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Abstract. Whether due to the sheer size of a computational domain, the fine resolution required,
or the multiples scales and stochasticity of the dynamics, the dimensionality of a system must often
be reduced so that problems of interest become computationally tractable. In this paper, we develop
retractions for time-integration schemes that efficiently and accurately evolve the dynamics of a
system's low-rank approximation. Through differential geometry, we analyze the error incurred
at each time-step due to the high-order curvature of the manifold of fixed-rank matrices. We first
obtain a novel, explicit, computationally inexpensive set of algorithms that we refer to as perturbative
retractions and show that the set converges to an ideal retraction that projects optimally and exactly
to the manifold of fixed-rank matrices by reducing what we define as the projection-retraction error.
Furthermore, each perturbative retraction itself exhibits high-order convergence to the best low-
rank approximation of the full-rank solution. Using perturbative retractions, we then develop a new
class of integration techniques that we refer to as dynamically orthogonal Runge--Kutta (DORK)
schemes. DORK schemes integrate along the nonlinear manifold, updating the subspace upon which
we project the system's dynamics as it is integrated. Through numerical test cases, we demonstrate
our schemes for matrix addition, real-time data compression, and deterministic and stochastic partial
differential equations. We find that DORK schemes are highly accurate by incorporating knowledge
of the dynamic, nonlinear manifold's high-order curvature, and they are computationally efficient by
limiting the growing rank needed to represent the evolving dynamics.
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1. Introduction. Simulation needs will always outstrip current computational
resources. As computing power grows, so too does our desire to solve larger and
larger problems. The curse of dimensionality limits the possibility of computing exact
solutions to high-dimensional problems, so obtaining sufficiently accurate approximate
solutions via optimal reduced-order modeling is essential.

In this paper, we develop a perturbative methodology to evolve a high-order low-
rank approximation, X(t), in time that approximates a full-rank system state, X(t).
First studied in the context of matrix initial value problems, this approach is called
the dynamical low-rank approximation [34]. More precisely, we seek X(t) such that
at all fixed times t, X(t) is the best approximation to X(t). That is,

X(t) = argmin
\~X\in Mr

\| \~X(t) - X(t)\| ,(1.1)

*
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DORK SCHEMES WITH PERTURBATIVE RETRACTIONS A873

where Mr denotes the manifold of matrices of r. More realistically, we are only
concerned with discrete values of t, \{ ti\} i, with \Delta t\equiv ti+1 - ti. In this paper, we assume
X(ti),X(ti)\in \BbbR m\times n, and we use the Frobenius norm. We also assume rank(X(ti))\geq r
for all ti to ensure that the solution to (1.1) exists. Because we are interested in high-
dimensional problems, m and n are assumed to be very large; maybe X(ti) cannot be
stored (either on a local hard drive or in RAM), so we seek a compressed form of X(ti)
for both easy storage and computationally inexpensive matrix operations. As such,
we restrict rank(X) = r with r\ll m,n, so X admits a low-rank representation UZT ,
where U \in \BbbR m\times r,Z \in \BbbR n\times r. With this, we only evolve and store (m+ n)r values for
each time ti rather than mn values.

Our present goal is to obtain new retractions---mappings that ensure the low-
rank approximation remains on Mr---for numerical integrators so that, as \Delta t \rightarrow 0,
X(ti) converges with high order to the best possible approximation to X(ti). Pre-
vious works (e.g., [34, 21, 20, 51, 32, 55, 56, 10]) already provide robust algorithms
for approximate solutions to this problem. For a thorough review on retractions, see
[2]. But, most existing algorithms only promise first-order convergence in time to the
best low-rank approximation. One notable exception is the projector-splitting inte-
grator, which may yield arbitrarily high-order convergence to the best approximation
by taking symmetric compositions using the adjoint method [51]. Furthermore, it
has been shown to preserve fixed-point iteration convergence rates under some reg-
ularity conditions [35]. However, the projector-splitting integrator, along with the
randomized SVD [24] and truncated SVD algorithms, do not preserve mode continu-
ity. As pointed out in [22], unlike the retractions we develop, the error bounds for the
randomized SVD provided in [24] do not suggest convergence to the best low-rank
approximation, i.e., the truncated SVD itself; instead, the error between the full-rank
solution X(ti) and its rank-r approximation X(ti) is bounded as a multiple of \sigma r+1,
the largest singular of X(ti) not captured by a rank-r approximation, which could be
large. Depicted in Figure 1, we show that after randomly updating a point on the
low-rank manifold, our new perturbative retractions only slightly change the vectors
in U , whereas other retractions in the literature change them completely since they
only preserve the subspace's span. Mode continuity [20, 47, 67] is most useful for
the reduced-order evolution of dynamical systems in time, especially in the context
of uncertainty quantification, which further motivates the need for new retractions.

Another set of integration schemes, the projected Runge--Kutta methods [33],
appears to retain the order of accuracy of classical Runge--Kutta schemes up to
the Dirac--Frenkel model closure error \varepsilon DF (to be defined in section 3), which the
projector-splitting integrator is also susceptible to. However, the projected Runge--
Kutta methods do not incorporate knowledge of the high-order curvature of the low-

U0 U1, 4th-Order Pert U1, Rand SVD U1, Proj-Split U1, Trunc SVD

-0.02

-0.01

0

0.01

0.02

Fig. 1. Starting from a randomly initialized point U0ZT
0 on a rank-10 manifold, we show a

subset of the updated subspaces U1 after randomly updating the point via addition. That is, we apply
different retractions to U0ZT

0 +\Delta tL (where L is a random matrix and \Delta t= 0.25) and investigate
how close U0 and U1 appear.
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A874 AARON CHAROUS AND PIERRE F. J. LERMUSIAUX

rank manifold. Furthermore, errors are incurred by departing and reprojecting onto
the low-rank manifold. We show that integrating along the low-rank manifold provides
more accurate integration schemes.

In this paper, we derive a set of retractions (to be defined in section 3) and in-
tegration schemes that theoretically guarantee high-order convergence of X(t) to the
best low-rank approximation of X(t). Moreover, these retractions are explicit and
computationally inexpensive and have a fixed number of iterations in order to obtain
a designated order of convergence. Within time-steps, our new Runge--Kutta schemes
dynamically update the subspace upon which we project the system's dynamics, re-
sulting in improved accuracy and reduced computational cost. The framework we
propose also allows for not only the derivation of new integration schemes but also
the adaptation of preexisting full-rank integration schemes in a low-rank setting. This
may allow for new low-rank integration schemes that preserve physical quantities of
interest, e.g., energy, or other application-specific properties such as symplecticity.

We motivate our work with two examples. First, suppose we are given X(ti) at all
ti, but we would like to only store X(ti). We could compute X(ti) via the truncated
SVD at each fixed time as it is the best low-rank approximation in the Frobenius
norm [18, 54, 63]. However, this is often prohibitively expensive: from [66, p. 237],
the SVD may be computed via Golub-Kahan bidiagonalization in about 4mn2 - 4

3n
3

flops. If, however, we can compute one SVD of X(ti) at only the first time instant, can
we somehow predict X(ti) at future times with some cheaper approximation but still
at high-order accuracy? Since our retractions asymptotically approximate the SVD,
we accomplish this feat, avoiding the computational burden of computing an SVD at
each time-step, and the efficacy of our algorithm is demonstrated in the real-time data
compression example given in section 7. More broadly, we show that we may apply
our perturbative retractions to problems where dynamics are data-driven rather than
given by a PDE as studied previously (see, e.g., [34, 67, 20]).

Second, suppose we have a dynamical system, stochastic or deterministic, and
we are given initial conditions X(0). We cannot afford to evolve X(t), so we must
somehow evolve a low-rank approximation X(t). However, the differential equations
that describe the system's dynamics are given for X(t), not X(t). How can we ob-
tain the differential equations for X(t) that achieve high-order accuracy with respect
to the full space? Furthermore, are there numerical schemes that reduce the error
between the numerically integrated X(t) and the theoretical best approximation to
X(t)? By using high-order classical time-integration schemes coupled with our pertur-
bative retractions with high-order corrections, we show how to advance X efficiently
and accurately in section 7.

In section 2, we review the dynamic Karhunen--Lo\'eve expansion as the mathemat-
ical foundation for what follows. Section 3 gives definitions of several matrix spaces
and terminology referenced throughout. In section 4, we introduce the key errors and
outline the problem setup. In section 5, we derive perturbative retractions, the first
main contribution of this paper. We build off of these retractions in section 6 to de-
rive the second main contribution of this paper, dynamically orthogonal Runge--Kutta
(DORK) schemes, which offer a new family of schemes that integrate along a dynamic,
nonlinear manifold. We demonstrate the efficiency of these retractions and schemes
in section 7 with examples of low-rank matrix addition, matrix differential equations,
real-time data compression, partial differential equations, and stochastic differential
equations, including comparisons with existing schemes. Finally, we summarize and
discuss our results and provide future research directions in section 8. For further
details on some of the results presented next, we refer to [11].
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DORK SCHEMES WITH PERTURBATIVE RETRACTIONS A875

2. Reduced-order modeling preliminaries. To further motivate the (spa-
tially) discrete problem of interest, we consider reduced-order methods for (spatially)
continuous problems. For stochastic dynamics, one main approach is the polynomial
chaos expansion, where a fixed polynomial basis parameterizes the stochastic space
[71, 72, 8, 73, 74]. Another approach is the Karhunen--Lo\'eve (KL) expansion or
proper orthogonal decomposition, which is a data-driven decomposition yielding the
best low-rank approximation in total mean square error [52, 6, 36, 29, 49]. We start
our analysis from the dynamic KL expansion [34, 39, 61]. Given a square-integrable
stochastic process \Phi (x, t;\omega ) (analogous to our discrete X previously) defined over a
probability space (\Omega ,\scrF ,P), where x \in \scrD \subseteq \BbbR m denotes our spatial variable and
t \in [0, T ] time. \Omega is the sample space with \omega denoting a simple event, \scrF is the
\sigma -algebra, and P is the probability measure. \Phi may be decomposed as follows,

\Phi (x, t;\omega ) =\BbbE [\Phi (x, t;\omega )] +
\infty \sum 
i=1

\varphi i(x, t)\zeta i(t;\omega ) .

Here, \BbbE denotes the expectation operator, \varphi i the spatial modes, and \zeta i the stochastic
processes or coefficients. The mean, modes, and coefficients are allowed to evolve in
time. At each fixed time t, the modes form an orthonormal basis for \scrD , and the \zeta i are
zero-mean, uncorrelated random variables. Truncating the series to a finite number of
modes and coefficients with the greatest variance would then yield the best possible
approximation at each time. This is, of course, assuming that we know \Phi for all t.

As an aside that will become relevant later, we note that this decomposition is the
stochastic analog to the separation of variables technique to solve partial differential
equations [48] and for function approximation [78]. That is, instead of expressing
a deterministic function as f(x1, x2) =

\sum \infty 
i=1 gi(x1)hi(x2), we allow x2 to denote a

simple event in the event space (denoted \omega \in \Omega ).
Now we consider an initial value problem where \Phi (x,0;\omega ) is known, and the

dynamics of each stochastic realization of \Phi are given by partial differential equations,

\partial \Phi 

\partial t
=Lc(\Phi , x, t;\omega ) ,

where Lc may be any differential operator, nonlinear or linear, stochastic or deter-
ministic. Following [61], we seek to evolve the mean, modes, and coefficients so that
we evolve a truncated approximation to \Phi (analogous to our discrete X previously)
without reconstructing the series at each time. We impose a gauge condition known
as the dynamically orthogonal (DO) condition: \langle \varphi i,

\partial \varphi j

\partial t \rangle = 0 for all i, j, where \langle \cdot , \cdot \rangle 
denotes a spatial inner product over \scrD . The DO condition eliminates redundant de-
grees of freedom, ensures the modes \phi i remain orthonormal in time, and decouples
our system so that we can write the DO equations [61, 21] (see section SM1).

After intrusively deriving the DO equations for a particular differential operator
Lc, one may spatially discretize these equations directly (see, e.g., [67, 20]) and
solve the reduced-order model numerically. Another approach is to discretize the
dynamically orthogonal equations themselves and then insert a spatially discretized
differential operator L , yielding a nonintrusive approach [21]. In a slightly different
setting, this was first analyzed in [34], where the dynamical low-rank approximation
was proposed to solve time-dependent matrix initial value problems. The connection
between the dynamical low-rank approximation and the DO equations was made in
[21]; the DO equations can be thought of as instantaneously projecting the full-rank
dynamics onto a manifold of fixed-rank matrices (also called the low-rank manifold).
That is, for a discrete system state X with dynamics given by

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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A876 AARON CHAROUS AND PIERRE F. J. LERMUSIAUX

dX

dt
=L (X, t;\omega )(2.1)

with initial conditions X(0) =X0, the dynamics of the low-rank approximation X are

dX

dt
=P\scrT XMr

[L (X, t;\omega )]\approx P\scrT XMr
[L (X, t;\omega )](2.2)

with initial conditions X(0) = PMrX0, where P\scrT XMr denotes the operator that
projects onto the tangent space of the low-rank manifold at X, and PMr

denotes
the projection onto the low-rank manifold. Again, since X is typically unknown, (2.2)
is an approximation, but it is instantaneously optimal by the Dirac--Frenkel principle.
Intuitively, we project the dynamics onto the tangent space because this yields the
best possible approximation of L accessible to a low-rank solution. This is derived
in [21, 11]. What we really seek, however, is not the evolution equation for X, as this
would require reconstructing X at every time-step; we seek evolution equations for U
and Z so that we may evolve X implicitly. Adopting Newton's notation for differen-
tiation, we note that X = UZT \Rightarrow \.X = U \.ZT + \.UZT . From this, one can develop a
bijective map between \.X and ( \.U, \.Z) given U,Z [21]. As such, we may equivalently
write the following matrix differential equations,

\.U =P\bot 
U L (UZT , t;\omega )Z(ZTZ) - 1,

\.Z =L (UZT , t;\omega )TU ,
(2.3)

where P\bot 
U = I - UUT ; the columns of U , ui, correspond to \varphi i; and the columns of Z,

zi, correspond to realizations of \zeta i. The discrete DO condition is now \.UTU = 0. These
equations (2.3) will be revisited in section 5. In contrast to the original equations
(SM1.1, SM1.2, SM1.3), (2.3) do not explicitly extract the mean of \Phi ; the mean may
be included by adding a column in U and a column of ones in Z [20].

Though our motivation has been stochastic dynamics, we remark that this discrete
decomposition can be used in the deterministic setting. Instead of thinking of \Omega as
a stochastic event space, we may replace it with another physical space \~\scrD . The
expectation operator can be thought of as an inner product weighted by a probability
measure; so in the deterministic case, the expectation operator just becomes an inner
product over \~\scrD . We have already mentioned that the proper orthogonal decomposition
is the stochastic analog of separation-of-variables, so this is not a large intellectual
leap. As we will see in this paper, the interpretation of \scrD and \Omega is unimportant to
our analysis and may be abstracted away.

Note that this UZT parameterization is simply one choice; other common matrix
parameterizations include USV T as in [34], and though different parameterizations
will yield different evolution equations, the overarching mathematics is the same. In
fact, setting Z\leftarrow V ST or [V,ST ]\leftarrow qr(Z) (where qr denotes algorithmic implementa-
tion of the QR decomposition) defines a mapping between the two parameterizations.

3. Definitions. Before proceeding, we formally define some mathematical struc-
tures and terminology, following the notation of [21].

Definition 3.1 (low-rank manifold). Mr = \{ A\in \BbbR m\times n : rank(A) = r\} 
Definition 3.2 (Stiefel manifold). \scrV m,r = \{ A\in \BbbR m\times r :ATA= I\} 
Definition 3.3. \BbbR n\times r

\ast = \{ A\in \BbbR n\times r : rank(A) = r\} 
Note that any matrix X \in Mr may be written as X = UZT with U \in \scrV m,r and

Z \in \BbbR n\times r
\ast ---simply consider the SVD of X, X = U\Sigma V T , setting Z = V \Sigma T . This

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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DORK SCHEMES WITH PERTURBATIVE RETRACTIONS A877

parameterization is unique up to a rotation via an orthonormal matrix Q \not = I. If
\~U =UQ and \~Z =ZQ, then X =UZT = \~U \~ZT with U \not = \~U,Z \not = \~Z.

The discrete DO equations, as well as alternative equations that paramaterize the
dynamical low-rank approximation, instantaneously project the full-rank dynamics of
the system onto the tangent space of the low-rank manifold. So, it is useful to be able
to characterize the tangent space of Mr. Any matrix in the tangent space of Mr at
point X =UZT may be written as \delta X =U\delta TZ + \delta UZ

T [68].

Definition 3.4. The tangent space of Mr at X =UZT is defined as follows:

\scrT XMr =
\bigl\{ 
U\delta TZ + \delta UZ

T : \delta U \in \BbbR m\times r, \delta Z \in \BbbR n\times r
\bigr\} 
.

Definition 3.5. The tangent space to the Stiefel manifold at U is as follows:

\scrT U\scrV m,r =
\bigl\{ 
\delta U \in \BbbR m\times r : \delta TUU +UT \delta U = 0

\bigr\} 
=
\bigl\{ 
\delta U \in \BbbR m\times r :UT \delta U \in so(r)

\bigr\} 
.

Above, so(r) denotes the set of skew-symmetric, real r\times r matrices.

Hence, the discrete DO condition \.UTU = 0 ensures that \.U \in \scrT U\scrV m,r. In fact, we
can define the DO space \scrU m,r as a more restrictive set of matrices such that \.U \in \scrU m,r.

Definition 3.6 (DO space). \scrU m,r = \{ \delta U \in \BbbR m\times r :UT \delta U = 0\} \subset \scrT U\scrV m,r.

With this, a more restrictive parameterization of the tangent space of Mr can be
written as follows (see [21, p. 517]), replacing Definition 3.4.

Definition 3.7. The tangent space \scrT XMr of Mr at X = UZT admits the fol-
lowing representation, leading to a unique paramaterization for each matrix in \scrT XMr:

\scrT XMr =
\bigl\{ 
U\delta TZ + \delta UZ

T : \delta U \in \scrU m,r, \delta Z \in \BbbR n\times r
\bigr\} 

A so-called retraction, in simple terms, maps a matrix in the affine tangent space
back to the low-rank manifold. An extended retraction maps a matrix in the embed-
ding Euclidean space back to the low-rank manifold. From [3], we write out a formal
definition for extended retractions.

Definition 3.8. An extended retraction \scrR : \scrE \rightarrow Mr is a mapping such that

1. \scrR is defined and smooth on a neighborhood of the zero section in \scrT Mr,
2. \scrR X(0) =X \forall X \in Mr,
3. d

dt\scrR X(t\xi )
\bigm| \bigm| 
t=0

=P\scrT XMr
\xi for all X \in Mr and \xi \in \scrE .

For a nonextended retraction \scrR : \scrT Mr \rightarrow Mr, condition 3 is modified such that
\xi \in \scrT XMr. We use the same notation for retractions and extended retractions since
they accomplish the same feat, and whether the retraction itself is extended or not
may be determined implicitly by the argument.

Finally, we define three errors due to closure.

Definition 3.9 (normal closure error). The normal closure error, \varepsilon \scrN , is defined
as the difference between a full-rank state and its best low-rank approximation,

\varepsilon \scrN \equiv X - PMr (X).

This error is normal to the tangent space of the low-rank manifold at PMr
(X)

[11, 20].
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A878 AARON CHAROUS AND PIERRE F. J. LERMUSIAUX

Definition 3.10 (dynamical model closure error). The dynamical model closure
error, \varepsilon D, is the difference in dynamics by applying the dynamical model to the full-
rank state X and its approximation X:

\varepsilon D \equiv L (X) - L (X).

Approximating L (X) as L (X) is often useful when only X is available or affordable
for computation. Assuming L is Lipschitz continuous, one can then bound how error
accumulates over time (see [21, 34]). In contrast to definition 3.9, the dynamical
model closure error measures the local error of the system's time derivative.

Definition 3.11 (Dirac--Frenkel time-dependent variational principle and Dirac--
Frenkel model closure error). From [15, 50], the Dirac--Frenkel time-dependent varia-
tional principle is the use of the low-rank approximation when calculating the system
dynamics and then projecting those dynamics onto the tangent space of an approxi-
mation manifold. This induces what we call the ``Dirac--Frenkel model closure error"":

\varepsilon DF \equiv L (X) - P\scrT XMr
L (X).

The Dirac--Frenkel model closure error is the difference that arises (at each time-step)
from applying the dynamics to the full-rank state and applying the dynamics to the
reduced-rank state and projecting the result onto the tangent space of the low-rank
manifold, as prescribed by the Dirac--Frenkel time-dependent variational principle.

4. Projection-retraction error. With the above definitions, we now formally
describe the problem we seek to solve. In the continuous-time limit where \Delta t\rightarrow 0,
the equations of (2.3) give the instantaneously optimal approximation of the full-rank
dynamics up to dynamical model closure error (Definition 3.10) [21]. That is, if we
could integrate (2.3), we would obtain the exact dynamical rank-r approximation
to (2.1). However, this is challenging: they are coupled, nonlinear matrix differential
equations, L depends implicitly on U,Z, and time, and importantly, over \Delta t, the true
solution can leave the tangent space. Existing numerical schemes include projector-
splitting integrators [51], but here we take an alternative approach as in [33, 14].
Instead of integrating (2.3), we return to the original (2.1). We split the problem in
two: integrating the system in time and retracting back to the manifold.

For the time integration, we assume that the operation

L (\bullet ;\omega )\equiv 1

\Delta t

\int tn+1

tn

L (\bullet , t;\omega )dt+\scrO (\Delta tk)(4.1)

is given. L may be obtained via a kth-order time-integration scheme (e.g., Euler,
Runge--Kutta, leapfrog, Crank--Nicolson), which includes some time-integration error.
We may also assume that any error due to spatial discretization is built into L . On
the other hand, L may be given a priori as in the first motivating example where
X is given. The first argument of L denoted with \bullet refers to either the low-rank X
(which would induce the dynamical model closure error) or full-rank X, whichever
is available; the retractions we develop are agnostic to the errors induced by time
integration, spatial discretization, or closure errors. L may be thought of as the full-
rank direction in which we would like to travel, and it may leave the tangent space
of the low-rank manifold. Let us denote X(tn) as Xn and X(tn) as Xn = UnZ

T
n . By

definition, we have that

Xn+1 =Xn +\Delta tL
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DORK SCHEMES WITH PERTURBATIVE RETRACTIONS A879

is a consistent kth-order time-integration scheme for (2.1). Because we seek the best
low-rank approximation X, we have that (4.2) is a consistent integrator for X(t),

X\ast 
n+1 =PMr

(Xn +\Delta tL )(4.2)

\approx PMr
(Xn +\Delta tL ),(4.3)

where X\ast 
n+1 denotes the best possible approximation of Xn+1 given our knowledge

at time tn. Of course we may not know Xn, so we approximate it with Xn in (4.3),
which induces our normal closure error (see Definition 3.9).

Finally, in the limit of \Delta t\rightarrow 0, PMr \rightarrow P\scrT XMr , and so we may rewrite (4.3) as

X\ast 
n+1 =P\scrT XnMr

\bigl( 
Xn +\Delta tL

\bigr) 
+\scrO (\Delta t2) =Xn +\Delta tP\scrT XnMr

L +\scrO (\Delta t2) .(4.4)

We remark that although X\ast 
n+1, the best low-rank approximation at time tn+1 given

present information is completely characterized by a particular choice of the \scrO (\Delta t2)
term (defined by (PMr

 - P\scrT XnMr
)(Xn +\Delta tL )), and any choice of the \scrO (\Delta t2) will

result in a consistent integrator for the system; it just may not be the best possible
time-integration scheme. With the time integration settled, we now proceed to the
retractions which approximate PMr

by explicitly obtaining the \scrO (\Delta t2) term in (4.4).
In the literature [3], a second-order retraction is defined as a retraction whose

second-order error belongs to the normal space of Mr at X, which is a property shared
with geodesics. From [21], we know the DO equations (and any other paramterization
of the dynamical low-rank approximation) instantaneously apply the truncated SVD
to the dynamics as in (4.3). Hence, we will develop retractions that approximate PMr

rather than the geodesics of Mr in order to form consistent and accurate integrators.
Given L ,Un,Zn, we seek Un+1,Zn+1. Because we are restricted to the low-rank

manifold, we must somehow correct L to stay on the low-rank manifold: this is the
idea of a retraction. If we integrate (2.3), we can define

\cdot 
U \equiv Un+1  - Un

\Delta t
\approx 1

\Delta t

\int tn+1

tn

P\bot 
U LZ(ZTZ) - 1dt(4.5)

\cdot 
Z \equiv Zn+1  - Zn

\Delta t
\approx 1

\Delta t

\int tn+1

tn

L TUdt .(4.6)

That is, we define
\cdot 
U,
\cdot 
Z as the scaled difference between states at tn+1 and tn. If U and

Z were the exact best dynamic approximation over \Delta t, the approximate equalities
before the integrals would become exact equalities.

As an example, suppose we define
\cdot 
U = \.U | t=tn \equiv \.Un and

\cdot 
Z = \.Z| t=tn \equiv \.Zn, where

\.U and \.Z are given as P\bot 
U LZ(ZTZ) - 1 and L

T
U , respectively. This will lead to the

forward Euler retraction. Writing out some algebra, we obtain the following:

Xn+1 =Un+1Z
T
n+1 = (Un +\Delta t

\cdot 
U)(Zn +\Delta t

\cdot 
Z)T

=UnZ
T
n +\Delta t

\Bigl[ 
Un

\.ZT
n + \.UnZ

T
n

\Bigr] 
+\Delta t2 \.Un

\.ZT
n

=Xn +\Delta tP\scrT XnMr
L\underbrace{}  \underbrace{}  

consistent integrator

+\Delta t2 \.Un
\.ZT
n\underbrace{}  \underbrace{}  

retraction

,

where the last equation arises from the definitions of the tangent space (Definition
3.7) and consistent integrator (4.4). Even if L were accurate up to high order, we
would still have a new term that is \scrO (\Delta t2), which must be taken into account.
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A880 AARON CHAROUS AND PIERRE F. J. LERMUSIAUX

Finally, we present the goal of this paper. Because \Delta t > 0, it is insufficient to
simply project the dynamics onto the affine tangent space of the low-rank manifold:
we must consider the high-order curvature by approximately projecting onto the low-
rank manifold itself. That is, we seek an efficient retraction or extended retraction
(Definition 3.8), such that

Xn+1 \equiv \scrR Xn(\Delta tL ) =PMr (Xn +\Delta tL ) +\scrO (\Delta tk) .(4.7)

This allows us to write the error which we wish to correct, the projection-retraction
error , \varepsilon pr, defined below as the difference between our chosen retraction and the
projection of the full-rank integral of the dynamics over \Delta t,

\varepsilon pr \equiv \scrR Xn
(\Delta tL ) - PMr

(Xn +\Delta tL ) .(4.8)

Henceforth, a ``retraction with an nth-order correction"" or a ``retraction of nth order""
will denote a retraction with \varepsilon pr =\scrO (\Delta tn+1).

Figure 2(a) graphically depicts where this projection-retraction error arises. After
projecting the dynamics, L , onto the affine tangent space, we must somehow get back
to the low-rank manifold. It is important to note that in the continuous-time limit,
the magnitude of the retraction is exactly zero. The retraction scales as \scrO (\Delta t2),
whereas the projection of the dynamics scales as \scrO (\Delta t), so as \Delta t\rightarrow 0, the retraction
may be ignored completely. But because we take noninfinitesimally small time-steps,
we have a new type of error that originates from the high-order curvature of Mr.
From another viewpoint, from [68], we have that Mr is a C\infty smooth embedded
submanifold of \BbbR m\times n. So as \Delta t\rightarrow 0, PMr

\rightarrow P\scrT XMr
, and hence \varepsilon pr \rightarrow 0. In words,

(a) Retraction RXn

(
∆tL

)
(b) Projection PMr

(
Xn + ∆tL

)
Fig. 2. In a low-dimensional space, Figure 2(a) illustrates how a retraction maps a matrix,

projected onto the affine tangent space at Xn, to the low-rank manifold. We show two possible
retractions to points Xn+1 and X\ast 

n+1, both of order \scrO (\Delta t2), which arise due to the high-order

curvature of the low-rank manifold. These retractions are particular realizations of the \scrO (\Delta t2)
term in (4.4), and their difference defines the projection-retraction error. We do not show the error
that may have already accumulated up to time tn, which may give an inaccurate Xn acting as the
initial condition in (4.3). The dynamical closure error (Definition 3.10), the spatial discretization
error, and numerical integration error in (4.1) are built into our illustration of L . Figure 2(b)
depicts the projection onto the low-rank manifold of the full-rank integral of the dynamics over \Delta t,
i.e., PMr (Xn +\Delta tL ). Note how the residual---equivalent to the normal closure error \varepsilon \scrN assuming
no prior error accumulation---is orthogonal to the affine tangent space of the low-rank manifold at
the retracted point.
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DORK SCHEMES WITH PERTURBATIVE RETRACTIONS A881

the low-rank manifold is arbitrarily well approximated by its affine tangent space as
\Delta t\rightarrow 0. However, its high-order curvature induces error for \Delta t > 0.

We close this section with a summary of possible errors throughout the time
integration. First is the dynamical model closure error, \varepsilon D. Second is numerical er-
ror from both spatially discretizing the differential operator Lc and approximating
L \approx 1

\Delta t

\int 
L dt with a classical numerical integration scheme. Third is the projection-

retraction error \varepsilon pr. The dynamical model closure is almost always inevitable but
may be alleviated by increasing the rank of the solution. The second error may be re-
duced by using more accurate discretization and time-integration schemes. The third
error is what we focus on correcting in a computationally efficient manner. Note
that the normal closure error \varepsilon \scrN and Dirac--Frenkel model closure error \varepsilon DF (see
Definitions 3.9--3.11) are less relevant to our analysis since we are concerned with con-
vergence to the best low-rank approximation rather than convergence to the full-rank
solution.

5. Perturbative retractions. In this section, we develop the first main result,
retractions that converge to PMr

with high order. To begin, we analyze how the
classic DO equations (2.3) were derived. The DO equations orthogonally project
the system's dynamics onto the tangent space of Mr defined at the current point.
That is, we seek

\cdot 
U and

\cdot 
Z such that the residual between the full-rank direction, L ,

and its tangent space projection,
\cdot 
UZT + U

\cdot 
Z

T
, is minimized. This condition may be

expressed two ways mathematically. First, as in [21], we seek
\cdot 
U \in \scrU m,r,

\cdot 
Z \in \BbbR n\times r with

U \in \scrV m,r,Z \in \BbbR n\times r
\ast such that

\cdot 
U,
\cdot 
Z = argmin

\cdot \~U\in \scrU m,r,\cdot \~Z\in \BbbR n\times r

\| \cdot \~UZT +U
\cdot \~ZT  - L \| .

Equivalently, as in [34], we seek
\cdot 
U \in \scrU m,r and

\cdot 
Z \in \BbbR n\times r such that

\langle \cdot UZT +U
\cdot 
Z

T  - L , \delta UZ
T +U\delta TZ \rangle = 0

for all \delta U \in \scrU m,r and \delta Z \in \BbbR n\times r, where we use the Frobenius inner product above.
The latter formulation is a Galerkin condition insisting that the residual is orthogonal
to every possible matrix in the affine tangent space at X =UZT .

We will continue with the latter formulation. There are two issues if we want high-
order convergence to PMr

. First, the residual does not include the \scrO (\Delta t2) retraction
term; it is completely ignored. Second, the residual should be orthogonal to the affine
tangent space at the new, retracted point rather than the affine tangent space at the
original point. For a graphical comparison, contrast Figures 2(a) and (b). These two
corrections induce the following novel formulation for the exact projection operator
after an \scrO (\Delta t) perturbation:

(5.1) \langle \cdot UZT +U
\cdot 
Z

T
+\Delta t

\cdot 
U
\cdot 
Z

T  - L , (U +\Delta t
\cdot 
U)\delta TZ + \delta U (Z +\Delta t

\cdot 
Z)T \rangle = 0.

This new condition (5.1) yields the following coupled, nonlinear matrix equations (see
supplementary material section SM2 for a derivation):

(U +\Delta t
\cdot 
U)T\Delta tL =\Delta t2

\cdot 
U

T \cdot 
U(Z +\Delta t

\cdot 
Z)T +\Delta t

\cdot 
Z

T
,

P\bot 
U\Delta tL (Z +\Delta t

\cdot 
Z) =\Delta t

\cdot 
U(Z +\Delta t

\cdot 
Z)T (Z +\Delta t

\cdot 
Z).

(5.2)
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A882 AARON CHAROUS AND PIERRE F. J. LERMUSIAUX

In contrast to the classic DO equations (2.3), the new projective DO equations
(5.2) are nonlinear and coupled. Of course, (5.2) may be solved via the truncated SVD,
but this would be extremely costly. In principle, one could solve (5.2) using a generic
iterative method such as Newton--Raphson, but this would require a large matrix
inversion at each step. Alternatively, an alternating least squares approach, which is
proposed for projected implicit methods in [33], may be considered. However, it is
unclear how many iterations would be needed to preserve high-order convergence, and
we will see that applying perturbation theory yields linear equations that guarantee
high-order convergence in a fixed number of steps.

Theorem 5.1 (perturbative retractions). Given U \in \scrV m,r, Z \in \BbbR n\times r
\ast , L \in 

\BbbR m\times n, and \Delta t\in \BbbR , the nth-order solutions to (5.2) for n= 1, . . . ,4 are given by

\Delta t
\cdot 
U

(n)
=

n\sum 
i=1

\Delta ti \.Ui, \Delta t
\cdot 
Z

(n)
=

n\sum 
i=1

\Delta ti \.\scrZ i,(5.3)

where \{ \.Ui\} ni=1,\{ \.\scrZ i\} ni=1, are given by the following linear equations. Consequently,

(U +\Delta t
\cdot 
U

(n)
)(Z +\Delta t

\cdot 
Z

(n)
)T converges as \scrO (\Delta tn+1) to PMr (UZT +\Delta tL ).\Biggl\{ 

\.U1 =P\bot 
U LZ

\bigl( 
ZTZ

\bigr)  - 1
,

\.\scrZ 1 =L
T
U.

(5.4) \left\{   \.U2 =
\Bigl[ 
P\bot 

U L \.\scrZ 1  - \.U1(Z
T \.\scrZ 1 + \.\scrZ T

1 Z)
\Bigr] \bigl( 

ZTZ
\bigr)  - 1

,

\.\scrZ 2 =
\Bigl( 
L

T  - Z \.U
T
1

\Bigr) 
\.U1.

(5.5)

\left\{       
\.U3 =

\Bigl[ 
P\bot 

U L \.\scrZ 2  - \.U2(Z
T \.\scrZ 1 + \.\scrZ T

1 Z)

 - \.U1(Z
T \.\scrZ 2 + \.\scrZ T

2 Z + \.\scrZ T
1

\.\scrZ 1)
\Bigr] \bigl( 

ZTZ
\bigr)  - 1

,

\.\scrZ 3 =L
T \.U2  - Z( \.U

T
1
\.U2 + \.U

T
2
\.U1) - \.\scrZ 1 \.U

T
1
\.U1.

(5.6)

\left\{               

\.U4 =
\Bigl[ 
P\bot 

U L \.\scrZ 3  - \.U3

\Bigl( 
ZT \.\scrZ 1 + \.\scrZ T

1 Z
\Bigr) 
 - \.U2

\Bigl( 
ZT \.\scrZ 2 + \.\scrZ T

2 Z + \.\scrZ T
1

\.\scrZ 1

\Bigr) 
 - \.U1

\Bigl( 
ZT \.\scrZ 3 + \.\scrZ T

3 Z + \.\scrZ T
2

\.\scrZ 1 + \.\scrZ T
1

\.\scrZ 2

\Bigr) \Bigr] \bigl( 
ZTZ

\bigr)  - 1
,

\.\scrZ 4 =L
T \.U3  - Z

\Bigl( 
\.U
T
1
\.U3 + \.U

T
2
\.U2 + \.U

T
3
\.U1

\Bigr) 
 - \.\scrZ 1

\Bigl( 
\.U
T
2
\.U1 + \.U1 \.U2

\Bigr) 
 - \.\scrZ 2 \.U

T
1
\.U1.

(5.7)

Proof. The proof is completed by substituting (5.3) into (5.2) and grouping terms
by \Delta t. We relegate the details to supplementary material section SM3.

Here, we note a few interesting properties of the retractions. First, we appreciate
how auspicious it is that \.Ui and \.\scrZ i can be solved for explicitly, due to the decoupling of
(5.2) via the DO condition. Second, the only nonlinear terms appear as lower degrees
of \.Ui and \.\scrZ i, giving linear equations at each step. Third, the classic DO solution
is naturally recovered in the first-order perturbative retraction. Fourth,

\cdot 
U \in \scrU m,r

because each \.Ui \in \scrU m,r due to the P\bot 
U operator acting on any new terms. Note that

related work on perturbations to the truncated SVD has been done concurrently [70],
but we note significant differences in the supplementary material section SM6.

The retractions also admit a nice geometric interpretation. The second-order per-
turbation builds on the first, inducing a quadratic L term. Similarly, the third-order
perturbation includes a cubic L term, and so on. So, one could interpret the nth-
order perturbative retraction as implicitly projecting L onto an nth-order polynomial
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DORK SCHEMES WITH PERTURBATIVE RETRACTIONS A883

approximation of Mr. That is, the first-order perturbation projects onto the (linear)
tangent space, the second-order perturbation onto a quadratic approximation of Mr,
the third-order perturbation onto a cubic approximation of Mr, etc. As such, we are
encoding high-order curvature information into our time-integration scheme.

The power of these retractions is that we can obtain an arbitrarily high order of
convergence at a relatively low cost. Though we provide up to fourth-order corrections,
we may calculate as high-order terms of the perturbation series as we desire. For each
additional term of the perturbation series we compute, we obtain an additional order
of accuracy, and once we fix the number of terms, p, in the perturbation series to
compute, the given perturbative retraction will preserve the convergence of a pth-
order time integrator (assuming \varepsilon \scrN , \varepsilon D, and \varepsilon DF are negligible) when considering
the global error.

It is direct to show that this method converges linearly in the iterative sense. The
rate of convergence, q\ast , for a sequence \{ ak\} that converges to a is defined as [26, 59]

q\ast = sup
q

\biggl\{ 
q : lim

k\rightarrow \infty 

| ak+1  - a| 
| ak  - a| q

= 0

\biggr\} 
.

Letting a be the exact projection (4.3) and ak the kth-order perturbative retraction,

we have that, | ak+1 - a| 
| ak - a| q

\bigm| \bigm| \bigm| 
q=1

=\scrO (\Delta x), indicating linear convergence.

Each perturbative retraction is quite cheap (only requiring the inversion of an r\times r
matrix), but the cost grows as the correction order increases. We consider the case
where L is of rank rL and, for simplicity, m = n. The computational complexity of
our new retractions as well as common techniques such as the full SVD, the truncated
SVD (TSVD) as in [2, 69], the randomized SVD (RSVD) [24], and the projector-
splitting integrator [51] are provided in Table 1. These retractions are most efficient
when rL \ll m, but even in the worst case where L is full-rank, i.e.. rL = m, the
perturbative retractions are still only quadratic in m, meaning they are cheap when
compared to a full-rank simulation.

We also provide the results of a timing study comparing these algorithms with
reorthonormalization (aside from the full SVD since it offers no advantage over the
truncated SVD) in Table 2. We apply a retraction \scrR X(\Delta tL ), where m= n= 104 and
\Delta t = 0.25. In the first case, we employ r = 10, rL = 100, and in the second, r = 25,
rL = 500. The matrix X = UZT is formed by randomly sampling U and Z from a
normal distribution, and then U is orthonormalized. L is formed the same way with-

Table 1
Asymptotic complexity of preexisting and our new retractions.

SVD TSVD RSVD Proj.-Split. Perturbative

\scrO (m3) \scrO (m(r+ rL)
2) \scrO (mr(rL + r)) \scrO (mr(r+ rL)) \scrO (mr(r+ rL) + r3)

Table 2
Wall-clock time (in milliseconds) of different retractions using the timeit function of MATLAB.

TSVD RSVD 1 Iter. RSVD 2 Iters. Proj.-Split.

r= 10, rL = 100 23.14 12.83 17.19 5.22

r= 25, rL = 500 325.27 56.38 74.12 21.50

1\mathrm{s}\mathrm{t} Pert. 2\mathrm{n}\mathrm{d} Pert. 3\mathrm{r}\mathrm{d} Pert. 4\mathrm{t}\mathrm{h} Pert.

r= 10, rL = 100 6.77 7.56 10.66 13.06

r= 25, rL = 500 26.97 32.30 44.47 60.91
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A884 AARON CHAROUS AND PIERRE F. J. LERMUSIAUX

out orthonormalization, and both X and L are normalized to have Frobenius norm
one. We implement the stabilized randomized subspace iteration of [24, Algorithm
4.4] with an oversampling parameter of 5. By changing the number of iterations in
the randomized SVD, we can directly compare to the high-order perturbative retrac-
tions, where one iteration is analogous to our second-order perturbative retraction,
and two iterations are analogous to our fourth-order perturbative retraction. The
projector-splitting integrator is most similar to our first-order perturbative retrac-
tion. We compare errors in section 7. We see that for large rL, the truncated SVD
becomes prohibitively expensive due to its quadratic dependence on rL. Compared
to the randomized SVD, the perturbative retractions seem to be slightly faster, and
compared to the projector-splitting integrator, the first-order perturbative retraction
is slightly slower but still competitive.

There are, however, two issues with the perturbative retractions. First, we would
like Un+1 \in \scrV m,r given Un \in \scrV m,r. In the continuous-time case, the DO condition
\.UTU = 0 ensures that U(t) \in \scrV m,r for all time. However, in the discrete-time case,

the DO condition
\cdot 
U

T
U = 0 is only first-order accurate, as shown below.

UT
n+1Un+1 = (Un +\Delta t

\cdot 
U)T (Un +\Delta t

\cdot 
U) = I +\Delta t2

\cdot 
U

T \cdot 
U.

This issue is addressed in [47], which involves a very cheap reorthonormalization
procedure. An algorithm is given in supplementary material section SM4.

Second, the perturbation series may not always converge, causing overshoots. In
analogy to Taylor series, if large time-steps are taken, lower-order truncations can be
more accurate than those that include higher-order corrections. This is demonstrated
in subsection 7.1. To ensure convergence of the series (5.3), we define a nondimen-
sional hyperparameter \varepsilon \ll 1 and insist on a necessary condition for convergence
below.

max

\Biggl( 
\Delta ti
\| \.Ui\| 
\| U\| 

,\Delta ti
\| \.\scrZ i\| 
\| Z\| 

\Biggr) 
< \varepsilon .

If this condition is violated for any i, the ith and higher-order corrections are not used.
This gives the adaptive perturbative algorithm 5.1, letting \beta denote the maximum
order correction allowed for a given \Delta t. We note that the truncated and randomized
SVD are not susceptible to overshoot.

6. Dynamically orthogonal Runge--Kutta schemes. We now develop a new
class of integration schemes for the dynamical low-rank approximation, building off
of our perturbative retractions. In the previous section, we treated the dynamics of
the system L as a fixed matrix while retracting, meaning we would first integrate the
dynamics in the full embedding Euclidean space before retracting back to the low-
rank manifold. Obtaining a high-order integration scheme in the full space, however,
is often costly as the rank may grow quickly, increasing the cost of the retraction and
function evaluation. In this section, we show how to integrate along the nonlinear
manifold of fixed rank, entirely avoiding integrating into the full embedding space.
In doing so, we capture the dynamic effects of manifold's high-order curvature and
drastically reduce the computational cost of integration. We refer to these novel
integration methods as dynamically orthogonal Runge--Kutta (DORK) schemes.

First, let us be precise about the system we seek to integrate. As in section 5,
we consider schemes in the form of (4.7). But now, we specify that our dynamics are
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DORK SCHEMES WITH PERTURBATIVE RETRACTIONS A885

Algorithm 5.1. Adaptive perturbative retraction.

Input: U0 \in \scrV m,r, Z0 \in \BbbR n\times r
\ast , L \in \BbbR m\times n, \Delta t\in \BbbR , \varepsilon \in \BbbR , \beta \in \BbbN 

Output: U1 \in \scrV m,r, Z1 \in \BbbR n\times r

1: U1 =U0, Z1 =Z0, \.U0 = 0, \.\scrZ 0 = 0, \alpha 0 = \| Z0\| , \alpha = 0, i= 1

2: while i\leq \beta do

3: Compute \.Ui and \.\scrZ i from (5.3).

4: \alpha = \Delta ti

\alpha 0
max

\Bigl( 
\| \.Ui\| ,\| \.\scrZ i\| 

\Bigr) 
5: if \alpha > \varepsilon then
6: Break. Go to line 11.
7: end if

8: U1\leftarrow U1 +\Delta ti \.Ui, Z1\leftarrow Z1 +\Delta ti \.\scrZ i

9: i\leftarrow i+ 1
10: end while
11: U1,Z1\leftarrow reorthonormalize(U1,Z1)

integrated along the low-rank manifold, i.e.,

L =
1

\Delta t

\int tn+1

tn

L (PMr
(X(t)), t;\omega )dt+\scrO (\Delta tk).(6.1)

At discrete times, X(tn) \in Mr by definition; it is our low-rank approximation of the
system. However, when integrating between those times, X(t) may depart the low-
rank manifold. In section 5, L was implicitly defined as in (6.1), except without the
PMr

operator, hence letting the argument of L depart the manifold; both are valid
integration schemes and are just alternative approximations related to the dynamical
model closure error (see Definition 3.10).

The key step in constructing the DORK schemes is to define L as a perturbation
series itself, i.e.,

\Delta tL \equiv 
k\sum 

i=1

\Delta ti\scrL i .(6.2)

Observe that the partial sum L
(j) \equiv 

\sum j
i=1\Delta ti - 1\scrL i is a jth-order integration scheme.

Obtaining this perturbation series for an arbitrary integration scheme is always feasi-
ble. As a concrete example, consider a second-order integration scheme. We may

write L
(1)

= \scrL 1 as any first-order integration scheme for the same system, and

\scrL 2 = (L
(2)  - L

(1)
)/\Delta t. One can proceed similarly for higher-order schemes, and

we may generally write \scrL i = (L
(i)  - L

(i - 1)
)/\Delta t, and L

(0)
= 0. Similar to classic

Runge--Kutta schemes, the choice of \{ \scrL i\} i is here not unique due to the plethora of

choices of intermediate integration schemes for the partial sums L
(j)

. Furthermore,
constructing a computationally efficient DORK scheme requires thought to minimize
the number of function evaluations and retractions in the scheme.

To obtain DORK integration schemes, we thus solve the projective DO equations
(5.2) assuming a perturbation series in

\cdot 
U ,
\cdot 
Z, and now also in L . This yields the

following schemes.
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A886 AARON CHAROUS AND PIERRE F. J. LERMUSIAUX

\Biggl\{ 
\.U1 =P\bot 

U \scrL 1Z
\bigl( 
ZTZ

\bigr)  - 1

\.\scrZ 1 =\scrL 
T

1 U
(6.3) \left\{   \.U2 =

\Bigl[ 
P\bot 

U

\Bigl( 
\scrL 2Z +\scrL 1

\.\scrZ 1

\Bigr) 
 - \.U1(Z

T \.\scrZ 1 + \.\scrZ T
1 Z)

\Bigr] \bigl( 
ZTZ

\bigr)  - 1

\.\scrZ 2 =\scrL 
T

2 U +
\Bigl( 
\scrL T

1  - Z \.U
T
1

\Bigr) 
\.U1

(6.4)

\left\{       
\.U3 =

\Bigl[ 
P\bot 

U

\Bigl( 
\scrL 3Z +\scrL 2

\.\scrZ 1 +\scrL 1
\.\scrZ 2

\Bigr) 
 - \.U2(Z

T \.\scrZ 1 + \.\scrZ T
1 Z)

 - \.U1(Z
T \.\scrZ 2 + \.\scrZ T

2 Z + \.\scrZ T
1

\.\scrZ 1)
\Bigr] \bigl( 

ZTZ
\bigr)  - 1

\.\scrZ 3 =\scrL 
T

3 U +\scrL T

2
\.U1 +\scrL 

T

1
\.U2  - Z( \.U

T
1
\.U2 + \.U

T
2
\.U1) - \.\scrZ 1 \.U

T
1
\.U1

(6.5)

\left\{                   

\.U4 =
\Bigl[ 
P\bot 

U

\Bigl( 
\scrL 4Z +\scrL 3

\.\scrZ 1 +\scrL 2
\.\scrZ 2 +\scrL 1

\.\scrZ 3

\Bigr) 
 - \.U3

\Bigl( 
ZT \.\scrZ 1 + \.\scrZ T

1 Z
\Bigr) 
 - \.U2

\Bigl( 
ZT \.\scrZ 2 + \.\scrZ T

2 Z + \.\scrZ T
1

\.\scrZ 1

\Bigr) 
 - \.U1

\Bigl( 
ZT \.\scrZ 3 + \.\scrZ T

3 Z + \.\scrZ T
2

\.\scrZ 1 + \.\scrZ T
1

\.\scrZ 2

\Bigr) \Bigr] \bigl( 
ZTZ

\bigr)  - 1

\.\scrZ 4 =\scrL 
T

4 U +\scrL T

3
\.U1 +\scrL 

T

2
\.U2 +\scrL 

T

1
\.U3

 - Z
\Bigl( 
\.U
T
1
\.U3 + \.U

T
2
\.U2 + \.U

T
3
\.U1

\Bigr) 
 - \.\scrZ 1

\Bigl( 
\.U
T
2
\.U1 + \.U1 \.U2

\Bigr) 
 - \.\scrZ 2 \.U

T
1

\.U1

(6.6)

As compared to (5.4)--(5.7), we see additional terms involving the high-order correc-
tions to L . The \scrL i terms are projected onto the subspaces \.Ui, which we interpret
as updating the subspace onto which we are projecting the system's dynamics as we
integrate. We also note that the adaptive retraction in Algorithm 5.1 may be used
with the schemes (6.3)--(6.6) to ensure the series converges.

To further explain the DORK schemes, we go over a second-order scheme in depth.
Consider Heun's method for the full-rank system starting from point X0 at time t0.

k1 =L (X0, t0;\omega ),

\^X1 =X0 +\Delta tk1,

k2 =L (\^X1, t0 +\Delta t;\omega ),

X1 =X0 +
\Delta t

2
(k1 + k2) .

For our low-rank system with L defined as in (6.1), Heun's method is as follows:

k1 =L (X0, t0;\omega ),

\^X1 =PMr
(X0 +\Delta tk1) ,

k2 =L ( \^X1, t0 +\Delta t;\omega ),

X1 =PMr

\biggl( 
X0 +

\Delta t

2
(k1 + k2)

\biggr) 
.

Because Heun's method is only second order, we can approximate PMr
with a retrac-

tion of first order when computing \^X1 (since the resulting error will be \scrO (\Delta t3) once
k2 is multiplied by \Delta t) and a retraction of second order when computing X1.

If we stop our analysis here and project k1 and k2 onto their respective tan-
gent spaces, this algorithm appears as the projected Runge--Kutta scheme from [33].
However, that scheme does not update the subspace U as it integrates, and we show
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DORK SCHEMES WITH PERTURBATIVE RETRACTIONS A887

Algorithm 6.1. Second-order DORK scheme.
Input: U0 \in \scrV m,r, Z0 \in \BbbR n\times r

\ast , L (X, t;\omega ) :\BbbR m\times n \times \BbbR \times \Omega \rightarrow \BbbR m\times n,t0 \in \BbbR , \omega \in \Omega ,
\Delta t\in \BbbR 

Output: U1 \in \scrV m,r, Z1 \in \BbbR n\times r

1: k1 =\scrL 1 =L (U0Z
T
0 , t0;\omega )

2: \^U1
\^ZT
1 =\scrR U0ZT

0
(\Delta tk1) with retraction defined by (5.4)

3: k2 =L ( \^U1
\^ZT
1 , t0 +\Delta t;\omega )

4: \scrL 2 =
1

2\Delta t (k2  - k1)
5: U1,Z1 =\scrR U0ZT

0
(\Delta t\scrL 1 +\Delta t2\scrL 2) with retraction defined by (6.3)--(6.4)

6: U1,Z1\leftarrow reorthonormalize(U1,Z1)

in section 7 that using the DORK schemes greatly reduces its error. Furthermore,
the projected Runge--Kutta schemes project the dynamics onto the tangent space of
the low-rank manifold in each substep to reduce the cost of integration; otherwise,
the rank of the DLRA would grow quickly before applying a retraction as the final
step, making such as scheme computationally expensive. In the DORK schemes, an
additional projection of the dynamics onto the tangent space is not required as the
projection is inherently built into the method. The DORK and projected Runge--
Kutta schemes are compared in the experiments of subsection 7.2.

To proceed, we let \scrL 1 = k1. Then, we have that L
(2)

= 1
2 (k1 + k2), and so

\scrL 2 =
1

2\Delta t (k2  - k1). We may now apply (6.3)--(6.4) and then reorthonormalize. This
scheme is succinctly written in Algorithm 6.1, and we provide third- and fourth-order
algorithms SM8.1 and SM8.2 derived from embedded (2,3) and (3,4) Runge--Kutta--
Fehlberg schemes [19, 65] in the supplementary material section SM8.

7. Numerical experiments.

7.1. Matrix addition. We begin with the simple case of adding two matrices,
X and \Delta tL, and then retracting back onto the low-rank manifold. Though simple,
this test case demonstrates high-order local error convergence, and low-rank matrix
addition is a building block of time-integration schemes. X and L are normalized
such that they have Frobenius norm one, so \Delta t controls their relative scaling. In
particular, X,L\in \BbbR 10,000\times 10,000, rank(X) = 10, X =UZT , and the entries of U,Z are
independently chosen from a standard normal distribution, after which U is orthonor-
malized via the orth function of MATLAB (which uses the left singular vectors of a
given matrix). L = LUL

T
Z has rank 100 and the entries of LU and LZ are sampled

independently from a standard normal distribution.
We analyze the Frobenius norm of the projection-retraction error , \varepsilon pr (4.8), the

difference between \scrR X(\Delta tL) and PMr
(X+\Delta tL), which examines the convergence to

the best low-rank approximation. Figure 3(a) depicts this error for different order,
and we see \scrO (\Delta tn+1) convergence to the best approximation for the nth-order pertur-
bative retraction. For large \Delta t, we see the perturbative retractions with higher-order
corrections overshoot, but our adaptive method with hyperparameter \varepsilon = 0.1 recti-
fies this. In Figure 3(b), we compare perturbative retractions with the randomized
SVD (see section 5, where we compare algorithm runtimes for details on implementa-
tion) and the projector-splitting integrator. The randomized SVD with one iteration
converges at third order, as does the second-order perturbative retraction, but we
see our second-order perturbative retraction is more accurate by about an order of
magnitude. We see similar behavior for the two-iteration randomized SVD and our
fourth-order perturbative retraction. The projector-splitting integrator, as expected,
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A888 AARON CHAROUS AND PIERRE F. J. LERMUSIAUX

1st-Order Pert 2nd-Order Pert 3rd-Order Pert 4th-Order Pert
Adaptive Pert Rand SVD, 1 iter Rand SVD, 2 iters Projector-Splitting
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(a) Projection-retraction error of perturba-
tive retractions
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(b) Projection-retraction error of common
retractions

Fig. 3. The perturbative retractions exhibit high-order convergence to the best approximation.
The adaptive algorithm avoids overshoot. Our perturbative retractions are competitive with the
projector-splitting integrator and randomized SVD.

converges at second-order and has nearly the same projection-retraction error as our
first-order perturbative retraction.

7.2. Matrix differential equations. In this example, we consider global er-
ror convergence, so we expect one order lower convergence than in subsection 7.1.
That is, we expect to see \scrO (\Delta tn) convergence for an nth-order perturbative retrac-
tion. We investigate systems of coupled linear oscillators X \in \BbbR 26\times 26 with differen-
tial equation \"X =  - \Omega 2X and initial conditions X(0) = X0, \.X(0) = \.X0. We choose
\Omega = diag(\omega 1, \omega 1, \omega 2, \omega 2, . . . , \omega 13, \omega 13) with each \omega i independently chosen from a stan-
dard normal distribution. Letting R(t) \in \BbbR 26\times 26 be a tridiagonal filled with 2 \times 2
block rotation matrices R1, . . . ,R13 such that

Ri(t) =

\biggl[ 
cos(\omega it)  - sin(\omega it)
sin(\omega it) cos(\omega it)

\biggr] 
,

then R(t) = diag(R1, . . . ,R13). Q \in \BbbR 26\times 26 is formed by orthonormalizing a matrix
with independent samples from a uniform distribution. Last, S \in \BbbR 26\times 26 is a diagonal
matrix with nonincreasing entries Sii = 100+10zi for i\leq 16 and Sii = 10 - 3 - (i - 17)/9 for
i > 16, where zi are realizations of independent, standard normal random variables. It
is simple to verify that the exact solution is given by X(t) =R(t)QS with X0 =R(0)QS
and \.X0 = \.R(0)QS. In constructing such a solution, we ensure that the singular values
of the full-rank solution are fixed by S and is well approximated by a rank-16 matrix,
which we will call X(t), our low-rank approximation. We initialize X(0) and \.X(0)
by taking the truncated SVD of X0 and \.X(0). To integrate the system, we convert
the system of second-order ODEs to a system of first-order ODEs by expanding our

state space to
\bigl[ 
XT \.XT

\bigr] T
. Then, we implement two integrations schemes. First, we

use a fourth-order Runge--Kutta--Fehlberg integrator [19, 65] to calculate L , and we
retract back to the manifold after each time-step using our perturbative retractions
(5.4)--(5.7). In fixing the order of integration, we are able to investigate the role
of projection-retraction error alone. This scheme equates to integrating in the full
Euclidean embedding space. Second, we use our DORK schemes (6.3)--(6.6) with
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DORK SCHEMES WITH PERTURBATIVE RETRACTIONS A889

1st-Order Pert 2nd-Order Pert 3rd-Order Pert 4th-Order Pert
1st-Order DORK 2nd-Order DORK 3rd-Order DORK 4th-Order DORK
Best Approximation
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(a) Error vs. time with 101 time steps
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(b) Global error convergence

Fig. 4. Here we show the error from numerically integrating systems of linear oscillators.
The DORK schemes are more accurate than the projected Runge--Kutta except at first order since
we always use a fourth-order integrator for the projected Runge--Kutta schemes. In contrast, the
DORK integration order efficiently adapts with the order of retraction.

Table 3
Normalized errors of the second-order projected Runge--Kutta schemes with various retractions

(TSVD, RSVD 2 Iters., and Proj.-Split.) and of the second-order DORK scheme. All integration
schemes except for DORK have the same error because the dominating error arises from departing
the manifold and reprojecting, which is what DORK corrects.

NT TSVD RSVD 2 Iters. Proj.-Split. 2\mathrm{n}\mathrm{d}-Order DORK

50 2.96 \cdot 10 - 2 2.96 \cdot 10 - 2 2.96 \cdot 10 - 2 2.64 \cdot 10 - 2

134 4.00 \cdot 10 - 3 4.00 \cdot 10 - 3 4.00 \cdot 10 - 3 3.59 \cdot 10 - 3

968 7.58 \cdot 10 - 5 7.58 \cdot 10 - 5 7.58 \cdot 10 - 5 6.79 \cdot 10 - 5

Algorithms 6.1, SM8.1, and SM8.2. In both cases, we compare X(t) with X(t) in
Figure 4 using the Frobenius norm normalized by \| X0\| .

Figure 4(a) shows that the perturbative retractions with high-order corrections
perform orders of magnitude better in reducing error accumulation. Furthermore,
we see that the DORK schemes are markedly better than the projected Runge--Kutta
schemes even though the DORK schemes use a Runge--Kutta scheme of the same order
as the retraction, e.g., a second-order DORK scheme uses a second-order Runge--Kutta
scheme. However, the projected Runge--Kutta schemes are all using fourth-order
Runge--Kutta schemes. This explains why the first-order projected Runge--Kutta
scheme performs better than the first-order DORK scheme, but it is also remarkable
that the second- and third-order DORK schemes outperform their projected Runge--
Kutta counterparts that are integrating at a higher order. This indicates that the
dominating error in this problem is \varepsilon pr.

In Figure 4(b), we see \scrO (\Delta tk) convergence for both the projected Runge--Kutta
schemes with kth-order perturbative expansion and the kth-order DORK schemes.
We also use the second-order symmetrized projector-splitting integrator as well as
the 2-iteration randomized SVD and truncated SVD as retractions for a second-order
projected Runge--Kutta scheme, Heun's method. In Table 3, we compare the normal-
ized errors of the second-order projected Runge--Kutta scheme to our second-order
DORK scheme as a function of the number of points in time NT we integrate over,
keeping the time interval t \in [0,10] fixed. Because the truncated SVD, randomized
SVD, and projector-splitting integrators all perform to the same degree of accuracy,
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A890 AARON CHAROUS AND PIERRE F. J. LERMUSIAUX

we infer that the projection-retraction error does not dominate for these schemes. The
second-order DORK scheme, however, outperforms these techniques, which indicates
that updating the subspace as we integrate is crucial for highly accurate integration.

7.3. Real-time data compression. Imagine live-streaming high-definition (for
example, 4k) video at 60 frames per second over a low-bandwidth data stream. Re-
alistically, data would be sent in packets allowing for greater compression, but we
consider the case where we send each frame as we record it. To compress the data
on the fly, ideally, we could take the truncated SVD of each frame, but this is costly
at such a rapid rate. Instead, we propose taking the truncated SVD for the first
frame (inducing a fixed but acceptable time lag) and then retracting on the differ-
ence between the frames to obtain the next low-rank frame. That is, we consider
L = (Framei - Framei - 1)/\Delta t, and then we retract back onto the low-rank manifold.
Our choice of retraction drastically affects how much our solution drifts from the best
approximation due to varying magnitudes of \varepsilon pr.

We note that this choice of L is not optimal and only used to show the benefits
of the high-order perturbative retractions, particularly when full-rank derivative in-
formation is unavailable. In this case, when our dynamics are driven only by data, we
may instead choose L = (Framei  - Xi - 1)/\Delta t, which corrects for the drift. If there
were no numerical error, in the continuous-time limit, these two choices of L would
yield equivalent low-rank approximations since Framei - 1  - Xi - 1 would exist in the
normal space of the Mr at Xi - 1 (i.e., P\scrT Xi - 1

Mr
(Framei - 1  - Xi - 1) = 0). Since such

idealities are unrealistic, both cases are presented in Figure 5. We find that the re-
traction drifts far from the truncated SVD, whereas the adaptive retraction preserves
much more detail.

(a) Truncated SVD of frame (b) Adaptive retraction applied with L =
(Framei −Xi−1)/∆t

(c) Retraction of first order applied with
L = (Framei − Framei−1)/∆t

(d) Adaptive retraction applied with L =
(Framei − Framei−1)/∆t

Fig. 5. We show the 241st frame of a 4k, 60 fps grayscale video of a peacock walking across a
road in Split, Croatia. Each frame is rank-500, and different L are used. The first-order retraction
drifts, whereas the adaptive retraction is much more accurate.
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DORK SCHEMES WITH PERTURBATIVE RETRACTIONS A891

7.4. Partial differential equations. Our perturbative retractions may also
be applied to multistep integration schemes. Here, we apply our methodology to a
deterministic PDE, where each solution slice for a fixed time is low-rank. We consider
a two-dimensional diffusion equation with imaginary diffusivity.

\partial u

\partial t
=

i

2k
\nabla 2u, (x, y)\in \scrD = [0,250]\times [0,300], t\geq 0,

u| \partial \scrD = 0, u(x, y,0) = u0(x, y).

We set k(x, y) = 240\pi /(1500+500exp\{  - (x - 125)2/62.52\} exp\{  - (y - 150)2/752\} ). On
different length and mass scales, this is Schr\"odinger's equation with spatially varying
mass, which has relevance in crystal impurities, semiconductor heterostructure, and
more [13, 76, 12, 53, 60, 4]. Alternatively, if we let k be constant and switch t to
a range variable, this would correspond to the paraxial (or parabolic) scalar wave
equation used extensively in optics [38, 28, 57, 16] and acoustics [17, 64, 27]. We use
Dirichlet-zero boundary conditions which correspond to an infinite potential well in
the Schr\"odinger interpretation and a pressure-release boundary in acoustics. Note that
although we developed this methodology for real matrices and Riemannian manifolds,
we may easily apply the same ideas to complex matrices and Hermitian matrices; in
short, the transpose operator becomes the conjugate transpose operator.

For numerical integration, we employ the explicit and unconditionally stable
Dufort--Frankel finite difference scheme [23], extended to two dimensions (see sup-
plementary material section SM9, where the initial conditions u0 are also given). We
use 250 points in x and 300 points in y, and we solve from t = 0 to 500 with one-
second time intervals. The results of our adaptive Algorithm 5.1, with perturbative
retractions to solve the PDE at different ranks, are shown in Figure 6. We find that

(a) Rank-one (b) Rank-two

(c) Rank-four (d) Full-rank

Fig. 6. Solutions of the Schr\"odinger's or parabolic wave PDE, Im\{ u(x, y = 74.7508, t)\} , for
different ranks. For all but the full-rank solution (classic integration), we use our adaptive low-rank
method with perturbative retractions. We see the low-rank approximations converge quickly to the
full-rank solution.
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A892 AARON CHAROUS AND PIERRE F. J. LERMUSIAUX

as the rank increases, more of the solution energy is captured as is more detail. Fur-
thermore, the low-rank solutions still seemingly respect the physics of the problem,
and the integrity of the solution decays gracefully as the rank decreases.

7.5. Stochastic differential equations. Finally, we showcase our perturbative
retractions on a stochastic variant of Burgers' equation [5, 7] with periodic boundary
conditions using an implicit-explicit scheme.

\partial u

\partial t
+ \beta (\omega )u

\partial u

\partial x
= \nu 

\partial 2u

\partial x2
+ f(x, t;\omega ), x\in \scrD = [ - 1,1], t\geq 0, \omega \in \Omega ,

u( - 1, t;\omega ) = u(1, t;\omega ),
\partial u

\partial x

\bigm| \bigm| \bigm| \bigm| 
x= - 1

=
\partial u

\partial x

\bigm| \bigm| \bigm| \bigm| 
x=1

, u(x,0;\omega ) = u0(x;\omega ).

We set f(x, t;\omega ) = 1
100\gamma 1(\omega ) sin(t)e

 - 100(x+ 1
2 )

2

+ 1
100\gamma 2(\omega ) cos(t)e

 - 64(x - 1
2 )

2

and
note that the advection speed is stochastic as are the initial conditions and the forcing

(a) Rank-five, t = 10 (b) Rank-fifteen, t = 10 (c) Monte Carlo, t = 10

(d) Rank-five, t = 10 (e) Rank-fifteen, t = 10 (f) Monte Carlo, t = 0

(g) Rank-five, t = 10 (h) Rank-fifteen, t = 10 (i) Monte Carlo, t = 10

Fig. 7. The first row compares 10,000 stochastic realizations of the solution at t= 10, where all
but the Monte Carlo solutions use the adaptive Algorithm 5.1 with perturbative retractions. The rank-
5 solution does relatively well but misses some variability, especially at the edges. This is recovered
at rank-15. Figures 7(d) and 7(e) show non-Gaussian statistics at u(x= 0) via a comparison of low-
rank and Monte Carlo histograms. Figures 7(f) and 7(i) show the spatial covariance of the Monte
Carlo simulations at t= 0 and t= 10. Figures 7(g) and 7(h) show that the low-rank approximations
capture the spatial covariance quite well.
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DORK SCHEMES WITH PERTURBATIVE RETRACTIONS A893

function. We let \beta \sim \gamma 1 \sim \gamma 2 \sim U( - 3/4,3/4), each sampled independently, and set
\nu = 0.01. In the simulation shown, we use 10,000 Monte Carlo realizations, discretize
\scrD into 150 points, and solve for t \in [0,10] with 1,001 points. To construct the initial
conditions, we define a new function g(x) = 1

2 sinc(4\pi x)+
3
4 sin(15\pi x), where sinc(x) =

sin(x)/x. Furthermore, let DST and IDST denote the discrete and inverse discrete
sine transform. After spatial discretization, we write the initial conditions as u0 =

IDST((1+z(\omega )\oslash 
\bigl[ \surd 

1
\surd 
2 \cdot \cdot \cdot 

\surd 
150
\bigr] T

)\odot DST(g)), where \odot denotes the Hadamard
product, \oslash the elementwise division, and each zi \sim \scrN (0,1) are independent. With
such initial conditions, each realization is smooth by reducing the stochasticity in the
higher spatial frequencies. Further implementation details, including the semi-implicit
time finite difference scheme, are given in supplementary material section SM10. We
employ our perturbative retractions with the adaptive method (Algorithm 5.1) and
hyperparameter \varepsilon = 0.025.

Figure 7 shows the fast convergence of low-rank solutions to the full-rank Monte
Carlo solution. The reconstructed stochastic realizations of the low-rank solution
approximate the full-rank solution well, suggesting convergence in probability (e.g.,
[67]). Furthermore, the histograms and spatial covariances indicate convergence in
distribution (though this was expected since convergence in distribution is implied by
convergence in probability). From the spatial covariances at t= 0 and t= 10, we see
that this stochastic process is neither spatially nor temporally stationary. Hence, the
dynamical low-rank approximation is an effective and general method for uncertainty
quantification in systems with complex dynamics and non-Gaussian statistics.

8. Conclusions. The dynamical low-rank approximation has proven useful in
approximating solutions to a plethora of problems. In this paper, we utilized the
nonintrusive version of the spatially discrete dynamically orthogonal (DO) equations.
In the continuous-time setting, projecting a system's dynamics onto the tangent space
of the low-rank manifold is sufficient to exactly track the best instantaneous low-rank
approximation. However, in the discrete time setting, numerical integration errors
occur as we employ the projective DO equations and we introduce the projection-
retraction error.

We classify errors that arise from numerically approximating a low-rank dynam-
ical system into four categories: spatial discretization error, time-integration error,
closure error, and manifold curvature error. The first two we combine into L . The
closure error, involving the normal \varepsilon \scrN , dynamical \varepsilon D, and Dirac--Frenkel \varepsilon DF closure
errors, is somewhat inevitable. The manifold curvature error is dynamic in the sense
that local curvature depends on the present state of the low-rank approximation. It
is realized in the form of projection-retraction error, \varepsilon pr, and we demonstrate that
it may be significantly reduced by projecting a system's dynamics onto higher-order
polynomial approximations to the low-rank manifold via perturbative retractions. We
show that these new retractions span a dense set of matrices in the low-rank mani-
fold (proven in SM5) and that they converge with high order to the truncated SVD.
Furthermore, they are explicit and relatively computationally inexpensive when the
rank of the solution approximation is much smaller than the system's dimension.
We give numerical examples that show high-order convergence to the best low-rank
approximation in local error and global error.

By writing integration schemes as a perturbation series, we introduce and derive
novel dynamically orthogonal Runge--Kutta (DORK) schemes that account for the
evolution of the reduced-order integration space during the time-step. We show that
DORK schemes are (i) highly accurate by incorporating knowledge of the dynamic,
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A894 AARON CHAROUS AND PIERRE F. J. LERMUSIAUX

nonlinear manifold's high-order curvature from stage to stage and (ii) computationally
efficient by limiting the growing rank needed to represent the evolving dynamics L . In
our real-time data compression example, we show that these retractions may be used
when the dynamics are data-driven (rather than model-driven), and the perturbative
retractions with high-order corrections drift from the best low-rank approximation at
a much slower rate than retractions with low-order corrections. Note that adjusting
how the dynamics are calculated to correct the drift in the first place is important
to obtain the most accurate scheme. Last, we show that the retractions may be
used in deterministic and stochastic differential equations: the dynamical low-rank
approximation and the retractions are agnostic to the nature of the mathematical
spaces we choose to compress, whether deterministic or stochastic. In both cases, the
low-rank approximation converges quickly not just to the best approximation, but to
the full-rank solution. In the stochastic case, this offers an efficient methodology for
uncertainty quantification in nonlinear problems with non-Gaussian statistics (e.g.,
[13, 42, 44, 41, 40]).

Several future research directions are possible. To increase the stability of these
methods, a scheme with an adaptive rank [9, 14, 75] may be adopted using met-
rics given in [62, 21, 46], and a pseudoinverse may be used in instances where our
system is ill-conditioned. Furthermore, a more rigorous stability analysis of the re-
tractions is necessary to obtain sufficient stability criteria similar to the results on
projector-splitting methods [51, 32] in [30]. One may also develop implicit schemes
(see, e.g., [33]) perhaps using inexpensive low-rank inversion methods. Generalizing
this methodology to PDEs with high-order time derivatives is also possible by using a
phase space representation which has been explored in the context of the wave equa-
tion in [55, 56]. One could also generalize these retractions to low-rank tensors [31,
10, 32]. Our results can be useful to other fields such as constrained optimization [77,
35, 1] and autonomy with dynamic reduced-order prediction and control [58, 37, 43,
45, 25].

Acknowledgments. We thank our MSEAS group members for their collabora-
tion. We also thank the anonymous reviewers for their constructive feedback.
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