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Abstract—Cost-effective seafloor mapping at high resolution is
yet to be attained. A possible solution consists of using a mobile,
wide-aperture, sparse array with subarrays distributed across
multiple autonomous surface vessels. Such wide-area mapping
with multiple dynamic sources and receivers require accurate
modeling and processing systems for imaging the seabed. In this
paper, we focus on computational schemes and challenges for
such high-resolution acoustic imaging or migration. Starting from
the imaging condition from the adjoint-state method, we derive a
closed-form expression for Gaussian beam migration in stratified
media. We employ this technique on simulated data and on real
data collected with our novel acoustic array over shipwrecks
in the Boston Harbor. We compare Gaussian beam migration
with diffraction stack and Kirchhoff migration, and we find that
Gaussian beam migration produces the clearest images with the
fewest artifacts.

I. INTRODUCTION

Mapping the seafloor remains a tremendous challenge. The
average depth of the ocean is 3.7 km, but no technology
exists to obtain meter-scale resolution maps of the ocean
with water deeper than 1 km [1–4]. Developing a large-
scale high-resolution mapping system may enable safe nav-
igation for submersibles, monitoring of critical infrastructure,
locating missing objects, as well as identifying and tracking
of hazardous geological processes and vulnerable ecosys-
tems and habitats [5–7]. Recently, we proposed and tested a
cost-effective technology to obtain high-resolution and rapid
seafloor mapping in deep water with a custom acoustic array
[8]. Our design concept uses a mobile, wide-aperture, sparse
array with subarrays distributed across multiple autonomous
surface vessels, each hosting a small local sonar array.

The most basic algorithm of active sonar is to emit a pulse
and record the time it takes to propagate through the water,
reflect off of the seafloor, and return to a hydrophone. This
would provide an estimate of the bathymetry. But, this is in-
sufficient to map wide areas of the ocean since it only provides
a one-dimensional (1D) representation of the ocean per ping,
and it ignores acoustic reflections generated by layered media.
By including multiple acoustic sources and receivers, we can

not only estimate the depth of the seafloor, but provide a three-
dimensional (3D) representation of acoustic scatterers in the
ocean. However, imaging the seafloor across a large aperture
using a dense array of transmitters and receivers comes
with prohibitive costs. In addition, the acoustic data recorded
are inherently noisy and high-dimensional. To address these
challenges, our wide-area deep ocean floor mapping system
proposed in [8] synthesizes a large effective array aperture
using a sparsely populated 2D array of dynamic transmitters
and receivers. The system additionally consists of a signal
processing chain where the array data are conditioned using
matched filtering and calibration for the image reconstruction
step. In this work, we focus on this latter step of imaging, also
known as migration, where our goal is to develop a robust,
highly efficient algorithm that generates 3D images of objects
in the ocean.

Mapping the ocean floor can be broadly defined as a
depth migration task where the goal is to locate the acoustic
scatterers in the ocean-seabed environment and construct a
map of all reflecting interfaces. Depth migration algorithms
are classified as ray-based and wave equation-based methods.
Ray-based methods such as diffraction stack [9], Kirchhoff
migration [10, 11], and beam migration methods [12, 13],
have been used for seismic imaging due to their efficiency
and ease-of-use [14]. However, some limitations arise due to
their high-frequency asymptotic assumptions restricting their
use to simplified environments and coarser resolutions [14].
On the other hand, wave-equation-based methods such as
downward continuation and reverse-time/adjoint-based meth-
ods emanate from solutions of the acoustic wave equation and
have emerged as the methods of choice for full-waveform
inversion and imaging [14–16]. Adjoint-based methods in
particular are desirable for imaging due to their efficiency in
solving the least-squares optimization problem that minimizes
the misfit between observed and computed data [17–19]. The
optimization of the misfit cost function then allows for the
determination of the model parameters, which, in the case
of imaging, corresponds to the location and amplitude of
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the acoustic scatterers using measured data. These advantages
led to widespread applications of adjoint-based methods for
imaging and inversion in inverse scattering [20, 21], seismol-
ogy [17, 18, 22], and electromagnetic tomography [23, 24].
In addition to their use for wave-based inversion, adjoint-
based methods have also been prominent in ocean science
[25–27] and atmospheric science [28–30]. In the context of
ocean acoustics, adjoint-state methods have been used for
ocean acoustic tomography [31–33], geoacoustic inversion
[34–37], and for optimal control for underwater acoustic
sensing [38, 39, & references therein].

In this work, we extend the adjoint-state imaging methods
for applications in ocean floor mapping. We start from the
least-squares optimization problem for minimizing the misfit
between our array’s time-series data and the computed time-
series from the full acoustic wave equation. Imaging the
seafloor is then presented in terms of the so-called imaging
condition [16, 40]. A common challenge in adjoint-state
methods and the imaging condition is the requirement to
compute and store the forward and adjoint fields [19]. Our
approach facilitates this computation by deriving a closed-
form expression for the forward and adjoint fields in stratified
ocean environments using the narrow-angle parabolic equation
initialized with Gaussian beams [41, 42]. In addition, we
parallelize our implementation of this closed-form Gaussian
beam migration algorithm and use GPUs to gain a computa-
tional speedup of > 450×, making it suitable for imaging the
seafloor using our sparse array in quasi-real-time.

We structure the paper as follows. In section II, we sum-
marize the optimization problem and the imaging condition.
We then make a parabolic approximation to the Green’s
function of the Helmholtz equation to obtain our Gaussian
beam migration algorithm. In section III, to compare with
Gaussian beam migration, we write out common ray-based
acoustic inversion techniques used in acoustic, seismic, and
electromagnetic wave imaging: diffraction stack [9] and Kirch-
hoff migration [10, 11, 14]. In section IV, we apply and
evaluate our algorithm on simulated data as well as real data
collected at sea in the Boston Harbor with our acoustic array.
Finally, we conclude in section V with closing remarks and
future research directions.

II. GAUSSIAN BEAM ADJOINT-STATE METHOD

The goal of this section is to derive a closed-form expression
to form 3D images of acoustic scatterers. First, we discuss the
physics and mathematical formulation of the problem.

Acoustical phenomena are governed by the wave equation,

1

c2
∂2

∂t2
u−∇2u = f,

where c denotes the sound speed, u is the acoustic pressure,
and f is some forcing. The Helmholtz equation may be derived
by Fourier-transforming the wave equation in time, giving

∇2û+ k2û = −f̂ ,

where û denotes the Fourier-transformed acoustic pressure,
k = ω/c is the wavenumber, ω is the angular frequency, and f̂

is the Fourier-transformed forcing. For this paper, we operate
in the frequency domain due to the parallelizability of the
forthcoming algorithm. Scattering of the wavefield occurs due
to discontinuities in the acoustic media, i.e. in c or k. We call
these discontinuities “scatterers,” and the goal of imaging is
to locate scatterers from their reflections.

Let F : m → d denote a mapping between the model of
our system we are trying to invert, in this case, the slowness
m = 1/c2, and the data we observe, d, which are acoustic
reflections recorded by hydrophones. F may be thought of
as the forward operator that, given the environmental model
slowness field m, returns the wavefield governed by the wave
equation at receiver locations. To invert this operator, the
optimization problem we seek to solve is

argmin
m

∥F [m]− d∥2.

The adjoint-state method is a way to efficiently evaluate the
gradient of the cost function in the minimization problem
above. We refer to [18, 43] for a review of the adjoint-
state method, and we recommend [40] for a derivation of the
imaging condition given below, which amounts to performing
one step of gradient descent and is often called reverse-time
migration (RTM). Let F ∗ denote the adjoint of the lineariza-
tion of F and δm denote a perturbation in the slowness (i.e.,
the scatterers). In the frequency domain, we have that

δm(x, y, z) ∝ (F ∗d)(x, y, z)

= 2π

∫
q̂(x, y, z, ω)ω2û0(x, y, z, ω)dω, (1)

q̂(x, y, z, ω) =

∫
Ĝ(x́, ý, ź, x, y, z, ω)·

d̂ext(x́, ý, ź, ω)dx́dýdź. (2)

Variables with are complex conjugated and ˆ are Fourier-
transformed. q̂ is adjoint field, Ĝ is the Green’s function of the
Helmholtz equation, and û0 is the solution to the Helmholtz
equation given an initial guess for the slowness m0, implying
that m ≈ m0 + δm. d̂ext are the extended data expressed as a
field by

d̂ext(x, y, z, ω) =
∑
j

d̂j(ω)δ(x− xj)δ(y − yj)δ(z − zj),

where d̂j are individual data streams for each j receiver at
position (xj , yj , zj), and δ is the Dirac delta function.

With equations (1) and (2), we have a way to obtain an
approximate 3D image of the scatterers δm given hydrophone
data d. As an approximation to the Green’s function of the
Helmholtz equation Ĝ, one may use Gaussian beams [44–47],
which are an exact solution of the parabolic wave equation
[42], a one-way equation often used to approximate solution
to the Helmholtz equation in weakly scattering media. Such
an approximation is often made due to the computational
difficulty in solving the Helmholtz equation; in contrast,
Gaussian beams are given in closed form, making Gaussian
beam migration a popular technique for acoustic inversion
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[12, 13, 48–51]. Though the goal is to localize scatterers,
meaning that the media is not weakly scattering, if we only
apply one gradient descent step using the imaging condition,
then we only need to approximate the Green’s function for
our initial guess of the slowness m0. And if m0 is weakly
scattering, the parabolic wave equation serves as a valid
approximation [31].

Oftentimes, the initial slowness m0 is taken to be uniform.
However, in our experimental setup, the ocean environment
is heterogeneous, and we incorporate this sound speed field
information into our initial guess. At each site where we
perform acoustic inversion, we measure the sound speed in
the ocean column (see figures 4 and 6). Consequently, our
best approximation of the environmental media is given by a
refractive index (or sound speed or wavenumber) that depends
solely on depth: n2 = n2(z). In our analysis below, we obtain
a closed-form solution to the parabolic wave equation in the
form of Gaussian beams in the presence of stratified media.

Consider the narrow-angle parabolic wave equation [41]
with the vertical depth chosen as the marching direction,

∂ψ

∂z
=
ik0
2

(
n2(z)− 1

)
ψ +

i

2k0

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
, (3)

where ψ denotes a wave envelope such that the acoustic
pressure in the frequency domain is p̂ = eik0zψ. Since
n2 = n2(z), we may Fourier transform in x and y, giving

∂ψ̃

∂z
=
ik0
2

(
n2(z)− 1

)
ψ̃ − i

2k0

(
k2x + k2y

)
ψ̃,

where ˜ denotes the spatial Fourier transform and kx, ky are
the Fourier dual variables of x, y. Assuming some initial
conditions ψ0 at z = 0, this ordinary differential equation
is solved by separation of variables.

ψ̃(kx, ky, z) = exp

(∫ z

0

ik0
2

(n2(s)− 1)ds

)
·

exp

(
− i

2k0

(
k2x + k2y

))
ψ̃0

Taking the inverse Fourier transform, we obtain

ψ(x, y, z) = − ik0
2πz

exp

(∫ z

0

ik0
2

(n2(s)− 1)ds

)
·

exp

(
ik0
2z

(
x2 + y2

))
∗ ψ0(x, y),

where ∗ denotes the 2D spatial convolution.
We model the acoustic transmitters (or receivers) as Gaus-

sian sources, first assuming they are aligned in a plane at
z = 0. We consider the jth transmitter (or receiver) initially,
noting that a linear superposition may be taken.

ψ0 =
1√
2πσ2

exp

(
(x− xj)

2 + (y − yj)
2

4σ2

)
Each source is normalized so that its square integral is one.
Substituting this into our expression of ψ(z) and multiplying

by exp(ik0z) to obtain the pressure field as a sum of Gaussian
beams, we have

p̂(x, y, z;ω, xj , yj) =

√
2

π

σk0
2k0σ2 + iz

exp (ik0z) ·

exp

(
ik0
2

∫ z

0

n2(s)− 1ds

)
·

exp

(
−k0

(
(x− xj)

2 + (y − yj)
2
)

4k0σ2 + 2iz

)
. (4)

If the sources are located at different values of z, the
analysis above may be generalized simply by considering a
linear superposition of wave fields. Furthermore, the initial
beamwidth is given by w0 = 2σ, and the radius of curvature
of the beam at z = 0 can be modified by changing the complex
phase of the initial conditions.

Now, we use our expression for the acoustic pressure p̂ in
equation (4) to obtain our initial guess û0 in equation (1) as
well as our adjoint field q̂ in equation (2).

û0(x, y, z;ω) =
∑
j

ŝj(ω)p̂(x, y, z;ω, x
(s)
j , y

(s)
j ) (5)

q̂(x, y, z;ω) =
∑
j

d̂j(ω)p̂(x, y, z;ω, x
(r)
j , y

(r)
j ) (6)

Above, ŝj(ω) and d̂j(ω) are the acoustic source and receiver
signals, respectively, Fourier-transformed in time. The sets
{x(s)j , y

(s)
j }j and {x(r)j , y

(r)
j }j are the positions of the trans-

mitters and receivers of the acoustic array. To then obtain a 3D
image, we use equations (5) and (6) in the imaging condition
(1) and approximate the integral with a discrete sum. With that,
we have a closed-form expression to form images in stratified
media.

III. RAY-BASED ACOUSTIC INVERSION

In the following section, we contrast our Gaussian beam mi-
gration algorithm with two ray-based approaches: diffraction
stack [9] and Kirchhoff migration [10, 11, 14]. Both of these
algorithms may be viewed through the lens of the adjoint-
state method, making different approximations to the Green’s
function of the wave equation. Instead of approximating the
Green’s function with Gaussian beams, a high-frequency ray-
based approximation is made.

In both of these methods, an initial guess of uniform
slowness is assumed, though curved rays may be incorporated
to overcome this [52–54]. The diffraction stack image is then
given by

δm ∝
∑
j,l

Sj,l(x, y, z)dl(t0 − τj,l(x, y, z)). (7)

The index j corresponds to each transmitter, and the index l
corresponds to each receiver. Sj,l is a scattering model that
takes into account how acoustic pulses reflect off of realistic
media both specularly and diffusely [55–57]. The scattering
model depends on the receiver-transmitter pair as well as each
imaging point (x, y, z) in the 3D domain. t0 is the starting
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time of the transmitted pulse, and τj,l(x, y, z) is the traveltime
between transmitter j, point (x, y, z), and receiver l.

One formulation of Kirchhoff migration from [11] is given
by

δm ∝
∑
j,l

Sj,l(x, y, z)(cosϕj(x, y, z) + cosϕl(x, y, z))·

d

dt
dl(t0 − τj,l(x, y, z)) , (8)

where ϕj(x, y, z) is the angle between the vertical and the line
connecting transmitter j and the point (x, y, z) while ϕl is the
angle between the vertical and the line connecting receiver
l and the point (x, y, z). The cosine terms and derivative
arise from the exploding reflector model, but kinematically,
equations (7) and (8) are the same: energy will be placed
at the same locations, but there may be more artifacts in
one algorithm compared to the other. In both algorithms,
τj,l(x, y, z) is computed as the distance between transmitter
j and point (x, y, z) plus the distance between point (x, y, z)
and receiver l divided by the (uniform) sound speed.

IV. ALGORITHMIC COMPARISON

A. Validation Using Simulated Data

To compare the three algorithms, we need to know the
ground truth. With data gathered by our acoustic array in
the ocean, the true bathymetry and objects in the ocean
are unknown. Furthermore, environmental noise pollutes the
data, making a comparison challenging. So, we used sim-
ulated data from diverse numerical configurations to deter-
mine which algorithm produces the best and cleanest image.
Here, we report the results of one such configuration. We
define a 2D computational domain with x ∈ [−.75, .75]
and z ∈ [0, 1.05] with uniform sound speed c = 1,500
m/s. We place nine co-located receivers and transmitters
at x = [−0.53492,−0.5,−0.41413,−0.11914,−0.042327,
0, 0.41402, 0.5, 0.601] and z = 0. Then, we generate the
bathymetry b(x) using a linear superposition of Gaussians.

b(x) = 0.99875− 0.05 ∗ exp
(
− x2

.02

)
− 0.025 ∗ exp

(
− (x− 0.2)2

.0005

)
− 0.04 ∗ exp

(
− (x+ 0.4)2

0.0025

)
Finally, we assume each transmitter j emits a Gaussian pulse
of the form

ψ0(x) = exp

(
(x− xsj)

2

2 · 10−5

)
.

To obtain the full wavefield in the domain, we use a coupled
numerical solver comprised of a parabolic wave equation
solver and a Helmholtz equation solver. The narrow-angle
parabolic wave equation (3) is valid in weakly scattering
media, i.e. the area above the bathymetry. The Helmholtz
equation is valid everywhere, but since it is an elliptic rather

(a)

(b)

(c)

(d)

Fig. 1. 2D simulated results. We compute images, i.e. the model perturbation
δm, using (a) Gaussian beam migration, (b) diffraction stack, and (c)
Kirchhoff migration. In (d), we show the ground truth.

than a parabolic PDE, it is more expensive to compute. So, we
solve the narrow-angle parabolic wave equation from z = 0 to
z = 1.05 via the split-step Fourier algorithm with an artificial
absorption layer in x [42]. Next, we solve the Helmholtz
equation in a small region at the bottom of the domain using
the method of fundamental solutions [58], setting the pressure
to be the additive inverse of the parabolic wave equation
solution at the bathymetry. In doing so, we can add the
two fields, and a Dirichlet-zero condition will be enforced
at the bathymetry. Finally, the narrow-angle parabolic wave
equation is solved again, this time from the bottom up, to
propagate scattered energy back to the receivers. The initial
conditions for the final parabolic wave equation solve are
taken to be a slice of the acoustic field obtained from the
Helmholtz equation above the bathymetry. Note that we do not
include the solution from the initial parabolic wave equation
in the initial conditions for the final parabolic wave equation
solve since that solution corresponds to downward-propagating
energy. The full wavefield is given by the superposition of
each numerical solution in its respective domain. This entire
process is repeated for 501 frequencies from 0 Hz to 150,000
Hz with a frequency spacing of 300 Hz. Once completed, data
at only the receivers are stored and inverted back into the time
domain via the inverse discrete Fourier transform.

The results of applying each imaging algorithm to the
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Fig. 2. Sea test route and shipwreck identifiers.

simulated data, i.e. computing the three model perturbations
δmGBM, δmDS, and δmKM, are shown in Figure 1. Our new
Gaussian beam migration (GBM) produces the sharpest image
with the fewest artifacts. Diffraction stack (DS) produces a
smeared image as it does not include amplitude corrections
to the imaging condition. Kirchhoff migration (KM) is less
smeared and more similar to Gaussian beam migration; how-
ever, it includes hyperbolic artifacts. In each case, the right
side of the small Gaussian bump at x = 0.2 is not captured
because reflections off of that steep side are not recorded
by the fictitious hydrophone array. Increasing the number of
transmitters and receivers would recover the full bathymetry.

B. Evaluation using Ocean Array Data

Next, we compare the techniques with real data we collected
during two ocean tests using a custom-built large sparse
aperture sonar array operating at 33 kHz. More information
about the array and the tests can be found in [8]. Figure 2
shows the sea test route along with shipwreck identifiers based
on the Automated Wreck and Obstruction Information System
(AWOIS) records [59]. In this paper, the data collected from
imaging the AWOIS 2112 (collected during sea test 2 on May
19, 2021) and 2117 (collected during sea test 1 on October 9,
2020) sites are used for showcasing our closed-form Gaussian
beam migration algorithm.

Starting with the AWOIS 2112 site located at (42.39°N, -
70.92°W), the data we collected consists of navigation data
from a dual antenna inertial navigation system, sound speed
profiles, and the array data obtained using 6 transmitters and
256 receivers. The array data was first health checked for faulty
channels and then matched filtered. Following that, we time-
aligned the data across all receive channels and calibrated for
the array positions using the navigation data. The matched
filtered and calibrated data collected at AWOIS 2112 is shown

(a) AWOIS 2112

(b) AWOIS 2117

Fig. 3. AWOIS 2112 and AWOIS 2117 range profiles of all transmit–receive
pairs after matched filtering.

(a) (b)

(c)

(e)

(d)

Fig. 4. AWOIS 2112 sound speed profiles and images from May 19, 2021.
(a) Measured sound speed and smoothing spline fit to the measurements. (b)
3D point cloud of the acoustic scatterers. Below, we show 2D slices obtained
by taking the maximum energy over the x dimension using (c) Gaussian beam
migration, (d) diffraction stack, and (e) Kirchhoff migration.
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Fig. 5. Reference imagery of the seabed at the AWOIS 2112 site obtained
on May 19, 2021 using a Humminbird Helix 7 side-scan sonar operating at
462 kHz. The black box highlights the identified sunken object.

(a) (b)

(c)

(d)

Fig. 6. AWOIS 2117 sound speed profiles and images from October 9, 2020.
(a) Measured sound speed and smoothing spline fit to the measurements. (b)
3D point cloud obtained with Gaussian beam migration. (c) and (d) Different
2D slices by taking the maximum energy over x and y, respectively.

Fig. 7. Reference imagery of the seabed at the AWOIS 2117 site obtained
on October 9, 2020 using a Humminbird Helix 7 side-scan sonar operating
at 462 kHz. The black box highlights the identified sunken object.

in Figure 3a, where time signals are plotted as the two-way
distance range profiles, i.e. the distance it takes for the signal
to travel from the transmitter, propagate, and scatter through
the medium, then travel back to the receiver. In this figure,
the direct blasts (highlighted in red) and surface and bottom
reflections can be seen. This data was then used in our imaging
algorithms. Our Gaussian beam migration code accounts for
the measured sound speed profile at that location (shown in
panel (a) in Figure 4), while our implementation of diffraction
stack and Kirchhoff migration, however, does not take this
profile into account and assumes a constant sound speed in
the medium.

In Figure 4, we show a 3D point cloud of the image as
well as 2D slices of the image. In addition to measuring
the bathymetry, we image what appears to be two objects
above the seafloor. In this realistic case, the Gaussian beam
migration algorithm again produces the cleanest image, while
diffraction stack smears the image, and Kirchhoff migration
introduces hyperbolic artifacts. These maps can be compared
to a reference imagery of the seabed we collected during
our sea test using a Humminbird Helix 7 side-scan sonar
operating at 462 kHz. The reference imagery is provided in
figure 5 with the identified sunken object highlighted by the
black box. Comparing the reference map to our sparse aperture
array images obtained using the closed-form Gaussian beam
migration algorithm, we see that our algorithm successfully
migrates the image to the correct depth and provides an image
resolution comparable to the side-scan sonar image while
operating at a much lower (around 14x lower) frequency.

Finally, we show the data and results from the AWOIS
2117 site located at 42.39°N, -70.86°W. In figure 3b, we
show the range profiles of the array data. Figure 6 shows the
sound speed profile and the 3D point cloud from the Gaussian
beam migration. We also show 2D slices of the 3D image.
Though a majority of the energy received is reflected off of the
bathymetry, there is clearly an object resting on the seafloor.
Comparing our sparse aperture array images to the reference
imagery obtained using a Humminbird Helix 7 side-scan sonar
shown in figure 7, the sunken object in the migrated image is
placed at the correct depth with comparable image resolution.
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V. CONCLUSION

From the imaging condition, we derived a closed-form
expression for Gaussian beam migration in stratified media and
compared the formulation with diffraction stack and Kirchhoff
migration. Through numerical simulation and realistic test
cases with data collected over shipwrecks in the Boston
Harbor, we have shown the improved efficacy of Gaussian
beam migration over diffraction stack and Kirchhoff migration.
Images produced by Gaussian beam migration are sharp and
minimize hyperbolic artifacts present in ray-based methods. In
addition, we demonstrated how our large sparse aperture sonar
array and our closed-form Gaussian beam migration algorithm
can generate seafloor maps at a comparable resolution to a
commercial high-frequency side-scan sonar.

To accelerate the imaging computation, we parallelized
our algorithms and ran them on GPUs. For Gaussian beam
migration in particular, the image formation may be em-
barrassingly parallelized in two ways. First, an image may
be constructed for each transmitter separately on individual
processors and summed at the end. Second, the integrand (or
discrete sumand) in (1) may be parallelized over frequency.
Furthermore, the entire frequency domain need not be utilized;
we use a bandpass filter with frequency cutoffs computed at
user-defined thresholds of the source spectrum. Diffraction
stack and Kirchhoff migration may be parallelized over each
voxel/point in the domain. After parallelizing and porting our
Gaussian beam migration code to GPUs, we saw a > 450×
speedup.

In the future, we hope to incorporate scattering models
[55–57] and advanced imaging conditions [60, 61] into the
Gaussian beam migration in an effort to further improve image
clarity. Additionally, we hope to develop more robust post-
processing techniques to recognize discrete objects and further
reduce any remaining imaging artifacts. Finally, we intend
to perform a sensitivity analysis and incorporate Bayesian
inversion and uncertainty quantification [62–65]. This would
allow us to understand how uncertainty in the environment,
as well as stochasticity in the transmitter/receiver locations,
angles, and source signals, affect the resulting image. This
future direction can build upon our recent work on developing
stochastic reduced-order models that capture the probability
density function of acoustic waves propagating in a stochas-
tic environment using the Dynamically Orthogonal Parabolic
Equations [66–68].
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