statistics can be computed in a similar linear fashion

ȳ =
r∑
i=1

wiυi

Pyy =
r∑
i=1

wi(υi − ȳ)(υi − ȳ)T

Pxy =
r∑
i=1

wi(χi − x̄)(υi − ȳ)T

(2.53)

where in the above equations
∑r
i=1wi = 1. van der Merwe and Wan (2003) present a

few different filtering schemes related through their use of weighted statistical linear

regression to compute the propagated uncertainty statistics. The aim is to find the

linear relation y = Ax + b which minimizes a statistical cost function J usually

taken to be J = E[wi(ei)
2], or equivalently J = trace{E[ei diag(wi) eTi ]} (where

ei = υi − (Aχi + b)). The matrix A is the UKF equivalent of the Kalman gain used

in (2.7) and (2.9). By construct ȳ −Ax̄− b = 0.

ē =
r∑
i=1

wi[υi − (Aχi + b)]

=
r∑
i=1

wiυi −
r∑
i=1

wiAχi −
r∑
i=1

wib

= ȳ −Ax̄− b

= 0

As in the Kalman filter, the minimum of the trace in the a posteriori error covariance
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is sought.

Pee =
r∑
i=1

(ei − ēi)wi(ei − ēi)
T

=
r∑
i=1

[υi − (Aχi + b)− (ȳ −Ax̄− b)]wi[υi − (Aχi + b)− (ȳ −Ax̄− b)]T

=
r∑
i=1

[(υi − ȳ)− (Aχi −Ax̄)− (b− b)]wi[(υi − ȳ)− (Aχi −Ax̄)− (b− b)]T

=
r∑
i=1

[(υi − ȳ)− (Aχi −Ax̄)]wi[(υi − ȳ)− (Aχi −Ax̄)]T

=
r∑
i=1

(υi − ȳ)wi(υi − ȳ)T − (υi − ȳ)wi(χi − x̄)TAT

−A(χi − x̄)wi(υi − ȳ)T + A(χi − x̄)wi(χi − x̄)TAT

= Pyy −PyxAT −APxy + APxxAT

differentiating the trace of Pee with respect to A and equating to zero yields the

expression

0 = −Pyx −Pxy
T + A(Pxx + Pxx

T )

0 = −2Pyx + 2APxx

A = PyxPxx
−1

KUKF = A

(2.54)

where KUKF can then be substituted for K in the Kalman filter equations, previously

mentioned in Section 2.1.3. The difference across the various SPKFs lies in the weight

assigned to each sigma-point and in the number of these created. van der Merwe and

Wan (2003) describe the Unscented Kalman Filter (UKF), Central Difference Kalman

Filter (CDKF) and their square root (SR) implementations. The UKF and CDKF

are similar in that the number of sigma points are identical, additionally, the original

UKF has the same weights as the CDKF when the parameters involved in computing

these values are optimized for Gaussian priors. The Unscented Transformation is

based on the intuition that approximating a Gaussian distribution based on a fixed

number of parameters should be easier than making an approximation of an arbitrary

nonlinear function (Julier and Uhlmann, 1996). And where an arbitrary sampling of

points from a distribution might create spurious modes, a finite deterministic set can

be created to captured the desired properties of the distribution in question. With
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this assumption, a set of 2n points (where n is the size of the stochastic vector x) is

created from the signed n columns of the matrix square root, A, of the covariance,

nP (where A =
√
nP and nP = ATA). That is, the set is made symmetric about

zero. To these values, the mean x̄ is added, thus capturing the first two moments

of x deterministically with 2n sigma points (χi, i = 1, . . . , 2n). To arrive to this

formulation, definitions of ensemble statistics were used. From (2.34), when the mean

is estimated by (2.35), the factor in the denominator is N − 1. If the true mean is

used, this value is replaced by N . In computing the above mentioned set, the unique

vectors created form n instances, reversing the sign, then the remaining n + 1 to 2n

vectors are obtained. From the resulting set, and with the inverse procedure, the same

equation can be applied to recompute the covariance, where N now becomes 2n as

opposed to n. This value is simply a sum of the weights assigned to each instance of

the random variable. As a result, it is possible to scale each deterministic occurrence

by a particular weight to fine tune the properties of the sample set. In particular, an

extra point, which is equivalent to the mean, can be added to adjust the higher order

moments of the created sample distribution. In the case of a Gaussian distribution,

a weight assigned to this central sigma point (χ0 = x̄) of κ = 3 − n will resolve the

fourth order moment of the distribution, the kurtosis (E[x4] = 3). As a result, the

suggested sigma points are (van der Merwe and Wan, 2004)

χ0 = x̄

χi = x̄ +
(√

(n+ κ)Pxx

)
i

i = 1, . . . , n

χi = x̄−
(√

(n+ κ)Pxx

)
i−n

i = n+ 1, . . . , 2n

(2.55)

with weights

w0 =
κ

n+ κ

wi =
1

2(n+ κ)
i = 1, . . . , 2n

(2.56)

The overall method then consists of deterministically generating an ensemble set

based on (2.55) with weights (2.56). Next, these input states are run through the

nonlinear system to obtain the propagated state. Using (2.53) the a priori error
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covariance and cross-covariance are computed (y in this case being representative of

hk(xk(−), and x of xk(−)). The Kalman gain, KUKF is then obtained from (2.54).

With all of these parameters then, the state and covariance updates are computed by

applying the Kalman update equations.

x̄k(+) = x̄k(−) + KUKFk(zk − ȳk) (2.57)

Pxx(+) = Pxx(−)−KUKFPyyKUKF
T (2.58)

The performance of methods identified in this chapter is evaluated with simple

test problems in the following section.
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the new runs EVH11-EVH12 and EVH13-EVH14. Though EVH01-EVH02 is most

similar to the simulation using the old tidal forcings in terms of the model runtime

parameters, it does not perform as well as the two previously mentioned runs where

the temporal e-folding scales have been increased to maintain agreement between the

large and small domains. As all new simulations show similar results, only the better

performing are shown next.

4.5.1 M1 Current Meter Data Error Analysis

The bias in the velocities shown in these figures (Figs. 4-28, 4-29, and 4-30) for

the M1 mooring location reveal, above all, the well established performance of the

old tidal forcings. The models utilizing the new tidal estimates do not perform nearly

as well as the simulation with older tides close to shore. With the new tidal model,

data misfit plots show what appear to be fairly evenly spaced peaks every six hours

(that is, positive peaks in the misfit every 12 hours, interspersed with negative peaks)

which seem to indicate a major phase disagreement M2 lunar diurnal tides.

Figure 4-28: Error in M1 current meter data with old tides
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Figure 4-29: Error in M1 current meter data with new tides EVH11

Figure 4-30: Error in M1 current meter data with new tides EVH13
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4.5.2 M2 Current Meter Data Error Analysis

The mooring further offshore shows misfits with much less disagreement for the

two tidal forcings available. The bias seen in the first few days after the end of

the initialization period in Fig. 4-31 reveal less striations than in the errors seen in

Figures 4-32 and 4-33. Such an observation would indicate a better representation of

the higher frequency components of the barotropic forcings in the older representation

of tidal velocities, or at least an initial agreement in phase which deteriorates after

around five or six days. It should be noted in these figures that the predictability limit

is reached by the third time axis label (August 15) which is where the comparisons

stopped for the quantitative metrics present in the previous Section 4.4. After this

date, there is a noticeable increase in the disagreement in meridional velocity, as for

the next 16 days, all runs overestimate this component of velocity.

Figure 4-31: Error in M2 current meter data with old tides
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Figure 4-32: Error in M2 current meter data with new tides EVH12

Figure 4-33: Error in M2 current meter data with new tides EVH14
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Through the use of the skill metrics, comparisons of model simulations using

different tidal estimates and varied parameters were carried out. Through the results

obtained, the old barotropic tidal forcings shown more accurate. This observation

suggests that the new, higher resolution tides be reevaluated with model alterations.

Additionally, comparison among the new simulations led to the identification of the

better parameters, where a larger temporal e-folding scale, maintained across the

nested domains is recommended for the new forcings along with the larger of the

tested tidal friction coefficients for the new simulations.
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Chapter 5

Conclusion

In the course of this work, a particular aspect of adaptive modeling has been ex-

amined. Parameter estimations methods utilizing algorithms from stochastic control

theory were evaluated and tested on straightforward diffusion problems. The per-

formance of implemented methodologies provided insight with which to initialize a

four-dimensional ocean simulation model using MSEAS for the purpose of assessing

tunable aspects of the model using an ensemble approach. Distributed runs were

issued over a high performance 266 CPU computer cluster. Model simulation results

were analyzed quantitatively with the use of error metrics specified in Lermusiaux

(2007).

The application of the adjoint method, EKF, EnKF, and UKF were tested on a

numerical and analytical one-dimensional diffusion problem. In using these methods

for parameter estimation with these simple test cases, the adjoint method proved

impractical and computationally costly for highly nonlinear systems of equations.

Though the EKF revealed good performance in certain applications, it too is not

easily generalized to high dimensional, largely nonlinear models, and may require a

substantial computational overhead cost. The EnKF showed adequate performance

and ensemble methods are more readily generalized to complex simulations. Though

the UKF can also be conveniently applied to nonlinear models, it may require more

tuning through the related scaled UKF (Julier, 2002). Also, this method may be

viewed as a type of deterministic ensemble method. As a result, of these simple case
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evaluations, an ensemble approach was determined fitting for use with the realistic

ocean model.

The Monterey Bay 2006 experiment was utilized for an evaluation of barotropic

tidal modeling in the region. To this extent, C-shell scripts were written, and

MATLAB R© scripts were improved upon for the quantitative analysis of model sim-

ulation outputs with scarcely sampled oceanic fields. Comparisons drawn from these

results suggested a decrease in performance with the use of the new higher-resolution

barotropic tidal forcings. This behavior may be due to several reasons: the higher

resolution tidal model may be creating features which on a coarser grid remained

unresolved and were not adequately dissipated when the high-resolution barotropic

tides were computed; the Dirichlet boundary conditions utilized at the open bound-

aries may require revision to allow for advection out of the domain when resolution

is increased (Lermusiaux, Haley, and Logutov, Personal communication). New mixed

von Neumann and Dirichlet open boundary conditions have since been implemented

in the barotropic tidal model.

In evaluating the barotropic tidal forcings, numerous other parameters were exam-

ined. Comparisons among these runs with the new higher resolution tides suggested

that with the increased tidal resolution a weaker coastal friction (a larger temporal

e-folding scale) should be used while maintaining the same spatial e-folding scale in

coastal friction as the simulation with the older tidal forcings. Choices for other tidal

friction parameters resulted in less distinct effects and as such did not allow for un-

equivocal conclusions to be drawn from them. These preliminary results could be

used to investigate other parameter values, or other parameters altogether. Still, this

method can be used to quantitatively rate each aspect of the model setup.

A package was developed for the evaluation of model performance of an ensem-

ble of simulations. The results obtained from the simulation outputs were used to

produce a set of valuable quantitative metrics with which to identify how well model

options or parameters pair when compared to observations or other references. In

the future, a method to automatically update the parameters in the models based

on the respective results obtained from the original ensemble will be sought. Once
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parameters of each parameterization are sufficiently fitter, the final step will be to

evaluate the performance of the various model parameterizations or model options

themselves, in the same manner as the parameters, for a fully automated adaptive

modeling algorithm. A final question to address will be to determine the necessity

of fitting the parameters of parameterizations prior to evaluating their performance,

or if only a partial fit of their parameter values would suffice to distinguish among

parameterizations.
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