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ABSTRACT:
Numerical solutions to the parabolic wave equation are plagued by the curse of dimensionality coupled with the

Nyquist criterion. As a remedy, a new range-dynamical low-rank split-step Fourier method is developed. The inte-

gration scheme scales sub-linearly with the number of classical degrees of freedom in the transverse directions. It is

orders of magnitude faster than the classic full-rank split-step Fourier algorithm and saves copious amounts of stor-

age space. This enables numerical solutions of the parabolic wave equation at higher frequencies and on larger

domains, and simulations may be performed on laptops rather than high-performance computing clusters. Using a

rank-adaptive scheme to optimize the low-rank equations further ensures the approximate solution is highly accurate

and efficient. The methodology and algorithms are demonstrated on realistic high-resolution data-assimilative ocean

fields in Massachusetts Bay for two three-dimensional acoustic configurations with different source locations and

frequencies. The acoustic pressure, transmission loss, and phase solutions are analyzed in the two geometries with

seamounts and canyons across and along Stellwagen Bank. The convergence with the rank of the subspace and the

properties of the rank-adaptive scheme are demonstrated, and all results are successfully compared with those of the

full-rank method when feasible. VC 2024 Acoustical Society of America. https://doi.org/10.1121/10.0032470
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I. INTRODUCTION

Wave propagation is pertinent to many scientific and

engineering disciplines such as oceanography, seismology,

acoustics, and optics. For propagation in complex media,

both forward problems—where one predicts how a wave

propagates in a known environment—and inverse prob-

lems—where one attempts to determine model/environmen-

tal parameters given observational data about wave

propagation in the said environment—require numerical

methods to provide accurate solutions. In this paper, we

restrict our attention to the acoustic wave equation for prop-

agation in the three spatial dimensions,

qr � 1

q
rp

� �
� 1

c2

@2p

@t2
¼ f ; (1)

where p is the acoustic pressure field, q the density field of

the media, c is the sound speed field of the media, t time,

and f some forcing field. Our specific domain of interest is

underwater acoustics.

Unfortunately, numerically solving this hyperbolic par-

tial differential equation (PDE) is often too computationally

expensive in three dimensions and/or at mid-to-high fre-

quencies. The Nyquist criterion requires we sample spatially

at least twice per wavelength as well as temporally at least

twice per period. This would be a minimal resolution in

space-time but, nonetheless, a fine mesh for many prob-

lems, making the direct numerical simulation of the acous-

tic wave Eq. (1) in complex environments such as the ocean

intractable. Several approximations can be made, such as

ray methods (Cervenỳ, 2001; Lichte, 1919), wavenumber

integration (DiNapoli and Deavenport, 1980; Ewing et al.,
1957; Jardetzky, 1953; Kutschale, 1973), normal-mode

methods (Ide et al., 1947; Pekeris, 1948; Williams, 1970),

and parabolic wave equations (Hardin, 1973; Leontovich

and Fock, 1946), all of which are discussed in Jensen et al.
(2011). Frequently used three-dimensional (3D) parabolic

acoustic propagation codes include RAM (Collins et al.,
1996), PEREGRINE (Heaney and Campbell, 2016), and FOR3D

(Botseas et al., 1987). Solutions to the 3D parabolic equa-

tion (PE) in complex ocean environments have been studied

by Duda (2006), Heaney and Campbell (2016), Lin (2019),

and Oliveira et al. (2021), and efforts to accelerate compu-

tation via parallelization have been investigated by Castor

and Sturm (2008), Collins (1993), and Xu and Tang (2019).

Nevertheless, numerically solving large 3D PE problems

accurately remains expensive or infeasible, and the goal of

this paper is to enable such high-resolution solutions by

developing new optimal range-dynamical low-rank

schemes.

Our emphasis is on the narrow-angle, density-reduced

parabolic wave equation, obtained as follows. First, Fourier-

transforming Eq. (1) in time gives the Helmholtz equation,
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qr � 1

q
rP

� �
þ k2P ¼ F; (2)

where P and F are the time-Fourier-transformed acoustic

pressure and forcing functions, respectively, k ¼ x=c is the

wavenumber, and x is the frequency (in radians per second).

The Helmholtz equation is elliptic, meaning the whole spa-

tial domain must be solved for simultaneously. A further

approximation is then made by assuming the acoustic

medium is relatively smooth and weakly range-dependent,

which allows converting the elliptic PDE into a parabolic

one. In doing so, the numerical PDE solution is marched for-

ward along a chosen principal axis or range, which is here

denoted as x (Collins and Siegmann, 2019). The derivation

is provided in Collins and Siegmann (2019) and Jensen

et al. (2011). The final narrow-angle PE is given by

@w
@x
¼ ik0

2
~n2 � 1ð Þ þ i

2k0

r2
?

� �
w; (3)

where w is a density-reduced wave envelope related to the

acoustic pressure Fourier-transformed in time by

P ¼ ffiffiffi
q
p

eik0xw, k0 is a reference wavenumber defined by

k0 ¼ x=c0, where c0 is the reference sound speed, r2
? is the

Laplacian in the transverse directions, y and z, and ~n is the

complex effective refractive index given by

~n2 ¼ c2
0

c2
1þ i

aðkÞ

20p log10ðeÞ

" #

þ 1

2k2
0

1

q
r2q� 3

2q2
rq � rq

� �
; (4)

where aðkÞ is the attenuation coefficient in decibels per

wavelength, dB=k. This complex refractive index allows us

to incorporate attenuation and density variations.

Despite these approximations, 3D numerical solutions

to the narrow-angle parabolic wave equation [Eq. (3)] are

still computationally expensive (Lee et al., 1995; Lin et al.,
2019). This is primarily due to the spatial Nyquist criterion,

resulting in an extremely dense mesh. In a typical ocean

acoustic application, there can be millions of degrees of

freedom in each range slice. At higher frequencies, one may

approach billions of degrees of freedom. Not only does this

make computing solutions slow, but it also makes them dif-

ficult to store. In contrast to the approximations made earlier

where the PDE itself was modified, we propose an alterna-

tive approximation. We decompose the solution using a

range-dynamical separation of variables in the transverse

directions and apply a dynamically orthogonal (DO) low-

rank approximation, thus drastically reducing the dimen-

sionality of the problem while still abiding by the Nyquist

criterion and high resolution. Building off the split-step

Fourier (SSF) algorithm (Hardin, 1973), we incorporate pro-

jection operators approximated by rank-adaptive retractions.

The retractions also project the updated solution onto a low-

rank manifold and prevent the dimensionality of the

reduced-order solution from growing exponentially with

range. By asymptotically approximating the aforementioned

projection operator, the retractions significantly reduce com-

putational cost while dynamically adjusting the rank with

range, enhancing both accuracy and efficiency. We demon-

strate the efficacy of the new method by evaluating it on

realistic high-resolution data-assimilative ocean fields with

internal tides, eddies, and jets around Stellwagen Bank in

Massachusetts Bay. We highlight acoustic configurations

with different source locations and frequencies and two

geometries with seamounts and canyons, across and along

the Bank. We study convergence with the rank of the sub-

space, illustrate the rank-adaptive scheme, and compare

results with those of the full-rank method when feasible.

In what follows, Sec. II describes the new methodology

for solving the parabolic wave equation. The classic SSF algo-

rithm is briefly reviewed before our novel range-dynamical

low-rank split-step Fourier (lr-SSF) method is obtained.

Section III discusses the algorithms and implementation of the

new operators required for the lr-SSF method and analyzes the

computational advantages over the classic full-rank SSF. In

addition, we detail a rank-adaptive algorithm that adjusts the

rank of the solution for optimal solution fidelity and computa-

tional efficiency. In Sec. IV, we demonstrate the new method

in Massachusetts Bay with simulations at 75 and 750 Hz and

analyze its properties and performance. Compared to the clas-

sic SSF, the range-dynamical lr-SSF significantly reduces

computational costs without loss of accuracy, which is a key

result we emphasize. Section V provides some closing remarks

and future research directions.

II. METHODOLOGY

A. SSF

The SSF algorithm (Hardin, 1973) for solving the narrow-

angle parabolic wave equation [Eq. (3)] is well known. The key

to the algorithm is splitting the right-hand side of Eq. (3) into two

components, a reaction operator A and a diffusion operator B:

A � ik0

2
~n2 � 1ð Þ; B � i

2k0

@2

@y2
þ @2

@z2

 !
:

Now, instead of integrating Eq. (3) directly, we may integrate

A and B separately. A second-order accurate integration algo-

rithm known as Strang splitting (Strang, 1968) is as follows:

(1) Integrate @w=@x ¼ Aw for x 2 ½x0; x0 þ Dx=2� with ini-

tial conditions wðx0; y; zÞ.
(2) Integrate @w=@x ¼ Bw for x 2 ½x0; x0 þ Dx� with initial

conditions from step 1.

(3) Integrate @w=@x ¼ Aw for x 2 ½x0 þ Dx=2; x0 þ Dx�
with initial conditions from step 2.

Reviews of splitting methods are provided in

McLachlan and Quispel (2002) and Jensen et al. (2011, Sec.

6.5). Splitting the PDE into different components is useful

for two reasons. First, the split PDEs may be integrated

exactly in closed form. Second, after discretizing the PDE,
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the reaction operator is diagonal when applied in the spatial

domain, and the diffusion term is diagonal and spectrally

accurate when applied in the frequency/Fourier domain. By

separating A and B appropriately, each of the operators may

be applied in their respective domains.

The y-z discretized approximations to w and ~n are denoted

as W and n̂, respectively (see Table I). Unrolling steps 1–3,

one obtains a second-order SSF Fourier integrator,

WðxþDxÞ¼ exp
ik0

2

ðxþDx

xþDx=2

ðn̂2ðsÞ�1Þds

 !

�F�1 exp � iDx

2k0

ðk2
y þ k2

z Þ
� �"

�F exp
ik0

2

ðxþDx=2

x

ðn̂2ðsÞ�1Þds

 !
WðxÞ

" ##
:

(5)

Above, F and F�1 denote 2D (discrete) Fourier and inverse

Fourier transforms, respectively, and ky and kz are the dis-

crete Fourier dual (spatial frequency) variables of y and z,

respectively. Alternatively, discrete sine or cosine trans-

forms may be used, depending on the boundary conditions

imposed. Note that a second-order accurate approximation

to
Ð
ðn̂2ðsÞ � 1Þds may be used, e.g., the midpoint or trape-

zoidal rule. Typically, n̂ is taken to be constant within the

range step, so the integral is taken as the integrand multi-

plied by the step size (Hardin, 1973; Jensen et al., 2011;

Lin, 2019). Not shown are the zero-padding and truncation

before and after Fourier-transforming via the 2/3 or 3/2 rule

to avoid aliasing (Orszag, 1971); if aliasing is not a domi-

nant source of error, this step may be skipped.

The splitting order of A and B may be swapped, and so

another second-order SSF algorithm is

Wðxþ DxÞ ¼ F�1 exp � iDx

4k0

ðk2
y þ k2

z Þ
� �"

� F exp
ik0

2

ðxþDx

x

ðn̂2ðsÞ � 1Þds

 !"

�F�1 exp � iDx

4k0

ðk2
y þ k2

z Þ
� �

F WðxÞ½ �
� �##

:

(6)

Note that if W does not need to be saved at a step in range,

we may avoid an inverse and forward Fourier transform and

combine the first and last diffusion steps. In addition, though

Eq. (5) generally has two fewer Fourier transforms, Eq. (6)

becomes more efficient for a low-rank implementation, as

will be discussed in Sec. II B.

B. Range-dynamical lr-SSF

The SSF algorithm is efficient largely due to the fast

Fourier transform’s (FFT’s) Oðmymz log ðmymzÞÞ complex-

ity, where my and mz are the number of points in the y and z
grids, respectively. However, this operation becomes costly

at even moderately high frequencies or large domains, as is

often the case in ocean acoustics. To address this challenge,

the number of degrees of freedom can be reduced via an

approximation technique that, in the context of matrix dif-

ferential equations, is called the dynamical low-rank approx-

imation (DLRA) (Koch and Lubich, 2007). An analogous

technique for PDEs in the context of continuous dynamics is

called the DO equation (Sapsis and Lermusiaux, 2009;

Ueckermann et al., 2013). The DO reduction can be shown

to be instantaneously optimal (Feppon and Lermusiaux,

2018a,b). With this DO decomposition, the memory con-

straint of storing every point in the fine meshes necessary to

respect the Nyquist criterion will be avoided, and an integra-

tion scheme that scales sub-linearly with the number of

points in the mesh will be developed.

In continuous space, one may decompose the solution

to the governing PDE [Eq. (3)] by making the following

ansatz (see Table I):

wðx; y; zÞ ¼
X1
j¼1

Yjðy; xÞZjðz; xÞ: (7)

Here, �� denotes complex conjugation. Equation (7) simply

indicates that the envelope function w may be decomposed as

TABLE I. Notation: fields, indices, and operators referenced throughout the

text.

Variables Description

w Continuous wave envelope

Yj;Zj Continuous DO modes and coefficients of wave envelope

mx;my;mz Number of discretized points in x, y, z

W Discretized wave envelope with each range slice 2 C
my�mz

r Rank of the reduced-order solution with r � my;mz

M r Manifold of rank-r, my � mz matrices

Wr Rank-r approximation to discretized wave envelope with each

range slice 2M r

Y;Z Matrix decomposition of any generic low-rank matrix (e.g.,

YWr Z
�
Wr

) with Y 2 C
my�r ;Z 2 C

mz�r

YWr
;ZWr

Matrix decomposition of Wr ¼ YWr
Z�Wr
2M r

PM r Projection operator that maps a matrix 2 C
my�mz to the mani-

fold of rank-r matrices M r

RWr
DWrð Þ Retraction of DWr at Wr equal to

Wr þPT Wr M r
DWr þO jjDWr jj2

� �
~n Continuous complex effective refractive index

A Continuous reaction operator
ik0

2
~n2 � 1ð Þ

B Continuous diffusion operator
i

2k0

r2
?

n̂ y-z discretized approximations to ~n

D Discretized, integrated diffusion operator

exp � iDx

2k0

k2
y þ k2

z

	 
� �
represented in C

my�mz

R x0; x1ð Þ Discretized, integrated reaction operator

exp
ik0

2

ðx1

x0

n̂2 sð Þ � 1
� �

ds

 !
represented in C

my�mz

rR Rank of R

YD;ZD Matrix decomposition of D ¼ YDZ�D 2 C
my�1 �C

mz�1

YR;ZR Matrix decomposition of R ¼ YRZ�R 2 C
mz�rR � C

my�rR
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the superposition of separable functions. This is always the

case for L2 functions, and indeed there exists a best approxima-

tion if we truncate the sum to r terms (�Sim�sa, 1992). Such a

decomposition is similar to that used in normal modes (Jensen

et al., 2011), but there are several important distinctions. First,

the modes Zj in Eq. (7) as the coefficients Yj are here func-

tions of x; both Yj and Zj dynamically evolve in range.

Second, the decomposition naturally handles slowly varying

environmental range dependence without having to make

approximations beyond those already made in deriving the

parabolic wave equation. For normal modes to handle range-

dependent environments (Ali and Lermusiaux, 2024a,b), one

typically must use a coupled modes approach (Evans, 1983)

and/or further neglect coupling using an adiabatic approxima-

tion (Pierce, 1965) where energy is not exchanged between

different modes. Third, and importantly, the modes are not

known a priori. Instead, the PDEs with the DO decomposition

or DLRA dictate how to evolve the modes instantaneously in-

range to best capture the solution at reduced order (Feppon

and Lermusiaux, 2018a).

A discrete rank-r approximation, Wr , is a y-z discretiza-

tion of the decomposition of the wave envelope W in Eq. (7)

truncated to rank-r,

WrðxÞ ¼
Xr

j¼1

YWr ;jðxÞZ�Wr ;j
ðxÞ ¼ YWr

ðxÞZ�Wr
ðxÞ: (8)

Assuming WrðxÞ 2 C
my�mz , then YWr

ðxÞ 2 C
my�r; ZWr

ðxÞ
2 C

mz�r; YWr ;jðxÞ, and ZWr ;jðxÞ are the jth columns of

YWr
ðxÞ and ZWr

ðxÞ, respectively, and � denotes the conjugate

transpose (see Table I). The quality of this approximation

depends on r and also how quickly the singular values of W
decay. Empirically, solutions to the narrow-angle parabolic

wave equation in ocean acoustics have rapid singular value

decay, as will be shown in Sec. IV.

Now, an efficient method is obtained to evolve this low-

rank representation in range. Let PM r
denote the operator

that projects a matrix in the Euclidean space C
my�mz onto

the manifold consisting of rank-r my � mz matrices, M r.

This operator maps a matrix that is potentially full-rank to

its best rank-r approximation; it may be computed by taking

the truncated singular value decomposition. Our two full-

rank SSF schemes in Eqs. (5) and (6) are converted to lr-

SSF schemes as

WrðxþDxÞ

¼PM r
exp

ik0

2

ðxþDx

xþDx=2

ðn̂2ðsÞ�1Þds

 !(

�F�1 exp � iDx

2k0

ðk2
y þk2

z Þ
� ��

�F PM r
exp

ik0

2

ðxþDx=2

x

ðn̂2ðsÞ�1Þds

 !
WrðxÞ

8<
:

9=
;

2
64

3
75
3
75
9>=
>;
(9)

and

Wrðxþ DxÞ

¼ F�1 exp � iDx

4k0

ðk2
y þ k2

z Þ
� �"

� F PM r
exp

ik0

2

ðxþDx

x

ðn̂2ðsÞ � 1Þds

 !("

�F�1 exp � iDx

4k0

ðk2
y þ k2

z Þ
� �

F WrðxÞ½ �
� �)35

3
5: (10)

The low-rank modifications include substituting in Wr as

our approximation of W into the full-rank schemes and stra-

tegically placing projection operators, without which the

rank of the approximation could grow precipitously. In Sec.

III, these projection operators, their locations in Eqs. (9) and

(10), and the retractions are discussed in detail.

III. RANGE-DYNAMICAL LR-SSF: ALGORITHMS AND
ANALYSIS

In this section, algorithmic details of our range-

dynamical lr-SSF schemes are presented and analyzed.

Retractions are first introduced as computationally efficient

approximations to the projection operator PM r
. In particular,

a rank-adaptive retraction is utilized so that the low-rank

solution captures fine details in the simulation without incur-

ring unnecessary computational costs as the rank changes

with range. The next subsections (Secs. III A and III B) dis-

cuss how to compute the diffusion and reaction operators in

the SSF schemes in a low-rank setting without reconstructing

the solution at each step in range. Interpolating the refractive

index is often required, and several strategies are proposed

and compared. The last two subsections (Secs. III C and

III D) describe the low-rank boundary conditions and compu-

tational cost compared to the classic full-rank SSF algorithm.

A. Low-rank integration via rank-adaptive retractions

Computing the truncated singular value decomposition

every time step would be computationally expensive and

prohibitive. For a full-rank my � mz matrix with mz 	 my,

the singular value decomposition complexity scales as

Oðmym2
z Þ (Trefethen and Bau, 1997). One may use approxi-

mations to PM r
such as the randomized singular value

decomposition (Halko et al., 2011), or one may use map-

pings back to the low-rank manifold called retractions

(Absil and Oseledets, 2015). Retractions RWr
ðDWrÞ require

a starting point on the low-rank manifold, Wr, and a direc-

tion to travel, DWr. To first-order,

RWr
ðDWrÞ ¼ Wr þPT WrM r

DWr þO jjDWrjj2
� �

;

where PT WrM r
denotes the operator that projects its argu-

ment onto the tangent space of the low-rank manifold at

Wr ¼ YWr
Z�Wr

(see Fig. 1). Second-order gradient-descent

retractions would approximate the exact projection operator

PM r
up to OðjjDWrjj3Þ, thus further reducing the

projection-retraction error accumulation, which arises due to
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integration along a nonlinear manifold (Charous and

Lermusiaux, 2023). For more information on retractions, we

refer to Absil and Malick (2012), Absil and Oseledets

(2015), Feppon and Lermusiaux (2018a,b, 2019), and

Charous and Lermusiaux (2023, 2024) for acoustic

examples.

At a high level, the projection operator PM r
and retrac-

tions R differ in that retractions require a starting point, i.e.,

an initial matrix (Wr). As such, to implement Eq. (9) or (10),

one takes

PM r
ðO WrðxÞ½ �Þ 
 RWrðxÞðO WrðxÞ½ � �WrðxÞÞ;

where O is the operator respective to each lr-SSF algorithm.

The details of the operators O are discussed in Sec. III B.

In this work, to compute RWrðxÞðO½WrðxÞ� �WrðxÞÞ, the

automatic, iterative rank-adaptive gradient-descent retractions

from Charous and Lermusiaux (2024) are utilized, mainly

because of their robustness to small singular values and con-

vergence guarantees. These retractions employ Newton’s

method along the low-rank manifold to find the best low-rank

approximation. They project onto the tangent space, then

retract, then project onto the tangent space at the new point,

then retract again, etc. At each iteration or stage, a first-order

approximation to the manifold at one point is thus used, and

not second- or higher-order approximations. A bird’s eye sum-

mary of these retractions is given in Algorithm 1.

Walking through the algorithm, the first step is to calcu-

late the angle between ðO½Wr� �WrÞ and its projection onto

the tangent space. If the angle is large, it indicates the

dynamics depart the low-rank manifold quickly, so the rank

should be augmented. If so, the randomized singular value

decomposition (Halko et al., 2011) is used to find the domi-

nant modes of the residual between ðO½Wr� �WrÞ and its

tangent space projection. These modes are orthonormalized

against the current subspace of Wr and augmented to it.

Next, gradient descent is performed along the low-rank

manifold in order to find the best low-rank approximation to

O½Wr�. During each step of the low-rank Newton’s method,

a retraction robust to small singular values is applied to map

the matrix back to the low-rank manifold. This procedure is

repeated until the newly found pointRWr
ðO½Wr� �WrÞ stops

changing within some threshold in the Frobenius norm.

Once found, if the rank was not just augmented, the rank

may be reduced if the smallest singular value of

RWr
ðO½Wr� �WrÞ is beneath some user-specified threshold

r�. This is accomplished by truncating the eigendecomposi-

tion of the low-rank matrix’s coefficients’ correlation matrix

and then a corresponding rotation of the subspace. All of the

numerical details of the algorithm may be found in Charous

and Lermusiaux (2024).

B. Low-rank operators

Thus far, the operator O has served to abstractly

describe either a diffusion D or reaction operator R in Eqs.

(9) and (10). For concreteness, we now discuss the operators

themselves, letting

D � exp � iDx

2k0

ðk2
y þ k2

z Þ
� �

;

Rðx0; x1Þ � exp
ik0

2

ðx1

x0

ðn̂2ðsÞ � 1Þds

 !
:

Above, the reaction operator is applied in the spatial domain

while the diffusion operator is applied in the Fourier

domain. Below, we rewrite Eqs. (9) and (10) with the matrix

operators:

FIG. 1. (Color online) Starting from a point Wr on the low-rank manifold

M r , the PDE dynamics dictate the solution propagates in direction DWr .

To stay on the low-rank manifold, the dynamics are projected onto the tan-

gent space, a first-order approximation to the nonlinear manifold. The angle

h gives information on the goodness of our low-rank approximation. If h is

large, one may choose to augment the rank of our approximation using our

adaptive-rank integration scheme.

ALGORITHM 1. Overview of automatic, iterative rank-adaptive gradient-

descent retraction.

Require: O: C
my�mz ! C

my�mz ; Wr 2M r1
; h� 2 0; p=2½ �; r� 2 0; 1½ �;

rinc 2 Zþ; rmax 2 Zþ

Ensure:RWr
O Wr½ � �Wrð Þ 2M r2

1: r1 ¼ rank Wrð Þ

2: h ¼ arccos
jjPT Wr M r

O Wr½ � �Wrð Þjj
jjO Wr½ � �Wrjj

 !
(see Fig. 1)

3: if r1 < rmax and h > h� then

4: r2 ¼ min rmax; r1 þ rincð Þ
5: Augment the subspace of Wr with left-most singular vectors of

I �PT Wr M r

� �
O Wr½ � �Wrð Þ computed via the randomized SVD,

see Charous and Lermusiaux (2024), alg. 4.1

6: end if

7: ObtainRWr
O Wr½ � �Wrð Þ: Use Newton’s method on the low-rank

manifold with robust, stable, optimal retractions until convergence.

Start from Wr in the direction of O Wr½ � �Wrð Þ, see Charous and

Lermusiaux (2024), alg. 3.2, Eqs. (4.2) and (4.4)

8: if rsmallest Wrð Þ < r� and the rank was not augmented then

9: Truncate the rank ofRWr
O Wr½ � �Wrð Þ via an eigendecomposition

of the coefficients’ correlation matrix, see Charous and Lermusiaux

(2024), alg. 4.1

10: r2 ¼ rank RWr
O Wr½ � �Wrð Þ

� �
11: end if
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WrðxþDxÞ¼PM r
RðxþDx=2;xþDxÞ
�

�F�1 DF PM r
Rðx;xþDx=2ÞWrðxÞ
� � � ��

;

(11)

Wrðxþ DxÞ ¼ F�1
h
D

1
2F
h
PM r

n
Rðx; xþ DxÞ

�F�1 D
1
2F WrðxÞ½ �

h ioii
: (12)

Fortunately, the diffusion operator is rank-1: By nature of

the exponential function, it is separable in terms of the

Fourier dual variables of y and z. As such, projecting back to

the low-rank manifold is only required after applying the

reaction operator.

Applying the reaction operator amounts to a Hadamard

(elementwise) product in the discrete space. The rank of the

reaction operator depends on n̂2. If the refractive index is

high-rank, the projection following this step will be the bot-

tleneck of the algorithm because the rank resulting from

applying a Hadamard product is the product of the ranks of

the multiplicands. Frequently, the reaction operator is low-

rank: This is because environmental data are correlated and

commonly available on a much coarser mesh than our fine

computational mesh for W or Wr. In this case, one would

like to interpolate the environmental parameters while

restricting the rank of the reaction operator. However, inter-

polating n̂2ðxÞ directly and then forming the reaction opera-

tor would require re-projecting the reaction operator onto

the low-rank manifold; for range-varying n̂, this would be

computationally costly to do at every range step.

There are several approaches to obtain the low-rank

reaction operator. One is to first form the reaction operator

on the coarse environmental grid. Then, nearest-neighbor

interpolation may be applied. This is equivalent to doing

nearest-neighbor interpolation of n̂2ðxÞ and then forming the

reaction operator, but directly preserving the low-rank struc-

ture of the data. Note that one may interpolate over the col-

umns of each of the reaction operator’s low-rank factors YR

and ZR in one dimension separately rather than having to

crawl over the entire dense mesh (see Fig. 2). A second

approach is to linearly interpolate the reaction operator.

Linearly interpolating the low-rank factors in one dimension

is also equivalent to two-dimensional (2D) linear interpola-

tion over the reaction operator. However, this will induce

artificial absorption or energy generation since the complex

exponential nature of the reaction operator will be

destroyed. A third approach would be to use nonlinear inter-

polation schemes on the reaction operator. This may also

induce artificial absorption or energy generation, and the

one-dimensional (1D) interpolation will not be equivalent to

2D interpolation.

A fourth entirely different approach is to interpolate,

form, and truncate the reaction operator offline. This choice

is beneficial when the environmental grid is dense and/or

large. In this case, we may interpolate n̂2 directly in two

dimensions using a potentially nonlinear method. For each

range step, we may form the reaction operator and then trun-

cate its rank via the truncated singular value decomposition

(SVD), a randomized SVD, or retractions. Once this is pre-

computed, we may re-use it for different initial conditions,

i.e., different pulse shapes and/or starting positions. Unless

simulating low frequencies, the wavelength of our acoustic

source is almost always much smaller than the length scale

for which we have environmental data, so this offline process

should be relatively cheap compared to the actual solve of the

acoustic PE. Such offline environmental rank reductions are

efficient and justified since the ocean is often low rank

(Lermusiaux, 2001, 2006; Lermusiaux et al., 2006). It is com-

monly what we employ, especially for environments assumed

fixed during the fast acoustic propagation (Ali and

Lermusiaux, 2024; Lermusiaux and Chiu, 2002; Lermusiaux

et al., 2002a; Lermusiaux et al., 2002b; Lermusiaux et al.,
2010).

A discussion on truncating the rank of the reaction oper-

ator is provided in Charous (2023). The reaction operator is

FIG. 2. (Color online) Many operations over a 2D grid, e.g., nearest-neighbor and linear interpolation as well as discrete Fourier transforms, are computed

by sweeping across the rows and then columns (or vice versa) of the matrix. This is depicted in panel (a), and typically the sweeps along each dimension

must be done serially. In contrast, a low-rank representation allows for parallel computation, which is depicted in panel (b). One may traverse the low-rank

decomposition YZ� without forming the large, dense matrix, offering large computational savings.
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low-rank provided that n̂2 is low-rank and that Dx is small

enough. The former condition is common as mentioned

above. The latter condition was already required by the

second-order SSF integrators in Eqs. (5) and (6) used to

unroll steps 1–3 in Sec. II A. The worst case is if n̂2 � 1 is

not low-rank, which could correspond to highly complex

(e.g., random) media, almost white noise in space. In this

case, reduced-order models are not fruitful, not even the

dynamical low-rank approximation; using the full-rank

dynamics is unavoidable.

In summary, four methods have been proposed to inter-

polate the refractive index from sparse environmental data

to the fine resolution required to resolve the wavefield. The

first and most straightforward one—using nearest-neighbor

interpolation—is demonstrated in Sec. IV. Because its inter-

polant is piecewise constant and thus nonsmooth, artificial

reflections may be induced, however. The other methods

using non-constant interpolation may introduce artificial

energy or absorption into the system. The fourth method

that forms and reduces n̂2 offline may not always be feasi-

ble, but doing so when possible may yield the most physi-

cally correct and efficient solutions.

C. Low-rank boundary conditions

To impose absorbing boundary conditions, artificial

absorption layers are added on all boundaries except for the

pressure-release (Dirichlet-zero) boundary at the surface.

An imaginary component is added to the complex refractive

index in the absorbing boundary region. Abstractly, the total
effective complex refractive index ~ntot may be written as

~n2
tot ¼ ~n2ðx; y; zÞ þ igðyÞ þ ihðzÞ:

g and h are some smooth, real function that are zero in the

computational domain of interest and positive in the absorb-

ing regions. In this case, the first half of a Gaussian peaking

at the edge of the computational domain is used (Jensen

et al., 2011, Sec. 6.5.3). In the lr-SSF method, one could

directly use n̂tot as a discrete approximation to ~ntot in our

reaction operator to incorporate the artificial absorption.

However, as discussed before, interpolating this refractive

index is not straightforward, and g and h need to be smooth

to avoid artificial reflections, which would not be the case if

using nearest-neighbor interpolation. Instead, the reaction

operator R is separated as

exp
ik0

2

ðxþDx

x

ðn̂2
totðsÞ � 1Þds

 !

¼ exp
ik0

2

ðxþDx

x

ðn̂2ðsÞ � 1Þds

 !

� exp � k0Dx

2
gðyÞ

� �
exp � k0Dx

2
hðzÞ

� �
:

The first term of the right-hand side is the reaction term

without artificial absorption, and implementation details

were discussed previously. The second and third terms are

the artificial absorption. Because they are separable, they

form a rank-1 operator, and so one may easily apply it with-

out increasing the rank of the solution.

D. Computational cost

Now, the computational advantages offered by the lr-SSF

method in Eqs. (11) and (12) are discussed. First, consider the

computational complexity of the full-rank algorithms in Eqs.

(5) and (6). As before, assume that W 2 C
my�mz . Applying the

reaction and diffusion operators requires OðmymzÞ operations,

and the FFT requires Oðmymz log ðmymzÞÞ operations.

Consequently, the total leading computational complexity of

the full-rank SSF algorithm is

O mymz log ðmymzÞ
� �

: (13)

Next, assume Wr 2M r and the low-rank reaction oper-

ator R ¼ YRZ�R has rank rR. Throughout, assume that any

argument’s operator is decomposed in low-rank form as

YZ�. Applying the low-rank diffusion operator D ¼ YDZ�D
involves a rank-1 multiplication, i.e., an elementwise

product of YD 2 C
my and ZD 2 C

mz with every column of

Y 2 C
my�r

and Z 2 C
mz�r

, respectively. Consequently, this

operation has complexity Oðrðmy þ mzÞÞ. Applying the reac-

tion operator amounts to taking the elementwise product of

every pair of columns in YR and Y as well as ZR and Z. This

step takesOðrrRðmy þ mzÞÞ operations. Next, one must project

the resulting matrix of rank rrR back to M r. From Charous and

Lermusiaux (2024), the retraction takes Oðrðr þ rRÞðmy

þmzÞÞ operations. Finally, the FFT may be computed along

every column of Y and Z in parallel (see Fig. 2), which will take

Oðrðmy log ðmyÞ þ mz log ðmzÞÞÞ operations. In total, our lr-

SSF algorithm has computational complexity

O rðr þ rRÞðmy þ mzÞ þ rðmy log ðmyÞ þ mz log ðmzÞÞ
� �

:

(14)

For simplicity, consider the case when my¼mz and

propagation in 3D physical space. The total number of

points in our grid for W is M � m2
y and the full-rank algo-

rithm scales log-linearly in the total number of points, i.e.,

as OðM log MÞ. In contrast, from Eq. (14), our low-rank

algorithm scales as O r
ffiffiffiffiffi
M
p

log
ffiffiffiffiffi
M
p� �

. Furthermore, if we

have mx points in range, the storage of the full-rank solution

involves mxM values, whereas the low-rank approximation

only requires storing mx

ffiffiffiffiffi
M
p

values. This is a dramatic

improvement and facilitates the solution of much larger 3D

problems. Figure 3 compares and contrasts the computa-

tional scaling between full-rank and low-rank algorithms by

timing the algorithms for one step of integration with ran-

dom data.

This analysis also gives us insight into the dominating

computational costs of each algorithm. In the full-rank algo-

rithm, Eq. (13) indicates that the bottleneck is the FFT, and

so Eq. (5) is typically more efficient than Eq. (6). In con-

trast, the reaction and projection/retraction operators are the
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algorithmic bottlenecks for the low-rank method in Eq. (12);

the first term in Eq. (14) typically dominates the second

because the logarithmic growth is so slow. As a result, Eq.

(10) is typically more efficient than Eq. (9).

IV. NUMERICAL EXPERIMENTS

To showcase the efficacy of the dynamical lr-SSF

method, we solve the narrow-angle parabolic wave equation

in two 3D computational domains in Massachusetts Bay at

both 75 and 750 Hz (Fig. 4). The ocean fields are from real-

istic high-resolution data-assimilative simulations for the

region shown on Fig. 4(a). The first acoustic domain

[Fig. 4(b)] is oriented latitudinally across the northwest cor-

ner of Stellwagen Bank, while the second [Fig. 4(c)] is ori-

ented longitudinally along a double-forked canyon. Next,

the ocean field inputs and the acoustic initial conditions,

boundary conditions, discretization, and parameters are

described. The results of 3D numerical simulations in each

domain are then presented and analyzed.

A. Ocean conditions

For the ocean density and sound speed fields, the MIT

Multidisciplinary Simulation, Estimation, and Assimilation

Systems (MSEAS) primitive-equation ocean modeling sys-

tem is used (Haley et al., 2015; Haley and Lermusiaux,

2010). It was set up for August to September 2019. The

numerical modeling domain has a high 3D resolution, with

333 m second-order finite volumes in the horizontal and 100

optimized levels in the vertical. The bathymetry is from the

3-arc sec U.S. Geological Survey (USGS) Gulf of Maine

digital elevation model (Twomey and Signell, 2013). For

FIG. 3. (Color online) Comparison of the computational complexity of the

full-rank split-step Fourier algorithm [Eq. (6)] and its low-rank variant [Eq.

(10)] on random data. The wall-clock time of integrating one step in range

with random environmental parameters and initial conditions is displayed.

For the low-rank variant, we truncate the rank of the solution to r¼ 5, 10,

and 20. By varying the number of points in y and z, M ¼ m2
y ¼ m2

z , we

observe OðM log MÞ scaling for the full-rank algorithm and

O r
ffiffiffiffiffi
M
p

log
ffiffiffiffiffi
M
p� �

scaling for the low-rank algorithm. For moderately sized

problems, the low-rank algorithms are already orders of magnitude faster.

FIG. 4. (Color online) (a) Bathymetry in the Massachusetts Bay domain used by the MSEAS ocean primitive-equation simulations, overlaid with the two

3D acoustics computational domains. (b) First acoustic domain: bathymetry in the latitudinal 10 km� 25 km domain from Lower Stellwagen Bank, over

Northwest Corner, to the Canyons south of Gloucester Basin. (c) Second acoustic domain: bathymetry in the longitudinal 6 km� 15 km domain along the

two-forked canyon (down to 90 m east and to 120 m west), just east of Lower Stellwagen Bank, north of Northwest Corner, and south-southeast of

Gloucester Basin. Note the depth color bar limits differ for each panel. Land (orange): Massachusetts (MA), Cape Ann (A), and Cape Cod (CC).

Bathymetry features (magenta): Stellwagen Bank (SB), Northern Corner (NC), Lower Stellwagen Bank (LSB), Gloucester Basin (GB), Tillies Bank (TB),

Lower Jeffreys Ledge (LJL), and Jeffreys Ledge (JL).
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tidal forcing, the TPXO8-Atlas tides (Egbert and Erofeeva,

2002, 2024) are employed after updates for our high-

resolution bathymetry and coastlines (Logutov and

Lermusiaux, 2008). For atmospheric forcing, the 3 km North

American Mesoscale Forecast System (NAM) from the

National Centers for Environmental Prediction (NCEP)

[National Centers for Environmental Prediction (NCEP),

2023] is used. The sub-tidal initial and boundary conditions

are initialized by downscaling from 1/12� analyses from the

HYbrid Coordinate Ocean model (HYCOM) (Cummings

and Smedstad, 2013; HYCOM Consortium, 2023), after

optimized updates for higher-resolution coastlines and

bathymetry (Haley et al., 2015) and corrections using in situ
data from the National Marine Fisheries Service (NMFS)

collected on August 28, 2019 (National Marine Fisheries

Service, 2019). The resulting MSEAS ocean simulation was

run from August 11 to September 13, 2019. It was validated

against independent data, e.g., National Oceanic and

Atmospheric Administration National Data Buoy Center

(NOAA NDBC) buoy data [National Data Buoy Center

(NDBC), 2019], and demonstrated forecast skill. For more

on the oceanography, we refer to Haley et al. (2020) and Ali

et al. (2023).

The 3D ocean density and sound speed fields of 00Z

August 14, 2019, are used for the acoustics computations.

The median of our 3D sound speed data is taken to be the

reference speed c0. Sound speed field sections in our two

acoustic domains are depicted in Fig. 5. In the first domain,

Figs. 4(b) and 5(a)–5(c), the internal tides and the meander-

ing coastal current with eddies just before the steep

Northwest Corner and the internal tides above the Lower

Stellwagen Bank are visible. Further in range, the sound

speed field variability shows internal tides and waves mostly

generated in response to the two main canyons, as well as

similar waves and eddies that occur around the two sea-

mounts [see Figs. 5(a)–5(c)]. In the second domain [Figs.

4(c) and 5(d)–5(f)], the double-fork canyon environment

with the edge of the Lower Stellwagen Bank followed by

several short seamounts leads to the generation of internal

tides, topographic waves, and mixing zones, all of which are

visible in our MSEAS ocean primitive-equation simulation

[see Figs. 5(d)–5(f)].

We stress that we are interested in evaluating the lr-SFF

in comparison to the full-rank SFF and in finding out if the

lr-SFF solution is accurate under such realistic ocean condi-

tions. The reduction in computational cost without loss of

accuracy compared to the classic SFF is the main result we

seek to demonstrate. The Massachusetts Bay ocean environ-

ment is simulated at high resolution: second-order schemes,

333 m horizontal grid, and 100 vertical levels are not coarse

for coastal ocean simulations (e.g., Deleersnijder et al.,
2010; Deleersnijder and Lermusiaux, 2008). However, we

are not studying the effects of small-scale ocean processes

on 3D acoustics. This would require even higher ocean reso-

lution (e.g., less than 100 m in the horizontal) and non-

hydrostatic physics (Ueckermann, 2014; Ueckermann and

Lermusiaux, 2016). Of course, our acoustics spatial resolu-

tions are much higher than our ocean ones due to the acous-

tic wavelengths.

B. Initial and boundary conditions

The parabolic wave equations are initialized using a

Gaussian starter with a standard deviation equal to 1 over

the reference wavenumber, 1=k0. The method of images is

used to ensure the pressure-release boundary condition at

the surface is enforced. Absorbing boundary conditions are

used as described in Sec. III.

FIG. 5. (Color online) MSEAS primitive-equation data-assimilative analysis of the 3D sound speed field for 00Z August 14, 2019, after interpolation onto

our acoustic grids. (a)–(c) First domain: latitudinal vertical slices of sound speed for fixed y 
 82 303, 86 501, and 90 266 m, respectively. (d)–(f) Second

domain: Longitudinal vertical slices of sound speed for fixed x 
 52 031, 53 677, and 54 994 m, respectively.
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C. Acoustic spatial discretization and parameters

In each acoustic computational domain, a discrete sine

series is used as our pseudospectral basis in the vertical

direction z and a Fourier basis in the transverse direction

(y for the first domain and x for the second). To avoid alias-

ing, the PDE is solved on two grids: A dense grid is used in

the spatial domain when applying the reaction operator, and

a coarse grid is used in the frequency domain when applying

the diffusion operator. Compared to the coarse grid, the

dense grid has twice as many points in y/x and one more

than twice as many points in z. Note that a padding ratio of

only 3/2 rather than 2 is required to avoid aliasing; however,

using a ratio of 3/2 requires the coarse grid to have an even

number of points in y/x and an odd number of points in z so

that the resulting dense grid overlaps with the coarse grid.

To make our scheme compatible with differently sized

grids, 3/2 is rounded up to a pad ratio of 2.

Second-order central differences are used to compute

the gradients of density in calculating the complex effective

refractive index [Eq. (4)]. The density discontinuity is

smoothed along the sea floor using the method in Tappert

(1977) via a hyperbolic tangent function with characteristic

length L ¼ 2=k0. A fluid bottom with absorption aðkÞ

¼ 0:5 dB=k is used. The artificial absorption layers add an

additional 0.35 dB=k for 663.73 m in y and 984 m in z in

application 1 and 3.5 dB=k for 329.31 m in x and 98 m in z
in application 2; the seemingly random absorption layer

lengths are due to different discrete resolutions in y and z
and different characteristic wavelengths in the two

applications.

D. Application 1: 75 Hz across Northwest Corner on
Stellwagen Bank

The first 3D numerical simulations propagate energy lati-

tudinally in the positive x direction in Fig. 4, approximately

west to east, at a frequency of 75 Hz. At this mid-low fre-

quency, the full-rank 3D solution is computed using the classic

SSF algorithm and compared with our low-rank 3D algorithm.

A source is placed at (x0, y0, z0)¼ (43 797.8, 86 500, �20) m.

On the coarse grid, there are mx¼ 5025 grid-points in x,

my¼ 4454 in y, and mz¼ 2362 in z, corresponding to

Dx ¼ 4:8505 m, Dy ¼ 2:4594 m, and Dz ¼ 0:61537 m. On

the dense grid, there are 8908 grid-points in y and 4725 in z,
corresponding to Dy ¼ 1:2297 m and Dz ¼ 0:25013 m. The

full rank of the numerical solution is minðmy;mzÞ ¼ 2362.

Figure 6 illustrates the rapid singular value decay of the

density-reduced pressure of the full-rank 3D solution of this

first application halfway through the range of the simulation.

Already at rank-2, over 99% of the energy in the Frobenius

norm is recovered. At rank-8, over 99.9% of the energy is

recovered. As a result, the DLRA is able to capture the full-

rank solution extremely well.

In all figures, the transmission loss is normalized by

the maximum solution value and is computed as

20 log10ðjpj=maxjpjÞ.

Figure 7 shows the 3D transmission loss fields of the

low-rank and full-rank solutions along three vertical slices

and after depth-averaging. It is remarkable that the rank-5

solution captures the features of the full-rank solution so

well. All of the solutions show energy bouncing off of the

sea surface and sea bottom. In addition, when the acoustic

wave reaches a sea ridge that is about two wavelengths

(40 m) from the surface, the acoustic energy is quickly

attenuated, indicating the DLRA respects the wave physics.

Nevertheless, the rank-5 solution seems to decay faster than

the full-rank solution in some regions and slower in others.

The adaptive-rank solution recovers some of the detail lost

and more closely matches the full-rank solution.

To better contrast the solutions, we show the difference

in transmission loss between the low-rank and full-rank sol-

utions in Fig. 8. At first glance, the error appears substantial.

Why then do the solutions look so similar in Fig. 7? This is

because the error is almost entirely in regions where the

acoustic pressure is very close to zero. In areas where the

acoustic energy is even moderately high, the DLRA appears

to be extremely accurate.

To explain this discrepancy, consider the following

example. If the full-rank solution has a value of �10�12 at a

point and our low-rank approximation has a value of �10�9

at the same point, the difference plot will show 60 dB of

error. However, at that point, the full-rank and low-rank sol-

utions will be below –180 dB from the reference, so they

will both appear black in Fig. 7.

This phenomenon points more broadly to how our

range-dynamical low-rank approximation operates. Every

time our system is projected onto the low-rank manifold, the

residual between our system state and its low-rank approxi-

mation is minimized in the Frobenius norm. Consequently,

FIG. 6. (Color online) Application 1: first 100 singular values of full-rank

3D density-reduced pressure (without absorption layer) at x 
 56 311 m,

halfway through the simulation.
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the relative error in areas where p is very small is orders of

magnitude larger than where p is comparatively large.

Typically, the low-rank approximation does not capture

enough of the low energy in the sediment and

misappropriates/redistributes degrees of freedom to other

parts of the computational domain where the energy is much

larger. A potential remedy could be developing retractions

that minimize a weighted norm or a different norm that

FIG. 7. (Color online) Application 1: 3D transmission loss fields of the low rank-5 (a)–(d), adaptive-rank (e)–(h), and full-rank (i)–(l) solutions. First three

rows show vertical slices of the solutions at y 
 82 303, 86 501, and 90 266 m overlaid with bathymetry. Last row: horizontal depth-averaged transmission

loss fields overlaid with the z¼�40 m isobath.

FIG. 8. (Color online) Application 1: 3D difference fields of the rank-5 (a)–(d) and adaptive-rank (e)–(h) approximations with the full-rank solution corresponding to Fig. 7.
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takes into account matrices with elements that span multiple

orders of magnitude or minimize relative instead of absolute

error. This would, however, lead to larger absolute errors

elsewhere. With that said, in most applications, minimizing

the Frobenius norm in the DLRA is appropriate since, exper-

imentally, the areas in which p is comparatively small are in

the sediment and/or potentially at values beneath measure-

ment noise, so our approximation provides valuable and

accurate predictions.

Finally, we show that the lr-SSF method successfully

captures not only the transmission loss but also the phase u
of the pressure solution. Figure 9 compares the solutions of

the lr-SSF with that of the classical full-rank SSF. Figure

9(a) shows the difference in phase jDuj as a function of

range, weighted by quadratic pressure,ð
jpðx; y; zÞj2jufrðx; y; zÞ � ulrðx; y; zÞjdydzð

jpðx; y; zÞj2dydz
:

Since intensity is jpj2=qc and energy is jpj2=qc2 (Jensen

et al., 2011), the norm above may be interpreted as an

energy- or intensity-weighted norm (since if q and c varia-

tions in the transverse plane are null, the denominators of

intensity and energy cancel out of the integrals). Results

show that all low-rank numerical solutions (rank-5, rank-10,

and rank-adaptive) have very small phase errors. Though

the rank-5 solution accumulates more error at the end of the

simulation, the rank-10 and rank-adaptive solutions both

closely match the full-rank phase. Figures 9(b)–9(d) show

vertical slices at range 12.5 km of the full-rank intensity

field, full-rank phase field, and phase difference between the

low-rank-adaptive and full-rank fields, respectively. From

Fig. 9(d), we observe that the phase difference between the

low-rank-adaptive and full-rank solutions is significant for

small y. Fortunately, the intensity field of Fig. 9(b) shows

that this phase error is essentially entirely in regions of very

low intensity, which is consistent with the transmission loss

error field (Figs. 7 and 8). Ideally, the phase error should be

small everywhere, but in areas of very low acoustic energy,

the phase of the solution tends to be physically unimportant.

This behavior of prioritizing accuracy in areas of high

energy arises since the lr-SSF method minimizes errors in

the Frobenius norm.

E. Application 2: 750 Hz along the double-forked
canyon east of Lower Stellwagen Bank

Our second 3D numerical simulations propagate energy

longitudinally in the positive y direction, approximately

south to north, at 750 Hz. At this higher frequency, a full-

rank solution is not feasible on a desktop or even a

reasonably-sized cluster due to the memory requirements.

As a result, only dynamical low-rank approximations are

computed in application 2. The source is placed at

ðx0; y0; z0Þ ¼ ð53 677 ; 86 284 ;�85Þ m. On the coarse grid,

we use mx ¼ 30 360 grid-points in x, my ¼ 26 775 in y,

and mz ¼ 4882 in z, resulting in Dx ¼ 0:49191 m, Dy
¼ 0:24599 m, and Dz ¼ 0:061537 m. The dense grid has

53 550 grid-points in y and 9765 in z, resulting in Dy
¼ 0:12299 m and Dz ¼ 0:030309 m. The full rank of the

numerical solution is minðmy;mzÞ ¼ 4882.

Vertical slices in the 3D transmission loss fields are shown

in Fig. 10 for the rank-5, rank-10, and adaptive-rank solutions.

Although the full-rank solution is not available to serve as a ref-

erence, observe that the solutions are converging; the rank-10

solution is much more similar to the adaptive-rank solution than

FIG. 9. (Color online) Application 1: phase error between low- and full-rank SSF pressure solutions. (a) Energy-/intensity-weighted phase error integrated

within the transverse (cross-range) plane and plotted as a function of range, x. (b)–(d) Vertical slices after approximately 12.5 km of propagation in range, at

x 
 56:31 km: (b) intensity of the full-rank solution, (c) phase of the pressure of the full-rank solution, and (d) phase difference between the low adaptive-

rank and full-rank solutions.
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the rank-5 solution. In this more complicated 3D environment

and a higher frequency (with more grid points in our computa-

tional domain), the rank-5 and rank-10 approximations do not

always follow the bathymetry as closely as in the first applica-

tion. The two fixed-rank solutions also underestimate the energy

propagation in 3D at longer ranges, especially the rank-5 solu-

tion in Figs. 10(a)–10(c). These are all features of being under-

resolved in rank. Overall, these results provide some evidence

that our adaptive-rank solution is a very good approximation to

the full-rank solution and may serve as our reference. This will

be further discussed later.

Figure 11 shows horizontal maps of the range-

dynamical low-rank 3D transmission loss fields at depths

z¼�60 and z¼�65 m. The coarse, block-like nature of the

solution is because nearest-neighbor interpolation is used

for the bathymetry, which translates into a coarse, block-like

transmission loss. At all ranks, the energy is significantly

attenuated by the bathymetry. However, the higher-rank

approximations hug the bathymetry more closely, as was

already noticed in Fig. 10.

Figure 12 shows deeper horizontal maps of the transmis-

sion loss fields at z¼�70 and z¼�80 m. Here, the full fea-

tures of the canyon are present. The energy closely follows

areas in which the sea floor is deeper than the horizontal map.

This application demonstrates the true 3D nature of acoustic

wave physics. If one were to simulate only 2D propagation

along a vertical slice of the domain, the energy would quickly

be blocked. In reality, the acoustic energy snakes its way in

3D through the double-forked canyon and around short sea-

mounts, modifying the sound propagation to the Gloucester

Basin. We note that such 3D bathymetric effects are also cap-

tured in the prior shallower maps but are logically not as visi-

ble (e.g., acoustic energy present behind seamounts for the

rank-10 and especially adaptive-rank solutions in Fig. 11).

F. Discussions: Computational costs and adaptive
rank

The computational costs and requirements are now ana-

lyzed for the two applications and their solutions of varied

rank sizes. The properties and performance of the rank-

adaptive schemes are also discussed.

In Tables II and III, the run times and memory require-

ments are enumerated for low fixed-rank, low adaptive-

rank, and full-rank solutions in each computational domain.

All simulations completed for the two applications pre-

sented in this work were run using the same central process-

ing unit (CPU) (i9-9900, 8 cores up to 4.9 GHz; Intel, Santa

Clara, CA) and random access memory (RAM) (4X16GB

DDR4 2666 MHz), without parallelization. In application

one (Table II), a 45� speedup is observed for the rank-5

solution compared to the full-rank solution, and it only

requires 1.39% of the memory. The rank-10 solution sees a

19� speedup and uses 2.78% of the memory. The adaptive-

rank solution sees an 8.5� speedup and uses 3.5% of the

memory; note that the adaptive-rank solution may be sped

up further by increasing the threshold h�, at which the rank

is augmented (see Fig. 1).

In application 2, the full-rank solution is not computed.

With our selected resolution, each step in range operates

over a 53 550� 9765 complex-valued grid, amounting to

about 8.4 GB of data. With 30 360 steps in range, computing

the solution would be extremely slow, and saving the solu-

tion at the same resolution as described in Table III would

require 4.45 terabytes. From this, the rank-5 solution only

uses 0.187% of the full-rank memory. The rank-10 and

adaptive-rank solutions only use 0.373% and 0.688% of the

full-rank memory, respectively.

Our rank-adaptive scheme (Sec. III A) allows updating

the rank at each discrete range step of the range-dynamical

lr-SSF method. This is in general needed because the opti-

mal rank is not known a priori and the rank should increase

or decrease on the fly in response to the PE variability in

range. In our present applications, when the angle between

the system dynamics and the projection of the dynamics

onto the low-rank manifold’s tangent space exceeds a

threshold of h� ¼ 0:1 rad, the system rank is augmented by

1. If the low-rank approximation becomes ill-conditioned,

we truncate the rank of the system to keep at least 99% of

FIG. 10. (Color online) Application 2: 3D transmission loss fields of the rank-5 (a)–(c), rank-10 (d)–(f), and adaptive-rank (g)–(i) solutions along vertical sli-

ces at x 
 52 031, 53 677, and 54 994 m, overlaid with bathymetry.
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the energy in the Frobenius norm. For further details, see

Algorithm 1 in Sec. III A and Charous and Lermusiaux (2024).

Figure 13 depicts how the rank of the rank-adaptive

solution adapts to the range-dependent environment and

acoustics PE. In each application, the solution starts as rank-

1 due to the Gaussian initial conditions. The rank grows as

the acoustic wave propagates through heterogeneous media.

In the first application [Fig. 13(a)] the rank stabilizes

between 10 and 15; this is not known a priori and is discov-

ered by the adaptive-rank gradient-descent retraction from

Charous and Lermusiaux (2024). Specifically, the rank rap-

idly reaches about 10–14, then increases as acoustic waves

reach the Lower Stellwagen Bank and especially the steep

Northwest Corner and the strong internal tides. The rank

then decays back to about 9–12 to re-increase again to

17–18 as waves leave the Northwest Corner and propagate

across the western branch of the double-fork Canyon.

Subsequently, the rank stabilizes back to 10–13 to slowly

increase with range to about 15.

In the second application [Fig. 13(b)], the rank increases

with range at a rate similar to that of the first application but

stabilizes only at larger values between 20 and 25. This indi-

cates that the higher frequency coupled with the complicated

canyon environment with internal tides and topographic waves

require a larger rank. Indeed, once strong internal tides and the

effects of the short seamount are felt at the double-fork (see

Figs. 4 and 5), the rank rapidly increases around y¼ 92 km

and subsequently does not decay anymore.

V. CONCLUSION

The parabolic wave equation is much more computation-

ally efficient than solving the acoustic wave or Helmholtz

FIG. 11. (Color online) Application 2:

3D transmission loss fields of the rank-

5 (a) and (b), rank-10 (c) and (d), and

adaptive-rank (e) and (f) solutions at

the horizontal depths of z¼�60 m

(first row) and z¼�65 m (second row)

overlaid with their respective isobaths.
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equations. However, large 3D computational domains and/or

high frequencies still pose challenges due to the dense mesh

required to resolve acoustic waves. Building off the familiar

SSF method, a novel range-dynamical lr-SSF method is

developed to optimally reduce the parabolic wave equation.

Using a range-dynamical separation of variables in the

transverse directions and making a DLRA, the Nyquist crite-

rion and high resolution are still respected, but redundant

degrees of freedom are removed from the dynamical system.

We incorporate retractions as approximate projection opera-

tors to prevent the dimensionality of the reduced-order solu-

tion from growing exponentially with range and introduce

FIG. 12. (Color online) Application 2:

3D transmission loss fields of the rank-

5 (a) and (b), rank-10 (c) and (d), and

adaptive-rank (e) and (f) solutions at

the horizontal depths of z¼�70 m

(first row) and z¼�80 m (second row)

overlaid with their respective isobaths.

TABLE II. Application 1: run times and memory requirements to compute

the low fixed-rank, low adaptive-rank, and full-rank solutions (75 Hz across

Northwest Corner on Stellwagen Bank).a

Parameter Rank-5 Rank-10 Adaptive-rank Full

Run time (min) 11.0 25.1 57.9 495.8

Memory (GB) 0.217 0.433 0.538 15.6

aEvery eight range steps are stored, but the absorbing boundary regions are

not, amounting to 629 grid points in x, 3914 in y, and 395 in z.

TABLE III. Application 2: run times and memory requirements to compute

the low fixed-rank and adaptive-rank solutions (750 Hz along the double-

forked canyon east of Lower Stellwagen Bank).a

Parameter Rank-5 Rank-10 Adaptive-rank

Run time (min) 142.4 311.2 1855.9

Memory (GB) 8.31 16.6 30.6

aEvery eight range steps are stored, but the absorbing boundary regions are

not, amounting to 3795 grid points in x, 26 775 in y, and 4882 in z.
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rank-adaptive retractions to adjust the rank with range for

better accuracy and efficiency. While the classic SSF scales

log-linearly, the lr-SSF scales sub-linearly with the number

of classical degrees of freedom in the dense mesh.

Consequently, this algorithm can offer solution times orders

of magnitude faster while requiring minimal storage (depend-

ing on the domain size and frequency).

Each operator in our low-rank algorithms was ana-

lyzed, and its computational complexity was derived. The

dominating cost among all operators in the lr-SSF method

is the projection/retraction operator required in each step in

range rather than the Fourier transforms in the full-rank

SSF method. Because of the data structure of a low-rank

matrix, common operations such as matrix multiplications

and Fourier transforms become much more efficient at low

rank.

Finally, the range-dynamical lr-SSF method was

employed at frequencies of 75 and 750 Hz on realistic high-

resolution data-assimilative ocean fields with internal tides,

eddies, and jets around Stellwagen Bank in Massachusetts

Bay. Two geometries with seamounts and canyons, across

and along the Bank, were considered, along with different

source locations and frequencies. Our results confirm the

convergence with the rank of the subspace and the efficiency

of the rank-adaptive retractions. Run times and memory

requirements were compared for the low-rank and full-rank

algorithms as well as the accuracy of the low-rank approxi-

mations. Furthermore, the rank-adaptive algorithm automat-

ically finds a suitable rank for the solution without a priori
knowledge of the environment. No matter how truncated, in

the sense of quadratic pressure, the range-dynamical lr-SSF

best respects the local wave physics, and acoustic energy

propagates naturally.

In the future, there are many avenues for new applica-

tions and improvements to the methodology. Studying the

long-range effects of non-hydrostatic ocean physics on 3D

acoustics is promising (Duda et al., 2019; Duda et al., 2014;

Robinson and Lermusiaux, 2004). One could include sto-

chastic models of uncertain and smaller ocean scales

(Charous and Lermusiaux, 2021; Lermusiaux, 2006;

Lermusiaux et al., 2020a; Lermusiaux et al., 2020b) and

obtain probabilistic lr-SFF simulations. Bayesian inversion

and learning may then be possible (Ali et al., 2019;

Lermusiaux, 2007; Lu and Lermusiaux, 2021). An integra-

tion scheme may be developed for the wide-angle parabolic

wave equation (Halpern and Trefethen, 1988; Lin et al.,
2013). In addition, generalizing this work to cylindrical coor-

dinates, solving on even larger domains, and computing on

high-performance computer clusters may yield regional or

even global ocean acoustic simulations that were hitherto

intractable. In strongly range-dependent environments, we

could also incorporate backscattering (Collins and Evans,

1992). Furthermore, the absorbing boundary region is some-

what wasteful, so we may consider implementing a perfectly

matched layer (Berenger, 1994). Last, one may consider dif-

ferent norms to minimize when projecting/retracting back

onto the low-rank manifold. As it is, the Frobenius norm is

locally minimized in range. However, a norm that minimizes

relative error rather than absolute error may be beneficial,

and a projection operator that conserves energy in the

Frobenius rather than the spectral norm (as the truncated

SVD preserves the spectral norm) may better respect the

physics.
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