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Abstract

In this thesis, we conduct research toward understanding coupled physics-biology pro-
cesses in ocean straits. Our focus is on new analytical studies and higher-order sim-
ulations of idealized dynamics that are relevant to generic biological processes. The
details of coupled physics-biology models are reviewed and an in-depth global equi-
librium and local stability analysis of a Nutrient-Phytoplankton-Zooplankton (NPZ)
model is performed. This analysis includes parameter studies and methods to eval-
uate parameter sensitivity, especially in the case where some system parameters are
unknown. As an initial step toward investigating the interaction between physics
and biology in ocean straits, we develop and verify a new coupled physics-biology
model for two-dimensional idealized physical processes including tides and apply it
to the San Bernardino Strait in the Philippine Archipelago. This two-dimensional
numerical model is created on a structured grid using operator splitting and mask-
ing. This model is able to accurately represent biology for various physical flows,
including advection-dominated flows over discontinuities, by using the Weighted Es-
sentially Non-Oscillatory (WENO) scheme. The numerical model is verified against
a Discontinuous-Galerkin (DG) numerical scheme on an unstructured grid. Several
simulations of tidal flow are completed using bathymetry and flow magnitudes com-
parable to those found in the San Bernardino Strait with different sets of parame-
ters, tidal periods, and levels of diffusion. Results are discussed and compared to
those of a three-dimensional modeling system. New results include: new methods
for analyzing stability, the robust two-dimensional model designed to best represent
advection-dominant flows with minimal numerical diffusion and computational time,
and a novel technique to initialize three-dimensional biology fields using satellite data.
Additionally, application of the two-dimensional model with tidal forcing to the San
Bernardino Strait reveals that flow frequencies have strong influence on biology, as
very fast oscillations act to stabilize biology in the water column, while slower fre-
quencies provide sufficient transport for increased biological activity.
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Chapter 1

Introduction

1.1 Motivation and Background

Ocean straits and archipelagos create complex physical domains, resulting in pro-

cesses spanning many time and spatial scales. These conditions lead to interesting

biological phenomena, including diverse blooms of biota. Identifying which processes

and conditions are necessary and sufficient for such blooms to occur is a challenging

task, especially in domains as complicated as archipelagos. By isolating processes,

we can improve our understanding of the relationship between physical processes

and biology. We conduct research toward understanding coupled physics-biology pro-

cesses in ocean straits through new analytical studies and higher-order simulations

of idealized dynamics that are relevant to generic biology in straits. Specifically,

we first characterize global equilibrium properties and the local stability of biologi-

cal reaction equations in a non-diffusive framework without flow. We then develop

and utilize a new higher-order numerical scheme for two-dimensional simulations of

coupled physical-biological dynamics over straits, with a focus on tidal effects. We

study tidal effects because they often strongly determine flow in straits at diurnal

and semidiurnal periods, but their oscillations may be too fast for certain biological

reactions.

Our research efforts are a part of the Philippines Experiment, or PhilEx, a five-

year joint research project focused on interdisciplinary modeling, data assimilation
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and dynamical studies in the straits regions of the Philippine Archipelago to bet-

ter understand, model and predict sub-mesoscale and mesoscale physical and bio-

geochemical dynamics in sea straits. The three-dimensional ocean model fields and

measurements from PhilEx are used in this study. Gathering biological data is fre-

quently done by capturing water samples, using underwater vehicles, or instruments

attached to a research vessel, which leads to sparse data fields in space and time.

Previous research and data is scarce in the Philippines, therefore initializing models

is challenging. We thus develop a new method to initialize coupled physics-biology

with sparse initial data.

The Philippines region has very interesting dynamics including a wide range of

physical processes, a seasonal monsoon, and transport through straits from various

ocean basins. The San Bernardino Strait in the Philippines connects the Visayan Sea

with the Pacific Ocean. Experimental data suggests that the San Bernardino Strait

hinders flow of intermediate and deep waters from entering the archipelago [41]. Tides

in this region reduce the mean flow through the strait by nonlinear rectification [27],

which causes considerable phase and amplitude shifts [37]. Both topography and

intense tidal mixing are strongly influential in this strait [27]. Thus, the topography

and flow from the San Bernardino Strait in the Philippine Archipelago is used to

create realistic test cases. The location of the San Bernardino Strait within the

Philippine Archipelago is shown in Figure 1-1.

Previous research on the topic of tides and biology shows that tidal mixing pro-

duces increased biomass. This research has been performed both experimentally and

theoretically, though it is difficult to sample biology fine enough to resolve some of

the features predicted. Tidal effects on biology have been primarily explored in the

open ocean [5], [19], fjords [31], banks [21] and estuaries [50]. These studies examine

the source of dense biomass concentrations due to tidal pumping and forcing. Aside

from straits with both historical data and thorough understanding of the tidal effects,

such as the Strait of Gibraltar [39], no research has been conducted, to the author’s

knowledge, on the topic of general biology in ocean straits including coupled biology-

tidal effects. The work completed in this thesis is an initial step to understanding
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San Bernardino Strait

Philippine Archipelago

Figure 1-1: The San Bernardino Strait connects the Visayan Sea with the Pacific
Ocean in the Philippine Archipelago.

the relationship between biology and tidal frequency, in particular the interactions of

tidal scales and biological scales over bathymetry.

1.2 General Modeling Content

Part of our work is linked to the PhilEx research conducted by the MSEAS group.

For this research, the MIT Multidisciplinary Simulation, Estimation, and Assimilation

Systems (MSEAS) [2] is utilized. It consists of a set of mathematical models and com-

putational methods for ocean predictions and dynamical diagnostics, for optimization

and control of autonomous ocean observation systems, and for data assimilation and

data-model comparisons. MSEAS is used for basic and fundamental research and

for realistic simulations and predictions in varied regions of the world’s ocean, re-

cently including monitoring [35], naval exercises including real-time acoustic-ocean

predictions [59] and environmental management [11]. Several different models are

included in the system, including a free-surface primitive-equation dynamical model

21



which uses two-way nesting free-surface and open boundary condition schemes [26].

This new free-surface code is based on the primitive-equation model of the Harvard

Ocean Prediction System (HOPS). Additionally, barotropic tides are calculated from

the inverse tidal model [38].

For PhilEx, the modeling domains include three different resolution sizes. The

smallest domains have 1km resolution and are nested inside 3km resolution domains,

which are nested in our largest domain (with a 9km resolution). These domains are

shown in Figure 1-2.

Figure 1-2: Nested domains used in MSEAS for PhilEx. Three different resolution
sizes are used (1km, 3km, and 9km).

MSEAS is used to estimate the evolution of physical and biological three-dimensional

ocean fields [42]. One example of a typical estimate is Figure 1-3, showing sea sur-

face temperature in the Philippines. Physical variables computed include velocity,
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temperature and salinity. Biological variables depend on the biological model used.

1.3 Thesis Overview

In Chapter 2, we discuss physical and biological models. For the biology, Nutrient-

Phytoplankton-Zooplankton (NPZ) models (for a two-dimensional simulation) and

more complex biogeochemical models (for a three-dimensional simulation) are dis-

cussed. To determine parameter limitations and sensitivity, we perform new global

equilibrium and local stability analyses in Chapter 3 of the biological reaction equa-

tions in a non-diffusive, conservative framework without physics. General analytical

methods to determine equilibria and stability properties for a parameter set are de-

veloped and demonstrated. Conditions necessary for stability and instability are dis-

cussed and application to the domain including advection and diffusion is presented.

To study idealized coupled physical and biological dynamics accurately, we implement

and compare various numerical schemes in Chapter 4 to identify high-order schemes

with low numerical diffusion able to represent a wide range of processes, including

the advection dominant case (which is prone to oscillations). All details of the de-

velopment of the simulation are outlined and the result is a new scheme resistant

to oscillations with easy implementation of boundary conditions and low numerical

diffusivity. In Chapter 5, we use this numerical scheme to study the effects of tides in

a two-dimensional strait-like domain, varying biological parameters, tidal frequency,

and levels of diffusion. We then present our new approaches for the initialization of

a three-dimensional biological model in MSEAS using sparse data which is based on

region-specific analytic chlorophyll profiles. The biology fields are compared to the

two-dimensional fields. All results are reviewed and summarized in Chapter 6.
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Figure 1-3: An example output from MSEAS showing surface temperature and cur-
rent for the archipelago domain. Cross-sectional plots are also produced along select
straits [43].
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Chapter 2

Modeling Physics and Biology

In this chapter, we discuss details of coupled physics-biological modeling. Models of

varying levels of complexity are explored and two models are selected for analysis

in subsequent chapters. The first model described is a simplified NPZ (Nutrient-

Phytoplankton-Zooplankton) model for an idealized system in two spatial dimensions.

This model allows closed form analytic results that reveal important characteristics

of the system and allow parameter sensitivity studies. The second model described

is significantly more complex, including additional biological and chemical variables.

This later model is sufficiently sophisticated to provide accuracy and precision re-

quired for three dimensional modeling using MSEAS. We show that these models are

appropriate tools to use for an initial assessment of the relationship between physics

and biology. Various ways to represent biological processes are compared and dis-

cussed.

2.1 Biology in the Ocean

Unlike most physical systems, equations to model biological systems in the ocean

have not yet been derived from first principles and conservation laws. Instead, the

governing equations for biological systems are built from observations. These em-

pirical equations often contain several region-specific parameters to describe growth

rates, death rates, and other processes [16]. While the equations model how the state
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variables interact, the parameters control the characteristics of interaction, including

the rates of growth or death.

To study the relationship between physics and biology, it is common to examine

the lower trophic levels of biology. Modeling is often limited to an isolated part of

the food web, such as the cycle between nutrients, phytoplankton, and zooplankton.

Phytoplankton feed on nutrients and are consumed by zooplankton. When zooplank-

ton die, bacteria eventually convert the zooplankton back to nutrients. The growth

rate of each of these organisms is dependent on the environment and the specific

quantities of the other organisms. As such, the relationship between the different

organisms is highly coupled. The presence or absence of one organism determines the

growth possible by another.

The relationships which represent biological interaction between organisms, called

reaction or source terms, can be expressed in various ways and depend on several

parameters. These parameters, discussed in Section 2.2, can be a function of space

and time and are region-dependent. Sufficient data is needed to specify temporal and

spatial variation of parameters. Temporal variations include seasonal, weekly, or daily

scales and examples of spatial variations include varying parameters from one region

to another, or in depth. For the present research, we are interested in parameters

appropriate for the Philippines but we will start with constant parameters because

of sparse data in this region.

Environmental factors important to biological growth include light (solar irra-

diance), bottom depth, availability of nutrients and physical processes such as tur-

bulence, internal waves, and eddy transport [17]. These factors can directly affect

single or multiple state variables. (A biological state variable is usually the biomass

concentration of an organism such as zooplankton, phytoplankton, and nutrients.)

For instance, only phytoplankton require light. They must live near the ocean sur-

face to absorb light for photosynthesis. Experiments in some regions have shown

that phytoplankton growth can be hindered by too little or too much light. Because

phytoplankton require light, there exists a critical depth where insufficient sunlight

eliminates the possibility of phytoplankton (and thus zooplankton) growth, assuming
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a domain without flow. Critical depth is defined as the depth where photosynthetic

gain of phytoplankton cells are balanced by respiratory losses, which can be different

than the depth of the euphotic zone, where light is sufficient to support plant growth

[33].

If flow, such as a downward vertical velocity or diffusion, is present, phytoplankton

may be transported from above the critical depth down to light-deficient areas, in

which case the depth of the euphotic zone and the critical depth do not coincide.

These depths vary highly with location, depending on the local turbidity of the water

and the attenuation of light with depth. In Chapter 3, we discuss the validity of

critical stability depth (found in the reference frame without physics) when advection

and diffusion are present. In general, in open ocean conditions, the greatest local

variation in biomass is in vertical distribution because of light-dependence and ocean

flows, which are commonly much stronger in the horizontal direction than in the

vertical.

Only some species of plankton are capable of independent vertical movement. Ex-

cluding these, plankton and nutrients act as passive tracers in the flow because their

self-movement in comparison to the flow is negligible [18]. Therefore biology, which

act as passive tracers, can be good indicators of flow direction and strength. Physical

processes that increase vertical velocities and mixing often produce interesting biolog-

ical behaviors. We will model physical processes by considering advection (transport

by ocean currents) and diffusion (mixing processes) [17]. When nutrient-rich waters

are upwelled, a more productive environment is created because phytoplankton gain

access to these nutrients. Predicting and understanding processes such as upwelling

is key in understanding how changing conditions will affect marine life, an important

food source to the world. Currently, regions of coastal upwelling are responsible for

approximately half of the fish harvest in the world, though they only occupy 0.1%

of the ocean’s surface area [12]. Further, advection and diffusion can raise or lower

the critical depth (compared to the critical depth of the physics-free reference frame).

Consider an extreme case with very high diffusion. High rates of mixing create an

averaged field, so that the concentration of phytoplankton at the surface matches
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the value at the ocean floor. Therefore, no critical depth exists and phytoplankton

growing at one depth are transported quickly to the entire water column.

Although we are only considering lower trophic levels in our models, the behavior

and trends are indicative of higher trophic levels. The relationship between the two is

sometimes extremely short. For example, whales consume krill (a type of zooplank-

ton), which consume phytoplankton. All higher trophic level activity depends on

these primary producers. In general, we assume zooplankton are consumed by fish,

which are either caught by man or eventually recycled into nutrients [16].

2.2 Two-dimensional Idealized Case: Nutrient-

Phytoplankton-Zooplankton Model

There are several types of biological ocean models ([49], [30]). We focus on the NPZ

(Nutrient-Phytoplankton-Zooplankton) food-web model for our idealized simulation.

It is a concentration-based model, with nitrogen or carbon as a currency. An NPZ

model is chosen because it is one of the most basic ways to represent the biological-

physical interactions for lower trophic levels [20]. NPZ models accurately represent

a wide range of biological behaviors, as evidenced by many example of successful

usage, both quantitatively and qualitatively. NPZ models are not commonly used for

predictive purposes, but are useful in understanding past trends and behaviors. NPZ

models are appropriate for mesoscale physical processes because of matching time

scales with biological interactions.

The NPZ model preserves first order interactions, but is simplified enough to per-

mit analytic, closed form results with or without numeric methods. An NPZ model

assumes that zooplankton feed on phytoplankton, which feed on nutrients. Zooplank-

ton and phytoplankton each have a natural mortality rate. When zooplankton and

phytoplankton die naturally, we assume that they directly become nutrients. Fig-

ure 2-1 shows a graphical representation of the NPZ model just described. Other

food-web models that include additional compartments and complexities are used in
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MSEAS. One of them is discussed in Section 2.3.

Zooplankton

Phytoplankton

Nutrients

Figure 2-1: Schematic diagram of an NPZ model. The yellow up arrows indicate
consumption and the blue down arrows indicate recycling into nutrients.

Empirical equations developed for these models are nonlinear. Consequently, no

analytic solution exists. To better understand the biological dynamics of the NPZ

model, the strongly nonlinear biological equations should first be understood in the

reference frame without physics (advection or diffusion). The reference frame with-

out physics can be compared to a closed ocean system where the fluid motion is not

allowed and no mixing is present. Only the biological organisms are allowed to react.

With parameters constant in space, the only variation is in depth because of the ver-

tical light decay. In Chapter 3, we explore the stability and behavior of the biological

equations without advection and diffusion, and test these behaviors when advection

and diffusion are present.

2.2.1 Biological Field Equations

A typical NPZ biological system is represented by a set of generic Advection-Diffusion-

Reaction (ADR) equations, with concentration of biomass (φi) acting as the state
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Reaction term Representation Description

uptake(P,N) f(I)g(N) Phytoplankton response to irradiance &
Phytoplankton nutrient uptake

grazing(P,Z) h(P ) Zooplankton grazing on phytoplankton
death(P) i(P ) Phytoplankton death rate
death(Z) j(Z) Zooplankton death rate
regeneration(P,Z) (1− α)h(P ) Inefficiency of zooplankton grazing
assimilation(P,Z) αh(P ) Efficiency of zooplankton grazing

Table 2.1: Descriptions of generic biological reaction terms

variable. The second term of Equation 2.1 is advection, the third diffusion, and the

last term represents the collection of biological reaction terms.

∂φi
∂t

+∇ · (uφi) = ∇ · κ∇φi + B(φ1, ..., φi, ..., φN) (2.1)

where (φ1...φN) are the N state variables, κ is the diffusion coefficient, and u is the

velocity vector. These equations are also valid for the more complex model described

in Section 2.3.

B(φ1, φ2, ..., φN) couples the equations for different organisms.

Biological reactions typically modeled in NPZ equations are described by [18]

and [20] and summarized in Table 2.1. The reaction terms listed in the table can

take many forms, depending on the relationship modeled. For instance, to model

zooplankton death rate (j(Z)) and the phytoplankton response to irradiance (f(I))

several different relationships can be used and are shown in Figures 2-2 and 2-3. The

curves in Figure 2-2 present reaction terms for zooplankton death rate for various

level of complexity. It is clear that the nonlinear term models the same behavior of

quadratic death rate for low concentrations of zooplankton and matches linear death

rate for high concentrations of zooplankton, with a smooth transition in between for

mid-range concentrations. Figure 2-3 demonstrates the response of phytoplankton to

irradiance. Again, we see that adding complexity allows behavior at both low and

high irradiance to be specified. The last curve (according to the legend) models a

response for phytoplankton, which is sensitive to both too little and too much light.
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∂N

∂t
+∇ · (uN) = ∇ · κ∇N − uptake (P,N) + regeneration (P,Z)

∂P

∂t
+∇ · (uP ) = ∇ · κ∇P + uptake (P,N)− grazing (P,Z)− death (P )

∂Z

∂t
+∇ · (uZ + wzZ) = ∇ · κ∇Z + assimilation (P,Z)− death (Z)

(2.2)

This set of three coupled, strongly nonlinear partial differential equations de-

scribe both the reaction due to biological interactions and the physics of the flow

(advection and diffusion) using only one type of nutrient (N ), phytoplankton (P),

and zooplankton (Z ). Understanding the simplest model is an important initial step,

as complexities can be added later, for example, when a more complicated model is

necessary or when the behavior is known from observational data.

More complicated models, as presented in Section 2.3, include additional com-

partments, such as detritus, chlorophyll, and multiple types of limiting nutrients,

phytoplankton, and/or zooplankton. Note that the class of NPZ models discussed

are conservative, in that the biological reaction terms sum to zero (any loss or gain

of one compartment is accounted for in other compartments).

For an initial study of biological interactions, the forms for the biological terms

are the same as those used in [18], which includes the Ivlev form of grazing and the

Michaelis-Menten form for uptake.

∂N

∂t
+∇ · (uN) = ∇ · κ∇N − uez/h PN

N + ks
+ dpP + dzZ + (1− a)

g

ν
Z
(
1− e−νP

)
∂P

∂t
+∇ · (uP ) = ∇ · κ∇P + uez/h

PN

N + ks
− dpP −

g

ν
Z
(
1− e−νP

)
∂Z

∂t
+∇ · (uZ + wzZ) = ∇ · κ∇Z + a

g

ν
Z
(
1− e−νP

)
− dzZ

(2.3)
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Where the parameters in the above set of coupled equations are defined as:

u Phytoplankton uptake rate

ks Saturation rate of phytoplankton

NT Total biomass

dp Mortality rate of phytoplankton

g Grazing rate of zooplankton

a Assimilation (efficiency) rate

dz Mortality rate of zooplankton

h e-folding depth for light (photosynthesis)

ν Parameter for Ivlev form of grazing

(2.4)

If we assume the zooplankton modeled is not a species which is capable of independent

motion in the vertical direction, and if all physical advection and mixing coefficients

are the same for all variables, the three coupled equations can be reduced to two by

assuming a fixed biomass NT and substituting N = NT − P − Z.

∂P

∂t
+∇ · (uP ) = ∇ · κ∇P + uez/h

P (NT − P − Z)

NT − P − Z + ks
− dpP −

g

ν
Z
(
1− e−νP

)
∂Z

∂t
+∇ · (uZ) = ∇ · κ∇Z + a

g

ν
Z
(
1− e−νP

)
− dzZ

(2.5)

For the idealized studies, Equations 2.5 are modeled for a two-dimensional vertical

slice of the ocean. A stability analysis of Equations 2.5 is presented in Chapter 3.

2.3 Three-dimensional Realistic Case: Seven Com-

partment Biogeochemical Model

The ocean modeling system used, MSEAS, is a generic system designed for inter-

disciplinary nowcasting, forecasting, and data-driven simulations. MSEAS has been

extensively verified in various regional experiments ([25],[36],[48]). The model uses
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4D physics based on the Primitive Equations (PE) (see [6] for details).

MSEAS is capable of implementing several different biological models (discussed in

[56]). The biological model used for this work couples with the physics and is governed

by ADR equations for six state variables: zooplankton, detritus, nitrate, ammonium,

chlorophyll a and phytoplankton. A schematic of this system is shown in Figure

2-4 from [6]. The biological reaction terms B(φ1, ..., φi, ..., φ7) and corresponding

parameters are shown in [6]. The added complexity of this model is apparent when

Figures 2-1 and 2-4 are compared. From Figure 2-4, we can see that phytoplankton

consumes both nitrate and ammonium, instead of just one nutrient, like in the NPZ

model. Additionally, the model used in MSEAS includes detritus, chlorophyll and an

optical model for solar irradiance.

Figure 2-4: The biological model used in MSEAS [6].

A more complex model allows us to model additional processes and stages and is
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often more realistic. However, it presents the challenge of initializing the system (now

in three spatial dimensions and for six state variables, compared to two dimensions

with three variables as in the NPZ model), and additional difficulty in understanding

the strongly nonlinear coupled equations. While we were able to simplify Equation

2.3 to Equations 2.5, no such simplification is possible for the MSEAS model. Initial-

ization of the system depends on the data available in the region of interest. Details

on the initialization of the biological system for the Philippines domain are discussed

in Chapter 5.

Both models chosen for analysis and simulation of coupled physics and biology

have been previously tested and verified. Each has its advantages: the NPZ model

offers the ability to obtain closed form solutions describing the system, while the

model used in MSEAS is capable of modeling more complex, realistic behaviors.

These models are thus appropriate tools to use for understanding the relationship

between coupled physics and biology in the Philippine Archipelago, a region where

relatively little data is available. However, after more information is known about

the region, we may find it suitable to use different reaction terms or a different model

that is more fitting.
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Chapter 3

Stability and Equilibria of the

Nutrient-Phytoplankton-

Zooplankton Model

Understanding the detailed relationships between the state variables of Equation 2.3

solely by examining terms is very challenging. The biological reaction terms are

strongly nonlinear and depend on parameters that may take different values for dif-

ferent regions. It is common to use coupled biological-physical models in regions

where not all of the parameters are known. In this case, it is important to know

which range of parameter values give physical solutions and which cause unstable

or unrealistic solutions. Additionally, if parameters are estimated (either because

they are unknown or because several different values have been recorded for a re-

gion), knowing how sensitive the equations are to a particular parameter indicates

the necessary level of accuracy for the parameter estimates.

In this chapter, we consider the reference frame without physics (that is, advec-

tion or diffusion) to express important equilibrium and global stability properties in

an analytic, closed form fashion, purely in terms of the system parameters. While

numerical models are very powerful tools in simulating coupled physics and biology,

an analytic stability analysis allows us to learn a substantial amount of global in-

formation quickly and easily by evaluating first-order dependencies and relationships
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between parameters, stability, and equilibria. These results are particularly useful

if some of the parameters are known so that there are fewer degrees of freedom to

analyze. The use of Direct Numerical Simulation to obtain comparable global results

would require significant time and effort to tune parameters and analyze test cases.

More specifically, Section 3.1 presents a novel global stability analysis of the bio-

logical equations (without advection or diffusion) conducted to evaluate the sensitiv-

ity of the strongly nonlinear equations to parameter values, behavior of the equilibria

states, as well as appropriate ranges for the parameter values. In Section 3.2, we focus

more on local stability, studying critical stability depths and presenting a new gen-

eral method of stability analysis showing results for varying total amount of biomass

concentration in the system (NT ). Lastly, the applicability of the stability analysis

in the dynamics model (including physics) is addressed.

3.1 Equilibria Solutions and Regions

To obtain static equilibria solutions, we consider Equations 2.5 without advection or

diffusion:

dP

dt
= uez/h

P (NT − P − Z)

NT − P − Z + ks
− dpP −

g

ν
Z
(
1− e−νP

)
dZ

dt
= a

g

ν
Z
(
1− e−νP

)
− dzZ

(3.1)

Note that these equations are identical to the biological equation in the Lagrangian

frame, including advection, where d
dt

is the material derivative. Equations 3.1 are set

to zero to solve for the steady equilibria. Once the system is in steady state, it does

not change with time, so we set the time derivative to zero to solve for P and Z in

this state. As mentioned in Chapter 2, we have constant total biomass NT in the

system if we assume there is no independent swimming zooplankton, so our nutrient

equation is simply N = NT − P − Z. These equations essentially represent how

phytoplankton and zooplankton change in time due to the biological reaction terms
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only. For biological modeling in a region with sufficient information, NT may be

modeled as varying in space (more commonly in depth only) or in time. In that case,

the following analysis is appropriate for any point in time with constant biomass.

Commonly, NT is modeled as constant in space and time, in which case the analysis

is valid in the entire field.

The steady state equations (Equations 3.1) give three sets of equilibria (Equations

3.2-3.4). The first equilibrium is:

N = NT

P = 0

Z = 0

(3.2)

Equations 3.2 are the solutions we expect in deep waters where phytoplankton are

unable to survive, thus zooplankton have nothing to feed on. Therefore, nutrients are

responsible for the full biomass value. The second equilibrium is:

N = −ks −
β(z)ks
dp − β(z)

P = ks +NT +
β(z)ks
dp − β(z)

Z = 0

(3.3)

Equations 3.3 will always give negative amounts of biomass, an unphysical solution,

and thus we are not interested in these steady state values. The third equilibrium is:

N = NT +
γ

ν
− ρ∓

√
ρ2 − s

P = −γ
ν

Z = ρ±
√
ρ2 − s

(3.4)
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where

ρ =
1

2

(
ks +NT +

γ

ν

(
1 +

a

dz
(dp − β(z))

))
s =

aγ

dzν

(
dp

(γ
ν

+NT + ks

)
− β(z)

(γ
ν

+NT

))
γ = ln

(
1− dzν

ag

)
β(z) = uez/h

It is important to note that γ ≤ 0 and 0 ≤ β(z) ≤ u because all parameters in

Equation 3.1 are positive. Further, β(z) can be thought of as a generalized depth

that does not require specification of e-folding depth h (describing how light decays

in depth) or uptake rate u. For near surface depths, limz→0 β(z) = u while for depths

far below the surface, limz→−∞ β(z) = 0.

Equations 3.4 are the most interesting because they represent the physically re-

alistic biological equilibrium in the upper layer of the ocean. Altering the system

parameters can change the equilibrium from positive to negative and real to imagi-

nary. Knowing that γ is always non-positive and ν is always positive guarantees a

positive value of phytoplankton equilibria. Phytoplankton equilibria is independent

of depth z or β(z), so this result is valid (positive and real) for the entire water

column above the critical depth. Below the critical depth, phytoplankton cannot sur-

vive and nutrients dominate. More technically, the critical depth is the depth where

photosynthetic gain of phytoplankton cells are balanced by respiratory losses [33].

Because of mixing, the critical depth does not necessarily correspond to the depth of

the euphotic zone, where light is sufficient to support plant growth.

For initial analysis, we will use the parameter values used in [18] to study the

behavior of the last set of equilibria. These values are:
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u = 0.6µmol day−1

NT = 3µmol L−1

ks = 0.1µmol day−1

dp = 0.016µmol day−1

g = 0.1µmol day−1

a = 0.4

dz = 0.08µmol day−1

h = 17m

ν = 0.1µmol−1

(3.5)
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Figure 3-1: Equilibrium solution for N,P, and Z based on the parameters in Equation
3.5.

Figure 3-1 shows a one-dimensional (in depth) view of Equations 3.4. Even though
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phytoplankton feeding decays in depth because they require light for photosynthesis,

the phytoplankton equilibria do not vary with depth, until the solutions become

unphysical and equilibria change. Below the critical depth, we impose the equilibria

solution for deep water (Equation 3.2). In cases where the critical depth is known,

that depth can be imposed directly. The variation in depth due to light decay is

reflected in the distributions of nutrients and zooplankton: phytoplankton feed more

slowly at lower depths, so more nutrients are available. In turn, zooplankton’s prey

(phytoplankton) is growing much more slowly at low depths, so it has less to feed on.

These equilibria were verified numerically by allowing Equations 3.1 to reach steady

state. The simulated profile in depth was identical to the analytical equilibrium in

depth.
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Figure 3-2: Equilibria solutions for Z for various values of phytoplankton uptake rate
u.

Parameter values can alter the equilibrium solutions drastically. For example,

Figure 3-2 illustrates the relationship between phytoplankton uptake rate u and zoo-

plankton equilibrium. The result is intuitive: as phytoplankton uptake rate increases,

phytoplankton consume nutrients more quickly, therefore there are more phytoplank-

ton for zooplankton to prey on. The zooplankton equilibria change for all depth

values, though for large uptake rate, the solution near the surface asymptotically
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approaches a constant zooplankton value (Z → 0.75µmol/L). In contrast, varying

assimilation rate a (Figure 3-3) alters the solution near the surface and for the two

largest a values, the solution below 30m appears identical. Assimilation rate indicates

how efficient zooplankton are in grazing on phytoplankton. It is clear that with nine

parameters in a coupled strongly nonlinear system (each parameter corresponding to

different behaviors), it is difficult to imply behavior and stability properties without

careful analysis.
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Figure 3-3: Equilibria solutions for Z for various values of assimilation rate a.

The third set of equilibria (Equations 3.4) is examined more closely by applying a

dynamical systems approach to biological dynamics. We determine the relationship

between values of ρ and s and whether the equilibria solution is physical (both real

and positive) or not. Additionally, more than one physical solution is present for

some values of ρ and s. Table 3.1 summarizes these results for zooplankton. From

this table, we can predict the number of physical solutions, given the sign of ρ and

s. There is always just one equilibrium for phytoplankton, for all ρ and s values, and

the nutrient equilibrium can be extracted directly from the zooplankton equilibrium.

We are interested in the variation with β(z), as we expect a change in depth in

nearly every realistic case. For a specific region with constant parameter values, it is

possible to have a different number of solutions in different depth regions because of
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the dependence on light. A change in the number of solutions commonly indicates

a change in stability, so studying where these changes occur is a useful first step in

stability analysis. We refer to a region (either in depth or another parameter) with

the same stability properties as a “stability region.” For instance, if the same number

of solutions are predicted for z = 0m to z = −50m, then this is one stability region.

From Figure 3-4, the number of different stability regions that exist in depth for

a given value of NT can be identified by determining the sign of ρ and s as depth

increases. There is a transition from one region to another when either ρ or s changes

sign. With information of ρ and s evaluated for one value of β(z), we know everything

about which regions are where for each value of NT . It is important to have some

initial information because we only know when ρ or s change sign, but not the sign

to which they change. Also note that a limitation of this approach is if ρ or s have a

minimum or maximum of zero, instead of changing signs at zero. This case has not

been observed for any of the parameter sets tested, but should be verified when this

approach is used.

Figure 3-4: ρ and s for a range of NT and β values.

Figure 3-4 shows ρ and s for a range of β and NT values. For larger values of

β and NT , we see that both are positive (and ρ2 > s) so there are two solutions in

this region (from Table 3.1). For lower values of β and NT , there are several different

regions where one or neither ρ or s are positive. We can conclude that there are zero
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Z equilibrium ρ > 0 when 0 ≤ β(z) ≤ βcρ ρ < 0 when βcρ ≤ β(z) ≤ u

s > 0 when 0 ≤ β(z) ≤ βcs 2 solutions if ρ2 > s No solutions
1 solution if ρ2 < s

s < 0 when βcs ≤ β ≤ u 1 solution (positive branch) 1 solution (positive branch)

Table 3.1: Number of zooplankton equilibrium points with ρ, s, and β(z). βcs is the
depth where s changes sign and βcρ is the depth where ρ changes sign.

or one solutions in this region. All four combinations listed in Table 3.1 are possible,

as we can see in Figure 3-4.

While the three-dimensional plot is useful in providing a general idea of where

region transitions are for given values of β and NT , specific values of NT should be

examined to understand details of where region transitions occur. (This is done at

the end of this section, with results in Appendix A.) We define critical stability values

of depth as βcs and βcρ for a region transition (when s or ρ change sign, respectively).

They are expressed in terms of the system parameters, including NT :

βcs = dp

(
ks +NT + γ

ν

)
NT + γ

ν

βcρ = dp +
dz
a

(
1 +

ν

γ
(ks +NT )

) (3.6)

These critical stability depths are then used to find the range of NT for which there

are different stability regions with different limits. The critical values of NT which

define these ranges are:

NTcρ = −
(
γ

ν

(
dpa

dz
+ 1

)
+ ks

)
NTcs = −NTcρ −

γ

ν

dpa

dz

(3.7)

Because γ is always negative, NTcs > NTcρ. The three different ranges of NT with

unique stability properties are shown in Table 3.2.

Table 3.2 is constructed using the critical stability values of Equations 3.6 and 3.7,

which indicate when a sign change of ρ or s occur, and Table 3.1, which determines
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Region 1 Region 2 Region 3
Z 0 ≤ β < βc1 βc1 < β < βc2 βc2 < β ≤ u

−∞ < z < zc1 zc1 < z < zc2 zc2 < z ≤ 0

s > 0 s < 0 s < 0
0 < NT < NTcρ ρ < 0 ρ < 0 ρ > 0

No solutions One solution One solution
s < 0 s < 0 s < 0

NTcρ < NT < NTcs ρ < 0 ρ > 0 ρ > 0
One solution One solution One solution

s < 0 s > 0 s > 0
NT > NTcs ρ > 0 ρ > 0 ρ > 0

One solution Two solutions Two solutions

Table 3.2: Number of zooplankton equilibrium based on total biomass (NT ), depth,
and the sign of ρ and s. βc1 and βc2 are chosen based on the values of βcρ and βcs.
For instance, if βcρ > βcs, then βc1 = βcs and βc2 = βcρ.

NTcs = 2.31 βcs = 0.016 βcρ = 0.002
NTcρ = 2.13 βcs = 0 βcρ = 0.036

Table 3.3: Critical values for parameter values listed in Equation 3.5, also presented
in Figure 3-5.

how many solutions of Z exist, given the sign of ρ and s. Table 3.2 assumes ρ > 0

and s > 0 for NT < NTcs for β = 0 as initial conditions. If this assumption is

not true, a similar table can easily be constructed using the above approach. The

critical values hold for any initial condition. These ideas are clarified with an example.

For the parameter values listed in Equation 3.5 the corresponding critical values are

presented in Table 3.3 and in Figures 3-5 and 3-6.

Figures 3-5 and 3-6 provide a new technique of examining the number of solutions

for different regions of NT . The values of β where solution properties change are as

predicted in Equation 3.6. Figure 3-5 is shown in terms of β and Figure 3-6 in terms

of z. Again, plotting the graph in terms of β allows us to describe the system more

generally, as the depth decay scale h and uptake rate u are not specified and are left

completely general.

Holding NT constant at NT = 2, 2.2, and 3 µmol/L (values above, in between,

and below the critical values that define the ranges of NT ) for the case shown in
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Figure 3-5 are presented in Appendix A. The final figures of Appendix A show that

the number of solutions for Z predicted using Table 3.1 are correct. The last figure

also reveals that the positive root of Z never gives positive nutrient concentration

(for those parameter values used).

Being able to identify the values of depth β(z) and biomass NT where solutions

exist and defining the number of such equilibrium solutions is very powerful. Stability

properties may change at the transitions across regions. These ranges are specified

by the values of the equation parameters and bring us closer to identifying ranges of

parameters for stable solutions.

3.2 Stability of the Linearized System

Using the information about equilibria discussed in Section 3.1, an analysis of the

linearized equations (in the reference frame without physics) around the equilibria

solutions reveals stability properties for the general solution regions. Equations 3.1 are

linearized around the equilibria (P0 and Z0 from Equations 3.4, using the “negative”

Z root) and the result is a system of two ordinary differential equations:

 dP
dt

dZ
dt

 ≈
 MPP MPZ

MZP MZZ

 P0

Z0

 (3.8)

where Mij is the linear coefficient of j for the i equation and is comprised entirely of

system parameters. For a local stability study, we focus on the matrix that describes

the first order behavior of the system (matrix M). The eigenvalues of the Jacobian of

Equation 3.8 indicates local stability: if the real part is positive, we expect unstable

behavior and if the real parts of both eigenvalues are negative, the solutions are stable.

If the real part of the eigenvalue is zero, an oscillatory solution results, assuming the

imaginary part of the eigenvalue is non-zero. Equation 3.9 is the Jacobian of the

linearized system, where P0 and Z0 are the equilibrium values.
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J =

 A11 A12

A21 A22


where

A11 = −dp − e−P0νgZ0 +
e
z
hu
(
ks (NT − 2P0 − Z0) + (−NT + P0 + Z0)

2)
(ks +NT − P0 − Z0)

2

A12 =

(
−1 + e−P0ν

)
g

ν
− e

z
hksP0u

(ks +NT − P0 − Z0)
2

A21 = ae−P0νgZ0

A22 = −dz +
a
(
1− e−P0ν

)
g

ν

(3.9)

The corresponding eigenvalues of the Jacobian can be expressed in closed form

using the general expression for eigenvalues of a 2x2 matrix:

σ1 =
1

2

(
A11 + A22 −

√
A2

11 + 4A12A21 − 2A11A22 + A2
22

)
σ2 =

1

2

(
A11 + A22 +

√
A2

11 + 4A12A21 − 2A11A22 + A2
22

) (3.10)

Although we can see that the eigenvalues of the Jacobian can easily be expressed

in closed form from Equations 3.9 and 3.10, the result includes numerous terms. If

some system parameters are known, the effect of the range of the unknown parameter

values can be expressed analytically by taking the derivative of the eigenvalues with

respect to the unknown parameter. Identifying where the real part of the eigenvalue

is negative and positive gives defined ranges of stability and instability in terms of

the unknown parameter.

Using the parameters from Equation 3.5, we assume here that all parameters but

NT are known and perform the stability analysis for total biomass. In Chapter 4,

we initialize a two-dimensional simulation using a specified NT , so it is important to

know if a particular region (with a specific NT value) would give a stable or unstable

solution so as to anticipate the local behavior of the time-dependent solutions.
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Figure 3-7: Real part of the eigenvalues for the Jacobian of the linearized system
evaluated at the equilibrium with varying total biomass.

The real eigenvalues for Equations 3.8 (Figure 3-7) show regions of negative (in-

dicating decay, therefore stable) and positive (indicating growth, therefore unstable)

values. The range of NT for non-positive real eigenvalues shrinks in depth, so the

range of NT for the system to be in a stable regime is defined by the lowest depth of

interest or z = −50m (the approximate limit for which NPZ equations were originally

derived [20]). Another interesting property to note is shown in Figure 3-8 where there

is a critical depth value for a disappearing bifurcation. This figure shows that this

value for our given parameters is about z = −62m, as the bifurcation is seen for all

values above z = −61m, but disappears for z = −62m.

Figure 3-9 confirms the stability of the region limited by z = −50m. The equi-

librium solutions are stable for NT = 2.5, 3, 3.5, 4 µmol/L but not for NT = 2 and

5 µmol/L, as predicted in Figure 3-7. It is interesting to note that the analysis of

equilibrium points (Figures 3-5 and 3-6 and Table 3.1) reveals just one of the critical

values, the lower bound of an acceptable range of NT for stable equilibria (NT = 2.31

µmol/L for the example above), while looking at the real eigenvalues of the linearized

system evaluated at the equilibria reveals a more restricted range with an upper and

lower bound, dependent on the value of depth. While the analysis presented in Sec-
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Figure 3-8: Real part of the eigenvalues for the Jacobian of the linearized system. A
bifurcation vanishes as z → −62m.
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Figure 3-9: Real part of the eigenvalues for the Jacobian of the linearized system
evaluated at the equilibrium with varying NT .

52



tion 3.1 does provide useful information globally, it does not give us complete NT

ranges of local stability.

Figures 3-10 and 3-11 show identical analysis as presented for Figure 3-7 through

Figure 3-9, but now the Jacobian is evaluated at the positive root of the Z equilibrium

solution of Equations 3.4.
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Figure 3-10: Real part of the eigenvalues for the Jacobian of the linearized system
evaluated at the equilibrium (positive Z root) with varying depth.

Unlike the previous case, the growth rates for the positive root of Z are limited by

z = 0m, not z = −50m. The critical lower bound NT value is 7.7 µmol/L. Beyond

this lower bound, there are positive growth rates. Figures 3-11 and 3-12 show that

all NT < 7.7 µmol/L have positive growth rates at the surface (z = 0m).

Those critical values for NT found in Section 3.2 do not reveal anything about the

stability properties of the linearized equations around the positive Z equation because

they described the transition of the negative Z root appearing or disappearing (see

Table 3.1). We focus on the “negative” root because the positive root of the Z

equilibrium is limited in producing real, positive values, while the negative Z root

gives physical results (Z > 0) more often for our parameter set. The stability regions

(in NT ) for both roots are summarized in Table 3.4.

Having a stable solution does not imply that it is a physical solution (real and
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Figure 3-11: Real part of the eigenvalues for the Jacobian of the linearized system
evaluated at the equilibrium (positive Z root) with varying total biomass.
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Figure 3-12: Real part of the eigenvalues for the Jacobian of the linearized system
evaluated at the equilibrium (positive Z root) with varying total biomass.
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Linearized Equations with: Z+ equil. pt. Z− equil. pt.

Stable if NT > 7.7 2.31 < NT < 4.44forzMAX = −50m
Unstable if NT < 7.7 NT < 2.31orNT > 4.44forzMAX = −50m

Table 3.4: Stability regions (in total biomass, limited by z = 0) for parameter values
listed in Equation 3.5.

positive). In fact, the last graph of Appendix A shows that the positive root of the

Z equilibrium never gives a positive N value. So, while the positive root of the Z

equilibrium may give stable results, they are not physical. An example is presented

in Figure 3-13. While both of these equilibrium solutions are within the stable regime

of NT and z, only the negative root is physical (positive for N,P, and Z).
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NT=3, Negative root of Z equilibrium

P
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Z N Z P

Figure 3-13: Stability does not imply a physical solution. Though NT = 8 gives a
stable solution, it is unrealistic, with negative nutrient values.

Closed form expressions for stability ranges of parameters can be derived for ks, dp

and ν and the new above method we developed can be applied to analyze local

stability. The parameters dz, a and g do not give closed form solutions, but similar

analysis can be performed with the aid of numerical “root finding” schemes. These

expressions are shown in Table 3.5. The critical stability depths, βcs and βcρ, are

always in closed form.

The predictions of critical stability depths and stability regions in terms of NT

presented in this section are tested using phase portraits, which plot the evolution of

Equations 3.1 in time. These results are represented in the phase space, P versus Z.

The phase portraits allow us to verify our new predictions for equilibrium points and
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Parameter (φ) φcρ φcs

NT −
(
adpγ

dzν
+ γ

ν
+ ks

)
−
(
γ
ν

+ ks
)

ks −
(
adpγ

dzν
+ γ

ν
+NT

)
−
(
γ
ν

+NT

)
dp − dz

aγ
(γ + ksν +NTν) −

ν − γ
dz

adp+dz
ks+NT

∗
−
(

γ
ks+NT

)
a − dz

dpγ
(γ + ksν +Ntν)∗ −

dz −
(

adpγ

γ+ksν+NT ν

)∗
−

Table 3.5: Stability region limits, defined by parameters. Starred values must be
solve numerically because those parameters are included in γ.

stability of those points.

3.2.1 Phase Portraits

We created phase portraits of P versus Z using the nonlinear coupled NPZ equations

without advection or diffusion (Equations 3.1). Appendix B shows these phase por-

traits for NT = 2, 3, 5, and 8 µmol/L. For the last three values, phase portraits are

shown both for the full range of values as well as for a smaller range surrounding the

analytical equilibrium point (NT = 2 µmol/L has an equilibrium point that is not

physical and therefore is not shown). The x-axis is concentration of zooplankton Z

while the y-axis is phytoplankton concentration P . The equilibrium points are listed

for each depth level and NT value. Only values under the line P = NT −Z are consid-

ered, as this defines the region where the solutions are physical (from the restriction

NT = N + P + Z). Based on the real part of the eigenvalue of the Jacobian for the

linearized system, each equilibrium point is predicted to be stable (S, real eigenvalue

is negative and there is decay) or unstable (U , real eigenvalues is positive and there

is growth). These conclusions are summarized in Table 3.6 (from Figure 3-7).

Though the stability points are sometimes difficult to distinguish in the graphs of

Appendix B, the location and stability are all accurately predicted by the analytical

solutions. While phase portraits are very powerful, it is much more difficult to deter-

mine an equilibrium point without an analytical solution, especially in cases where
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Stability z = 0m z = −25m z = −50m

NT = 2 µmol/L U U U
NT = 3 µmol/L S S S
NT = 5 µmol/L S U U
NT = 8 µmol/L S U U

Table 3.6: Results of the phase portraits in Appendix B.

the attraction region is very narrow.

The analytic results presented in this chapter are verified by phase portrait anal-

ysis. These results provide insight into the stability and behavior of the dynamic

system that would otherwise be impossible to obtain directly with a more complex

model that only permits numerical analysis.

3.3 Applicability to the Dynamic Environment

While the results derived in previous sections are useful in describing the system,

they are even more powerful if they indicate something about the dynamic environ-

ment. Using the numerical scheme discussed in Chapter 4, the system was evolved

for 100,000 time steps (1,000 days) to simulate “steady state” and determine if the

behavior predicted for the system without physics also held for the steady state case.

An elliptical bathymetry was placed on the ocean floor to create vertical velocities,

an important contribution to biological interaction. Initially, only advection is im-

posed, and then diffusion is added later. Waters below z = −50m were initialized

using Equation 3.2 and the top 50m was initialized with Equation 3.4 (using the

“negative” Z root). Additional details about the implementation of the numerical

simulation are found in Chapter 4.

The simulation initialized with NT = 3 µmol/L gave a stable steady state result,

as shown in Figure 3-14. This is the expected result because the upper bound for

stability is NT = 4.44 µmol/L for the domain without physics. The entire water

column was studied for stability, but Figure 3-15(a) (and all other figures showing

profiles) focuses on the profiles in the upper 50m because this is the region initialized
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with the equilibrium solution of interest. Figure 3-15(a) shows the profiles for each

node in the horizontal dimension in the domain at steady state for all three state

variables. From these profiles, we see no evidence of unstable behavior. Figure 3-

15(b) would show cross-hatching at any depth where an unstable solution is predicted

for the domain without physics, but the euphotic zone is entirely stable in this case.

Lastly, Figure 3-15 presents the real eigenvalues for NT = 3 µmol/L in the domain

without physics. In this case, they are all negative.

Figure 3-14: Steady state solution (for advection only) for nutrient, phytoplankton,
and zooplankton for initial biomass of NT = 3 µmol/L.
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(a) Profiles in depth for the steady state so-
lution initialized with NT = 3 µmol/L. This
solution is stable.
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(b) The entire euphotic zone is predicted to be
stable from our analysis in the domain without
physics.
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(c) Real eigenvalues in depth for NT = 3
µmol/L. No positive eigenvalues indicate that
the solution is stable in the domain without
physics.

Figure 3-15: Comparison of stability in domain with and without physics for NT = 3
µmol/L.
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NT = 5 µmol/L, just outside of the predicted stability region, also has a steady

state result (Figure 3-16), even though the lower portion of the euphotic zone is

predicted to be unstable (Figure 3-17(b)) in the domain without physics. Figure 3-

17(c) shows that while the real eigenvalues are positive for the lower euphotic zone,

these values are very close to zero. Therefore, adding physics (advection only) to the

system seems to have a stabilizing effect. The profiles for the steady state solution

are presented in Figure 3-17(a).

Figure 3-16: Steady state solution (for advection only) for nutrient, phytoplankton,
and zooplankton for initial biomass of NT = 5 µmol/L.
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(a) Profiles in depth for the steady state solu-
tion initialized with NT = 5 µmol/L. Again,
the solution is stable.
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(b) Predicted stable and unstable regimes of
the equilibrium solution. The cross-hatched
portion is where we expect an unstable solu-
tion.
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(c) Real eigenvalues in depth for NT = 5
µmol/L. While eigenvalues for the lower eu-
photic zone are positive, they are very near
zero. We do not see unstable behavior because
the physics stabilize the solution.

Figure 3-17: Comparison of stability in domain with and without physics for NT = 5
µmol/L.
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Domains with more total biomass in the system have higher real positive eigen-

values (Figure 3-19(c)), so their growth rate becomes larger as NT grows. A steady

state solution was not found for NT = 12 µmol/L (Figure 3-18) because values near

the surface were oscillatory. The profiles for the state at 100,000 time steps, or 1,000

days, (Figure 3-19(a)) show very noisy values of biology near the surface, due to the

unstable nature of this case. Note the physical and biological time scales are com-

parable: it takes 25 days for the mean flow to advect over the bathymetry, while

the time scale for biological reaction is about 30 days. As Figure 3-19(b) shows, the

entire euphotic zone is predicted to be unstable in the domain without physics, with

real eigenvalues much larger than in the previous case, as shown in Figure 3-19(c).

Therefore, while rapid growth does not occur for large NT values, solutions are likely

unphysical and our stability analysis in the domain without physics gives us a conser-

vative estimate of appropriate values of total biomass to use for the system to remain

stable. While regions with very small real eigenvalues stabilized when advection was

added, larger positive real eigenvalues did not. While it is possible for the biology to

become unstable, at least for some short period of time, knowing these limitations by

examining the parameters in the domain without physics is powerful. When physics

are added, it can become challenging to distinguish which effects are due to biological

reactions and which are due to the interaction of physics and biology.

We expect diffusion to have a stabilizing effect. Performing an identical simulation

with NT = 12 µmol/L, but now including a diffusion constant of κ = 0.1 in the x−

and z−direction, we obtain Figure 3-20. Comparing the profiles of this case (Figure

3-21) to the case without diffusion (Figure 3-19(a)) reveals that the oscillations have

subsided because of the diffusion introduced in the system and a steady state is

attainable (Figure 3-20).

3.4 Discussion

Steady equilibria for an NPZ model were found and used to determine relationships

between critical stability depth, biomass, and the number of positive, real solutions

62



Figure 3-18: Solution (for advection only) for nutrient, phytoplankton, and zooplank-
ton for initial biomass of NT = 12 µmol/L.
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(a) Profiles in depth for the solution initialized
with NT = 12 after 100,000 time steps (1,000
days). The oscillatory behavior about −20m
indicates unstable behavior. No steady state
solution was found for this case.
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(b) The entire euphotic zone was predicted to
be unstable for NT = 12 µmol/L.
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(c) Real eigenvalues in depth for NT = 12
µmol/L. The magnitude of the real eigenval-
ues decay in depth. Comparing this figure to
Figure 3-19(a), it seems that adding physics
to a domain can stabilize real eigenvalue of
about 0.01 and below, but any value greater
than this led to unstable behavior.

Figure 3-19: Comparison of stability in domain with and without physics for NT = 12
µmol/L.
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Figure 3-20: Steady state solution (for advection and diffusion) for nutrient, phyto-
plankton, and zooplankton for initial biomass of NT = 12 µmol/L. Diffusion acts to
stabilize the previously unstable solution.
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Figure 3-21: Profiles in depth for the steady state solution initialized with NT = 12
µmol/L including diffusion. Unlike the previous case without diffusion, a steady state
was obtainable. Diffusion acts to stabilize the solution.

for the zooplankton concentration equilibrium. Expressing the Z equilibrium in terms

of two other parameters, ρ and s, at a known depth is sufficient to characterize the

number of equilibrium solutions in the entire water column, when the expressions for

critical stability depths and biomass values are used. These expressions are general

in terms of the system parameters. Conditions on the number of solutions were

summarized in Table 3.1. We concluded that with one set of initial information (the

sign of ρ and s at a known depth) was sufficient to characterize the number of solutions

for the Z equilibria for the whole space. With this information, similar conclusions

about the N equilibria are known.

Identifying these equilibrium regions indicated possible changes of local stability,

which was further investigated by examining the linearized version of Equations 3.8.

By taking the eigenvalues of the Jacobian, evaluated at the equilibria (Equation 3.4),

local stability properties of depths and values of biomass were identified based on the

sign of the real part of the eigenvalues. Another interesting feature arose as a critical

stability depth was found where a bifurcation disappeared. This approach can easily

be applied to any of the parameters and expressions listed in Table 3.5.

Phase portraits were created to verify the analytical results using numerical meth-
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ods and were presented in Appendix B. Though some phase portraits match the

analytical results better than others, all appear to match our analytical predictions.

These results in the reference frame without physics were then tested in a dynamic

physically-forced environment. A numerical simulation was evolved for many time

steps to reach “steady state” if it existed. Three initial conditions, which are predicted

to be (i) stable, (ii) near stability, and (iii) further from stability, were implemented

and tested. The numerical simulations showed that initial conditions predicted to be

stable or near stability give a stable steady state. Initial conditions in the unstable

regime maintained magnitudes of biomass on the order of the initialized values, but

steady state solutions were not found because the solution in the top 15m was oscil-

latory. Lastly, diffusion was added to the unstable case and we showed that a steady

state was now attainable, therefore diffusion has a stabilizing effect.

The new methods for both global and local stability presented here are most useful

when some parameters of a system are known and sensitivity and stability properties

of the remaining parameters are needed. Depth should always be compared along

with the parameters of interest, because it will always vary and identifying a critical

depth where equations change dynamical properties is important.

67



68



Chapter 4

Two-Dimensional Idealized

Numerical Simulation

A two-dimensional idealized numerical model, designed to investigate the influence

of physical processes on biology, as well as the intrinsic biological dynamics, requires

an appropriate numerical scheme that accurately solves the partial differential equa-

tions (PDEs) describing the system. Specifically, our goal is to discretize Equations

2.3 using a scheme capable of modeling a wide range of biological-physical processes,

including cases dominated by advection. We first describe the general setup of the

simulation, with details on boundary conditions and initial conditions. This includes

numerical implementation using masking on the Arakawa C-grid and the Operator

Splitting Method (OSM). Next, we compare the central difference, donor-cell, hy-

brid and weighted essentially non-oscillatory (WENO) numerical schemes used to

discretize a simplified version of Equations 2.3. While our numerical simulation is

designed to model both physics and biology, the physics limit which schemes can be

used because some physical processes are more challenging to accurately represent

with numerical methods. For example, spurious oscillations, which appear similar

to the well-known Gibbs phenomenon but arise differently, commonly occur in the

advection-dominant case when discontinuities in the velocity or tracer field are present

[51]. Therefore, to isolate and study the manifestation of oscillations in the advection-

dominant case, we test all schemes in a one-dimensional domain with advection only.
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Additionally, we study numerical diffusion, which is particularly important when

modeling biological processes because an accurate solution cannot be found if the

reaction and diffusion terms are affected by numerical errors.

In this chapter, we focus on determining the most appropriate scheme to mini-

mize spurious oscillations with low computational costs and low numerical diffusion by

comparing several numerical schemes. The numerical diffusion and oscillatory nature

of the schemes are studied. Numerical diffusion is diffusion introduced from discretiz-

ing the differential equations which causes the system to behave differently than the

intended physical system. A comparison of several schemes reveals that the WENO

scheme is the most suitable for the idealized simulations. The resulting simulation is

verified against a simulation using Discontinuous Galerkin on an unstructured grid

with identical conditions.

4.1 Problem Setup

Equations 2.3 are discretized in a two-dimensional vertical “slice” of the ocean strait

(where x is the horizontal dimension and z is the vertical dimension). Any smooth

bathymetry can be implemented. By assuming a two-dimensional inviscid, incom-

pressible field, we can obtain a velocity field by solving the potential flow for any

particular bathymetry. Because we ignore viscosity, we do not expect the solution

near the sea bottom to be realistic, as there will be no boundary layer. Solving po-

tential flow ensures that the flow satisfies continuity and assumes no flow may exit

the sea surface or sea bottom. Code to solve for potential flow was developed by

Ueckermann [58]. Once the numerical simulation is verified for a potential velocity

field, other realistic flow fields can be used. For instance, taking a representative

averaged flow through a strait generated from the primitive equations using MSEAS

can be implemented to obtain a more realistic simulation.
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4.1.1 Operator Splitting Method

The Operator Splitting Method (OSM) allows us to decouple problems and solve the

equations in a single dimension. OSM, also known as time splitting or the method of

fractional steps, is used to solve partial differential equations for initial value problems,

usually in multidimensions [46]. If an initial boundary value problem can be expressed

as a linear sum of operators (the operators themselves are not restricted to be linear),

the original PDE can be split into terms based on these operators. The operators are

applied to φ (the tracer, or in our case, biological concentration of a state variable)

additively, yet this does not restrict the PDE itself to be linear [61]. For Equation

2.3, the advection and diffusion terms are discretized and solved in one direction (x)

only, with the resulting solution of this step serving as the initial condition for the

terms in the alternate direction (z). This process is repeated for each time step. OSM

significantly reduces the computational cost by enabling us to solve the PDE in small

time steps in a single direction only [46], allowing us to use banded algorithms. The

OSM is limited in that it is most useful if the boundaries can be represented as a

simple geometry, a restraint already present due to using a structured grid. Only

boundaries that can be expressed as strictly perpendicular to one of the two axes (x

and z) can be represented exactly.

4.1.2 Boundary and Initial Conditions

Boundary conditions are selected to be periodic in the x-direction, so that all biology

leaving the system on one side enters the system on the other. For the sea surface

boundary, a Neumann no flux boundary condition is imposed. Additionally, a Neu-

mann boundary condition is implemented on the bathymetry. Therefore, because we

have no flux conditions at the top and bottom boundaries and periodic boundaries on

the sides, no biology leaves or enters the system. These boundary conditions create

a conservative system: the initial total biomass NT will remain constant for all time.

Initial conditions are the steady equilibria of the NPZ equations without flow,

Equations 3.4. These equilibria are discussed in Chapter 3 and shown in Figure 4-1.
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Figure 4-1: Initial conditions for nutrients, phytoplankton, and zooplankton.
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4.1.3 Bathymetry, Masking, and the C-grid

An Arakawa C-grid is a staggered grid that simplifies enforcement of the continuity

of mass by specifying separate node locations for the horizontal velocity, the verti-

cal velocity, and the concentration a of biological state variable (the tracer) [4]. In

this chapter, tracer and concentration of biological state variable will be used inter-

changeably. Space between nodes is constant in the grid, as shown in Figure 4-2.

For this setup, there are I nodes in the horizontal direction and J nodes vertically.

Node numbering begins at the top right corner and is separate for each type of node

(vertical velocity, horizontal velocity, and the tracer), so that there are IxJ nodes of

each type. φi,j refers to the tracer node that is ith from the left, jth from the top.

Using a C-grid allows boundary conditions to be implemented easily by applying

a masking technique. First, three masks are constructed by identifying which tracer

nodes lie under the bathymetry. For the C-grid, each mask is a IxJ matrix of ones

and zeros. These masks are later applied to the gradient and divergence operators of

the partial differential equation to enforce boundary conditions.

The three masks created “mask” all nodes under the bathymetry and any node

neighboring those masked tracer nodes [37]. These masks are constructed as follows:

the first mask corresponds to the tracer nodes and is called the tracer mask (MT ).

Zeros are placed at any tracer node under the bathymetry, while the remaining nodes

are given a value of one. For Figure 4-2, the six circular nodes behind the striped

area are masked (assigned a value of zero) and all other circular nodes are one, as

shown in Figure 4-3. To construct the horizontal velocity mask (MH), MT is shifted

in the positive x-direction one node and multiplied by itself, so that the result is an

IxJ matrix with the nodes surrounding the masked tracer nodes in the horizontal

direction assigned zeros and all other entries assigned ones. Again using the elliptical

bathymetry from Figure 4-2, nine square nodes are given zeros. All horizontal nodes

neighboring “masked” tracer nodes are now masked. Similarly, to create the vertical

velocity mask (MV ), MT is shifted down and multiplied by itself. The vertical velocity

mask does not differ from the tracer mask (in this case) because of how the nodes
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Figure 4-2: Arakawa C-grid in the idealized simulation domain with periodic bound-
ary conditions in x and Neumann boundary conditions on the ocean bottom and
air-sea interface. Tracer, horizontal velocity, and vertical velocity nodes are distin-
guished by circles, squares, and triangles, respectively. The area under the striped
half-ellipse is bathymetry.
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are numbered and the Neumann boundary conditions on the top and bottom. Figure

4-3 illustrates the end result of masking, with all masked nodes marked with an X,

assuming the setup and elliptical bathymetry of the left frame of Figure 4-3.
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Figure 4-3: Placement of Xs in the figure on the right correspond to zeroes in the
mask matrices. A one is placed in the matrix for any node without an X for the
bathymetry shown on the left.

The divergence operator (∇·) of the variable in a differential equation maps from a

velocity node to a tracer node and is imposed by Hadamard (element-wise) multiplica-

tion of the velocity mask. In other words, the operation is discretized on the velocity

nodes and the solution is placed on tracer nodes. A gradient operator (∇) maps from

a tracer node to a velocity node and is implemented by a Hadamard multiplication

of the tracer mask. The advective flux term of Equation 2.3 is simply the divergence

of velocity multiplied by the tracer, while the diffusive flux term is the proportional

to the divergence of the gradient of velocity. Therefore, the boundary conditions for

the advection terms are applied by Hadamard multiplying the discretized derivative

by the velocity mask, while the boundary conditions for the diffusion terms are im-

plemented in two steps: first, by performing a Hadamard multiplication of the tracer

mask and the first discretization step, and then multiplying the second discretization
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step by either the horizontal or vertical velocity mask (depending on the dimension

discretized). These operations set the advective and diffusive fluxes to zero at the

boundaries. A detailed description of masking using matrix operators is available in

Appendix B of [37]. For example, in one dimension for node i one obtains (using an

average of tracer values at the velocity nodes and the central difference scheme):

∂(uφ)

∂x

∣∣∣∣k+1

i

=
φk+1
i+1 u

k+1
i+1MH(i+ 1) + φk+1

i (uk+1
i+1MH(i+ 1)− uk+1

i MH(i))− φk+1
i−1 u

k+1
i MH(i)

2∆x

κ
∂2φ

∂x2

∣∣∣∣k+1

i

= κ
(φk+1

i+1 − φk+1
i )MT (i+ 1)− (φk+1

i − φk+1
i−1 )MT (i)

(∆x)2
MH(i)

(4.1)

where φi is the tracer (on a tracer node), ui is the velocity (on a velocity node), M(i)

is the ith element of the appropriate mask, MT , MH , or MV , and k + 1 is the next

time step (t + dt). The first equation is for advection and the second for diffusion.

Applying the masks ensures that the operation only occurs if the node is not masked.

Because we use OSM, we will apply the masks in one dimension for our idealized

simulation, as in Equations 4.1.

! ! " " # # $ $ % % & &

''()*+,-

1 1 0 0 1 1

111011

M
H

M
T

Figure 4-4: A one-dimensional view of masking for the example shown in Equation
4.2. Because we use OSM, this example is representative of our implemented scheme.
The velocity mask is shown on the second line and the tracer mask is on the third
line.

For the one-dimensional example shown in Figure 4-4, if we want to find ∂φ
∂t

∣∣k+1

2

(ignoring diffusion, so that the change in φ is determined by the advection derivative

at i = 2) we see, using Equation 4.1:
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∂φ

∂t

∣∣∣∣k+1

2

= − ∂(uφ)

∂x

∣∣∣∣k+1

2

= −
(
φk+1

3 uk+1
3 + φk+1

2 (uk+1
3 − uk+1

2 )− φk+1
1 uk+1

2

2∆x
MH(2)

)
with MH(2) = 1 and uk+1

3 = φk+1
3 = 0 so that

∂φ

∂t

∣∣∣∣k+1

2

= uk+1
2

(
φk+1

2 + φk+1
1

2∆x

)
(4.2)

We know that the tracer (φ) is always non-negative (because our tracer is concen-

tration of biology) and that velocity (u) can be either positive or negative. Therefore,

when the velocity node to the right of a tracer node is masked, the change of φ in time

increases (decreases) with the magnitude of the positive (negative) velocity times the

average concentration of biology at that velocity node, as expected.

4.2 Comparison of Numerical Schemes

With the problem setup complete, we compare numerical schemes by testing each in

both the two-dimensional domain just described and a one-dimensional domain. The

two-dimensional test cases reveals an overall view of features in the domain and the

one-dimensional case allows us to isolate and more clearly understand the specifics

of each scheme. Any features seen in the solution should be from the evolution of

the equations, not an artifact of the numerics. Spurious oscillations are common near

discontinuities in the advection-dominant case, so all test cases focus on how well

the schemes represent advection only. Therefore, there is no diffusion or interaction

between biology in any of the figures in this section. We are focused on representing

the following equation, which is a simplified version of Equations 2.3 without diffusion

or biological interaction:
∂φ

∂t
= −∂(uφ)

∂x
− ∂(wφ)

∂z
(4.3)

We have already discussed stability of the biological terms in Chapter 3 and it is

well known that adding diffusion stabilizes a system, so the best scheme to represent
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Equations 4.3 will also be the best scheme to represent Equations 2.3 (our NPZ

equations with advection, diffusion and biological reaction terms). In the remainder

of this chapter, we show that the WENO scheme outperforms the central difference,

donor-cell scheme and hybrid schemes in preserving the behavior and physics of the

system. For each of the schemes discussed, we first examine the two-dimensional case,

then a one-dimensional case to test the scheme in a “worst-case” scenario, and lastly

we compare the cost efficiency of the schemes that accurately represent the modeled

dynamics.

4.2.1 One-dimensional and Two-dimensional Test Cases

To compare numerical schemes, a one-dimensional test case was created. By mask-

ing a single node, the boundary conditions and masking of the more general case

are tested. An initial Gaussian distribution is advected in the positive x direction

and encounters a “blocked” node at one-third the domain length from the leftmost

boundary (x = −17 in Figure 4-5). The boundary condition in x is periodic and 200

nodes are used to represent the domain. This test case uses a one-dimensional version

of Equation 4.3 and the initial setup is shown in Figure 4-5.

Because this test case is one-dimensional with periodic boundary conditions and

a blocked node, all of the tracer concentration initialized in the system should accu-

mulate against the blocked node. This is one of the most challenging cases to model

numerically because the tracer values at neighboring nodes are very different, which,

for many schemes, leads to spurious oscillations at these discontinuities.

The two-dimensional test case uses the setup described in Section 4.1.2 with 100

nodes in both x and z. The initial field is shown in Figure 4-6.

4.2.2 Central Difference Scheme

A second-order central difference scheme (CDS), implicit in time, is frequently used

in discretizing PDEs because it is higher order accurate, simple to implement, and

more stable than its time-explicit counterpart. A two-dimensional simulation with
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Figure 4-5: Initial condition for the one-dimensional test case.
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Figure 4-6: Initial condition for the two-dimensional test case.
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advection and sufficient diffusion did not reveal any physically unrealistic features.

However, in an identical simulation without diffusion, oscillations quickly formed at

the bathymetry boundary, as in Figure 4-7. After more time, the maximum and

minimum values reached several orders of magnitude above and below zero, respec-

tively. When the bathymetry was removed, CDS with advection only did not create

unrealistic results.

x

z

N field at timestep=500 using CDS
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Figure 4-7: Central difference scheme in two dimensions. Spurious oscillations form
at the bathymetry boundary.

Figure 4-5 shows the initial distribution (dashed line) of the one-dimensional case

and the state after one cycle, or the time for a particle to advect around the do-

main exactly once (2010 time steps). The distribution is advected at a rate of five

length units per time unit. Again, we expect all of the concentration in the system

to accumulate in the node just before the masked node, leading to an impulse-type

distribution. Instead, as we see in Figure 4-8, as soon as a small amount of concen-

tration accumulates at the masked node, values of φ alternate between positive and

negative values and grow in amplitude and propagate against the flow and enter the

domain on the right because of the periodic boundary conditions.
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Figure 4-8: One-dimensional advection of central difference scheme with a masked
node at x = −17. Oscillations quickly grow and propagate against the direction of
flow.

The source of oscillations is illustrated with an example. If we assume constant,

positive velocity u over all I nodes, using Equation 4.1 and ignoring diffusion, the

change in φi with time becomes (for any interior node i):

∂φi
∂t

= −∂(uφi)

∂x
= u

(
φk+1
i−1 − φk+1

i+1

2∆x

)
(4.4)

The change of φi in time is determined by the difference in the neighboring nodes

to the left (i − 1) and right (i + 1). Note that Equation 4.4 is now identical to a

central difference scheme. First, consider the case when (i + 1) is the first interior

node outside of the masked node, as in Figure 4-9. If φi+1 is very large (as we predict

with a positive flow), ∂φi
∂t

will be negative.

i-1 i-1 i i i+1 i+1 i+2 i+2

  MASKED

Figure 4-9: Equation 4.4 is true for interior nodes (i− 1 and i, in this figure).
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In general, φi+1 increases with every time step as concentration accumulates at

the boundary, and will eventually (if not immediately) become larger than φi−1. How

quickly this occurs depends on the initial condition and the magnitude of the flow.

Physically, after sufficient time, we expect the ith node (and all nodes before it) to

decrease to zero, so that all of the concentration in the system is in the (i + 1)th

node. However, this is not possible using CDS. The change of φi in time will be

negative because φi+1 is very large, while φi−1 should be the value of the advected

initial condition, as in Figure 4-10, which shows the solution after three time steps.

The positive values beyond the masked node are the initialized tracer values. These

have not yet been affected by the oscillations.

−25 −20 −15 −10
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Oscillations resulting from CDS

x

Node  i−1

Node  i

Node  i+1

Figure 4-10: One-dimensional case after three time steps. Because concentration
accumulates at the boundary (i+1) and becomes larger than φi−1, the finite difference
scheme used estimates a decrease in φi at every time step, so φi becomes more and
more negative.

Once oscillations are present, they quickly grow in amplitude, as shown in Figure

4-11. The outer envelope containing the oscillations grows, therefore, φi+1 > φi−1 if

both are positive and φi+1 < φi−1 if both are negative. From Equation 4.4, we know

that φi increases if its neighbors are negative and decreases if they are positive, thus
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promoting alternating, oscillatory behavior to increase in amplitude, as nodes become

more and more positive or more and more negative. These oscillations propagate

upstream and enter the domain on the right side because of the periodic boundary

condition.
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Figure 4-11: Oscillations grow in amplitude and propagate because of their alternating
nature. The circular marker indicates the masked node.

The one-dimensional simulation revealed that the CDS incorrectly estimated the

tracer value when a discontinuity was present. In the case with constant velocity, CDS

attempts to approximate the first order derivative of φ with respect to x (Equation

4.4). If the tracers form a very nonlinear function, which occurs when high concen-

tration builds up against bathymetry, severe overestimates and underestimates of the

derivative lead to oscillations. Estimating derivatives of strongly nonlinear functions

is a well-known limitation of finite differences.

While CDS is an appropriate scheme for many locally smooth problems, we must

use another scheme that is able to model the advection dominant case and allow accu-

mulation against bathymetry. In the two-dimensional idealized numerical simulation,

vertical flow will usually prevent the tracer from building up against the bathymetry,
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so the one-dimensional case presented here can be thought of as a “worst case” sce-

nario. Further, different velocity fields and initial conditions may produce oscillations

much more slowly or may never produce oscillations at all. However, we require a

robust scheme that does not severely limit which physical processes and initial con-

ditions we are able to use.

4.2.3 Donor-Cell Scheme

The donor-cell scheme is a first-order numerical scheme in space, as described by

[23]. This scheme is typically used for terms of the form d(uφ)
dx

with u and φ on a

staggered grid, thus it is easily adaptable to our problem setup. For a positive flow, a

derivative at i is estimated by taking the difference of that node with i− 1, the node

in the direction from which the concentration flows. Alternately, the derivative for

a negative flow uses nodes i and i + 1. The donor-cell scheme uses two neighboring

points in its stencil, therefore the oscillations that appeared previously when using the

CDS scheme are not expected to occur. Again, the time discretization is implicit. The

overestimating/underestimating which is severe when a derivative is calculated based

on immediate neighbors will not occur when the value of the ith node is included in

the discretization. This scheme is expressed in Equation 4.5 to represent the advective

term.

∂(uφ)

∂x

∣∣∣∣
i

=
(φi+1(ui+1 − |ui+1|) + φi(ui+1 + |ui+1| − ui + |ui|) + φi−1(−ui − |ui|))

2∆x

(4.5)

As expected, a simple test of the donor-cell scheme in the two-dimensional domain

did not reveal any oscillations. A one-dimensional test (identical to the test case in

Section 4.2.2) showed that, in fact, all of the concentration advected to the masked

node accumulated without oscillation (Figure 4-13).

Figure 4-14 presents a comparison of the numerical diffusivity and computation

times of the CDS and donor-cell schemes after propagating one cycle (2010 time
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Figure 4-12: Two-dimensional test case using the donor-cell scheme. There are no
oscillations, but numerical diffusion is present.
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Figure 4-13: One-dimensional advection of donor-cell scheme with a masked node at
x = −17. Unlike the case using CDS, the concentration accumulated at the boundary
does not produce oscillations.
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steps) in the one-dimensional domain without a masked node. Normalized spread

is used as an indicator of numerical diffusion. After the Gaussian distribution is

propagated, the spread of the distribution is measured at half of the maximum. This

value is normalized by the initial spread measured at half the height of the initial peak.

Therefore, a spread value of one indicates the distribution is perfectly unchanged after

one cycle. Computation time is the averaged time, in seconds, it took to complete

the computations for one cycle using MATLAB 7.4.0. Graphs shown are qualitatively

informative: computational time on different machines or programs are likely to give

different results, but the comparison between the two schemes remains qualitatively

valid. Several different grid resolutions (from 15 to 400 nodes) give a range of spread

and computation times.

For the spread versus computational time graph, we look for the scheme that has

both low spread and low computational time. From Figure 4-14, we see that CDS out-

performs the donor-cell scheme for all but very low resolutions. After computational

times above ten seconds, the spread does not continue to decrease, but instead levels

to just above one. The donor-cell scheme is diffusive, even for very high resolution

grids.

For the donor-cell scheme, oscillations could not propagate because there is enough

numerical diffusion in the system to smooth large negative and positive values before

they are able to grow and spread. The CDS is much less diffusive, but is oscillatory.

An ideal scheme would combine the avoidance of oscillations of the donor-cell scheme

and the low numerical diffusivity of CDS. Therefore, the next numerical scheme we

examined is a hybrid scheme, which is a weighted combination of donor-cell and CDS.

4.2.4 Hybrid Scheme

The hybrid scheme offers a weighted combination of CDS and donor-cell. The donor-

cell and CDS are combined according to a weight γ: (1−γ)(D-C) +γ CDS, where D-C

is the result from the donor-cell scheme. A very low value of γ is close to first-order

accuracy, like the donor-cell scheme, while a value near unity is closer to second-order

accurate, like the CDS.
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Figure 4-14: Comparison of computational time and numerical diffusion for the donor-
cell scheme (D-C) and central difference scheme. Excluding very low resolution cases,
the central difference scheme has much less diffusion than the donor-cell scheme.
Number of nodes used to discretize the domain is shown for I =15, 50 and 200.
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Applying the hybrid scheme to the two-dimensional test case (Figure 4-15) reveals

oscillations for higher γ values, which disappear for lower γ values. We are effectively

introducing numerical diffusion by decreasing γ and for some critical value, there

is enough diffusion to average the oscillations quickly enough so that they do not

grow and propagate, as with the CDS case. This critical value depends on the local

gradient of concentration, the rate of advection and the grid resolution.
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Figure 4-15: Two-dimension test case using γ = 0.5 is absent of oscillations and less
diffusive than the donor-cell scheme.

By examining various γ values (0.75, 0.5, and 0.25) in the one-dimensional test

case, it is clear that lower values of γ produce oscillations with smaller amplitudes

that propagate more slowly, or do not propagate after a certain distance. Figures 4-

16(a) – 4-16(c)) show Gaussian distributions advected over the same number of time

steps with identical speeds and masked nodes. While all three values of γ produce

oscillations, it is less severe for smaller values of γ. Still, for even very small γ (0.005),

small oscillatory behavior can be seen (Figure 4-16(d)). Therefore, using the hybrid

scheme does not give us the non-oscillatory, non-diffusive results we desire.
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(a) One-dimensional advection of hybrid
scheme with γ = 0.75 with masked node at
x = −17.
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(b) One-dimensional advection of hybrid
scheme with γ = 0.5 with masked node at
x = −17. Oscillations have smaller amplitude
and have propagated less than in the γ = 0.75
case.
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(c) One-dimensional advection of hybrid
scheme with γ = 0.25 with masked node at
x = −17. Again, we see smaller oscillations in
the cases with larger γ values.
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(d) One-dimensional advection of hybrid
scheme with γ = 0.005 with masked node at
x = −17. Even for very small γ, oscillatory
behavior is present.

Figure 4-16: Hybrid scheme with various values of γ. Even for very small γ, oscillatory
effects are present.
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4.2.5 Weighted Essentially Non-Oscillatory (WENO) Scheme

The WENO scheme ([51]) is a higher-order accurate finite difference or finite vol-

ume scheme specifically created for problems (often in computational fluid dynamics)

which contain piecewise smooth solutions with discontinuities. While the discretized

equation is linear, a nonlinear adaptive procedure is used to avoid discontinuities in

the interpolation process by choosing the smoothest stencil locally. WENO chooses

a convex combination of all possible stencils, instead of using the single smoothest

stencil (as is the case with the Essentially Non-Oscillatory (ENO) scheme [28]). These

schemes have been particularly successful in many problems, especially those contain-

ing shocks or compressible turbulence simulations [51], but this scheme has not yet

been applied to coupled physics-biology modeling.

Because masking is used in the numerical simulation for idealized physics and bi-

ology, there are zero velocity values and fixed tracer values under this mask. Outside

of the bathymetry, however, there are nonzero and changing values, especially for

nutrients, which dominate in deep water. Therefore, a sharp discontinuity is present

at the boundary of the bathymetry and the previously used finite difference meth-

ods unsuccessfully attempt to estimate the derivative of a nonlinear function using

conventional methods.

To avoid numerical diffusion, a finer mesh or higher-order scheme is necessary.

However, we are limited to the mesh size due to computational cost, and higher order

schemes introduce oscillations near a discontinuity, which do not decay in magnitude

when the mesh is refined. Prior to the WENO scheme, many people used explicit

artificial viscosity or limiters to eliminate or reduce such oscillations. However, artifi-

cial viscosity depends on fine tuning the individual problem at the discontinuity and

the limiters force accuracy to become first order near all extrema, including smooth

extrema. In addition, limiters are not self-similar (mesh size dependent parameter

exists) [51].

The order of accuracy for the WENO scheme is determined by the number of

stencils, and number of points in those stencils. As shown in Figure 4-17, we use
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three stencils, each with three points, so that the scheme is fifth-order accurate in

smooth regions and third-order accurate near discontinuities. Note that this scheme,

unlike the previous schemes, is explicit in time. However, the numerical stability

issues commonly associated with explicit schemes do not arise in using WENO. We

implement this scheme in one dimension (due to the OSM) on a uniform staggered

grid (Arakawa C-grid).

i-2 i-1 i i+1 i+2

Stencil 0

Stencil 1

Stencil 2

Figure 4-17: Three stencils used in the WENO scheme.

A weight ωr is assigned to each stencil r, determined by a smoothness indicator

βr. The smoothness indicators are computed using the local smoothness of the con-

centration values φ, or “cell-averaged” described by [51]. Boundary values (values of

the tracer on the velocity nodes) of this function are reconstructed using Equations

4.7 (only the case for positive flow, or “upwind” flow, is shown). To account for flows

in both directions, an analogous scheme was constructed for negative flow. Negative

flow is also referred to as “downwind.”
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ωr =
αr∑2
s=0 αs

for r = 0, 1, 2

where

αr =
dr

(ε+ βr)
2

d0 =
3

10
, d1 =

3

5
, d2 =

1

10

β0 =
13

12
(φi − 2φi+1 + φi+2)

2 +
1

4
(3φi − 4φi+1 + φi+2)

2

β1 =
13

12
(φi−1 − 2φi + φi+1)

2 +
1

4
(φi−1 − φi+1)

2

β2 =
13

12
(φi−2 − 2φi−1 + φi)

2 +
1

4
(φi−2 − 4φi−1 + 3φi)

2

(4.6)

where ε = 10−6 to avoid a zero denominator, ωr ≥ 0 and
∑

r ωr = 1 for stability

and consistency, and dr is always positive and
∑

r dr = 1 for consistency. When

a discontinuity is encountered, the weights associated with the stencils that cross

that discontinuity become nearly zero so that only stencils that do not cross the

discontinuity are used.

φ̂i =
1

3
φi−2 −

7

6
φi−1 +

11

6
φi

φ̂i+1 = −1

6
φi−1 +

5

6
φi +

1

3
φi+1

φ̂i+2 =
1

3
φi +

5

6
φi+1 −

1

6
φi+2

(4.7)

where φ̂ values are tracers values on velocity nodes and φ are tracer values on tracer

nodes. The weighted combinations give a new approximation to the tracer value on

the velocity node, φ∗.
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φ∗i = ω0φ̂i+2 + ω1φ̂i+1 + ω2φ̂i

And thus Equation 4.3 becomes:

∂φ

∂t

∣∣∣∣
i

= −
ui+1φ

∗
i+1 − uiφ∗i
∆x

It is apparent that a staggered grid is advantageous when implementing the

WENO scheme, as both velocity and tracer nodes are frequently used. The “bound-

ary values” referred to by Shu, et. al. ([51]), correspond to the nodes for horizontal

(vertical) velocity in the x (z) direction. “Cell-centered” values are the tracer nodes,

used for the biological concentration values.

The two-dimensional test case using WENO presents a realistic solution free of

oscillations, as shown in Figure 4-18. Several different bathymetries, flows (which

satisfy CFL), and values of concentrations were tested and oscillations never occurred.

The WENO scheme successfully avoids oscillations.
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Figure 4-18: The WENO scheme is not oscillatory and produces a realistic result.

Performing the same one-dimensional test case as the other numerical schemes
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demonstrates that the concentration accumulates against the masked node (Figure

4-19), as with the donor-cell scheme.
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Figure 4-19: One-dimensional advection of WENO scheme with a masked node at
x=-17.

The WENO scheme is only attractive compared to the donor-cell scheme if it is less

numerically diffusive for comparable computational cost and resolution. Figure 4-20

illustrates that, for higher resolutions, the WENO scheme outperforms the donor-cell

scheme. This graph was constructed using the same methods described in Section

4.2.3. We can see that for comparable computational times, WENO is much less

diffusive for the higher resolution schemes. Conversely, if we set a limit for maximum

spread allowed, the WENO scheme has much faster computation times for normalized

spread values below about 2.4. The donor-cell scheme performs better only for very

low resolutions (less than 60 nodes). For our purposes, resolutions this low will never

be used.

The donor-cell scheme uses matrix inversion to compute the tracer values for the

next time step. For a time-varying velocity, which will be used for many simulations

(for example, to model tidal forces), this matrix is inverted for each time step, for as
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Figure 4-20: Comparison of computational time versus spread due to numerical dif-
fusion for the donor-cell and WENO schemes. WENO is faster and less diffusive for
higher resolutions. Number of nodes used to discretize the domain is shown for I =15,
50 and 200.

many rows and columns exist (due to the OSM). Therefore, the matrix is inverted

IxJxTS times, if TS is the total number of time steps. The matrix is nearly tridiago-

nal however, because of the periodic boundary conditions, there are extra entries not

on the main diagonal or the immediate off-diagonals. The Thomas Algorithm takes

advantage of a tridiagonal matrix structure and significantly reduces the number of

operations needed to compute an inverse. For a tridiagonal system with extra entries

from periodic boundary conditions, a modified version of the Thomas Algorithm,

using the Sherman-Morrison formula, can be used [9].

Computation times and diffusion were remeasured using the adapted Thomas

Algorithm, and the results for the donor-cell scheme using the traditional inversion,

the donor-cell scheme using the adapted Thomas Algorithm and the WENO scheme

were compared, as shown in Figure 4-21.

However, while the adapted Thomas Algorithm does outperform the traditional

inversion using the donor-cell scheme, Figure 4-21 shows that the WENO scheme is
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Figure 4-21: While the modified Thomas Algorithm donor-cell scheme outperforms
the traditional donor-cell scheme, the WENO scheme is better for all but low res-
olutions. Diffusion and time are labeled by number of nodes used to discretize the
domain (I =15, 50, 100, 200 and 300). Only I =300 is shown for the WENO scheme
because the other two schemes have computation times greater than 25 seconds for
300 nodes.

96



still superior except for low resolution grids. To model biological behavior, high res-

olution is important to be able to resolve features on the order of meters, especially

in the vertical direction. Therefore, the WENO scheme is used in all following ideal-

ized numerical simulations to represent the advection terms in x and z of Equations

2.3. The diffusion terms are implemented using a second-order CDS to minimize

computational costs.

After examining several schemes, the WENO scheme is the only one that avoids

oscillations and is higher order accurate. The central difference scheme developed

oscillations very quickly, but had low numerical diffusivity for high resolutions. The

donor-cell scheme was non-oscillatory, but suffers from worse numerical diffusion for

comparable computational costs. The hybrid scheme required extremely low values

of the weight parameter γ to avoid oscillations, essentially becoming the donor-cell

scheme.

4.2.6 Verification of the WENO Scheme

To verify the results seen from using the WENO scheme, we compare the simula-

tion developed in this chapter with a simulation on an unstructured grid using a

Discontinuous-Galerkin (DG) scheme [47] (simulation developed in [57]). Matching

bathymetries, boundary conditions, flow fields and initial conditions were used and

are the same as discussed in Section 4.1. The streamlines for the flow are presented

in Figure 4-22. The biological equations use parameters from Equation 3.5.

Figure 4-23 presents a comparison between the two schemes for three different

times. While the initial frames are almost identical, some differences are seen when

the fields are evolved in time. Namely, the WENO scheme is a more diffusive than the

DG scheme, which is able to resolve sharp gradients. However, for comparable com-

putational times, we are able to increase the resolution of the simulation that uses the

WENO scheme, so numerical diffusivity will decrease. The DG scheme produces arti-

ficial and persistent oscillations, called Gibbs phenomena, at the interface where the

tracer fields are discontinuous. Additionally, slight accumulation of biomass occurs

on the left side of the bathymetry for the DG scheme only, though we do not expect
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Figure 4-22: Streamlines for potential flow over an elliptical bathymetry.

results near the boundary to be reliable because of the limitations of potential flow.

The basic biological features are very similar, both qualitatively and quantitatively.

Therefore, because an analytical solution is not obtainable, the very good agreement

between the two independent methods to represent the same system indicates that

both schemes accurately represent the coupled physics and biology of Equations 2.3.

Numerical models for coupled physics and biology are commonly restricted to

include some minimum amount of diffusion to avoid oscillations. Using the WENO

scheme allows us to investigate a range of physical processes without needing to fine

tune case-specific parameters or be restricted to a specific set of initial conditions

or velocity fields. Using OSM and masking on a C-grid simplifies implementation of

the WENO scheme. The combination of techniques presented here can solve many

coupled systems of advection-dominant PDEs and can be applied to applications

other than coupled physics and biology.

98



(a) Simulation using WENO scheme at t=0
days.

(b) Simulation using DG scheme at t=0 days.

(c) Simulation using WENO scheme at t=30
days.

(d) Simulation using DG scheme at t=30 days.

(e) Simulation using WENO scheme at t=50
days.

(f) Simulation using DG scheme at t=50 days.

Figure 4-23: Comparison between simulations using the WENO scheme and
Discontinuous-Galerkin [57].
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Chapter 5

Physical-Biological Interactions

with Tides in the San Bernardino

Strait

In this chapter, we compare two- and three-dimensional realistic simulations of the

interaction between tides and biology in the San Bernardino Strait. Tides can produce

strong mixing in coastal waters, create internal waves over bathymetry, and suspend

bottom sediment. Such mixing can create interesting biological features, even in two

dimensions. Thus we will focus on the relationship between tides and biology as an

example of the range of features that our two-dimensional idealized simulation is able

to represent. Tidal frequencies range from semi-diurnal to diurnal to even longer

periods. We will consider a range of tidal frequencies, but will focus on periods less

than one month. A more detailed discussion of tides can be found in [54].

Similar cases are initialized in both two and three dimensions with bathymetry

and initial conditions motivated by San Bernardino Strait. For the two-dimensional

case, details of the bathymetry, velocity field, initial conditions, boundary conditions

and parameters are discussed in Section 5.1. Cases with different tidal frequencies,

parameters and levels of diffusion are examined and compared.

The three-dimensional case is simulated in MSEAS. Details of initialization, flow

fields, bathymetry and parameters are discussed in Section 5.2. We present a new
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technique of initializing the biology field using Objective Analysis and region-specific

chlorophyll profiles. The results from the three-dimensional case are studied and

compared to the two-dimensional case.

5.1 Two-dimensional Simulation

We conduct two-dimensional idealized simulations of tidal forcing in a strait to de-

termine the effects on biology. The setup is motivated by the San Bernardino Strait

in the Philippines, which shows strong tidal forcing from the PhilEx Regional Cruise

IOP09, conducted in February and March of 2009. The WENO scheme, discussed in

Chapter 4, is used to discretize Equations 2.3 in order to represent the interaction

between biology and physics.

Literature cites nitrogen as the limiting nutrient for most of the Philippine Archipelago

and surrounding areas, with the exception of summer, when phosphorus may simulta-

neously become deficient ([8], [7], [60], [40], [55]). Parameters for the NPZ equations

(Equations 2.3) were found in literature for the Philippines and surrounding areas.

These values and sources are presented in Table 5.1.

Parameter Source

u = 1.4µmol
day

[29]

NT = 3µmol
L

ks = 0.9µmol
day

[29]

dp = 0.1µmol
day

[22]

g = 1µmol
day

[32]

a = 0.75 [15]

dz = 0.2µmol
day

[22]

h = 17m [18]

ν = 0.2µmol−1 [22]

Table 5.1: Region specific parameters for the Philippine Archipelago.
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5.1.1 Bathymetry

For the bathymetry used in the two-dimensional case, we developed an algorithm

to find the deepest path through the San Bernardino Strait using data with one-

minute resolution from Smith and Sandwell (v.10.1) [53] in the domain 124oE−125oE

and 12oN−13.1oN (Figure 5-1). The algorithm uses a modified Dijkstra’s algorithm

[14], also known as the “shortest path algorithm,” altered by recording the depth at

each point instead of the distance between two points. The algorithm begins on the

southern border of the domain and marches northward row by row. As described,

the algorithm will provide a collection of deepest points that are not in any sense

connected to form a path. To introduce the notion of a path, we imposed a limiter so

that points selected in adjacent rows are restricted to be at most one column apart;

the path is restricted to moving to a neighboring node (either one node north, one

node northeast, or one node northwest). The sum of depths is recorded for each

path; this is our metric for determining the “deepest path” through the strait. As

the algorithm marches northward, only the sums and paths for the deepest paths are

kept at each stage, as the deepest path for any new path starting from the current

row would use the paths already recorded for an overall optimal path. The algorithm

ends at the northern border of the domain, where the node on that row with the

largest negative summed depths is selected as the deepest path. We then find the

bathymetry associated with this deepest path. Finally, we apply a Gaussian low pass

filter to the resulting bathymetry of the deepest path and record the depth profile,

using the smoothed bathymetry along the deepest path. This bathymetry, with flat

bathymetry added on each side for reasons discussed in Section 5.1.3, is shown in

Figure 5-2.

5.1.2 Velocity Field

We assume the flow is inviscid and irrotational and that the strait is narrow enough

so that rotational effects can be ignored (this is true if the ratio of the channel width

to the Rossby radius is small [52], [45], [13]). For the San Bernardino Strait, the
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Figure 5-1: Topography of San Bernardino Strait from Smith and Sandwell. The
dark line is the shortest path through the strait as described in Section 5.1.1.

channel width is about 12km. The Rossby radius is:

RD =
(gD)1/2

fo
=

(9.81m/s2100m)1/2

2 ∗ 7.2921x10−5rad/s sin(12.5o)
≈ 1000km

Therefore,

W

RD

=
12km

1000km
� 1

Therefore the ratio of the channel width to the Rossby radius is sufficiently small

and rotational effects can be neglected. Additionally, for uniform bathymetry and

geometry across the strait, the flow becomes two-dimensional with a rigid lid ap-

proximation if the Froude number is small and can be expressed using a velocity

potential.

Fr =
V√
g A
W

=
40cm/s√

9.81m/s2 ∗ 12km ∗ 100m/12km
� 1

Frictionless, rigid surfaces bound the top and bottom of the domain. The resulting
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Figure 5-2: Bathymetry and initial condition for the two-dimensional simulations of
the San Bernardino Strait.
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governing equation is the Laplacian of the velocity potential. A similar setup was used

by Signell [52] for tidal flow over elliptic and Gaussian-shaped coastal headlands, using

the vertically averaged velocity for dynamics in the horizontal plane instead. The flow

field resulting from this method does not accurately model flow at the bathymetry

boundary because we assume frictionless flow. For boundary conditions, we assume

no flow through the ocean bottom or air-sea interface and unit velocity at the side

boundaries, which may be scaled later. The resulting streamlines are shown in Figure

5-3.

Streamlines for Potential Flow

50 100 150 200 250 300

50

100

150

200

250

300

Figure 5-3: Streamlines of the potential flow resulting from the bathymetry of the
San Bernardino Strait.

We studied generalized inverse high-resolution data on barotropic tides [38] to

determine the magnitude and frequency of oscillation with which to force our flow.

For the months of February and March, a maximum velocity of about 100 cm/s

is observed for most days. Two different tidal frequencies are observed: for events

with stronger flow, velocity changes direction four times in one day (semidiurnal),

otherwise it changes twice in a day (diurnal). Dominant tidal constituents in the

San Bernardino Strait, in order of significance, are M2, S2, K1, and O1 [38], so

the semidiurnal constituents (M2 and S2) are dominant, followed by the diurnal

constituents (K1 and O1). We will incorporate this into our model by examining
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both cases and comparing them against an identical case without oscillating flow.

5.1.3 Biology Initialization

The biology fields were initialized using the equilibrium solution of the steady state

equations without flow (Equations 3.4). We used parameter values found from the

literature (see Table 5.1) which predict stable solutions (using the methods in Chapter

3). Periodic boundary conditions are imposed in the x-direction. We are able to

implement a periodic boundary condition by extending the domain in the x-direction

so that the problem becomes semi-infinite and the biology which leaves one side never

re-enters the portion of the domain we are interested in (that is, over the bathymetry).

The field far from the bathymetry (in the x-direction) is present only to create a

semi-infinite domain and should not influence the dynamics over or around the strait

bathymetry.

5.1.4 Cases

Four different oscillation frequencies were examined in test cases, with two frequen-

cies corresponding to the semidiurnal and diurnal tidal constituents observed for this

strait, one zero frequency case for comparison and a much lower frequency corre-

sponding to the longer period tidal constituent. Cases with and without diffusion are

compared. Additionally, different sets of parameters are examined. The twelve cases

are summarized in Table 5.2.

5.1.5 Comparison of Time Scales

Using different parameter sets and oscillation frequencies leads to several different

time scales. Biological interaction is more active if the time scale of the flow is longer

than the time scale of the biological reaction terms. If the state variables that are

at equilibrium at one depth level are moved vertically by the flow, a longer physical

time scale provides the biology sufficient time to interact completely and adjust to

the new depth level. Examining the terms of Equation 2.3, several time scales result
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Case No. Frequency Period Diffusion Parameters

1 0 cycles/day ∞ None Table 5.1
2 2 cycles/day 0.5 days (semidiurnal) None Table 5.1
3 1 cycle/day 1 day (diurnal) None Table 5.1
4 2 cycles/day 0.5 days (semidiurnal) κ = 0.1 Table 5.1
5 1 cycle/day 1 day (diurnal) κ = 0.1 Table 5.1
6 2 cycles/day 0.5 days (semidiurnal) None Table 5.3,[6]
7 1 cycle/day 1 day (diurnal) None Table 5.3,[6]
8 0.1 cycles/day 10 days (longer period) None Table 5.1
9 0 cycles/day ∞ None No biology
10 2 cycles/day 0.5 days (semidiurnal) None No biology
11 1 cycle/day 1 day (diurnal) None No biology
12 2 cycles/day 0.5 days (semidiurnal) None Table 5.3,[6]; 2x vel

Table 5.2: Two-dimensional cases examined using the idealized numerical simulation.
Varying frequencies, parameters and levels of diffusion are studied.

and are dependent upon the value of concentration and the depth level at a specific

point. Figure 5-4 shows how the time scales of five reaction terms vary with depth,

using the equilibrium values of N , P , and Z, where:

A =
uez/hPN

N + ks

B = dp

C =
g

ν

Z

P
(1− e−νP )

D =
ag

ν
(1− e−νP )

E = dz

(5.1)

From Figure 5-4, the maximum biological reaction time scale is approximately 0.08

days and the minimum is about 0.016 days for the euphotic zone. Using the region-

specific parameters from Table 5.1 gives slightly longer biological reaction time scales.

From Figure 5-5, we see that the time scales range from zero days to 0.2 days. Again,

here we assume the equilibrium values for the state variables. The shortest time scale

is dominant for any depth and set of biological state variables.

We are interested in the size of the biological reaction time scale with respect to
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Figure 5-4: Time scales for the biological reaction terms of Equation 2.3 using pa-
rameters from Equation 3.5. These time scales vary in depth and with respect to
concentration of biological variables.

0 0.05 0.1 0.15 0.2 0.25
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Time (days)

D
ep

th
 (

m
)

Time Scales of Biological Reaction Terms
Using Region−Specific Parameters

 

 
A
B
C
D
E

Figure 5-5: Time scales for the biological reaction terms of Equation 2.3 using region-
specific parameters from Table 5.1. This set of parameters leads to slightly longer
time scales than the previous set of parameters.
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the physical time scale of the system. The physical time scale is either the period

of oscillation (listed in Table 5.2) or the time it takes for a parcel of fluid to advect

over the bathymetry (about four days), whichever is shorter. The physical time

scale should be greater than the biological reaction time scale for the biological state

variables to be affected by the changing depth levels. Because the biology fields are

initialized using the equilibrium values, the state variables will only change if they

move vertically. If they are transported too quickly and then returned to the initial

depth level, very little biological activity will occur. Comparing our time scales, we

see that the physical time scale is longer than the biological reaction time scale for all

frequencies. Slower oscillations have longer time scales, so we expect more biological

activity for longer tidal periods.

5.1.6 Results

From Case 1, we see in Figure 5-6 that non-oscillatory flow creates increased biological

activity (namely a bloom in phytoplankton) because of the vertical velocities resulting

from the topography. This bloom forms in the first few days and then continues to

advect around because of the periodic boundary conditions, until a system equilibrium

is reached. Compared to Case 9 (Figure 5-14), the case without biological reaction,

the phytoplankton bloom is apparent in the top 50 meters.

For Cases 2 and 3 (Figures 5-7 and 5-8), the oscillations are too fast to allow

sufficient vertical transport for nutrient-rich water to reach shallower depths. Cases

10 and 11 (Figures 5-15 and 5-16), the comparable cases without biological reaction,

actually show a more gradual gradient in depth (most noticeably in the phytoplankton

field above the bathymetry). The sharper gradient is maintained in the cases with

biological reaction (in Cases 2 and 3) because the state variables attempt to move back

to their steady equilibria (discussed in Chapter 3). For example, in Case 2, as high

concentrations of phytoplankton travel deeper, they die quickly because of the lack

of light. However, in Case 10, the tracer simply travels deeper. While the oscillations

are too fast in Cases 2 and 3 to allow biology to react, the system does adjust for the

bathymetry, as we can see with the evolution in time right above the bathymetry in
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Figures 5-7 and 5-8. Note that some “mixing” occurs because of numerical diffusion,

which becomes more severe when a thin filament of high concentration is surrounded

by very low concentration (or vice versa). Adding diffusion to the oscillatory flows

(Cases 4 and 5) increases mixing, as expected, but increased biological activity still

is not present. These results are presented in Figures 5-9 and 5-10.

The two-dimensional and three-dimensional biological models require different sets

of parameters, making it difficult to match parameters exactly. Cases 6 and 7 use a

new set of parameters that more closely represent those used in the three-dimensional

model (to be discussed in Section 5.2). These cases are similar to Cases 1 and 2 in that

they have the same frequencies and do not include diffusion. Similarly, the frequencies

are too fast to allow sufficient vertical transport. The new set of parameters results

in higher zooplankton concentrations and lower nutrient concentrations, especially

near the surface. While the time scales for the two biological parameter sets do differ

slightly, as discussed in Section 5.1.5, the rates are usually within a factor of two so

a significant difference is not seen for the cases presented here.

Case 8 uses very low frequency oscillations, representing the longer tidal periods.

A physical time scale O(10 days) is sufficiently longer than previous time scales and

biological reaction time scales, so we expect more biological activity than in the

semidiurnal and diurnal cases. Additionally, longer periods allow biomass to travel

further, which is especially important in the vertical direction. As Figure 5-13 shows,

our predictions are correct. Increased biological activity occurs for all three state

variables, but most noticeably for phytoplankton, which blooms over the bathymetry,

especially when the tide changes direction. Only the biology over the bathymetry

should be studied because of the semi-infinite domain implemented to allow periodic

boundary conditions.

To study the effect of physical time scales, Case 12 has high frequency oscillations

(semidiurnal) and twice the velocity of previous cases and uses the parameters in

Table 5.1. Therefore, a parcel of fluid moves an equal distance in this case and in

the low frequency (diurnal) case (Case 3) with the original velocity. Although the

two cases have different time scales, Figures 5-8 (Case 3) and 5-17 (Case 12) are
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remarkably similar, most likely because both are too fast to allow ample biological

interaction.

(a) Biology fields after five days without oscil-
lation.

(b) Biology fields after ten days without oscil-
lation.

(c) Biology fields after twenty days without
oscillation.

(d) Biology fields after thirty days without os-
cillation.

Figure 5-6: Case 1. No oscillations or diffusion, using parameters in Table 5.1. Phyto-
plankton blooms appear because of the vertical velocities caused by the bathymetry.

5.2 Three-dimensional Simulation

5.2.1 Problem Setup

Using three-dimensional bathymetry from Smith and Sandwell ([53]) and initialized

fields of physical data, MSEAS solves for the corresponding velocity fields using out-

put from a free surface simulation in the archipelago domain (Figure 1-2) for February
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(a) Biology fields after five days with oscilla-
tion frequency of 2 cycles/day.

(b) Biology fields after ten days with oscilla-
tion frequency of 2 cycles/day.

(c) Biology fields after twenty days with oscil-
lation frequency of 2 cycles/day.

(d) Biology fields after thirty days with oscil-
lation frequency of 2 cycles/day.

Figure 5-7: Case 2. High frequency oscillations (2 cycles/day), corresponding to
semidiurnal tidal constituents, without diffusion using parameters in Table 5.1. In-
creased biological activity seen in Case 1 is not present and the system has less
variation than the similar case without biology (Figure 5-14).
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(a) Biology fields after five days with oscilla-
tion frequency of 1 cycle/day.

(b) Biology fields after ten days with oscilla-
tion frequency of 1 cycle/day.

(c) Biology fields after twenty days with oscil-
lation frequency of 1 cycle/day.

(d) Biology fields after thirty days with oscil-
lation frequency of 1 cycle/day.

Figure 5-8: Case 3. Low frequency oscillations (1 cycle/day), corresponding to diurnal
tidal constituents, without diffusion using parameters in Table 5.1. Increased biolog-
ical activity similar to Case 1 is still not present and the system has less variation
than the similar case without biology (Figure 5-15).
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(a) Biology fields after five days with oscilla-
tion frequency of 2 cycles/day.

(b) Biology fields after ten days with oscilla-
tion frequency of 2 cycles/day.

(c) Biology fields after twenty days with oscil-
lation frequency of 2 cycles/day.

(d) Biology fields after thirty days with oscil-
lation frequency of 2 cycles/day.

Figure 5-9: Case 4. High frequency oscillations (2 cycles/day), corresponding to
semidiurnal tidal constituents, with diffusion using parameters from Table 5.1 leads
to more mixing than Case 2.
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(a) Biology fields after five days with oscilla-
tion frequency of 1 cycle/day.

(b) Biology fields after ten days with oscilla-
tion frequency of 1 cycle/day.

(c) Biology fields after twenty days with oscil-
lation frequency of 1 cycle/day.

(d) Biology fields after thirty days with oscil-
lation frequency of 1 cycle/day.

Figure 5-10: Case 5. Low frequency oscillations (1 cycle/day), corresponding to
diurnal tidal constituents, with diffusion using parameters from Table 5.1 leads to
more mixing than Case 3.
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(a) Biology fields after five days with oscilla-
tion frequency of 2 cycles/day.

(b) Biology fields after ten days with oscilla-
tion frequency of 2 cycles/day.

(c) Biology fields after twenty days with oscil-
lation frequency of 2 cycles/day.

(d) Biology fields after thirty days with oscil-
lation frequency of 2 cycles/day.

Figure 5-11: Case 6. High frequency oscillations (2 cycles/day), corresponding to
semidiurnal tidal constituents, without diffusion using parameters matching the three-
dimensional case.
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(a) Biology fields after five days with oscilla-
tion frequency of 1 cycle/day.

(b) Biology fields after ten days with oscilla-
tion frequency of 1 cycle/day.

(c) Biology fields after twenty days with oscil-
lation frequency of 1 cycle/day.

(d) Biology fields after thirty days with oscil-
lation frequency of 1 cycle/day.

Figure 5-12: Case 7. Low frequency oscillations (1 cycle/day), corresponding to
diurnal tidal constituents, without diffusion using parameters matching the three-
dimensional case.
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(a) Biology fields after five days with oscilla-
tion frequency of 0.1 cycles/day.

(b) Biology fields after ten days with oscilla-
tion frequency of 0.1 cycles/day.

(c) Biology fields after twenty days with oscil-
lation frequency of 0.1 cycles/day.

(d) Biology fields after thirty days with oscil-
lation frequency of 0.1 cycles/day.

Figure 5-13: Case 8. Very low frequency oscillations (0.1 cycles/day), corresponding
to the longer tidal constituents, without diffusion using parameters from Table 5.1.
Increased biological activity is seen, as tidal period is similar to the biological time
scale.
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(a) Biology fields after five days without oscil-
lation.

(b) Biology fields after ten days without oscil-
lation.

(c) Biology fields after twenty days without
oscillation.

(d) Biology fields after thirty days without os-
cillation.

Figure 5-14: Case 9. Non-oscillatory flow without diffusion or biological reaction.
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(a) Biology fields after five days with oscilla-
tion frequency of 2 cycles/day.

(b) Biology fields after ten days with oscilla-
tion frequency of 2 cycles/day.

(c) Biology fields after twenty days with oscil-
lation frequency of 2 cycles/day.

(d) Biology fields after thirty days with oscil-
lation frequency of 2 cycles/day.

Figure 5-15: Case 10. High frequency oscillations (2 cycles/day), corresponding to
semidiurnal tidal constituents, without diffusion or biological reaction.
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(a) Biology fields after five days with oscilla-
tion frequency of 1 cycle/day.

(b) Biology fields after ten days with oscilla-
tion frequency of 1 cycle/day.

(c) Biology fields after twenty days with oscil-
lation frequency of 1 cycle/day.

(d) Biology fields after thirty days with oscil-
lation frequency of 1 cycle/day.

Figure 5-16: Case 11. Low frequency oscillations (1 cycle/day), corresponding to
diurnal tidal constituents, without diffusion or biological reaction.
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(a) Biology fields after five days with oscilla-
tion frequency of 2 cycles/day.

(b) Biology fields after ten days with oscilla-
tion frequency of 2 cycles/day.

(c) Biology fields after twenty days with oscil-
lation frequency of 2 cycles/day.

(d) Biology fields after thirty days with oscil-
lation frequency of 2 cycles/day.

Figure 5-17: Case 12. High frequency oscillations (2 cycles/day), corresponding to
longer tidal constituents, without diffusion using parameters from Table 5.1. This
case has double the velocity of previous cases.
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and March 2009. The simulation is forced with combination of wind stress from the

Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS, developed by

the Naval Research Laboratory) and heat flux and Eliassen–Palm (E–P) flux from

the U.S. Navy Operational Global Atmospheric Prediction System (NOGAPS) model.

Large-scale open boundary conditions are weakly forced by the Hybrid Coordinate

Ocean Model (HYCOM) fields. All simulations are forced with Generalized Inverse

High-Resolution Barotropic Tides [38]. Remotely-sensed sea surface height anomalies

and sea surface temperature are the only synoptic data utilized for initialization and

assimilation, as no hydrographic data are currently available. To include biology, we

initialized the biological fields in MSEAS to enable analysis of coupled physics and

biology in the Philippine Archipelago as part of the PhilEx program. The details of

this process and the resulting solutions are discussed in this section.

5.2.2 Biology Initialization

After simulations for physics in the Philippine Archipelago were sufficiently tuned,

coupled physics-biology model simulation studies and forecasts were initiated, prompt-

ing the need for initial conditions for the biological variables used in the model. The

Dusenberry-Lermusiaux biological model [6], discussed in Chapter 2, is used to model

the advection, diffusion, and reaction of six state variables: chlorophyll, nitrate, am-

monium, detritus, phytoplankton and zooplankton. Thus, we need three-dimensional

fields of each of these variables to initialize the model. Our new methodology to do

so is described next.

A combination of biogeochemical, climatological, satellite, and historical data was

used for initialization, as data is extremely limited in the Philippines. We gathered

MODIS weekly calibrated satellite images of chlorophyll-a concentration for February

and March 2009 as ASCII files from OceanWatch [44]. This satellite data was mapped

onto the modeling grid also used for physics. Cloud cover prevented complete coverage

in the region, so the first two weeks of February were combined by averaging any point

present in both the weeks and taking the value of whichever point is present otherwise.

Even when two weeks of data were merged, full coverage was still not achieved, so the
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field was smoothly interpolated to give full coverage [24]. This completed the initial

surface field for the euphotic-zone integrated chlorophyll for February. We applied

the same techniques to the MODIS satellite data for the last week of February and

the first week of March to obtain the initialized integrated surface chlorophyll field

for March.

Figure 5-18: Regions of the Philippine Archipelago with different chlorophyll profiles.
Dark blue represents the South China Sea, yellow is the Sulu Sea, cyan is the Pacific,
and red represents the interior seas.

To create a three-dimensional field from the surface chlorophyll, we divided the do-

main into regions (Figure 5-18) which are distinctive biologically and created a generic

profile for each (Figure 5-19). These profiles are based on experimental data [10]. We

modeled them as a combination of two “shifted” Gaussian-like curves (Equation 5.2).

B(zu) = Bo +
a

σu
√

2π
e
− (zu−zm)2

2σ2
u

B(zl) = Bo +
a

σu
√

2π
e
− (zl−zm)2

2σ2
l

(5.2)

where B(zu) is the profile above the deep chlorophyll maximum, B(zl) is the profile
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below the deep chlorophyll maximum, Bo is the background value, σu is the standard

deviation of the upper profile, σl determines the spread of the lower profile, a deter-

mines the peak value and zm is the depth of the deep chlorophyll maximum. Note

that the two profiles meet and are continuous at zm. We then fit (scaled) these ana-

lytical profiles (Equation 5.2) at each point so that the integrated chlorophyll value

(from the merged satellite data) matched the value of the integrated profile. Figure

5-19 shows three generic profiles for three different regions in the Philippines. The

deep chlorophyll maximum is highest for the Visayan Sea and other interior seas and

lowest for the Pacific Ocean.
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Figure 5-19: Example of generic profiles for chlorophyll were scaled according to the
surface integrated chlorophyll value from satellite images. xs distinguish peaks from
the background value.

We then generated initial fields of nitrate (NO−3 ) by using Objective Analysis (OA)

methods to obtain profiles from climatology data (horizontal fields in 1o resolution for

specified depth levels) from World Ocean Atlas [1] for February and March. For future

simulations, we will use a novel Objective Analysis approach [3] based on the Fast

Marching Method, which accounts for the coastline constraints by using the optimal

path length (minimum distance between two points without going across landforms),

an important consideration for a domain with several islands and complex coastlines,
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such as the Philippine Archipelago. OA can be used for any variable, for example, an

OA field of chlorophyll using the Fast Marching Method is presented in Figure 5-20.

Objective Analysis of Chlorophyll Data from PhilEx

Longitude

Latitude

Surface 0m

Figure 5-20: Objectively analyzed chlorophyll field from the PhilEx IOP09 cruise
data using the Fast Marching Method. The scales used in the OA are: synoptic
decay–90km, mean decay–360km, synoptic zero crossing–270km, mean zero crossing–
1080km.

In collaboration with the MSEAS group, we then created initial ammonium (NH+
4 )

and zooplankton fields by obtaining a first guess forNH+
4 by setting theNO−3 reaction

terms to zero and two first guesses for zooplankton, one by setting the zooplankton

terms to zero and the other by setting the phytoplankton reaction terms to zero [24],

[34]. The minimum of the result of the phytoplankton reaction equation and 1.15

times the result from the zooplankton reaction equation are then used to assign an

updated estimate of zooplankton. Ammonium is computed again by setting the NH+
4

reaction equation to zero and taking the minimum of this result times 1.15 and the
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Light attenuation parameters kw=0.0375
kc = 0.028

Photosynthesis parameters Pm=1.4e-3 mgC(mgChl)−1s−1

(assuming C:Chl = 40) α=3.00e-5 mgC(mgChl)−1s−1(µmol photons m−2s−1)−1

P-uptake of nutrients kNH+
4

=0.06 Half-saturation for NH4 uptake

Zooplankton grazing Rm=0.83 Max grazing rate
λ=0.42 Ivlev’s constant

Ammonium to NO−3 kN=0.2 Nitrification timescale (day−1)

Table 5.3: Parameters used in the four-dimensional biological-physical simulations
for the PhilEx real-time IOP09 experiment.

original estimate of ammonium. The iteration process is then repeated a few times,

starting with the first estimates for zooplankton.

We initialized phytoplankton by assuming a direct proportionality to chlorophyll,

accounting for unit conversion. Lastly, detritus fields were produced by balancing the

source and reaction terms associated with this state variables.

In setting the reaction equations to zero, a daily mean solar radiation value was

computed at each point (including phytoplankton self-shading) assuming a peak solar

radiation value of 600 W
m2 (an approximate average of the peak values in the domain

including clouds).

Parameters for the biological model were from [6] or motivated by observations in

the region. The parameters in Table 5.3 were also specifically chosen to yield O(1)

initial values and allow for deeper chlorophyll maxima than in [6]. This MSEAS

methodology for initialization of biological fields leads to initial fields and parameters

that are dynamically adjusted. No spurious and large “biological adjustment” occurs

at the start of the simulations.

It is important to note that this is a first step in initializing biology for the Philip-

pines. As more biological data and information is gathered, we expect to use better

parameters, improve our understanding of relationships between the state variables,

and increase the accuracy of the model. The methods presented here are very general

and can be applied to any region with sparse data. Using only satellite data (available

for any region), climatological data and data from literature, we initialized biology
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fields for six state variables.

5.2.3 Results

The ocean field estimates from MSEAS show increased activity above bathymetric

features. For our purposes, we will focus on the San Bernardino Strait. Plots of

nitrate, phytoplankton, and zooplankton estimates along a cross-section of the San

Bernardino Strait (along 12.13oN, 123.98oE to 13.33oN, 124.66oE) are presented in

Figure 5-21. From February 2, 2009 to March 5, 2009, plots were analyzed for noon

and midnight of each day. From these, we see that nitrate consistently has higher

values across and above the strait under 50m (Figure 5-21(a)), with higher concentra-

tion tongues sometimes appearing over the sloped bathymetry, as in Figure 5-21(b).

Phytoplankton always had maximum values above the bathymetry (Figure 5-21(c)),

which sometimes extended toward the Pacific Ocean (Figure 5-21(d)). Zooplankton

had similar behavior, with consistent maximum values above the bathymetry (Fig-

ure 5-21(e)) that sometimes extended further northeast (Figure 5-21(f)). Other state

variables were similar qualitatively to those presented here.

5.3 Discussion and Future Work

The results from the two-dimensional and three-dimensional cases are very difficult

to compare, even qualitatively, because of the varying levels of complexity between

the two. Case 8, which has a much longer tidal period than other cases, is the

most similar to the three-dimensional results, with increased biological activity fo-

cused over the bathymetry sometimes extending towards the Pacific Ocean. Cases 2

through 7 of the two-dimensional model are not very similar to the three-dimensional

results, which may indicate that the lower frequencies dominate the biological activ-

ity. However, these differences could also be attributed to having different flow fields

(two-dimensional versus three-dimensional), bathymetries, and initial conditions. The

two-dimensional results did clearly show that long physical time scales, compared to
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(a) Nitrate for February 6, 2009. (b) Nitrate for February 21, 2009.

(c) Phytoplankton for February 4, 2009. (d) Phytoplankton for February 24, 2009.

(e) Zooplankton for February 8, 2009. (f) Zooplankton for March 1, 2009.

Figure 5-21: Results from MSEAS for the San Bernardino Strait.
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the biological reaction time scales, allowed more biological activity throughout the

water column.

Additionally, a new method for initializing the biological fields was developed and

utilized. With region-specific chlorophyll profiles, the three-dimensional chlorophyll

field developed from satellite data accounted for regional differences, which can be

vast for a domain like the Philippine Archipelago.

For future work, an averaged velocity field from MSEAS could be used in the

two-dimensional simulation for better comparison. Additionally, the initialized fields

could be matched more closely. A noticeable difference seems to be the critical depth

(where phytoplankton receives enough light to grow); it is much lower in the three-

dimensional model. For the two-dimensional case, it would be interesting to investi-

gate cases which combine several different tidal frequencies. These results would likely

be dominated by the lowest frequency, which allow the furthest vertical transport.

When nutrient-rich water is able to reach shallow depths where nutrients have been

depleted, increased biological activity and blooms are likely because of the increase

in food sources.
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Chapter 6

Conclusion

In this thesis, we presented research toward understanding coupled physics-biology

processes in ocean straits. We performed new analytical studies and higher-order

simulations of idealized dynamics that are relevant to generic biology in straits and

applied them to the San Bernardino Strait in the Philippine Archipelago with tidal

forcing.

In Chapter 2, we motivated our research, discussing the importance of under-

standing coupled physics and biology interactions and the sparsity of data, especially

in the Philippine domain. Further, we completed an overview of lower trophic level

biological models in the ocean, including the Nutrient-Phytoplankton-Zooplankton

(NPZ) model and a more complicated six state variable model. We also discussed the

validity of NPZ models, explained the reaction terms, and compared different ways

of modeling biological reactions.

In Chapter 3, we performed novel global equilibrium and local stability analyses

for the NPZ model in terms of system parameters with and without physics. This in-

cluded finding and classifying equilibria states as stable or unstable, developing a new

method of determining appropriate parameter values given some known parameter

values, and specifying critical stability depths and regions where stability proper-

ties change. Phase portraits verified our predictions and simulations in the domain

(including flow). They indicated that the stability analysis for the regime without

physics gives a conservative range of appropriate parameter values, as advection, and
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especially diffusion, act to stabilize the biological dynamics.

In Chapter 4, we developed, verified, and analyzed a two-dimensional physical-

biological model. We presented and studied a novel numerical scheme to solve the

NPZ equations for physical-biological modeling. The new scheme combines Arakawa

C-grid with masking for easy implementation of boundary conditions, the operator

splitting method for computational efficiency and the WENO scheme to avoid oscil-

lations in advection-dominated flows. We showed that the WENO scheme was also

less numerically diffusive and more computationally efficient than the donor-cell, hy-

brid, and classic central difference schemes. The central difference scheme produced

oscillatory results when tracers accumulated at the boundary and was shown to be ap-

propriate only for smooth problems. The results from the donor cell scheme were not

oscillatory because enough numerical diffusion in the system smoothed the discontinu-

ities. A hybrid scheme, which combines the donor-cell and central difference scheme,

depended on a critical value to avoid oscillations, making it still more diffusive than

WENO scheme and requiring tuning of a case-specific parameter. Additionally, the

WENO scheme was more computationally efficient for comparable resolution, which

is important when resolving biological features. A comparison to an independent

simulation using Discontinuous Galerkin on an unstructured grid showed excellent

agreement, suggesting that both schemes are accurate.

In Chapter 5, we applied the physics-biology model to a realistic representation

of the San Bernardino Strait in the Philippine Archipelago under the influence of

tidal forces and compared the results to a high fidelity three-dimensional model from

MSEAS. First, we conducted new studies of the effect of tides on biology in a test case

motivated by the San Bernardino Strait in both two and three dimensions. Different

frequencies, parameters, and levels of diffusion were examined for the two-dimensional

case. For the three-dimensional case, we proposed a new method of initializing bio-

logical variables for regions with sparse data, which includes objective analysis and

region-specific profiles. Examining different frequencies of physical forcing (e.g. tides)

in the two-dimensional case revealed that faster oscillations had less effect than slower

oscillations. The time scale of this motion was too short (compared to the biological
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time scales) to allow phytoplankton to bloom.

The results presented serve as preparation for future work. The two-dimensional

idealized numerical simulation can be used to analyze interaction between physics

and biology for many different straits and physical features, simply by implementing

the appropriate parameters and flow field. The method to analyze the stability of

the NPZ model should be performed to ensure effects seen are realistic results of

the interactions between physics and biology. Additionally, the initialization of the

biological fields for the three-dimensional model is very general and is useful for many

regions and many different models.

More specifically, additional physical features in the San Bernardino Strait should

be isolated and examined in both the two-dimensional and three-dimensional models

to identify their effect on biology. As PhilEx continues, more biological data will be

available and those results should be compared to the results from the computational

models and used to improve future modeling of physical-biological interactions in the

San Bernardino Strait.
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Appendix A

Number of valid Z equilibrium

based on ρ and s

The following figures hold NT constant for NT = 2, 2.2, and 3 µmol/L (values in each

of the different stability regions). For each NT value, there is a figure showing s, ρ,

and ρ2 with β versus zooplankton concentration Z (these expressions are defined in

Equation 3.4). Figures are shown for the entire depth range (in terms of β) and also

focused on the depth region where the stability transitions occur.
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Region 1 Region 2 Region 3
Z 0 ≤ β < βc1 βc1 < β < βc2 βc2 < β ≤ u

−∞ < z < zc1 zc1 < z < zc2 zc2 < z ≤ 0

s > 0 s < 0 s < 0
0 < NT < NTcρ ρ < 0 ρ < 0 ρ > 0

No solutions One solution One solution
s < 0 s < 0 s < 0

NTcρ < NT < NTcs ρ < 0 ρ > 0 ρ > 0
One solution One solution One solution

s < 0 s > 0 s > 0
NT > NTcs ρ > 0 ρ > 0 ρ > 0

One solution Two solutions Two solutions

Table A.1: Number of zooplankton equilibrium based on total biomass (NT ), depth,
and the sign of ρ and s. Figures included in this Appendix show that ρ and s can be
plotted easily to determine the number of solutions for a given depth.
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Figure A-1: ρ, s, and ρ2 for NT = 2 µmol/L over entire depth range β. Transitions
only occur for very small β (deep water), shown in Figure A-2.
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Figure A-2: At β = 0, ρ < 0 and s > 0, so no solutions are present. After approx-
imately β = 0.01, s < 0 and one solution appears. At about β = 0.0275, ρ > 0 and
only one solution is still present. This corresponds to NT = 2 µmol/L, which is the
second row of Table A.1.
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Figure A-3: ρ, s, and ρ2 for NT = 2.2 µmol/L over entire depth range β. Transitions
only occur for very small β (deep water), shown in Figure A-4.

139
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Figure A-4: For all β, s < 0. For β < 0.01, ρ < 0 (one solution) and for β > 0.01,
ρ > 0 (again, one solution). This corresponds to NT = 2.2 µmol/L, which is the third
row of Table A.1.
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Figure A-5: ρ, s, and ρ2 for NT = 3 µmol/L over entire depth range β. Transitions
only occur for very small β (deep water), shown in Figure A-6.
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Figure A-6: For all β, ρ > 0. For β < 0.02, s < 0 (one solution) and for β > 0.02,
s > 0 (two solutions). This corresponds to NT = 3 µmol/L, which is the last row of
Table A.1.

β

Figure A-7: Zooplankton equilibrium for various NT values with the solid line repre-
senting the positive root of zooplankton and the dashed line representing the negative
root. The number of physical solutions corresponds to the predictions made in the
previous figures. For NT = 2 µmol/L, we see that for very small β, there are no
solutions, then the positive root becomes a physical solution for all β above a critical
value. For NT = 2.2 µmol/L, we always have one solution and for NT = 3 µmol/L,
we have one solution for small β, then two solutions as β grows.
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β

Figure A-8: Nutrient equilibrium for various NT values with the solid line representing
the positive root of nutrient and the dashed line representing the negative root. The
number of physical solutions corresponds to the predications made in the previous
figures. For NT = 2 µmol/L, we see that for very small β, there are no solutions,
then the negative root becomes a physical solution for all β above a critical value.
For NT = 2.2 µmol/L, we always have one solution and for NT = 3 µmol/L, we have
one solution all β.
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Appendix B

Phase Portraits

We created phase portraits of P versus Z using the nonlinear coupled NPZ equations

without advection or diffusion (Equations 3.1). This appendix shows these phase

portraits for NT = 2, 3, 5, and 8 µmol/L. For the last three values, phase portraits

are shown both for the full range of values as well as for a smaller range surrounding

the analytical equilibrium point (NT = 2 µmol/L has an equilibrium point outside

of the physical region and therefore is not shown). The x-axis is concentration of

zooplankton Z while the y-axis is phytoplankton concentration P . The equilibrium

points are listed for each depth level and NT value. Only values under the line

P = NT −Z are considered, as this defines the region where the solutions are physical

(from the restriction NT = N + P + Z).

Stability z = 0m z = −25m z = −50m

NT = 2 µmol/L U U U
NT = 3 µmol/L S S S
NT = 5 µmol/L S U U
NT = 8 µmol/L S U U

Table B.1: Predicted stability of the phase portraits for P versus Z.
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NT = 2
Equilibrium
Point

Whole Range Around Equilibrium Point

x−axis is Z, y−axis is P x−axis is Z, y−axis is P

z=0
P=2.2314,
Z=-0.2306
Unstable

N/A

z=-25
P=2.2314,
Z=-0.2283
Unstable

N/A

z=-50
P=2.2314,
Z=-0.2208
Unstable

N/A

144



NT = 3
Equilibrium
Point

Whole Range Around Equilibrium Point

x−axis is Z, y−axis is P x−axis is Z, y−axis is P

z=0
P=2.2314,
Z=0.7524
Stable

z=-25
P=2.2314,
Z=0.6514
Stable

z=-50
P=2.2314,
Z=0.127
Stable
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NT = 5
Equilibrium
Point

Whole Range Around Equilibrium Point

x−axis is Z, y−axis is P x−axis is Z, y−axis is P

z=0
P=2.2314,
Z=2.6934
Stable

z=-25

P=2.2314,
Z=1.2639
Unstable
(Almost
Neutral)

z=-50
P=2.2314,
Z=0.1619
Unstable
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NT = 8
Equilibrium
Point

Whole Range Around Equilibrium Point

x−axis is Z, y−axis is P x−axis is Z, y−axis is P

z=0
P=2.2314,
Z=5.3123
Stable

z=-25
P=2.2314,
Z=1.3259
Unstable

z=-50
P=2.2314,
Z=0.1687
Unstable
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