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ABSTRACT:
Robust informative acoustic predictions require precise knowledge of ocean physics, bathymetry, seabed, and

acoustic parameters. However, in realistic applications, this information is uncertain due to sparse and

heterogeneous measurements and complex ocean physics. Efficient techniques are thus needed to quantify these

uncertainties and predict the stochastic acoustic wave fields. In this work, we derive and implement new stochastic

differential equations that predict the acoustic pressure fields and their probability distributions. We start from the

stochastic acoustic parabolic equation (PE) and employ the instantaneously-optimal Dynamically Orthogonal (DO)

equations theory. We derive stochastic DO-PEs that dynamically reduce and march the dominant multi-dimensional

uncertainties respecting the nonlinear governing equations and non-Gaussian statistics. We develop the dynamical

reduced-order DO-PEs theory for the Narrow-Angle parabolic equation and implement numerical schemes for dis-

cretizing and integrating the stochastic acoustic fields. VC 2024 Acoustical Society of America.
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I. INTRODUCTION

Reliable acoustic exploration and navigation in the

ocean require precise knowledge of the environmental state

(e.g., ocean physics, bathymetry, seabed) and acoustic

parameters (e.g., source location and frequencies). When all

such information is available, sound waves can be reliably

used to explore the ocean and seabed (Baggeroer et al.,
1993; Becker et al., 2009; Firing and Gordon, 1990;

Gartner, 2004; Medwin and Clay, 1998), to locate underwa-

ter objects and animals (Blondel, 2010; Bonnel et al., 2014;

Jagannathan et al., 2009; Lavery et al., 2007; MacLennan

and Simmonds, 2013; Makris et al., 2006; Quazi, 1981), and

to communicate via the oceanic waveguide (Akyildiz et al.,
2005; Benjamin et al., 2010; Stojanovic, 1996). However, in

many real-world applications, such information is typically

incomplete and uncertain (Lermusiaux et al., 2006;

Tollefsen, 2021) due to the sparse and heterogeneous data

collected (Etter, 2018), as well as to the complex ocean

physics and acoustics dynamics, multiscale interactions, and

large dimensions (Brekhovskikh and Lysanov, 1982; Duda

et al., 2019). This incomplete knowledge leads to several

sources of uncertainty in acoustic modeling. The ocean cur-

rents, temperature, salinity, and pressure fields, and as a

result the sound speed and density fields, are often outputs

of ocean physics models with uncertain initial and boundary

conditions, and numerical approximations (Lermusiaux

et al., 2006; Rixen et al., 2012). The exact bottom topogra-

phy and properties are not available which adds uncertain-

ties to the acoustic predictions (Dosso et al., 2014; Etter,

2018; Jakobsson et al., 2017; Tolstoy, 1996). Finally,

numerical acoustic models are themselves approximations

of the original sound wave equations. To represent these

uncertainties and incomplete knowledge, stochastic environ-

mental fields force the acoustic models and sound propaga-

tion thus becomes stochastic. In this work, we develop

principled probabilistic theory and schemes to quantify the

effects of uncertainties in ocean physics, bathymetry, and

source location in ocean acoustic partial differential equa-

tions (PDEs) and predict the propagating stochastic acoustic

wave fields and their probability distributions. This is done

by deriving and implementing new stochastic dynamically-

adaptive differential equations for probabilistic underwater

acoustic modeling, starting from the stochastic version of

the acoustic Parabolic Equation (PE) (Jensen et al., 2011;

Tappert, 1977). The PE is a widely used solution technique

for low to mid-frequency acoustic propagation in several

models, e.g., FOR3D (Botseas et al., 1987), UMPE (Smith

and Tappert, 1993), RAM (Collins, 1995), Peregrine

(Heaney and Campbell, 2016), and the three-dimensional

(3-D) wide-angle split-step Fourier PE (Lin et al., 2013).

Prior progress in stochastic and random media underwater

sound propagation is reviewed next and includes the following

methods: (i) Monte Carlo (MC) sampling, (ii) Error Subspace

Statistical Estimation (ESSE), (iii) Wave Propagation in

Random Media (WPRM) theory, (iv) uncertainty transfera)Email: pierrel@mit.edu
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techniques, (v) Polynomial Chaos (PC) expansions, (vi)

Machine Learning (ML) techniques, and (vii) data-driven

Dynamic Mode Decompositions (DMDs).

Monte Carlo sampling techniques are the most straight-

forward and have been widely used in the community

(Gerstoft and Mecklenbr€auker, 1998; Shorey et al., 1994).

Using this method, repeated sampling of the Probability

Density Function (PDF) of uncertain model parameters and/

or fields is used to construct an ensemble of acoustic field

predictions by running multiple deterministic model runs

(Liu, 2008). However, a large number of realizations are

typically required to capture the multi-dimensional environ-

mental uncertainties making brute force MC computation-

ally infeasible. To address this MC inefficiency, Error

Subspace Statistical Estimation (ESSE) focuses on evolving

the principal components of the ocean physics and acoustics

uncertainties, using an ensemble of appropriately perturbed

simulations (Lermusiaux, 2006; Lermusiaux et al., 2002;

Lermusiaux et al., 2020a; Lermusiaux et al., 2020b, 2010;

Robinson and Lermusiaux, 2004).

An alternative approach for incorporating uncertainties

builds on advances in WPRM (Colosi, 2016; Ishimaru,

1978; Uscinski, 1977). Progress in this field includes pertur-

bation methods (Born et al., 1999; Chernov, 2017; Rytov

et al., 1987), moment equation methods (Ratilal and Makris,

2005; Tatarskii, 1971; Uscinski, 1977), path integral meth-

ods (Colosi et al., 1994; Dashen, 1979; Feynman and Hibbs,

1965; Flatt�e, 1983), and mode transport theory (Colosi,

2008; Colosi et al., 2013; Creamer, 1996; Dozier and

Tappert, 1978a,b; Rouseff et al., 2002). Results have been

successfully applied in several idealized and realistic ocean

acoustic problems (Colosi, 2016) and transport theory has

been very fast when the assumptions are satisfied. However,

predicting the full PDF of the stochastic acoustic fields

remains challenging as most of these methods rely on equa-

tions for only the statistical moments of the quantities of

interest. Recently, a PDF propagation technique (James and

Dowling, 2005) has been proposed extending PDF transport

theories used in the study of turbulence (Pope, 2000). The

authors obtain and solve differential equations for the PDF

of the acoustic fields from fine-grain PDF equations (James

and Dowling, 2005). Although this technique can be compu-

tationally efficient compared to MC methods, it has some

limitations. First, stochastic equations for realistic ocean and

acoustic field PDFs are very high-dimensional and nonlin-

ear, and require closure models (James and Dowling, 2005;

Miller, 2007; Pope, 2000). Second, prior knowledge about

the PDFs of the input parameter uncertainty is typically not

available.

A fourth family of techniques is used to estimate an

uncertainty band and/or the PDF of the transmission loss

(TL) due to environmental uncertainties. It includes the

Uncertainty Band (UBAND) algorithm (Fabre and Wood,

2013; Zingarelli, 2008), the field shifting (FS) method

(James and Dowling, 2008), and the ad hoc Area Statistics

(AS) method (Patterson and Dowling, 2017). The UBAND

algorithm estimates an uncertainty bound of TL using the

frequency- and range-averaging correspondence introduced

by Harrison (Harrison and Harrison, 1995). On the other

hand, the FS technique estimates the PDF of TL using the

property that on a local scale, small changes in an environ-

mental parameter lead to small spatial shifts in the acoustic

field (Dosso et al., 2007). Similar to the UBAND and FS

methods, AS uses a reference TL prediction and gathers the

TL values within a range-depth box around the receiver

location to estimate the PDF of TL at that location. In spite

of the computational advantages and adaptability provided

by these methods for real-time acoustic uncertainty analysis,

their accuracy drops significantly when the underwater envi-

ronment is complex with large uncertainties, and they can-

not be used to compute uncertainty estimates of the phase

(James and Dowling, 2008).

PC methods have also been used to predict acoustic

field uncertainties (Creamer, 2006; Finette, 2005, 2006;

Gerdes and Finette, 2012; James and Dowling, 2011;

Khazaie et al., 2019; Khine et al., 2010). They are used for

uncertainty quantification (UQ) in fluid (Le Mâıtre et al.,
2001; Le Mâıtre and Knio, 2010; Najm, 2009; Xiu and

Karniadakis, 2003) and solid mechanics (Doostan et al.,
2007; Ghanem and Spanos, 2003; Xiu et al., 2002). With

PC, the stochastic acoustic field is written as a PC expansion

where the uncertainty is represented by a fixed polynomial

basis. The expansion coefficients are obtained by solving a

system of coupled PDEs based on the original governing

equation. However, challenges arise due to the use of a fixed

polynomial basis for capturing the uncertainty, which leads

to requiring more terms in the PC expansion, and hence

higher computational costs (Khine et al., 2010) and funda-

mental limitations (Branicki and Majda, 2013).

Most recently, ML techniques have gained significant

popularity in underwater acoustic applications (Bianco

et al., 2019; Michalopoulou et al., 2021) and have been used

for estimating the PDF of TL in representative ocean envi-

ronments (Lee et al., 2022). This was accomplished by

training a neural network on a large dataset of TL predic-

tions at sample receiver locations in ocean environments

with various source properties. The NN was then used to

estimate the PDF of TL in new ocean environments and pro-

vided good accuracy when compared to the PDF obtained

using a brute force MC approach. However, the accuracy of

the estimates was shown to be lower at short ranges and in

the case of multimodal TL distributions. In addition, the

expensive efforts undertaken when constructing the large

training dataset for all possible ocean environments and

acoustic parameters limit the ML model generalization.

Last, high-dimensional systems such as those encountered

in ocean acoustics have the inherent challenges of multiscale

transient dynamics, and many NN architectures cannot read-

ily incorporate physical constraints (e.g., acoustic reciproc-

ity) and encode the global conservation laws. Careful

attention must therefore be exercised when applying ML

techniques for estimating acoustic uncertainties.

Data-driven DMDs based on Proper Orthogonal

Decomposition and Koopman analysis (Schmid, 2022) have
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been used to reduce sequences of data, extract dominant fea-

tures, and build reduced-order dynamical models directly

from data. As acoustics structures cover a large range of

scales and classic DMD bases do not evolve, their use in

acoustics has been limited (El Moçayd et al., 2020; Jourdain

et al., 2013). Recent progress in adaptive DMD can however

be used to build local stochastic models for forecasting

onboard underwater vehicles (Heuss et al., 2020; Ryu et al.,
2022; Ryu et al., 2021). Instead of starting from data, our

present contribution starts from fundamental acoustics

equations.

In Part I of this two-part paper, we derive and imple-

ment a new range-dynamic uncertainty quantification meth-

odology for optimal reduced-order stochastic underwater

sound propagation, extending the Dynamically Orthogonal

(DO) decomposition (Sapsis and Lermusiaux, 2009, 2012;

Ueckermann et al., 2013) to acoustics. The DO differential

equations have been shown to be an instantaneously-optimal

reduction of stochastic dynamical systems (Feppon and

Lermusiaux, 2018b, 2019) and this optimality is here broad-

ened to range-dynamic acoustic PEs, for an instantaneously-

in-range optimal reduction. Starting from the stochastic PE,

we derive the governing DO differential equations that

dynamically evolve and reduce acoustic uncertainties in

range, respecting the nonlinear stochastic governing PEs

and non-Gaussian statistics in the environment and acoustics

parameters. The DO-PEs are then developed and imple-

mented for the Narrow-Angle PE (NAPE) (Tappert, 1977)

to obtain the DO-NAPE finite-volume framework. In Part II

of this two-part paper (Ali and Lermusiaux, 2024), the

DO-NAPE framework is applied to three new stochastic

canonical tests and validated against analytical solutions and

standard MC techniques.

In what follows, the problem statement is provided in

Sec. II. In Sec. III, the new optimally-reduced DO-PE

acoustics differential equations are obtained and discussed.

Their stochastic initial and boundary conditions, their spe-

cific properties, their application to the NAPE, the numerical

schemes used for their integration, and their computational

costs are presented. Section IV discusses key differences

between the governing DO-PEs and the coupled and adia-

batic normal modes equations. Concluding remarks and dis-

cussions are provided in Sec. V.

II. PROBLEM STATEMENT

An uncertain multilayered medium consisting of a sto-

chastic ocean waveguide overlaying one or several fluid sed-

imental layers in a 3-D space is considered. In addition to

the uncertain sound speed, density, and bathymetry fields,

the location and frequency of the acoustic source are also

uncertain. Due to all these uncertainties, the resulting acous-

tic pressure field in the domain is also stochastic. For the

stochastic space, uncertainties are described with random

variables and stochastic fields indexed by the stochastic

parameter n, which represents an event in the stochastic

event space N. For the physical space, following the notation

in Lin et al. (2013) to unify cylindrical and Cartesian coordi-

nate systems, the position x is written as x ¼ ðx?; gÞ, where

x? ¼ ðx1; x2Þ 2 D denotes the two-dimensional transverse

coordinates and g 2 ð0;R� the position in the range direc-

tion, typically chosen as the dimension in the domain with

the weakest variations and/or determined by the location

of the instruments with R the total propagation range

(Jensen et al., 2011). The stochastic isotropic time-harmonic

point sound source of uncertain frequency f ðnÞ is located at

g ¼ gsðnÞ and x? ¼ x?;sðnÞ ¼ ðx1;sðnÞ; x2;sðnÞÞ. Figure 1

illustrates this generic stochastic underwater sound propaga-

tion and all sources of uncertainties.

The stochastic acoustic pressure field generated by the

harmonic point source at g ¼ gsðnÞ is denoted by

p0ðx?; g; nÞ. For g > gsðnÞ; p0ðx?; g; nÞ satisfies the stochas-

tic elliptic variable-density Helmholtz equation (Bergmann,

1946),

qr � 1

q
rp0

� �
þ k2

0n2
ap0 ¼ 0; (1)

subject to the appropriate stochastic boundary conditions in

the domain of interest. In Eq. (1), q ¼ qðx?; g; nÞ is the sto-

chastic space-varying medium density, k0ðnÞ ¼ xðnÞ=c0

¼ 2pf ðnÞ=c0 is a reference wavenumber, na is the stochastic

complex-valued (accounting for medium attenuation) index

of refraction defined as n2
aðx?; g; nÞ ¼ ðc0=cÞ2ð1þ ia=

27:29Þ, c ¼ cðx?; g; nÞ is the stochastic space-varying

medium sound speed, and a ¼ aðx?; g; nÞ is the stochastic

attenuation coefficient (in dB/k).

Defining the density-reduced pressure p ¼ q�1=2p0, Eq.

(1) can be rewritten as the density-reduced Helmholtz equa-

tion (Bergmann, 1946),

FIG. 1. (Color online) Schematic of the 3D stochastic underwater sound

propagation within an uncertain multilayered medium with environmental

and acoustic uncertainties. It contains a stochastic ocean waveguide of

properties cw and qw varying in range g and transverse directions x?, over-

laying one or several seabed layers with properties cs1
and qs1

; cs2
and qs2

,

etc. The stochastic water-seabed interface is defined by the bathymetry field

b. An isotropic harmonic point source of frequency f located at range g¼ 0

and x? ¼ x?;s is emitting sound waves. The acoustic pressure field ep at

receivers located at any x ¼ ðx?; gÞ is sought. As described in the text and

stated in the schematic, all these parameters and fields are uncertain and

represented by random variables and stochastic fields indexed by the sto-

chastic parameter n.
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r2pþ k2
0n2

eff p ¼ 0; (2)

with the stochastic squared effective index of refraction

n2
eff ¼ n2

a þ
1

2k2
0

1

q
r2q� 3

2q2
jrqj2

� �
: (3)

From the solution of Eq. (2), one obtains the stochastic

transmission loss,

TL x?; g; nð Þ ¼ �20 log10

���� p x?; g; nð Þ
p0 nð Þ

����; (4)

where p0 ¼ exp ðik0Þ=4p is a nominal pressure value at 1-m

distance from the source (Jensen et al., 2011).

Under the PE approximation (Jensen et al., 2011;

Tappert, 1977), the acoustic pressure pðx?; g; nÞ is decom-

posed as pðx?; g; nÞ ¼ vðg; nÞwðx?; g; nÞ, where vðg; nÞ is a

function strongly dependent on the range direction g that

can be approximated in the far-field as (Jensen et al., 2011;

Lin et al., 2013)

v g; nð Þ �
exp ik0 nð Þgð Þ in Cartesian coordinates;

exp ik0 nð Þgð Þ= ffiffiffi
g
p

in cylindrical coordinates:

(
(5)

In addition, wðx?; g; nÞ is a function slowly varying

with range and denotes the demodulated outgoing complex-

valued envelope function governed by the stochastic PE

(Jensen et al., 2011; Lin et al., 2013; Tappert, 1977)

@

@g
w x?; g; nð Þ

¼ ik0 �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

k2
0

r2
? þ n2

eff x?; g; nð Þ � 1

s8<:
9=;

� w x?; g; nð Þ; (6)

where x? ¼ ðx1; x2Þ and r? is the 2-D transverse Laplacian

operator, defined as

r2
? ¼

@2

@x2
1

þ @2

@x2
2

: (7)

With uncertainties in the environment and acoustic

parameters, Eq. (6) is a stochastic partial differential equa-

tion (SPDE) that can be written in operator form as

@w x?; g; nð Þ
@g

¼ LPE w x?; g; nð Þ; n½ � ;

x? 2 D; g 2 ð0;R�; n 2 N ; (8)

where LPE is the stochastic PE operator defined as

LPE w x?; g; nð Þ; n½ �

¼ ik0 �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

k2
0

r2
? þ n2

eff x?; g; nð Þ � 1

s8<:
9=;

� w x?; g; nð Þ: (9)

Within Eqs. (8) and (9), the sources of stochasticity in the

predicted acoustic field wðx?; g; nÞ are the uncertain sound

speed cðx?; g; nÞ, density qðx?; g; nÞ, and attenuation

aðx?; g; nÞ fields, and hence the uncertain index of refraction

field neff ðx?; g; nÞ.
As acoustic PEs are of the parabolic type, initial condi-

tions are needed at the starting range g ¼ gs. Several analyt-

ical and numerical starters have been proposed to initialize

the deterministic PE including the Gaussian, Greene, and

Thomson’s sources (Jensen et al., 2011), and the PE self-

starter (Collins, 1992, 1999). For example, the deterministic

Gaussian source (Tappert, 1977) is defined by wðx?; gsÞ
¼

ffiffiffiffiffi
k0

p
e�k2

0
=2ðx1�x1;sÞ2 e�k2

0
=2ðx2�x2;sÞ2 ; where x?;s ¼ ðx1;s; x2;sÞ

denotes the source location. In this work, such deterministic

starters are extended to stochastic starters wðx?; gsðnÞ; nÞ for

stochastic PEs in Eqs. (8) and (9) to account for uncertain-

ties in the source range gsðnÞ, location x?;sðnÞ, and fre-

quency f ðnÞ.
In addition, stochastic boundary conditions could arise,

for instance in the presence of rough or uncertain sea surface

or interior boundaries (Colosi, 2016; Morozov and Colosi,

2017; Thorsos et al., 2010), forcing uncertainties in the pre-

dicted w. More specifically, the stochastic PE in Eqs. (8)

and (9) is commonly subject to the following:

• Pressure-release condition at the uncertain sea surface:

wððx?Þss; g; nÞ ¼ 0; where ðx?Þssðg; nÞ describes the

uncertain, e.g., rough, sea surface.
• Continuity conditions at uncertain interior boundaries:

continuity of pressure wðx?; g; nÞ and the normal compo-

nent of particle velocity 1=ixqðr?w � n̂Þ where n̂ is the

unit vector normal to the uncertain, e.g., rough, interior

boundary.
• Outgoing radiation condition at infinity: in practice, an

artificial absorption layer is introduced to prevent spuri-

ous reflections from the truncated domains.

All of these stochastic boundary conditions are linear in w.

The goal of this work is to predict the stochastic acous-

tic field wðx?; g; nÞ and its PDF field, in an unprecedented

accuracy and efficiency, using the derived Dynamically

Orthogonal Parabolic Equations (DO-PEs).

III. STOCHASTIC DYNAMICALLY ORTHOGONAL
PARABOLIC EQUATIONS

The DO formulation for the stochastic PE in Eqs. (8)

and (9) is now derived, followed by its application to the

narrow-angle PE. Appropriate stochastic boundary condi-

tions (BCs) and stochastic initial conditions (ICs) are

described. Finally, numerical schemes for implementing the

resulting range-evolution differential equations, BCs, and

ICs are provided.

A. Dynamically orthogonal parabolic equations

Starting from the stochastic PE in Eqs. (8) and (9), the

DO decomposition (Feppon and Lermusiaux, 2018a,b;

Sapsis and Lermusiaux, 2009, 2012) is employed to derive

J. Acoust. Soc. Am. 155 (1), January 2024 Wael H. Ali and Pierre F. J. Lermusiaux 643

https://doi.org/10.1121/10.0024466

https://doi.org/10.1121/10.0024466


instantaneously-optimal range-dynamic stochastic reduced-

order equations. The DO decomposition wDO is a range-

dynamic extension of the truncated Karhunen-Loève (K-L)

decomposition (Alexanderian, 2015; Le Mâıtre and Knio,

2010; Loeve, 1978) defined as

w x?;g;nð Þ � wDO ¼ �w x?;gð Þ þ
Xns;w

i¼1

ewi x?;gð Þai g;nð Þ; (10)

where �wðx?; gÞ is the statistical mean field (units: Pa),ewiðx?; gÞ are orthonormal modes (non-dimensional) that form

a basis for the stochastic subspace of size ns;w, and aiðg; nÞ are

zero-mean stochastic processes (units: Pa). Importantly, none

of the terms in the right-hand-side of Eq. (10) are here prede-

fined. Instead, for each term, a new range-dynamic differential

equation will be obtained next, directly derived from the gov-

erning stochastic PE in Eqs. (8) and (9). The resulting system

of equations defines the fundamental DO differential PEs.

One of them is a PDE governing the evolution in range of the

statistical mean field. Similarly, the DO modal basis is evolved
in range using PDEs. This is thus very different from

Empirical Orthogonal Functions (EOFs), Proper Orthogonal

Decomposition (POD), or Principal Component Analysis

(PCA) where a predefined, range-independent orthonormal

basis is used in the transverse physical space. Analogously,

PC-based methods use fixed-in-range polynomial basis func-

tionals in the stochastic space (Khine et al., 2010), while the

DO coefficients are evolved in range according to stochastic

ordinary differential equations (ODEs).

To derive the DO differential equations, the DO decom-

position [Eq. (10)] is first inserted in the governing Eq. (8).

Using the notation defined in Appendix A, the PDE for the

mean field �w is derived by applying the expectation operator

to Eq. (8). The ns;w stochastic ODEs for the coefficients are

obtained by Galerkin projection of Eq. (8) onto the subspace

defined by the modes ewi, i.e., Eq. (8) is multiplied by each

mode i followed by integration in the transverse space D.

Analogously, the ns;w PDEs for the modes are obtained by

marginalization in the stochastic coefficients space, i.e., Eq.

(8) is multiplied by each coefficient i followed by averaging

in the stochastic space N. The results are differential equa-

tions for the mean, modes, and stochastic coefficients

@�w x?; gð Þ
@g

¼ En LPE w x?; g; nð Þ; n½ �½ � ; (11a)

@ewi x?;gð Þ
@g

¼
Xns;w

j¼1

C�1
aiaj

P?ew En LPE w x?;g;nð Þ;n½ �aj g;nð Þ
� �

;

8i¼ 1;…;ns;w;

(11b)

dai g; nð Þ
dg

¼ hLPE w x?; g; nð Þ; n½ �

�En LPE w x?; g; nð Þ; n½ �½ �; ewi x?; gð Þi;
8i ¼ 1;…; ns;w; (11c)

where Caiaj
are range-dependent covariance functions,

Caiaj
gð Þ ¼ En ai g; nð Þaj g; nð Þ

� �
; (12)

and P?ew is a projection operator onto a space orthogonal to

the stochastic subspace,

P?ew v½ � ¼ v�
Xns;w

i¼1

hv; ewi x?; gð Þiewi x?; gð Þ; (13)

where v is a spatial field in the transverse space.

In deriving the DO equations (11a)–(11c), without loss

of generality, a condition of dynamical orthogonality is

enforced,

�
@ewi �; gð Þ
@g

; ewj

	
¼ 0 ; 8i; j ¼ 1;…; ns;w; (14)

restricting the stochastic subspace to evolve orthogonal to

itself. This DO condition is a choice of gauge that eliminates

redundant degrees of freedom introduced by having both

modes and coefficients vary with range. It is not an approxima-

tion. Without this condition, an orthonormal basis

fewi¼1;…;ns;w
g is defined up to any unitary transform, and there-

fore a change of the solution wDO can be represented by either

a change of the coefficients, a change of the modes, or a mix

of both. The DO condition simply eliminates this redundancy

by constraining the change within the subspace to be realized

by a change in the coefficients ai¼1;…;ns;w only, and the sub-

space evolution to be realized by a change in the modesewi¼1;…;ns;w
only (Feppon and Lermusiaux, 2018b; Sapsis and

Lermusiaux, 2009). The key differences between this gauge

DO condition and the adiabatic approximation used in normal

mode analysis are further examined in Sec. IV.

B. DO-PEs initial and boundary conditions

1. Stochastic initial conditions

To initialize the DO-PEs [Eq. (11)] at a given range

gs ¼ 0, the Gaussian source is extended to an analytical sto-

chastic Gaussian DO starter that provides the initial mean
�wðx?; 0Þ and the ns;w initial modes ewiðx?; 0Þ and coeffi-

cients aið0; nÞ. Two cases arise depending on whether the

source is uncertain (uncertain frequency or location in the

transverse space).

Case 1—Uncertain source frequency or source loca-
tion. In this case, the reference wavenumber k0 or source

position x?;s are stochastic, i.e., k0 ¼ k0ðnÞ or

x?;s ¼ x?;sðnÞ, leading to a stochastic Gaussian starter field,

w x?; 0; nð Þ ¼ w0 x?; nð Þ

¼
ffiffiffiffiffiffiffiffiffiffiffi
k0 nð Þ

p
e �k0 nð Þ2=2½ � x1�x1;s nð Þð Þ2

� e �k0 nð Þ2=2½ � x2�x2;s nð Þð Þ2 ; (15)

for which the truncated K-L decomposition can be written

as
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w x?; 0; nð Þ ¼ w0 x?; nð Þ � �w
0

x?ð Þ þ
Xns;w0

i¼1

ew0

i x?ð Þa0
i nð Þ:

(16)

Using this decomposition, the subspace dimension ns;w is

selected as ns;w0 , and the mean, modes, and coefficients are

initialized as

�w x?; 0ð Þ ¼ �w
0

x?ð Þ ;ewi x?; 0ð Þ ¼ ew0

i x?ð Þ; 8i ¼ 1;…; ns;w ;

ai 0; nð Þ ¼ a0
i nð Þ; 8i ¼ 1;…; ns;w: (17)

Case 2—Deterministic source frequency and source loca-
tion. In this case, the analytical Gaussian starter field is

deterministic, i.e., wðx?; 0; nÞ ¼ wðx?; 0Þ ¼ w0ðx?Þ, such

that the initial mean field is

�w x?; 0ð Þ ¼ w0 x?ð Þ: (18)

Due to the absence of source uncertainties, the stochastic

DO coefficients are initialized to be zero, i.e., aið0; nÞ ¼ 0,

8i ¼ 1;…; ns;w. The modes however can be initialized using

any orthonormal basis of size ns;w. The choice of initial

orthonormal basis can be arbitrary because the DO-PEs (11)

adapt the modes in range to optimally capture the instanta-

neous dynamics that evolve the stochastic pressure field dur-

ing range-marching.

In each of the previous two cases, uncertainties in the

environment are felt as soon as the numerical DO equations

start marching in range. This is illustrated in Part II (Ali and

Lermusiaux, 2024), confirming that the DO-PEs dynami-

cally adapt the DO decomposition.

Finally, it should be noted that similar procedures can

be used to build DO stochastic wide-angle starters, self-

starters (Collins, 1992, 1999), or modal starters (Jensen

et al., 2011).

2. Stochastic boundary conditions

As stated at the end of Sec. II, the BCs for the sto-

chastic PE in Eqs. (8) and (9) in the transverse physical

space D are commonly linear. For the DO-PEs [Eq. (11)],

the stochastic BCs are thus also linear, and the mean PDE

[Eq. (11a)] and modes PDEs [Eq. (11b)] inherit the same

type of BCs as all realizations. The BCs for the mean PDE

[Eq. (23a)] are the mean of the BCs. The BCs for the PDE

of mode i [Eq. (23b)] are obtained by multiplication of the

original BCs by stochastic coefficient i followed by aver-

aging in the stochastic space N. Additional details on

more complex BC schemes are provided in Gupta et al.
(2016).

The stochastic coefficients from Eq. (11c) are ODEs in

the independent range variable g, and hence do not require

BCs. They only require ICs to march in range as discussed

in the previous subsection.

C. DO-PEs properties

First, the governing DO-PE [Eq. (11)] and their ICs and

BCs, respect nonlinearities and uncertainties in the original

governing stochastic PE [Eq. (8)] and its ICs and BCs.

Second, they dynamically adapt in range to the evolving phys-

ics and uncertainties. Third, instantaneously in range, the DO-

PE equations optimally reduce the original system, as they

define and integrate in the tangent space to the nonlinear

reduced manifold. They reduce the stochastic PE dynamics by

instantaneously taking its singular value decomposition (SVD)

and they can be shown to track the best low-rank approxima-

tion. These properties are derived and examined in Feppon

and Lermusiaux (2018a,b) and further exploited in Charous

and Lermusiaux (2023a,c). Fourth, for many ocean acoustic

applications, the number ns;w of DO modes ewiðx?; gÞ needed

to represent most of the stochastic field variance (energy) is

much smaller than the discrete dimension nw of the stochastic

PE [Eq. (8)] spatially-discretized in the transverse directions.

This is mainly because of the correlations among nearby ocean

acoustics variables. The result is a drastic reduction in compu-

tational costs.

Indeed, starting from the original stochastic acoustic PE

[Eq. (8)], if the transverse spatial directions are discretized and

the scalar stochastic coefficients integrated using an MC

scheme, i.e., one ODE for each realization, the DO equations

(11a)–(11c)] become a low-rank matrix-ODE in range

(Feppon and Lermusiaux, 2018a,b). If the MC scheme uses nr

realizations (ensemble members) and the discretized

transverse-space dimension is nw, the DO methodology

reduces the nr � nw matrix-ODE system to only (i) one discre-

tized PDE of dimension nw for the evolution of the mean [Eq.

(11a)], (ii) ns;w discretized PDEs of dimension nw for the

modes [Eq. (11b)], and (iii) ns;w � nr discretized ODEs for the

stochastic coefficients [Eq. (11c)]. Since ns;w � nw, the range-

dynamic reduced-order stochastic DO system is very efficient

to solve the stochastic PE [Eq. (8)] in range (Charous and

Lermusiaux, 2021; Ueckermann et al., 2013), see Sec. III F.

Fifth, continuing with the discretized matrix-ODE DO

system, the DO decomposition [Eq. (10)] at range g, denoted

by the matrix WDO, is the rank-ns;w approximation of the full

rank matrix of realizations W of size nr � nw, at that same

range g. While the truncated SVD is well known to provide

the optimal low-rank approximation (in the Frobenius norm

and spectral norm or 2-norm), obtaining this low-rank approxi-

mation at every range step would require integrating and stor-

ing the full matrix of realizations and then performing SVD at

every step. In practice, both of these steps become prohibi-

tively expensive. Instead, the DO method allows to optimally

and adaptively evolve the system’s low-rank approximation

WDO in range without the need to compute the full realizations

matrix W nor perform its SVD at every range step.

D. Application to the standard narrow-angle parabolic
equation

Due to the presence of the pseudo-differential square-

root operator in the acoustic PE [Eq. (6)], several PE
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approximations have been proposed (Jensen et al., 2011). In

Part II (Ali and Lermusiaux, 2024), the standard narrow-

angle approximation is used. The square-root operator is

then approximated using a first-order Taylor series expan-

sion to obtain the stochastic narrow-angle PE (NAPE)

(Tappert, 1977),

@

@g
w x?; g; nð Þ ¼ i

2k0

r2
? þ

ik0

2
n2

eff x?; g; nð Þ � 1

 �� 

� w x?; g; nð Þ: (19)

The stochastic ICs and BCs for Eq. (19) are commonly as

those of the stochastic PE in Eqs. (8) and (9).

The DO range-evolution equations for the stochastic

NAPE [Eq. (19)] are now obtained. As for the DO-PEs [Eq.

(11)], the start is range-dynamic K-L (DO) expansions, here

for both the input index of refraction field n2
eff ðx?; g; nÞ and

output complex envelope pressure field wðx?; g; nÞ,

n2
eff x?; g; nð Þ � n2

eff


 �
DO

¼ n2 x?; gð Þ þ
Xns;n2

l¼1

en2
l x?; gð Þbl g; nð Þ;

(20a)

w x?; g; nð Þ � wDO ¼ �w x?; gð Þ þ
Xns;w

i¼1

ewi x?; gð Þai g; nð Þ:

(20b)

In Eq. (20), n2ðx?; gÞ and �wðx?; gÞ are statistical mean fields

for the index of refraction and complex pressure, respectively.

The fields en2
lðx?; gÞ, 8l ¼ 1;…; ns;n2 , and ewiðx?; gÞ,

8i ¼ 1;…; ns;w, are DO modes, each set defining a range-

dynamic basis, orthonormal in the transverse spatial space by

construction. The DO stochastic coefficients blðg; nÞ;
8l ¼ 1;…; ns;n2 , and aiðg; nÞ; 8i ¼ 1;…; ns;w, are each zero-

mean stochastic processes that can represent complex range-

dependent uncertainties in the squared effective index of

refraction and acoustic fields, respectively. Since the DO

modes are orthonormal by construction, the magnitude of their

contribution is determined by the corresponding stochastic

coefficient. Again, none of the mean, DO modes, and DO

coefficients in the right-hand-sides of Eq. (20b) are predefined

but instead are here governed by new differential DO equa-

tions derived directly from the governing stochastic NAPE

[Eq. (19)]. The only assumption is that the DO expansions

ðn2
eff ÞDO in Eq. (20a) and wDO in Eq. (20b) are truncated to

subspaces of size ns;n2 and ns;w, respectively, so as to capture

most of the stochastic fields n2
eff and w, in the sense of

explained variance. The right-hand-side of Eq. (20a) is

obtained, for example, from DO ocean equations or a probabil-

istic modeling system (Lermusiaux, 1999, 2007; Lermusiaux

et al., 2020b; Lermusiaux and Robinson, 1999; Lermusiaux

et al., 2010; Robinson et al., 2002).

For ease of notation, we omit the independent variables,

and rewrite the expansions in Eq. (20) as

n2
eff


 �
DO
¼ n2 þ

Xns;n2

l¼1

en2
lbl; (21a)

wDO ¼ �w þ
Xns;w

i¼1

ewiai: (21b)

Substituting these expansions, Eq. (21) in the stochastic

NAPE [Eq. (19)] gives

@�w
@g
þ
Xns;w

i¼1

ai
@ewi

@g
þ
Xns;w

i¼1

ewi

dai

dg

¼ i

2k0

r2
? þ

ik0

2
n2 þ

Xns;n2

l¼1

en2
lbl � 1

0@ 1A8<:
9=;

� �w þ
Xns;w

i¼1

ewiai

 !
: (22)

Starting from Eq. (22), the derivation of the range evolution

equations for the mean, modes, and coefficients is provided

in Appendix B. The results are the following DO-NAPEs:

@�w x?; gð Þ
@g

¼ i

2k0

r2
?

�w þ ik0

2
�w



n2 � 1
�

þ
Xns;w

i¼1

Xns;n2

l¼1

ik0

2
Caibl

en2
l
ewi; (23a)

@ewi x?;gð Þ
@g

¼Qi�
Xns;w

j¼1

hQi;ewjiewj ; 8i¼1;…;ns;w ; (23b)

where

Qi ¼
i

2k0

r2
?
ewi þ

ik0

2
n2 � 1ð Þewi

þ
Xns;w

n¼1

C�1
anai

Xns;n2

l¼1

Canbl

ik0

2
en2

l
�w

24
þ
Xns;w

k¼1

Xns;n2

l¼1

En anblak½ � ik0

2
en2

l
ewk

#
;

dai g; nð Þ
dg

¼
Xns;w

k¼1

ak

D i

2k0

r2
?
ewk;
ewi

E
þ
Xns;w

k¼1

ak

D ik0

2
n2 � 1ð Þewk;

ewi

E
þ
Xns;n2

l¼1

bl

D ik0

2
en2

l
�w; ewi

E
þ
Xns;w

k¼1

Xns;n2

l¼1

akbl � Cakbl

� �D ik0

2
en2

l
ewk;
ewi

E
;

8i ¼ 1;…; ns;w : (23c)

In these three sets of equations, C denotes a range-varying

covariance matrix between two stochastic processes.
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For instance, Caibl
ðgÞ ¼ En½aiðg; nÞblðg; nÞ�. The solution of

the DO NAPEs [Eq. (23)] provides predictions of the sto-

chastic acoustic field wðx?; g; nÞ, where x? 2 D and

g 2 ð0;R�, for all realizations n 2 N.

Similar to the DO-PEs, the DO-NAPEs [Eq. (23)] are

subject to the DO stochastic BCs discussed in Sec. III B 2

and are initialized using the ICs described in Sec. III B 1.

The numerical schemes used in their implementation are

outlined next. For more details on the discrete DO-PEs and

DO-NAPEs, we refer to Ali (2023).

E. Numerical schemes

The numerical schemes and implementation of the sto-

chastic DO-NAPEs [Eq. (23)] are presented now. These

coupled DO-NAPEs consist of (i) a modified deterministic

PE for the mean field, �wðx?; gÞ, (ii) i ¼ 1;…; ns;w modified

deterministic PEs for the DO mode fields, ewiðx?; gÞ, and

(iii) i ¼ 1;…; ns;w stochastic ODEs (S-ODEs) for the zero-

mean stochastic coefficient processes, aiðg; nÞ. The former

ns;w þ 1 PEs are PDEs discretized in the transverse physical

space D with range-marching while the latter ns;w þ 1 S-

ODEs are discretized in the reduced stochastic space with

range-marching.

1. Discretization in the transverse physical space D

For the ns;w þ 1 modified PEs, a finite volume frame-

work (Ueckermann and Lermusiaux, 2012) is used in the

physical space D transverse to the marching direction g.

Specifically, a 2nd order central difference scheme is used

for the transverse Laplacian operator r2
?. Special care is

taken to account for the inhomogeneous density in the

medium by applying smoothing functions at the water-

seabed and each of the sediment interfaces (Jensen et al.,
2011; Tappert, 1977). Further details about the discretiza-

tion schemes can be found (Ali, 2019; Ali et al., 2019; Ali

et al., 2023) where the accuracy of our deterministic PE

solver is validated by comparison with reference analytical

solutions and with numerical KRAKEN (Porter, 1991,

2010) and RAM (Collins et al., 1996; Porter, 2010) solu-

tions, in both range-independent and range-dependent

benchmark problems. The stochastic DO-NAPEs were then

implemented based on the same discrete operators indeed,

once a deterministic code is available, implementing the

additional DO terms and equations can be done by reusing

existing codes with minor updates (Subramani and

Lermusiaux, 2024).

2. Range marching

For range marching over g 2 ð0;R�, a second-order

semi-implicit backward differencing (SBDF2) scheme is

used to integrate the mean and DO modes PDEs, Eqs. (23a)

and (23b). In these PDEs, all linear terms are handled

implicitly (i.e., evaluated at the current range of interest),

while (stochastic) nonlinear terms are handled explicitly

(i.e., evaluated at previous ranges).

To integrate the stochastic ODEs governing the evolu-

tion of the stochastic DO coefficients with range, we use a

direct MC method and evolve nr samples of the ns;w coeffi-

cients using a second-order explicit backward differencing

scheme. Given that the coefficients are governed by stochas-

tic ODEs rather than S-PDEs, the direct MC method is the

most straightforward technique without significant computa-

tional costs. This is because only ns;w scalar coefficients are

marched in range, with ns;w � nw, so even when nr � nw,

the cost of evolving nr samples for each DO coefficient is

not significant compared to the cost of integrating the PDEs

for the DO modes and mean fields. Further details can be

found in Ali (2019) and Ueckermann et al. (2013).

3. Initial condition schemes

A direct stochastic initialization scheme is used to

obtain the ICs for the DO-NAPE mean, modes, and coeffi-

cients. The two cases outlined in Sec. III B 1 are

implemented.

For case 1 with an uncertain source frequency or source

location, nr samples are obtained from the initial frequency

and/or location distributions which are then used to build

the realizations matrix of the starter field. After that, the

SVD of this matrix is obtained and truncated to capture 99%

of the variance in the starter realizations. The truncated

SVD gives the ICs of the DO-NAPE mean, modes, and

coefficients.

For case 2 with a deterministic source frequency and

location, the analytical Gaussian starter field is deterministic

and thus used to initialize the DO-NAPE mean. The DO-

NAPE coefficients are initialized to zero and the DO-NAPE

modes to any orthonormal basis of size ns;w, for instance,

the canonical basis of unit vectors. The optimal subspace

size ns;w can be obtained adaptively or by convergence stud-

ies, see Part II (Ali and Lermusiaux, 2024).

Another indirect approach to initialize the DO-NAPE

mean, modes, and coefficients consists of running first an

ensemble of short-range deterministic NAPE simulations.

An ensemble of realizations wðx?; g; nÞ is then integrated

for a few range steps g 2 ð0;Ri�, e.g., Ri ¼ 15� 20k, start-

ing from an ensemble of initial source locations, sound

speed, density, and/or attenuation fields. A truncated SVD

of the ensemble fields at g ¼ Ri then yields the initial condi-

tions of the mean, modes, and stochastic coefficients, from

which the DO-NAPEs start and evolve the fields to the final

range of interest. This approach may be beneficial when

comparing the DO-NAPEs solutions to those from an MC

ensemble as the correspondence between the MC realiza-

tions and the DO-NAPE coefficient realizations is easily

maintained at all ranges. However, implementing and then

running an ensemble to start the DO equations is more com-

plex than the direct scheme mentioned previously. In addi-

tion, if numerical reorthonormalization is employed during

the DO integration, appropriate techniques are commonly

needed to maintain this one-to-one correspondence, as dis-

cussed in Lin and Lermusiaux (2021). More importantly,
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when the uncertainty dimensions increase, running the

short-range MC ensemble becomes expensive or even infea-

sible. For all these reasons, we found that the direct initiali-

zation scheme is preferred.

F. Computational costs

Per range step, the computational cost of solving the

deterministic NAPE is dominated by the stiff Laplacian

term ði=2k0Þr2
?wðx?; gÞ which is typically treated implic-

itly. This leads to solving a Nx? � Nx? linear system where

Nx? is the number of grid points in the transverse physical

space D. The cost of solving this system scales super-

linearly as OðNj
x?
Þ, with 1 	 j < 2 depending on the

dimension of D and the algorithm used to solve the linear

system. For instance, the case of a one-dimensional (1D)

transverse physical space (D 
 z) with a 2nd order central

differencing scheme gives a tridiagonal linear system whose

solution cost scales linearly with the number of grid points,

i.e., j¼ 1. A direct MC solution with nr realizations there-

fore scales as OðnrN
j
x?
Þ. On the other hand, the cost of solv-

ing the stochastic DO-NAPEs [Eq. (23)] per range step is

dominated by the analogous Laplacian terms ði=2k0Þr2
?
ewi

(treated implicitly) and the nonlinear projection termsD en2
l
ewk;
ewi

E
(treated explicitly) in the DO modes equations.

Their costs scale as Oðns;wNj
x?
Þ and Oðns;n2 n2

s;wNx?Þ, respec-

tively. By leveraging vectorization and highly-optimized

subroutines, the cost of the nonlinear projection terms can

be scaled down by implementing the projection as a matrix-

matrix multiplication to become Oðns;n2 ns;wNx?Þ. The total

cost of the stochastic DO-NAPEs therefore scales as

Oðns;wNj
x?
þ ns;n2 ns;wNx?Þ. It should be noted that this cost is

independent of the number of realizations nr which only

affects the DO coefficients ODEs. We also note that the cost

of inverting the covariance of the coefficients is commonly

negligible as it is at most cubic in ns;w and usually

Oðn3
s;wÞ � Oðns;wNj

x?
þ ns;n2 ns;wNx?Þ.

Taking the ratio of the MC cost to the DO cost, we thus

have

CostMC

CostDO
�

nrN
j�1
x?

ns;wNj�1
x?
þ ns;n2 ns;w

: (24)

Equation (24) shows that the computational speedup

offered by the DO-NAPE can be several orders of magni-

tude. It commonly increases for higher dimensions and

higher-order numerical schemes. Furthermore, for typical

ocean acoustic applications, Nj�1
x?
� ns;n2 , and Eq. (24)

reduces to

CostMC

CostDO
! nr

ns;w
;

which highlights the efficiency of the DO-NAPE in captur-

ing thousands to millions of realizations, a challenging task

for MC methods, at a much-reduced computational cost.

In addition to the computational speedup, the DO-

NAPEs have a memory storage advantage over direct MC.

Specifically, for direct MC, the storage required per range

step is OðnrNx?Þ. For the DO-NAPE mean, modes, and

coefficients at each range step, however, the storage

required is, OðNx?Þ; Oðns;wNx?Þ, and Oðns;wnrÞ, respec-

tively. The total storage needed for the DO-NAPEs is thus

Oðns;wðnr þ Nx?ÞÞ offering memory savings of

MemoryMC

MemoryDO

� nrNx?

ns;w nr þ Nx?ð Þ
: (25)

Of course, the exact computational speedup and mem-

ory savings depend on the numerical implementation. For

instance, the previously-mentioned vectorization used to

reduce the computational costs of the nonlinear projection

terms
Den2

l
ewk;
ewi

E
may lead to storage requirements of

Oðns;n2 ns;wNx?Þ to first store the Hadamard product en2
l
ewk

before using the matrix-matrix multiplication for the projec-

tion. This trade-off between computational time and mem-

ory storage can be optimized based on the objectives and

resource constraints. Considering parallel and distributed

computing (Dutt et al., 2018; Evangelinos et al., 2009,

2011), the discrete DO-PEs can be distributed (Subramani

and Lermusiaux, 2024), which alters the previously noted

cost scaling and reduces the DO-PE computational time. Of

course, a brute-force deterministic MC ensemble integration

is embarrassingly parallel, but its storage and post-

processing costs (statistics, etc.) become prohibitive for real-

istic acoustics and larger ensemble sizes, e.g., nr > Oð103Þ.
As gains are limited by the processors and memory avail-

able, it is mostly for smaller ensembles that parallelization

can reduce the computational time for MC more than for

DO-PE. However, even in these conditions, as the previ-

ously noted ratios are not good for MC and as the DO-PEs

adapt to dominant uncertainties with range, the efficiency

(ratio of accuracy to total cost) often favors the DO-PEs, as

highlighted by the applications in Part II (Ali and

Lermusiaux, 2024).

G. Postprocessing: TL DO decompositions

Using the numerical schemes discussed previously, the

DO-NAPEs [Eq. (23)] are solved for the complex-valued

mean field �wðx?; gÞ, modes ewi¼1;…;ns;w
ðx?; gÞ, and stochastic

coefficients ai¼1;…;ns;wðg; nÞ. Whenever required, the TL

solution can be constructed as

TL x?; g; nð Þ ¼ �20 log10jw x?; g; nð Þj

¼ �20 log10j�w þ
Xns;w

i¼1

ewiaij : (26)

The DO decomposition of Eq. (26) can be computed using

SVD with two approaches:

(1) Range-dependent SVD. Stepping through range, for

each g� 2 ð0;R�, the DO decomposition of the stochastic

two-dimensional (2D) TL field (at a fixed range g�, TL

is only a function of x?) is computed by taking the SVD

of the 2D realization fields TLðx?; g�; nÞ. These SVDs
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taken at each discrete range g� yield the mean field

TLðx?; g�Þ (units: dB), modes fTLk¼1;…;ns;TL
ðx?; g�Þ (non-

dimensional), and stochastic coefficients

ck¼1;…;ns;TL
ðg�; nÞ (units: dB).

(2) Global SVD. At the end of range marching, the DO

decomposition of the stochastic 3D TL field is computed

in one shot, for all ranges at once, by taking the SVD of

the 3D realization fields TLðx?; g; nÞ. The mean field

TLðx?; gÞ (units: dB), modes fTLk¼1;…;ns;TL
ðx?; gÞ (non-

dimensional), and stochastic coefficients ck¼1;…;ns;TL
ðnÞ

(units: dB) are obtained. Note that the DO coefficients

of the 3D TL in this approach are then global and thus

range-independent.

In both approaches, the number of modes retained in

the truncated SVD is denoted as ns;TL. It is the rank of the

approximating matrix and of the DO decomposition for TL,

and is chosen to capture the dominant TL uncertainties by

thresholding the corresponding singular values. Note that

both approaches post-process the DO decomposition of the

stochastic acoustic field wðx?; g; nÞ to obtain a decomposi-

tion for TL.

IV. DIFFERENCES FROM ADIABATIC AND COUPLED
NORMAL MODES

Although both the DO-PEs and acoustic normal modes

theories are based on modal expansions, they exhibit funda-

mental differences in their underlying principles, mathemat-

ical frameworks, and physics explained. These differences

are summarized as follows:

(1) Mathematical Framework:
• DO-PEs: As shown in Sec. III, the DO-PEs here

decompose all the stochastic fields in the governing

stochastic Parabolic Equation in terms of their

dynamic K-L (DO) expansions into statistical means,

orthonormal stochastic subspace modes, and stochas-

tic coefficients, and then obtain differential equations

for each by applying expectation and projection oper-

ators. The results are governing DO-PEs, see Eqs.

(11) and (23), for the mean, DO modes, and stochastic

coefficients that are marched in range to obtain the

stochastic envelope pressure field w. Importantly,

none of the mean, DO modes, and DO coefficients,

are predefined. Instead, they are governed by the sto-

chastic DO-PEs directly derived from the stochastic

PE and adapt in range to the dominant uncertainties.

The only assumption made in the DO-PEs is when the

dynamic K-L is truncated, leading to a reduced-order

DO-PE system and stochastic solution w. The DO-

PEs then define the instantaneously optimal low-rank

approximation of the matrix of all the realizations of

w. These properties are illustrated in Part II (Ali and

Lermusiaux, 2024).
• Normal Modes: On the other hand, normal mode anal-

ysis is originally based on expanding the solution of

the deterministic, commonly Helmholtz equation (i.e.,

where the environment and acoustic parameters are

exactly known) in terms of the coupled waveguide

eigenmodes (Jensen et al., 2011; Pekeris, 1948). This

is followed by subdividing the propagation range into

a sequence of range-independent segments within

which an eigenvalue problem is solved for the local

eigenmodes. The eigenvalue problem has an infinite

number of eigenmodes. In practice, only the maxi-

mum number of physically meaningful eigenmodes is

retained (e.g., only lossless modes if interested in the

far-field solution) and form an orthonormal basis.

Furthermore, the modal coefficients are obtained by

imposing continuity conditions at the interface of suc-

cessive range segments and Galerkin projection onto

the basis of the new range segment (Evans, 1983).

This approach, however, can become computationally

intensive. Two main simplifications have been pro-

posed: (1) one-way coupled modes (McDaniel, 1982),

and (2) the adiabatic approximation (Pierce, 1965).

(2) Physical Interpretation of the Modes:

• DO-PEs: The DO-PEs organize and track uncertainty

according to variance, integrating in range the local

sources of uncertainty with the spread of acoustic

propagation dynamics. They evolve and organize the

dominant modes of stochastic variability in the acous-

tic field. The individual DO modes thus represent a

combination of acoustic processes and environmental

influences, combining contributions from the uncer-

tain source, reflections, refractions, and other complex

interactions. The modes may not correspond to spe-

cific acoustic phenomena in a straightforward manner,

but they optimally capture the significant (in the sense

of explained variance) transverse spatial patterns in

the propagating stochastic acoustic field.
• Normal Modes: In contrast, normal modes have a

clear physical interpretation and represent the reso-

nant behavior of the ocean environment. Each normal

mode corresponds to a distinct frequency and associ-

ated mode shape, which indicates areas of construc-

tive and destructive interference in the medium

(Jensen et al., 2011). They provide insights into phe-

nomena such as wave propagation along specific

paths, confinement within waveguides, and interaction

with boundaries. As a result, normal modes are sensi-

tive to changes in the ocean environment whereby

even slight perturbations (e.g., due to temperature

and/or salinity fluctuations) can cause shifts in modal

frequencies, alterations in energy distribution, or

changes in the number and distribution of nodes and

antinodes (Colosi, 2016).

In addition to these differences, it is crucial to highlight

key distinctions between the adiabatic approximation

(Pierce, 1965) and the DO condition [Eq. (14)]. In the adia-

batic approximation, the coupling terms in the normal mode

amplitude equations are assumed insignificant and

neglected. However, as mentioned in Sec. III A, the DO con-

dition [Eq. (14)] is simply a gauge condition that eliminates

J. Acoust. Soc. Am. 155 (1), January 2024 Wael H. Ali and Pierre F. J. Lermusiaux 649

https://doi.org/10.1121/10.0024466

https://doi.org/10.1121/10.0024466


redundant degrees of freedom introduced by allowing both

DO modes and coefficients to vary with range. Therefore,

the DO condition does not introduce any new errors. This is

highlighted in the DO coefficients governing Eqs. (11c) and

(23c) by the mode-coupling terms on their right-hand side.

The approximation in the DO-PEs is only due to the trunca-

tion of the DO basis to the dominant modes. Most impor-

tantly, the DO solution is however allowed to evolve outside

the space spanned by the DO modes at a particular range,

due to uncertainties in the environment and acoustics in the

orthogonal complement of the DO subspace [Eq. (13)]. This

evolution of the DO subspace, realized by coupled dynamics

outside of the subspace, is governed by [Eq. (11b)]. These

DO coupling properties are illustrated in Part II (Ali and

Lermusiaux, 2024).

Finally, it is useful to note that the DO decomposition

can be used to reduce deterministic acoustics dynamics

(Charous and Lermusiaux, 2021, 2023b; Feppon and

Lermusiaux, 2018a,b) and has links to dynamical low-rank

approximations (Charous and Lermusiaux, 2023a; Koch and

Lubich, 2007). Similarly, mode analysis has been usefully

extended to handle uncertainties in the ocean environment

in the context of random media propagation. This approach,

called transport theory (Colosi, 2016; Colosi et al., 1994;

Dozier and Tappert, 1978a), relies on first computing the

eigenmodes using the deterministic (i.e., unperturbed) envi-

ronment. Therefore, all the variability due to the uncertain-

ties in the environment is captured by the modal amplitudes.

Using the one-way coupled modes assumption, stochastic

ordinary differential equations are derived for these modal

amplitudes from which moments of the quantities of interest

are calculated (Colosi, 2016), usually up to second-order

moments, e.g., pressure mean/variance, intensity mean/vari-

ance, and mutual coherence functions. Transport theory has

been successfully applied in several idealized and realistic

ocean cases showing good agreements with observations.

However, some stochastic limitations can arise, first due to

the use of a predetermined deterministic normal mode basis.

This becomes an issue when the true stochastic solution has

components outside the space spanned by this predeter-

mined modal basis, either initially or as it advances in range

due to environmental uncertainties. In this case, the DO-PEs

and the dynamic DO basis would adapt to uncertainties as

the solution is marched in range. Second, the DO-PEs theory

provides the full PDFs of the stochastic pressure field. It

could thus be used to drastically enrich the transport theory

approach by capturing PDFs instead of mostly first and

second-order moments.

V. SUMMARY AND CONCLUSIONS

In this work, the stochastic DO acoustic PE methodol-

ogy was developed to model underwater acoustic propaga-

tion in uncertain environments. The resulting probabilistic

theory and schemes provide an instantaneously optimal

range-dynamic model-order reduction technique that

evolves the stochastic acoustic field in a range-dynamic

subspace. The DO-PEs allow comprehensive and accurate

stochastic acoustic modeling at reduced computational

costs. Differences between the DO-PE theory and the adia-

batic and coupled normal modes theories were also dis-

cussed, highlighting distinctions in their underlying

principles and mathematical frameworks. The DO-PE meth-

odology was developed for range-dependent environments

and applied to the NAPE. The numerical schemes employed

for the new DO-NAPEs were described and implemented

within a state-of-the-art finite-volume framework.

Since the developed DO equations methodology is not

limited to the NAPE formulation, direct extensions of this

work include the use of DO for WAPE (Jensen et al., 2011;

Lin et al., 2013; Sturm and Fawcett, 2003) and is the subject

of a follow-up paper. This allows modeling propagation off

the range marching direction with higher accuracy. In addi-

tion, the use of the DO equations for 3D stochastic acoustics

would offer additional opportunities. Further investigation

of the numerical schemes and implementation of the devel-

oped DO methodology for memory efficiency and speed

may then be useful. Additional extensions of the DO frame-

work in ocean acoustics may include applications for sto-

chastic predictions using ray tracing (Humara et al., 2022)

and the acoustic wave equation (Charous and Lermusiaux,

2021), or for efficient solutions of the 3D deterministic

NAPE (Charous and Lermusiaux, 2021, 2023b). In Part II

(Ali and Lermusiaux, 2024), we evaluate the performance of

the DO-NAPEs when applied to three new stochastic range-

independent and range-dependent test cases with uncertain

sound speed field, bathymetry, and source location.

Applications within realistic ocean conditions (Ali, 2023;

Ali et al., 2023) are being completed.

The DO-PE methodology can also be used within cou-

pled Bayesian data assimilation where ocean and acoustic

data are assimilated to correct predictions and PDFs of

ocean physics and acoustics, possibly including seabed

properties (Ali et al., 2019). The advantages over standard

acoustic inversions such as tomography (Cornuelle et al.,
2008; Munk and Wunsch, 1979) and matched field process-

ing (Dosso, 2002; Tolstoy, 1993) include the coupled multi-

variate estimation (Elisseeff et al., 2002; Lermusiaux and

Chiu, 2002) and principled use of non-Gaussian statistics,

for example using the Gaussian Mixture Model (GMM) DO

filter (Sondergaard and Lermusiaux, 2013a,b) and smoother

(Lolla and Lermusiaux, 2017a,b). Additional possibilities

include Bayesian acoustic model learning (Gupta and

Lermusiaux, 2023; Lu and Lermusiaux, 2021), moving

source tomography (Gemba et al., 2022), and adaptive sam-

pling for optimal observations (Wang et al., 2009; Yilmaz

et al., 2006).
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APPENDIX A: DO-PE NOTATION

The DO-PEs derived in this paper use the following

notation:

• The probability space is defined as ðN;F ; lÞ where N is a

measurable sample space equipped with an appropriate r-

algebra F and probability measure l.
• The mean value (expectation) for a stochastic field

wðx?; g; nÞ is then defined as

�w x?; gð Þ ¼ En w x?; g; nð Þ½ � ¼
ð

N
w x?; g; nð ÞdlðnÞ:

(A1)

• The spatial transverse inner product, i.e. the inner product

in the deterministic physical cross-range domain D,

between two (complex-valued) stochastic fields

wðx?; g; nÞ and /ðx?; g; nÞ is defined asD
w �; g; nð Þ;/ �; g; nð Þ

E
¼
ð
D
w x?; g; nð Þ�/ x?; g; nð Þdx? ;

(A2)

where � denotes the complex conjugate.
• The notations • and •e denote the statistical mean and

dynamically orthonormal modes of •, respectively. In par-

ticular, n2ðx?; gÞ and �wðx?; gÞ are statistical mean fields

for the index of refraction and complex pressure, respec-

tively. The fields en2
lðx?; gÞ; 8l ¼ 1;…; ns;n2 , andewiðx?; gÞ; 8i ¼ 1;…; ns;w, are DO modes, each set defin-

ing a range-dynamic basis, orthonormal in the transverse

spatial space. The DO stochastic coefficients

blðg; nÞ; l ¼ 1;…; ns;n2 , and aiðg; nÞ; i ¼ 1;…; ns;w, are

each scalar zero-mean stochastic processes that can repre-

sent complex range-dependent uncertainties in the

squared effective index of refraction and acoustic fields,

respectively.

APPENDIX B: DO-NAPE EQUATIONS DERIVATION

The DO-NAPE differential equations are derived

directly from the stochastic NAPE [Eq. (19)]. Their solution

is the sought-after DO expansion for the complex envelope

pressure w fields [Eq. (20b)], given the DO expansion for

the squared effective index of refraction n2
eff [Eq. (20a)]

(e.g., predicted by an ocean model). The exact set of differ-

ential equations governing the range evolution of each term

in [Eq. (20b)]—i.e., the statistical mean, deterministic DO

modes, and zero-mean DO stochastic coefficients—is

derived by first substituting the DO decompositions [Eq.

(21)] into Eq. (19) to obtain (using Einstein summation

notation),

@�w
@g
þ ak

@ewk

@g
þ ewk

dak

dg

¼ i

2k0

r2
?

�w þ ak
ewk


 �
þ ik0

2
n2 þ en2

lbl � 1


 �
�w þ ewkak


 �
:

The right-hand side can then be expanded to obtain

@�w
@g
þ ak

@ewk

@g
þ ewk

dak

dg

¼ i

2k0

r2
?

�w þ akr2
?
ewk

h i
þ ik0

2
n2 � 1ð Þ�w þ n2 � 1ð Þewkak

h
þ en2

lbl
�w þ en2

lbl
ewkak

i
: (B1)

Since both the modes and stochastic coefficients are func-

tions of range, without any loss of generality, a range-

dynamical orthonormality condition,

D @ewi �; gð Þ
@g

; ewj

E
¼ 0 ; 8i; j ¼ 1;…; ns;w; (B2)

is used to resolve the redundancy in the DO representation.

This DO condition is simply a gauge that does not introduce

new errors but usefully eliminates redundant terms in the

equations.

Using Eqs. (B1) and (B2), the range evolution equations

for the mean �w, modes ewi¼1;…;ns;w
, and stochastic coefficients

ai¼1;…;ns;w are obtained by applying the expectation and inner

product operators as shown next.

1. Mean

Applying the expectation operator to both sides of Eq.

(B1) gives the mean evolution equation:

@�w
@g
¼ i

2k0

r2
?

�w þ ik0

2
�w n2 � 1ð Þ þ ik0

2
Cakbl

en2
l
ewk ; (B3)

where the zero-mean property of the stochastic coefficients

was used, i.e., En½ak� ¼ En½bl� ¼ 0, for k ¼ 1;…; ns;w and

l ¼ 1;…; ns;n2 , and where Cakbl
¼ En½akbl� is an element of

the acoustic-environment covariance matrix in the stochastic

subspace.
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2. Coefficients

To obtain the evolution equation for the coefficients

ai, the idea is to eliminate all range-derivatives in (B1) but

that of ai, in other words to isolate dai=dg on the left-hand

side of Eq. (B1). To do so, a Galerkin projection of Eq.

(B1) onto the modes ewi is completed, i.e., the inner prod-

uct of Eq. (B1) with ewi is taken, and then the DO condi-

tion [Eq. (B2)] and orthonormality of the modes are used.

The result yields the governing equations for the coeffi-

cients ai,

dai

dg
¼ ak

D i

2k0

r2
?
ewk;
ewi

E
þ ak

D ik0

2
n2 � 1ð Þewk;

ewi

E
þbl

D ik0

2
en2

l
�w; ewi

E
þ akbl�Cakbl

� �D ik0

2
en2

l
ewk;
ewi

E
;

8i¼ 1;…;ns;w: (B4)

3. Modes

To obtain the evolution equation for the modes, the

idea is to eliminate all range-derivatives in Eq. (B1) but

that of ewi, in other words to isolate @ewi=@g on the left-

hand side of Eq. (B1). This is done by projection onto the

space of stochastic coefficients by first multiplying Eq.

(B1) by an and then by applying the expectation operator.

Using the zero-mean property of an (i.e., En½an� ¼ 0), then

yields

Canak

@ewk

@g
þ En an

dak

dg

� �ewk

¼ Canak

i

2k0

r2
?
ewk þ

ik0

2
n2 � 1ð Þewk

� �
þCanbl

ik0

2
en2

l
�w þ En anblak½ � ik0

2
en2

l
ewk : (B5)

Using the coefficients Eq. (B4), an expression for

En½anðdak=dgÞ� can be obtained as

En an
dak

dg

� �
¼ Canam

D i

2k0

r2
?
ewm;

ewk

E
þ Canam

D ik0

2
n2 � 1ð Þewm;

ewk

E
þCanbl

D ik0

2
en2

l
�w; ewk

E
þ Canambl

D ik0

2
en2

l
ewm;

ewk

E
;

8n; k ¼ 1;…; ns;w: (B6)

Substituting this expression back into Eq. (B5), exchanging

the m and k dummy summation indices to avoid ambiguities,

and collecting the terms with the same moment coefficients

on the right hand-side yields

Canak

@ewk

@g
¼Canak

i

2k0

r2
?
ewk�

D i

2k0

r2
?
ewk;
ewm

Eewm

� �
þCanak

ik0

2
n2 �1ð Þewk�

D ik0

2
n2 �1ð Þewk;

ewm

Eewm

� �
þCanbl

ik0

2
en2

l
�w�

D ik0

2
en2

l
�w;ewm

Eewm

� �
þEn anblak½ � ik0

2
en2

l
ewk�

D ik0

2
en2

l
ewk;
ewm

Eewm

� �
;

8n¼ 1;…;ns;w: (B7)

This system of equations for the modes evolution can be fur-

ther simplified by multiplying by the matrix inverse C�1
anak

of

the symmetric covariance matrix ðCanak
Þ1	n;k	ns;w

which yields

@ewk

@g
¼ i

2k0

r2
?
ewk�

D i

2k0

r2
?
ewk;
ewm

Eewm

� �
þ ik0

2
n2�1ð Þewk�

D ik0

2
n2�1ð Þewk;

ewm

Eewm

� �
þC�1

anak
Canbl

ik0

2
en2

l
�w�

D ik0

2
en2

l
�w;ewm

Eewm

� �
þC�1

anak
En anblak½ � ik0

2
en2

l
ewk�

D ik0

2
en2

l
ewk;
ewm

Eewm

� �
;

8k¼ 1;…;ns;w: (B8)

To be consistent with Eq. (23b), the indices i and j are used

instead of k and m, respectively. The governing evolution

equations for the modes are then

@ewi

@g
¼ Qi �

D
Qi; ewj

Eewj ; 8i ¼ 1;…; ns;w ;

where

Qi¼
i

2k0

r2
?
ewiþ

ik0

2
n2�1ð Þewi

þC�1
anai

Canbl

ik0

2
en2

l
�wþEn anblak½ �ik0

2
en2

l
ewk

� �
: (B9)
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