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Abstract

We obtain, solve, and verify fundamental differential equations for energy–time path planning in dynamic flows. The
quations govern the energy–time reachable sets, optimal paths, and optimal controls for autonomous vehicles navigating
o any destination in known dynamic environments, minimizing both energy usage and travel time. Based on Hamilton–Jacobi
heory for reachability and the level set method, the resulting methodology computes the Pareto optimal solutions to the

ulti-objective path planning problem, numerically solving the exact equations governing the evolution of reachability fronts
nd optimal paths in the augmented energy and physical-space domain. Our approach is applicable to path planning in various
ynamic flow environments and energy types. We first validate the methodology through a benchmark case of crossing a
teady jet for which we compare our results to semi-analytical optimal energy–time solutions. We then consider unsteady flow
nvironments and solve for energy–time optimal missions in a quasi-geostrophic double-gyre flow field. Results show that our
heory and schemes can provide all the energy–time optimal solutions and that these solutions can be strongly influenced by
nsteady flow conditions.
2022 Elsevier B.V. All rights reserved.
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1. Introduction

The growth of autonomous vehicles has been staggering in the last decade. Self driving cars, autonomous
rones, and underwater vehicles have all seen a surge of interest [e.g. 1–6]. Central to the effective operation
f all autonomous vehicles is efficient and accurate motion control which falls under the purview of path planning.
ath planning, in the most general sense, corresponds to a set of rules to be provided to an autonomous robot for
oving from one configuration to another in some optimal fashion [7]. The metric for optimality depends on the

pplication and specific objectives of the user. It includes optimizing for travel time, energy employed, vehicle safety,
r quality of collected data to name a few [8,9]. Increasingly, the requirements for vehicles to operate autonomously
or longer duration in harsh conditions [10] and the need to sustain the health of our planet [11,12] have resulted
n the ever-increasing importance of energy optimization. In particular, one can optimize vehicles and propulsion
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systems, or better use the environment to minimize energy consumption. There are indeed many applications where
the environment can play a significant role in the sustainable navigation of marine, land, and air vehicles [13]. The
novel focus of this work is on exact equations and computational methods for the joint energy–time optimal path
planning of autonomous vehicles navigating in known strong and dynamic environments. The theory and schemes
are verified in the ocean context but the results are applicable to other environments.

The energy requirements of marine vehicles are diverse. In addition to the power required for the propulsion
ystem itself, power is also needed for non-propulsive purposes – what is known as the “hotel” load – for components
uch as the sonar system for mapping and systems for data transmission and reception [14]. When navigating
rom a start point to the desired destination, energy efficiency ultimately comes from two major sources: (1) The
ehicle itself such as new designs, propulsion systems, and power systems, or (2) The controls such as headings
nd speeds that optimize energy expenditure. The former includes novel vehicle designs based on hydrodynamic
haracteristics [15]. In particular, the TETHYS vehicle [16] achieves energy efficiency by minimizing drag and
aximizing propeller efficiency. New power systems include Solar-powered Autonomous Underwater Vehicles

SAUV) [17], several of which enable recharge of the onboard energy system when the vehicle returns to the
urface [18–21]. Improved power sources with higher energy and power density, lower cost, and longer life [22,23]
lso include new battery cells, semi-fuel cells, and even flywheel batteries [24–27].

Our focus here is the second approach for energy–time efficiency: predict controls and paths that optimize
oth energy and time. Path planning for autonomous vehicles has been extensively studied, especially for static
nvironments [28,29]. The ocean environment is however a harsh and highly dynamic system with considerable
ariability in time and space. Strong currents and waves have a significant influence. The speeds of currents are
ften either comparable to that of vehicles, such as for Autonomous Underwater Vehicles (AUVs) [30], or much
arger than vehicle speeds, such as for gliders [7,31]. It is then imperative to account for the dynamic nature of
cean currents and their effect on the resulting vehicle path. Similar statements can be made for birds, drones, or
lanes in strong winds and gusts [32,33]. In general, vehicles can save significant energy by leveraging the external
ow field such that, when and where flows are favorable, the thrust can be reduced and energy can be saved. Due to

he spatial complexity and variability of currents and winds, and to the corresponding undetermined optimal control
quations, it is however not obvious to predict which regions are reachable, which paths to take, and when/where
o slow down, so as to reach the destination in minimum time and energy. The critical challenges are to predict the
ows in time and space, and to predict the reachable sets [34] (set of all states reachable from a given starting state,
s defined formally in Section 3.1) and optimal paths for the joint energy-and-time control optimization in these
ows. If currents or winds are assumed known, the central questions remaining are: what are the equations that
overn the energy–time optimal control and path solutions, and what are efficient numerical schemes for solving
hese equations?

In this work, we develop fundamental differential equations that govern the reachable locations and the power
nd headings that optimize the energy usage and travel time of vehicles navigating in deterministic dynamic
ows. Given a start location, final destinations, initial energy, and power–speed relations, our methodology then
redicts the corresponding optimal paths. The differential equations we obtain use Hamilton–Jacobi theory and
overn reachable sets and globally optimal paths for energy–time path planning in dynamic environments. Results
rastically generalize the time optimal results [35] through state augmentation and multi-dimensional differential
ptimization; as we will see, partial derivatives will now be taken with respect to both energy and physical space.
he methodology solves for the family of all solutions that lie on the Pareto front of the multi-objective optimization
roblem with energy and time as cost functions. Users can then select any optimal solution(s) that they prefer based
n how highly they value minimizing energy usage or travel time, or on some weighted combination of the two.

In what follows, we first briefly review existing methods for energy-efficient path planning. In Section 2, we
resent the general problem statement and introduce key notation. Section 3 develops the theory and equations for
nergy–time optimal path planning in dynamic flows. Numerical schemes to solve these equations are provided in
ppendix A. In Section 4, applications and numerical results for path planning in highly dynamic environments are
escribed, followed by the conclusions and discussions on future work in Section 5.

.1. Approximate energy optimal path planning in dynamic flows

Several methods have been proposed for energy-efficient path planning. For methods using graph search schemes,

he state space is discretized into a grid with weighted nodes. The optimal path from the start to the target in this
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discrete space is then turned into a graph search problem which can be solved using a depth-first search, breadth-
first search, Dijkstra’s method, or the A* algorithm [36]. Graph search methods have been applied extensively
for autonomous path planning [37], some incorporating energy efficiency. For instance, Garau et al. [38] build
upon Carroll et al. [37] to determine optimal paths (in terms of energy cost) in ocean environments consisting of
eddies and currents. Kularatne et al. [39] consider graph search based methods for generating time and energy
optimal paths while also considering kinematic constraints on vehicle operation. Huynh et al. [40] use nonlinear
robust Model Predictive Control where optimal paths are found using an A*-like algorithm. Finally, Koay and Chitre
[41] studied the effectiveness of current-aware energy-efficient paths for AUVs using an A* algorithm.

Rapidly Explore Random Trees (RRTs) algorithms use random sampling to explore a space and have been
mployed for energy-efficient path planning. For example, in Rao and Williams [42], RRTs find feasible paths for
liders and subsequently use an A* search to identify a path from this collection that minimizes an energy-based
etric.
Evolutionary algorithms for path planning have also been developed and, within this class, the genetic algorithm

GA) and particle swarm optimization (PSO) algorithm are two of the most popular [43]. Alvarez et al. [44] use
genetic algorithm approach on a grid to find possible minimum energy cost paths in spatially and temporally

ariable ocean environments. Cao et al. [45] consider a framework for optimal path planning for underwater gliders
n 3D space that uses a modified 3D Dubins curve to obtain candidate paths and then uses a genetic algorithm to
enerate optimal trajectories that minimize energy consumption. Huang et al. [46] uses receding horizon control
long with particle swarm optimization to generate trajectories that are energy optimal for solar-powered vehicles
or the purpose of target tracking. An issue for all of these GA and PSO schemes is the lack of theoretical guarantees
or global optima.

Several algorithms also search for optimal continuous paths by formulating the path planning problem as a
onlinear optimization problem. Kruger et al. [47] compute paths by solving an optimization problem in which
nergy usage is added to the search space, thus allowing for the vehicle thrust to be modified to minimize energy
xpenditure. Witt and Dunbabin [48] then extend these results by optimizing continuous paths in a search space
hat includes time, obstacles, traversability, propulsion energy, and speed.

Stochastic optimization methods based on partial differential equations (PDEs) have been developed for energy
ptimal path planning [9,49]. The vehicle speed is then treated as a dynamic random variable, rendering the
amilton–Jacobi PDE stochastic. The Dynamically Orthogonal (DO) equations are used to optimally reduce the

tochastic PDE and compute minimum energy paths among the sampled distribution of time optimal paths.
All the above methods are useful, especially for static environments or for problems where approximate solutions

re sufficient. In strong dynamic flows, however, most of these methods cannot provide the exact optimal energy–
ime solutions efficiently. In particular, for time-optimality, graph search methods have been shown to be less
fficient than solving the exact Hamilton–Jacobi (HJ) equations [50].

. Problem statement

Energy–time optimal path planning is a multi-objective optimization problem with competing objectives: reach
he destination (i) as quickly as possible and (ii) using the minimum energy possible. These objectives are often
ompeting since the vehicle can typically reach the destination faster if it uses more energy.

In general, non-trivial multi-objective optimization problems do not have a unique global solution that optimally
atisfies each objective [51]. In these cases, a possibly infinite set of solutions exists, where each candidate solution
s said to be Pareto optimal [52]. A Pareto optimal solution is one that cannot be improved upon in any objective
ithout degrading the performance of at least one other objective [53]. The set of Pareto solutions is referred to

s the Pareto front. In the case of energy–time optimal path planning, where the two objectives are minimizing the
rrival time and the vehicle energy use, any Pareto optimal solution will correspond to one where the destination
annot be reached any faster while arriving with the same amount of energy or, where the destination cannot be
eached using less energy given the same amount of time, see Fig. 1(a) –1(b).

In this work, the goal is to solve for the whole Pareto front, deriving and using the exact differential equations
or optimal energy–time reachability. Our goal thus includes three classes of common problems:

a. Time optimal path planning with an energy constraint.
b. Energy optimal path planning with a time constraint.
c. Energy–time optimal path planning, or any arbitrary solution(s) on the energy–time Pareto front.
3
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p

Fig. 1. Problem Statement: Energy–time optimal path planning. (a) Schematic describing the vehicle dynamics in the augmented energy and

hysical-space domain. In physical space (x, y, z; z not shown), the vehicle travels from a start point (xs : •) to a target final point (x f :
⋆) and is forced by an external flow field (V : →). The net physical-space velocity of the vehicle ( dX p

dt : →) is the sum of this external
flow velocity (V : →) and the nominal propulsion velocity of the vehicle (F(t) ĥ(t): →). As the vehicle travels, it also loses energy. If we
consider the vehicle in the augmented state space, i.e. the joint energy and physical-space domain (x, y, z, e; z not shown), its velocity in
the energy dimension is the power loss or rate of energy lost due to propulsion (−Ẇ : →). The net generalized velocity of the vehicle in the
augmented state space (→) is the sum of these velocities: the net physical-space and power-loss velocities. (b) Pareto Front in the time and
energy domain. In multi-objective optimization, the performance of Pareto solutions cannot be improved without worsening the performance
for other objectives. The above sketch shows the performance of various feasible solutions on the two objectives we wish to minimize —
the time to reach the destination (t f ) and the Energy used (Eused ). The set of feasible solutions forms the feasible region. The Pareto front
or all optimal solutions are marked in blue. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

2.1. Problem parameters

Consider a vehicle tasked with navigating in a physical domain Ω ⊆ Rd from a start point xs to a specified
target point x f , starting at initial time ts = 0 with an initial energy es . The position and energy available of the
vehicle at time t are denoted by X p(t) and E p(t), respectively, where the energy available should remain positive
E p(t) > 0 ∀t ∈ [ts, t f ]. These set of conditions and constraints can be written as

X p(0) = xs (1a)

E p(0) = es (1b)

X p(t f ) = x f (1c)

E p(t) > 0 ∀t ∈ [ts, t f ] . (1d)

Along its path, the vehicle has two propulsion controls that it uses to solve the optimal planning problem at hand:
(i) its time-dependent nominal speed F(t) ∈ [0, Fmax], Fmax ∈ R, and (ii) its heading direction, which may be
time-dependent, and represented by a unit vector, {ĥ(t) ∈ Rd

: ∥ĥ(t)∥2 = 1}. For convenience, we summarize the
main problem parameters in Table 1.

The vehicle operates in a large-scale environment with an assumed known deterministic background dynamic
flow field V (x, t) : Ω×(0, ∞) → Rd . In practice, this known flow field could be provided by a model or data-driven
forecast [5]. The spatial dimensions of the vehicle, O (m), are in general much smaller than the spatial scales, O
(≫ 100 m), of both the background flow and distance to travel. The control of the local vehicle motions, handled by
a local controller, is thus not considered here. In this work, the vehicle is modeled as a point particle whose motion
through the physical space is governed by the relative motion due to its thrust and advection from the large-scale
background flow. While navigating, the vehicle uses energy for thrust and to power its various components needed

for operation. We assume that the latter is on average relatively constant or negligible compared to the former. We

4
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Table 1
Summary of main problem parameters.

x, e, t Physical-space, energy and time coordinates X p(t) Vehicle position at time t
xs Start point E p(t) Vehicle energy at time t
x f Target point F(t) Vehicle nominal speed at time t
es Initial vehicle energy at start point Fmax Maximum vehicle nominal speed
e f Final vehicle energy at target point ĥ(t) Vehicle heading at time t
ts Start time V (x, t) Spatio-temporal velocity field
t f Final time Ẇ (F) Energy loss rate as a function of vehicle speed
k, n Parameters of the power–energy law

focus here on the power consumed for thrust generation, and assume it is mostly a function of the nominal vehicle
speed: Ẇ = Ẇ (F(t)). Combining the evolution of the vehicle position with the energy evolution governed by the
first law of thermodynamics, the full dynamics of the vehicle’s state is given by the ordinary differential equations
(ODEs):

dX p

dt
=V

(
X p(t), t

)
+ F(t) ĥ(t) , (2a)

dE p

dt
= − Ẇ (F(t)). (2b)

he vehicle and environmental dynamics are schematized in Fig. 1(a). In Eq. (2b), there exist several models for
he thrust power function including Ẇ ∝ F(t) for constant drag-force, Ẇ ∝ F(t)2 for linear drag, Ẇ ∝ F(t)3

or quadratic drag, or, for more accurate models, a combination thereof [9,54–56]. In our derivations, we consider
he generic monomial Ẇ (F(t)) = k · F(t)n where n is a positive integer and k ∈ R+ is independent of F and
ommonly a constant of proportionality. In the examples, we assume only a quadratic drag, and thus model the
ower consumption as Ẇ (F(t)) = k · F(t)3. We note that the application determines the complexity needed for the
ower usage model; more complex models would account for, e.g., nonpolynomial dependencies on the relative
peed, pressure effects, and other forces such as lift. With the vehicle dynamics specified, we now define the three
ommon classes of optimal path planning problems.

.1.1. Time optimal path planning with an energy constraint
In time optimal path planning, the vehicle is tasked with reaching the destination in minimal time. Here, we

ugment this problem by adding a constraint on the energy usage and require that the vehicle arrive at the destination
ith at least some amount of energy remaining emin . Denoting the final time, or time of arrival, by t f (F, ĥ), the

onstrained optimization problem for minimal arrival time is defined as,

minimize
F(t), ĥ(t)

t f

subject to E p(t f ) ≥ emin

Eqs. (1a–d)
Eqs. (2a–b)

(3)

.1.2. Energy optimal path planning with a time constraint
Alternatively, the dual problem is energy optimal path planning where the vehicle is now tasked with reaching

ith maximum amount of energy remaining – that is equivalent to minimizing the total energy used – but with a
onstraint of specified maximum time of arrival tmax . Denoting the energy remaining upon reaching the target as
f (F, ĥ), this constrained optimization problem for minimum energy usage is defined as,

maximize
F(t), ĥ(t)

e f

subject to t f ≤ tmax

Eqs. (1a–d)
(4)
Eqs. (2a–b)
5
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2.1.3. Multi-objective energy–time optimal path planning
The above two cases fall under the general class of multi-objective path planning. In particular, if we consider

he two objectives jointly, minimizing arrival time and maximizing the energy remaining (equivalent to minimizing
he negative of the energy), we define the multi-objective optimization problem as,

minimize
F(t), ĥ(t)

[t f , −e f ]

subject to Eqs. (1a–d)
Eqs. (2a–b)

(5)

n this case, the aim is to find the Pareto optimal solutions (the Pareto front) of the optimization problem.
As the optimization problems (3) and (4) define specific Pareto optimal solutions of the above general class, in

his work we focus primarily on solving problem (5). Additionally, as we will show, our equations govern exact
olutions on the Pareto front. Once a Pareto optimal solution from this set is chosen (e.g., when a user selects a
esired time to reach and a remaining energy at destination), our methodology predicts the optimal controls and
ptimal path(s) through the dynamic flow environment.

. Theory

We now obtain the governing equations for energy–time optimal path planning. In Section 3.1, we review key
oncepts from control theory and reachability for time optimality. In Section 3.2, we derive the new energy–time
ptimal equations.

.1. Time optimal path planning: Control and reachability

For time optimality, all parameters are as in Section 2.1, but the only constraints are (1a, c) and relevant dynamics
s the vehicle’s motion and trajectory through the physical space, Eq. (2a).

Central to this problem is the evolution of the reachable set of the vehicle [34]. Denoted as R(xs, t), the reachable
et then contains all of the states in the physical space that can be reached at a time t when starting from state xs

t initial time t = 0 and using a valid sequence of controls (speed and heading functions). The boundary of this
et, ∂R(xs, t), is termed the reachability front, and intuitively represents the furthest points in space the vehicle can
each at a given time. Once this front reaches the target, a point that remained on the front and reached the target
orresponds to a time optimal path. Therefore, with the concepts of reachability, the time optimal path problem
onsists of evolving the reachability front forward until it reaches the target and then evolving a corresponding
rajectory backward until coming back to the start point.

Computing and evolving the reachability front is thus central to time optimal path planning. To do this, the level
et method [7,57] has proven to be quite effective. The reachability front ∂R(xs, t) – which is a hyper-surface
f dimension Rd−1 if the physical space is given by x ∈ Rd – is then represented by the zero level surface of
n implicit function φ(x, t). Similarly, the initial reachability front – the reachability front at the time t = 0 – is
epresented by the zero level set of a function φ0(x). At time t = 0, the only state that is reachable is the starting
tate and hence the initial reachable set only contains this state, i.e. R(xs, t = 0) = {xs}. Due to this, φ0(x) can
e defined as a signed distance function relative to xs and the reachable set R(xs, t) is then the set of locations
here φ(x, t) is zero or negative. As developed in [8,35], for suitable Lipschitz conditions, the evolution of φ(x, t)

s governed by the Hamilton–Jacobi PDE:

∂φ(x, t)
∂t

+ max
F,ĥ

{
F ĥ

T
·
∂φ

∂x

}
+ V (x, t) ·

∂φ

∂x
= 0,

φ(x, t = 0) = φ0. (6)

In (6), we used ∂φ

∂x ∈ Rd to denote the generalized spatial gradient vector. The solution to (6) gives φ(x, t)
whose zero level set at any given time yields the reachability front ∂R(xs, t).

The maximization in (6) can be performed analytically. In particular, if the speed function is bounded as F ∈

0, F ], we have that the optimal speed and heading is given, at any point in space and time, as F∗(x, t) = F
max max

6
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f

g

and ĥ
∗

(x, t) =

∂φ
∂x

⏐⏐
(x,t) ∂φ

∂x

⏐⏐
(x,t)

 , respectively, resulting in the following PDE governing the evolution of the reachability

ront:
∂φ(x, t)

∂t
+ Fmax

∂φ

∂x

 + V (x, t) ·
∂φ

∂x
= 0,

φ(x, t = 0) = φ0. (7)

Eq. (7) is solved until the time t f such that φ(x f , t f ) = 0. In other words, the equation is solved until the first
time the reachability front reaches the target. If this condition does not occur, it implies that the target state is not
reachable. We also note that we are using a closed-loop control law and as such, our controls depend on both the
present time and position of the vehicle.

Once the reachability front has reached the destination, using the evolved φ(x, t), the optimal path is determined
by solving Eq. (2a) backward in time. Specifically, for the fastest growth of the reachable set, the optimal heading
is always normal to the reachability front and the optimal speed is Fmax [7,35], such that the optimal path X∗

p(t) is
overned by,

dX∗

p

dt
= −V (X∗

p(t), t) − Fmax ·

∂φ

∂x

⏐⏐
(X∗

p(t),t) ∂φ

∂x

⏐⏐
(X∗

p(t),t)

 . (8)

Eq. (8) is solved backward in time starting from X∗

p(t = t f ) = x f to X∗

p(0) = xs . It is referred to as the
backtracking equation and returns the globally time-optimal path from the start point to the destination. Eq. (8)
is in fact the characteristic equation of the reachability PDE (Eq. (7)). Actuating in the normal direction to the
reachability front ensures that you stay on it. We remark that these equations were used and validated in real-time
at-sea experiments. Using ocean forecasts as inputs, the AUVs using our time-optimal path forecasts reached their
targets first, winning all races, even though the ocean flows were complex [58]. Our equations also provided skillful
reachability forecasts for real floats and gliders during the Northern Arabian Sea Circulation-Autonomous Research
(NASCar) experiment [59,60].

3.2. Multi-objective energy–time optimal path planning

We now derive the equations for energy–time optimal path planning including the forward PDE, Pareto front, and
backtracking ODE. Central to addressing this problem will be a reachability analysis of the system in an augmented
state space involving the vehicle’s spatial position and available energy.

3.2.1. Energy–time forward reachability PDE
To derive the differential equations governing the evolution of the reachability front in the energy–time space,

we start from the dynamics of the vehicle in the physical space, Eq. (2a), and the dynamics in the energy space,
Eq. (2b). We define the augmented state space, Ω a

⊆ Rd+1, whose coordinates xa
= [x e]T

∈ Rd+1 consist of
the spatial position and energy states of the vehicle. For a specified control policy given by the heading function,
ĥ(X p, E p, t), and speed function, F(X p, E p, t), the augmented state trajectory of the vehicle in Ω a, X a

p(t) ∈ Rd+1,
is governed by the ODE system,

dX a
p(t)

dt
= U a(X a

p(t), t) + V a (
X a

p (t) , t
)
, (9)

where

X a
p =

[
X p
E p

]
, (10a)

U a(X a
p(t), t) =

[
F(X a

p, t) ĥ(X a
p, t)

−Ẇ (F(X a
p, t))

]
, (10b)

V a (
X a

p (t) , t
)

=

[
V

(
X p, t

)
0

]
. (10c)
7
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In the augmented state space Ω a, the initial position and energy level of the vehicle at the start point is
xa

s = [xs, es]T . Our goal is to determine the PDE that governs the evolution of the augmented reachable set and
eachability front in Ω a, i.e., R(xa

s , t) and ∂R(xa
s , t). This PDE governs the set of all the points in Ω a (spatial

position and energy level of the vehicle) that are reachable at any arbitrary time t .
To obtain the evolution of the reachable set and reachability front in Ω a, we analyze the ODEs Eq. (9) in the

context of characteristics of a PDE. In particular, under sufficient regularity conditions [61,62] on the augmented
“velocity” field, U a

+ V a, the ODEs Eq. (9) determine the characteristic curves of a generalized advection PDE
defined in Ω a,

∂φ(xa, t)
∂t

+
(
U a(xa, t) + V a(xa, t)

)
·

∂φ

∂xa = 0. (11)

he value of φ obtained by solving this PDE will be constant along trajectories governed by ODEs Eq. (9) – in
ther words, φ is constant along the augmented characteristic curves.

Every point on the reachability front can be reached by a vehicle under some set of controls (by definition).
et F∗(xa, t) and ĥ

∗

(xa, t) be optimal controls that keep a vehicle on the reachability front. Substituting the
orresponding U a∗(xa, t) in Eq. (11), we obtain a PDE whose characteristics are the dynamics of vehicles that
emain on the augmented reachability front,

∂φ(xa, t)
∂t

+
(
U a∗(xa, t) + V a(xa, t)

)
·

∂φ

∂xa = 0. (12)

f the initial field φ0(xa) has a zero contour set to the initial reachability front ∂R(xa
s , 0), the PDE (12) will govern

he evolution of φ(xa, t) such that its zero contour always is the augmented reachability front.
We now define the optimal controls in PDE (12), F∗ and ĥ

∗

, that maximize the growth of the zero contour
nd thus lead to the evolution of the reachability front. These optimal controls are obtained by arg maxF,ĥ (U a(t)+

V a(x, t)) ·
∂φ

∂xa because this choice of F∗ and ĥ
∗

maximally decreases φ at every point in Ω a and subsequently
maximally increases the growth of the reachable region (given by φ ≤ 0). Thus, by maximizing the reachable set
while respecting the physical-energy constraints, we obtain the augmented Hamilton–Jacobi differential equation
governing the evolution of the augmented reachable set and its front:

∂φ(xa, t)
∂t

+ max
ĥ,F

{
U a(xa, t) ·

∂φ

∂xa

}
  

Maximization term

+ V a(xa, t) ·
∂φ

∂xa = 0

H⇒
∂φ(xa, t)

∂t
+ max

ĥ,F

{
F ĥ

T
·
∂φ

∂x
− Ẇ (F) ·

∂φ

∂e

}
+ V ·

∂φ

∂x
= 0 (13)

φ(xa, t = 0) = φ0(xa)

The novel general PDE (13) extends (6) to higher-dimensional reachability in the augmented space-energy
domain, see Fig. 2. As for (6), the initial condition φ0 is set such that its zero contour corresponds to the system’s
initial reachability front, i.e. φ0 is given by a signed distance function relative to the initial state xa

s such that the
initial reachable set holds just the state {xa

s }. Furthermore, the PDE (13) governs the growth of the reachability
front using an implicit function that lives in the state space Ω a of augmented points xa

= [x e]T
∈ Rd+1. At

any point in time t , the zero level set of the field φ(xa, t) will correspond to the reachability front ∂R(xa
s , t). We

summarize the main notation for the governing equations in Table 2.

Maximization of the Hamiltonian
What remains to be addressed is the maximization term in Eq. (13). For autonomous vehicles with energy usage

models Ẇ (F) of certain functional forms, this maximization problem can be solved analytically. As motivated in
Section 2.1, we consider here a power law for the energy usage of the form Ẇ (F) = k · Fn where k is a positive
proportionality constant and n a positive integer. The maximization term then becomes:

max
{

F ĥ
T

·
∂φ

− k · Fn
·
∂φ

}
. (14)
ĥ,F ∂x ∂e
8



M.M. Doshi, M.S. Bhabra and P.F.J. Lermusiaux Computer Methods in Applied Mechanics and Engineering 405 (2023) 115865

h
w
c

Table 2
Main notation for energy–time path planning.

xa Augmented energy and physical-space X a
p(t) Augmented vehicle state: [X p , E p]

coordinate vector: [x , e] i.e., position and energy at time t
xa

s Start state in the augmented state space V a(xa, t) Augmented flow field
R(xa

s , t) Reachable set of states at time t for a U a(xa, t) Augmented control vector
system starting at state xa

s at time t = 0 [ F ĥ , −Ẇ (F) ]
∂R(xa

s , t) Reachability front (boundary of the φ(xa, t) Implicit function whose zero level
reachable set) at time t surface corresponds to ∂R(xa

s , t)
φ0(xa) Initial implicit function whose zero ∂φ

∂xa ∈ Rd+1 Generalized spatial gradient vector
level surface corresponds to ∂R(xa

s , 0)
F∗(xa, t) Optimal control (speed) that ĥ∗(xa, t) Optimal control (heading) that

maximally grows the reachability set maximally grows the reachability set

Fig. 2. Augmented reachability front and Pareto front schematics. (a) Evolution of the reachability front in the augmented state space. (b)
Pareto front which can be computed by tracking the intersection of the level set with the energy line at the destination. (c) Contours of the
reachability front at different energy levels projected onto the physical space. For these schematics, we assumed a three-dimensional (3D)
augmented space thus a two-dimensional (2D) physical space.

We first consider the optimization of the heading ĥ. At any point in the augmented state space and time, it is clear
that, based on the properties of the Euclidean dot product, that the optimal heading is given by,

ĥ
∗

(x, e, t) =

∂φ

∂x

⏐⏐
(x,e,t) ∂φ

∂x

⏐⏐
(x,e,t)

 . (15)

Substituting this heading ĥ
∗

, we are left with,

max
F∈[0,Fmax ]

{
F

∂φ

∂x

 − k · Fn
·
∂φ

∂e

}
  

g(F)

, (16)

ence a function only of F , g(F), to be maximized. Importantly, the optimal F∗ from Eq. (16) will vary in time
ithin Ω a, i.e. we will obtain F∗(x, e, t), because the gradient of φ varies in Ω a and time. In the following, we

onsider an arbitrary fixed point in Ω a and maximize the objective g(F) at that point. As g(F) is a polynomial with
9
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parameter n, its maximum admits an analytical solution for the different positive integer n considered. Specifically,
there are two cases: (i) n ≥ 2 and (ii) n = 1.

(i) Case n ≥ 2
For the case of n ≥ 2, to maximize g(F), we evaluate the derivatives g′(F) and g′′(F), and set g′(F̃) = 0,

g(F) = F
∂φ

∂x

 − k · Fn
·
∂φ

∂e
(17)

g′(F) =

∂φ

∂x

 − k · n ·
∂φ

∂e
· Fn−1 (18)

g′′(F) = −k · n · (n − 1) ·
∂φ

∂e
· Fn−2 (19)

g′(F̃) = 0 H⇒ F̃ =

⎛⎝
 ∂φ

∂x


k · n ∂φ

∂e

⎞⎠
1

n−1

. (20)

ur aim is to determine F∗ in the bounded domain [0, Fmax ] that maximizes g(F). To do this, we consider two
ub-cases: (a) ∂φ

∂e > 0 and (b) ∂φ

∂e ≤ 0:

• (a) ∂φ

∂e > 0: Eq. (19) then implies that the polynomial g(F) attains a maximum on the unbounded domain for
F . This maximum will, furthermore, occur at the unique value of F̃ as given in Eq. (20) and it is important
to note that it will be non-negative. If F̃ ∈ [0, Fmax ], then we simply have that F∗

= F̃ . When F̃ > Fmax ,
the maximum would occur beyond the feasible range and the maximizing speed is limited to F∗

= Fmax .
• (b) ∂φ

∂e ≤ 0: The maximum is then at one of the end points of the interval which, from Eq. (17), can be
concluded to occur at F∗

= Fmax .

These conditions can all be compiled concisely to give the following for F∗, the optimal speed which maximizes
g(F):

max
F∈[0,Fmax ]

{
g(F)

}
= g(F∗) (21)

where F∗(x, e, t) =

⎧⎪⎪⎨⎪⎪⎩
Fmax if ∂φ

∂e ≤ 0

min

⎛⎝Fmax ,

(  ∂φ
∂x


k·n ∂φ

∂e

) 1
n−1

⎞⎠ if ∂φ

∂e > 0.
(22)

ii) Case n = 1
For the case of linear energy usage, we have that

g(F) = F
(∂φ

∂x

 − k
∂φ

∂e

)
. (23)

q. (23) is a linear function whose maximum can be trivially calculated for F∗, the optimal speed:

max
F∈[0,Fmax ]

{
g(F)

}
= g(F∗) (24)

where F∗(x, e, t) =

⎧⎨⎩Fmax if
 ∂φ

∂x

 ≥ k ·
∂φ

∂e

0 if
 ∂φ

∂x

 < k ·
∂φ

∂e .
(25)

inal multi-objective energy–time optimal path planning reachability PDE
Substituting in Eq. (13) the optimal speed F∗(x, e, t) – either Eq. (22) or (25) depending on the energy usage

odel – and the optimal heading Eq. (15), we obtain the PDE governing the evolution of the energy–time reachable
et:

∂φ(xa, t)
+ F∗(x, e, t)

∂φ
 + V (x, t)T

·
∂φ

+

[
−k · [F∗(x, e, t)]n

]
·
∂φ

= 0,

∂t ∂x ∂x ∂e

10
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φ(xa, t = 0) = φ0(xa). (26)

To reiterate, the reachable set is the set of all states (spatial position and energy level) that the vehicle deployed
from the start point (with some initial energy) can be in at any given time. The reachability front is simply the
boundary of this set. At a given time t , any point in the reachable set or on the reachability front in the augmented
state space is a reachable state, that is, controls exist such that the vehicle can reach the specified physical position
with the specified energy at that time. To the best of our knowledge, this is the first time Eq. (26) has been derived
and presented.

3.2.2. Energy–time pareto front
Our results determine the set of Pareto optimal solutions, i.e. the Pareto front, to the multi-objective energy–time

optimal path planning optimization (5). This set of Pareto solutions can be found exactly using the augmented
reachable set governed by the PDE (26) or, in general, by the PDE (13).

Key to determining the Pareto front is to track the evolution of the implicit function, φ(xa, t), projected onto
the destination point x f in the physical spatial space, see Fig. 2. Doing so will give us a set of feasible states the
vehicle can be in at the destination point at all times. We denote this set of feasible states at destination by Fx f .
Given the definition of reachability, we can compute this set,

Fx f = {(e, t) | φ(x f , e, t) ≤ 0}. (27)

The feasibility set given in (27) will include all the energy and time values at which the vehicle can reach the
destination. Given that these are the two quantities we are trying to optimize, we can compute the set of Pareto
optimal solutions, P , given this feasibility set. These will be all the solutions in the feasibility set such that no other
point with a lower time and a higher energy available at destination exists in the set,

P =
{
(e, t) ∈ Fx f

⏐⏐ {
(e′, t ′) ∈ Fx f | e′

≥ e and t ′
≤ t

}
= {(e, t)}

}
. (28)

urther details on how to compute this Pareto front are included in Appendix A.2.

.2.3. Energy–time backtracking
Once the Pareto front has been generated, any Pareto optimal solution can be selected by a decision maker who

xpresses preference for their objectives of interest, e.g., what tradeoff between the final vehicle energy remaining
nd the arrival time. Consider an arbitrary Pareto optimal solution (t∗

f , e∗

f ) to the energy–time optimization problem.
he optimal path, X a,∗

p (t), corresponding to this solution is obtained using the optimal controls and the vehicle
ynamics, solving the augmented backtracking ODE system. Specifically, the following backtracking ODE system
n the augmented state space determines the optimal path,

dX a,∗
p

dt
= −U a

∗
(X a,∗

p (t), t) − V a(X a,∗
p (t), t) , (29)

where

X a,∗
p =

[
X∗

p
E∗

p

]
(30a)

U a
∗
(X a,∗

p (t), t) =

[
F∗(X∗

p(t), E∗
p(t), t) · ĥ

∗

(X∗

p(t), E∗
p(t), t)

−Ẇ (F∗(X∗

p(t), E∗
p(t), t), t)

]
(30b)

V a (
X a,∗

p (t) , t
)

=

[
V

(
X a,∗

p (t) , t
)

0

]
. (30c)

Eq. (29) is solved backward in time starting from X a,∗
p (t = t∗

f ) = [x f , e∗

f ]T . Again, the optimal heading ĥ
∗

is given
by Eq. (15) and optimal speed F∗ by Eq. (22) or (25).

3.3. Summary

We first derived the PDEs governing the reachable set for multi-objective energy–time optimal path planning in

dynamic environments, specifically (26) or, in general, (13). Projecting its reachability front onto the destination

11
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Fig. 3. Schematic describing the problem of finding energy–time optimal paths for crossing a jet flow (or highway). In physical space (x, y),
the vehicle has to travel from the start point (◦) at time ti to the destination (⋆). The environment consists of a steady uniform current of
velocity V going horizontally through the middle of the domain, with physical dimensions ∆x0, ∆y1, ∆y2, and ∆y3. The controls Fi and
θi are the speeds and headings of the vehicle in the three domains (before, in, and after the jet, i = 1, 2, 3). In the third dimension, energy
e, the final energy of the vehicle E f at time t f is the difference between its initial energy Es and the energy used to make the trip, Eused .
Finally, r0 is the radius of the initial set of possible vehicle states in the 3D augmented space, (x, y, e). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

point x f in physical space then provides the feasibility set (27) from which the energy–time Pareto front is easily
obtained by direct optimization. Integrating the augmented trajectory ODE system (29) backward in time, along
with Eq. (15) for the optimal heading and Eq. (22) or Eq. (25) for the optimal speed, finally provides the optimal
paths and optimal controls. All of these equations are exact and their integration thus avoids the need for heuristics.
Specifically, they provide exact Pareto optimal solutions to the multi-objective optimal path planning problem.
Numerical schemes for solving these equations are presented in Appendix A, specifically for the forward PDE
solve Appendix A.1, the Pareto front computation Appendix A.2, and the backtracking ODEs solve Appendix A.3.
Overall, the result is a first comprehensive and exact PDE-based methodology for predicting the energy–time optimal
paths of autonomous marine vehicles navigating in highly dynamic ocean environments.

4. Applications

In this section, we illustrate our theory and schemes on two numerical applications. The first considers the
canonical case of crossing a simple idealized jet. This application admits a semi-analytical solution that is useful to
validate our schemes. The second considers energy–time optimal path planning in a dynamic flow to showcase the
applicability of our methodology in more complex conditions. In these applications, all values are dimensionless
unless otherwise specified. We note that we completed many other simulations (not shown) to validate the results.

4.1. Energy–time optimal for crossing a jet flow

We consider first the case of determining energy–time optimal paths for crossing a simple idealized jet or current
as shown in Fig. 3 (figure not to scale). The current, which can be thought of as a “highway”, consists of a uniform
steady jet that flows from west to east in a rectangular domain. The autonomous vehicle has to traverse from a
starting set in the southwest of the domain to a target point in the northeast of the domain, on the other side of the
jet. The starting set is a set of states the vehicle can choose to start from in the 3D space, (x, y, e). We consider
the set to be a sphere of radius r0 centered at [xs, ys, es]. The goal is to find energy–time optimal paths – Pareto

optimal solutions – for the multi-objective problem of jointly minimizing arrival time and energy usage.

12
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Fig. 4. Crossing a jet flow: Forward solve. Snapshots of the time evolution of the reachability front are shown in the augmented state space
onsisting of the vehicle’s position and its energy level, (x, y, e). At the start time, the reachability front is specified with a small initial

sphere around the start state (initial position (x, y) = (0, 0) and energy E = 1). In each snapshot, the reachable set corresponds to the set of
ll states that are enclosed by the front. The dashed black and red vertical lines correspond to the start and destination points, respectively.
he part of the destination line shaded green (bottom left panel) corresponds to the energy states that are reachable at the destination at

hat time snapshot. The front can be seen to stretch in the direction of the external current when it enters the highway region.

Given the low degrees of freedom of the solution, it is possible to compute the optimal solution using traditional
ptimization techniques. This is discussed in Appendix B.

For the example we show, we selected values of ∆y1 = ∆y2 = ∆y3 = 0.5 to define the net vertical distance
etween the start and target points. The net horizontal distance is ∆x0 = 1.0. The initial reachable set is considered
o be a sphere of radius r0 = 0.1 (set of locations and energies from which the vehicle can start). A cubic energy
sage model is used (Ẇ ∝ F3) with an energy dissipation rate of k = 1.0 units. We set the maximum speed of
he vehicle Fmax and the speed of the jet V at 1 unit each. Numerically, the domain is discretized using 121, 181,
nd 76 nodes in the x-axis, y-axis, and e-axis, respectively. To evolve the reachability front in the forward solve, a
econd order ENO scheme is used for all spatial derivatives and a second order Total Variation Diminishing (TVD)
unge–Kutta scheme for time integration with a fixed time step ∆t = 1 × 10−4. A first order implicit scheme is

finally used – as described in Appendix A.3 – to compute optimal paths corresponding to different Pareto optimal
solutions.

Figs. 4 and 5 show the time evolution of the reachability front from the forward solve. Fig. 4 shows a 3D
isometric view of this reachability front in the augmented state space, while Fig. 5 depicts the contours of this front
as seen in the physical space. As the front evolves, the vehicle can either reach further away by losing energy or
stay close to the starting point saving energy. This gives the front the ellipsoid shape as it evolves in the region
with no background velocity. Over time, more regions that were initially reachable only by fast moving vehicles
become reachable by slower moving vehicles that conserve energy, thus raising the augmented reachability front in
the e-direction in those regions. The strong currents in the jet can be seen to deform the reachability front in the jet

region in the direction of the current, leading to a sharp front in the e-direction. As time progresses, the reachability
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Fig. 5. Crossing a jet flow: Forward solve. Snapshots of the augmented reachability front’s evolution in time shown by the contours of the
front (at various energy values) projected onto the physical domain, as schematized in Fig. 2(c). The six panels are at the same snapshot
times as those shown in Fig. 4. The contours depicted correspond to slices along the energy axis of the 3D reachability fronts shown in
Fig. 4. They contain the set of locations the vehicle can reach with the energy given by the color of the contour line.

front continues to rise in the e-direction, but without reaching the limit of the initial energy, as it represents slower
and slower vehicles, using less and less energy.

Fig. 6 illustrates the final Pareto energy–time optimal solutions and their validation by comparison to semi-
analytical solutions. First, Panel 6(a) shows the Pareto front, containing all possible Pareto optimal solutions that
allow the vehicle to reach the destination with optimal travel times and energy used. For validation, we show both
the Pareto front computed using our formulation and the semi-analytical Pareto front obtained by solving Eq. (B.5)
using numerical optimization software. With the Pareto front computed, we then chose three different Pareto optimal
solutions on the front. Specifically, they correspond to energy usage values of 0.8, 0.5, and 0.3. Their optimal paths
and optimal speed functions (the speed used by the vehicle as a function of time) are shown in Panels 6(c) and
6(b), respectively. As expected, the optimal paths are all angled in order to leverage the large current from the jet

helping the vehicle reach the destination. Additionally, in the jet, the vehicle noticeably reduces its thrust, and thus
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Fig. 6. Crossing a jet flow: Final Pareto optimal solutions to the multi-objective energy–time optimal path planning.

educes its energy consumption, as the favorable current can be used to reach the target more efficiently. We again
nd good agreement in these Figures between our computed optimal solutions and the analytical solutions.

.2. Double-gyre barotropic quasi-geostrophic ocean circulation

We now consider a more complex, time-dependent environment by considering a simulated double-gyre ocean
ow field. This flow represents near-surface ocean circulation at mid-latitude regions, where easterlies and trade
inds in the northern hemisphere drive a cyclonic and an anticyclonic gyre with the zonal jet in between (e.g. an

dealized version of the Gulf Stream) [7]. It is governed by the following non-dimensional PDEs

∂u
∂t

=
∂p
∂x

+
1

Re
∆u −

∂(u2)
∂x

−
∂(uv)
∂y

+ f v + aτx

∂v
=

∂p
+

1
∆v −

∂(uv)
−

∂(v2)
− f u + aτy
∂t ∂y Re ∂x ∂y
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Fig. 7. Snapshots of the quasi-geostrophic double gyre flow field at three non-dimensional times, with non-dimensional flow currents reaching
50 units. The fields of ocean currents are represented by velocity vectors, with the non-dimensional vorticity field colored in the background.

0 =
∂u
∂x

+
∂v

∂y
. (31)

e solve these PDEs numerically using our modular finite volume framework [63]. For the example shown, a
ow Reynolds number of 150 was used with f = f̃ + βy, the non-dimensional Coriolis coefficient with non-
imensional f̃ = 0 and β = 103, and finally, a = 103, the strength of the wind stress. The flow in the basin is

forced by an idealized steady zonal wind stress, τx = −
1

2π
cos 2πy and τy = 0. Snapshots of the flow field at

various non-dimensional times are shown in Fig. 7, with flow currents reaching values of the order 50 units.
In the example shown, optimal paths were searched for a vehicle launched in the northwest of the domain and

tasked with navigating to a destination point at the southeast of the domain, sailing through the dynamic flow field.
The augmented reachability front of the vehicle was propagated forward to a non-dimensional time of t = 0.25.

cubic energy usage model is again used (Ẇ ∝ F3) with an energy dissipation rate of k = 0.1. The maximum
elocity of the vehicle was set to Fmax = 4 units. Furthermore, the domain was discretized using 75 nodes along all
hree coordinate axes (x , y and E). To evolve the reachability front in the forward solve, a second order ENO scheme
as used to compute all spatial derivatives and a second order Total Variation Diminishing (TVD) Runge–Kutta

cheme to integrate in time with a fixed time step size of ∆t = 5 × 10−5. Finally, as in the first application, a first
rder implicit scheme was used to backtrack the optimal paths corresponding to different Pareto optimal solutions.

Fig. 8 shows the time evolution of the energy–time reachability front. Specifically, we again show the contours
t various energy values of the reachability front in the augmented space. We find that the strong flow field has a
arge influence on the propagation of the reachability front. This is especially evidenced at earlier times where the
rojection of the reachability front in the physical space can be seen to be advected in a circular pattern as a result
f the gyre (refer to the snapshots at non-dimensional times 0.02 and 0.04). The front furthermore expands fastest
n directions in which it is assisted by the flow field as well. This can be observed for example in the snapshots
t non-dimensional times 0.06, 0.08, and 0.10, where the reachability front is carried southward on the edge of a
yre.

Fig. 9 illustrates the final energy–time optimal solution for the dynamic double-gyre flow. Panel 9(a) shows the
areto front, holding all possible Pareto optimal solutions of varying travel time and vehicle energy usage. This front
as computed using the methodology outlined in Section 3.2.2. The dotted red curve was obtained by continuously
easuring the maximum energy value of the reachability front at the destination as a function of time. Minimizing

ime, one then obtains the Pareto front for the multi-objective path planning problem shown in blue. From this
areto front, we then selected three different Pareto optimal energy and time combinations, and we computed the
orresponding optimal controls and optimal paths.

Panels 9(b) and 9(c) show the optimal speeds and paths for these three Pareto optimal solutions, obtained by
acktracking from the destination to the start point. The different energy usage values for the Pareto optimal solutions
esult in the differences in the optimal paths and speed functions of the vehicle. As expected, vehicles with lower
nergy usage values have slightly slower optimal speeds on average. Moreover, each solution can be seen to have

ptimal paths that are quite similar near the start point, as they all perform a loop due to the influence of the gyre
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Fig. 8. Dynamic quasi-geostrophic double gyre flow: Forward solve. Snapshots of the evolution of the augmented reachability front. Plotted
are the contours of the front at different energy levels projected onto the physical domain and overlaid on the dynamic field of simulated
ocean velocity vectors. The reachability front is here a surface in a 3D space (x, y, e), and the contours plotted are slices of this front at

ifferent energy values (as schematized in Fig. 2(c)). The start time for the vehicle is T = 0, with the start point (circle) and target endpoint
star) as shown.

hose speeds (∼30 units) are larger than the speed of the vehicle (∼4 units). The paths then differ most once
hey exit this loop, where it can be seen that vehicles with higher energy usage values (and correspondingly higher
peeds) take a more direct path to the target, whereas the others which move slower are more strongly influenced
y the external velocity field.

. Conclusions and future work

In this work, we developed new fundamental theory and schemes for joint energy–time optimal path planning
f autonomous vehicles navigating in known strong and dynamic flow fields. We started from the kinematic
elocity equation in physical space and the first law of thermodynamics in energy space. Augmenting the physical
imensions with the energy dimension, we then obtained the exact PDE governing the energy- and physical-space
orward reachable sets for multi-objective energy–time optimization in dynamic environments. Integrating this PDE
17
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Fig. 9. Dynamic quasi-geostrophic double gyre flow: Final Pareto optimal solutions to the energy–time optimal path planning.

nd projecting the augmented reachability front onto the destination point in physical space then determines the
easibility set from which the energy–time Pareto front is obtained by direct optimization. Users can then select
ny Pareto optimal solution(s) that they prefer based on how highly they value minimizing energy usage or travel
ime, or on some weighted combination of the two. Finally, integrating the augmented trajectory ODE system
ackward in time, starting from the endpoints of Pareto optimal solution(s), provides the energy–time globally
ptimal paths as well as the optimal controls, the time evolution of optimal headings and propulsion speeds (power
sage). All of these equations are exact and their integration thus avoids the need for heuristics. Specifically, they
rovide exact Pareto optimal solutions to the multi-objective optimal path planning problem. Computationally, in
he forward and backward integrations, dynamic flow fields are used as inputs, e.g. numerical current predictions.
he level set method is used to integrate the forward reachability PDE in the augmented spatial and energy
omain. Explicit schemes are used for the forward reachable set and reachability front, and implicit schemes for the

ackward trajectory. Overall, the results are the fundamental differential equations and an efficient methodology for

18
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predicting the energy–time optimal paths and controls of autonomous vehicles navigating in known highly-dynamic
environments.

We illustrated our theory and schemes on two numerical applications. The first was a validation example, using
he canonical crossing of an idealized jet or highway flow. This example admits a semi-analytical Pareto front and
ptimal paths solutions which allowed us to verify the correctness of our schemes and implementation. The second
onsiders energy–time optimal path planning in a more complex dynamic flow, a double-gyre barotropic quasi-
eostrophic flow that is representative of ocean circulations at mid-latitudes. Results showed that our methodology
overns all energy–time optimal solutions and that optimal solutions can be strongly influenced by the complex
nsteady flow conditions.

A first advantage of our methodology is that it is based on the exact augmented forward Hamilton–Jacobi
DE and augmented backward trajectory ODE, thus removing the need for heuristics. A second is that it is
omputationally efficient and, for a given desired accuracy, commonly more efficient than graph methods [50].

third is that the path planning resolution can be commensurate to that of the flow field available, e.g. that of data
ssimilative ocean forecasts [58,64–67]. Fourth, it is directly applicable to diverse power usage models. The main
ssumptions are that the external flow is known and that the dimensions of the vehicle are small compared to the
patial scales of the flow and distance to travel such that the vehicle is modeled as a point particle without inertia.

There are many directions for future advances and applications. First, the extension to moving targets, multiple
tart points, and obstacle avoidance (islands, forbidden regions, etc.) is relatively straightforward [68]. Second, it
an also be extended to vehicles with constrained motions such as floats or gliders [59,69]. Third, the approach
s not limited to path planning with two objectives. It can be generalized to the harvesting of external fields, for
xample, environmental energy harvesting or ocean plastic collection [70–72]. Fourth, all examples considered
ssumed complete knowledge of the flow fields, that is, only known deterministic environmental fields were used.
uch exact knowledge is rarely available, and a truly robust scheme should apply to uncertain flows. To do so, our
nergy–time optimal differential equations can remain the governing equations but with stochastic flow field inputs,
.e., the results in [59,73,74] are used for stochastic risk-energy–time optimal path planning. Fifth, the predictions
rom our theory and schemes should be used in sea experiments [5] and can be merged with real-time observations
or onboard planning [75]. As a vehicle travels to the target, it would then utilize and assimilate measurements
o improve the ocean field predictions and modify or recompute its optimal path prediction accordingly. Sixth,
ur energy–time schemes can be used for or combined with other goals such as optimal monitoring or adaptive
ampling [5,76–78]. Finally, our results are applicable to varied dynamic environments and applications [32,79–82].
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ppendix A. Numerical schemes and implementation

As discussed in Section 3, our optimal path planning methodology is composed of two primary steps. The first
nvolves the evolution of the augmented reachability front and corresponding Pareto front, and is denoted as the
orward solve. The second step consists of computing the optimal path(s) for the chosen Pareto optimal(s) and is
enoted as the backward solve. In this Appendix, we outline the numerical schemes needed to solve the PDE, Pareto

olutions, and ODEs involved in these steps.
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A.1. Forward solve

The full PDE for energy–time optimal path planning given in Eq. (26) is of the form,

∂φ

∂t
+ H

(
∂φ

∂xa , xa, t
)

= 0. (A.1)

The PDEs in the form of Eq. (A.1) are known as Hamilton–Jacobi equations [83–85]. H is referred to as the
Hamiltonian function which, in general, depends on the augmented gradient ∂φ

∂xa ∈ Rd+1 and space xa
∈ Rd+1, and

time. Presently, for Eq. (26), the Hamiltonian is:

H
(

∂φ

∂xa , xa, t
)

= F∗(x, e, t)
∂φ

∂x

 + V (x, t)T
·
∂φ

∂x
+

[
Q̇(x, t) − k · [F∗(x, e, t)]n

]
·
∂φ

∂e
. (A.2)

Due to their broad applicability, Hamilton–Jacobi Eqs. (A.1) have been extensively studied and the existence,
uniqueness and properties of their viscosity solutions have been rigorously analyzed [83,85]. For further details,
we refer to these references.

Several options exist for numerically discretizing and computing a viscosity solution to such Hamilton–
Jacobi equations, ranging from Finite Volume methods to high-order discontinuous Galerkin methods [86,87], and
especially level set methods [7,88]. In this work, high-order finite difference methods have been used to resolve
solutions on structured, uniform, rectangular meshes.

A popular scheme for numerically computing viscosity solutions for Hamilton–Jacobi equations is the Local
Lax–Friedrichs (LLF) scheme [84], and this is the scheme we use in this work. This falls under the class of
what are known as monotone schemes. For Eq. (A.1), the LLF scheme results in the following semi-discretized
(i.e. discretizing only in space) equation

∂φi

∂t
+ Ĥ L L F

([
∂φ

∂xa

]+

i
,

[
∂φ

∂xa

]−

i
, xa

i , t
)

= 0, (A.3)

where Ĥ L L F is a numerical approximation of the Hamiltonian – called a numerical Hamiltonian – and φi is the
value of the field φ(x, t) at a given node, at position xi , in the finite difference mesh. Additionally, [ ∂φ

∂xa ]+i ∈ Rd+1

nd [ ∂φ

∂xa ]−i ∈ Rd+1 are one-sided discrete approximations to the spatial gradient at the node. In the LLF scheme,
this numerical Hamiltonian is further given as

Ĥ L L F
([

∂φ

∂xa

]+

i
,

[
∂φ

∂xa

]−

i
, xa

i , t
)

= H
(

1
2
·

([
∂φ

∂xa

]+

i
+

[
∂φ

∂xa

]−

i

)
, xa

i , t
)

−

d+1∑
k=1

αk

2
·

([
∂φ

∂xa

]+

i,k
−

[
∂φ

∂xa

]−

i,k

)
, (A.4)

here [ ∂φ

∂xa ]+i,k and [ ∂φ

∂xa ]−i,k are the kth components of the one-sided spatial gradient approximations. The parameters
k are dissipation coefficients that control the amount of numerical viscosity and are given as

αk = max
p∈I

|Hk( p, xi , t)|, (A.5)

where Hk is the partial derivative of the Hamiltonian with respect to the kth component of the gradient ∂φ

∂xa , p is
gradient argument and the domain I to perform the maximization over is dictated by the values of the one-sided

pproximations to the gradient and, in the LLF scheme, this domain varies from grid point to grid point. For further
etails on the LLF scheme, we refer to [83,84]. Finally, with the spatial discretization specified, all that remains
s to address the temporal discretization in Eq. (A.3), for which second order total variation diminishing (TVD)
unge–Kutta (RK) schemes are an adequate choice.

For the energy–time Hamilton–Jacobi PDE (26), a closed form solution for the maximization of the partial
erivatives of the Hamiltonian is not available for computing the dissipation coefficients of Eq. (A.5). Presently,
simple grid search over the interval I is used to solve the maximization problem. This has been quite effective

or the applications shown in Section 4, but more advanced options are possible. Of course, to avoid numerical
nstabilities, the artificial dissipation could be increased with the drawback of obtaining a correspondingly more
issipative, albeit stable, numerical solution.

The following are additional details regarding the numerical discretization for the forward solve:
20
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• For boundaries of the physical domain open to inlets/outlets or side walls, zero normal gradient (Neumann)
boundary conditions were used. For further information, we refer to [7].

• Islands, obstacles and forbidden regions in the physical space are treated by following the masking procedure
outlined in [7,68].

• For boundaries along the energy domain, zero Neumann boundary conditions were used.
• When numerically solving the energy–time Hamilton–Jacobi PDE to propagate the reachability front, high

gradients can result in unresolved numerical solutions. To address this, a reinitialization procedure can be
used every few time steps [83].

While the above LLF scheme was used to generate all results presented in this work, we also derived an efficient
Global Lax–Friedrichs scheme that, although slightly more dissipative, is less computationally intensive. This
scheme has been used for computing energy–time optimal paths in realistic environments using forecasts from
our MIT-MSEAS modeling system [64,65] and its details are discussed further in [89].

A.2. Pareto front

Once the reachable set is evolved, the next step is to numerically compute the Pareto optimal solutions defined
y Eq. (28) in Section 3.2.2. Here, we explain how to compute the Pareto front and these solutions. We start with
he set of feasible states at the destination given by Eq. (27), restated here for convenience:

Fx f = {(e, t) | φ(x f , e, t) ≤ 0} .

This set is obtained by keeping a record in memory of the values of (e, t) for which the implicit function is non-
positive at the target point x f , as φ is evolved during the forward solve. Let ti , i = 1, 2, . . . , Nt be the discrete
times considered when numerically evolving the implicit function and when this set of feasible states is saved. The
Pareto optimal solutions are then computed as follows. First, we preform a maximization at every discrete time ti
to obtain emax,i = max{e | φ(x f , e, ti ) ≤ 0} from the saved set of feasible states at these times. Each resulting

max,i is the maximum available energy for a vehicle that reaches the destination x f at time ti . The set of solutions
P̃ = {(emax,i , ti ) | 1 ≤ i ≤ Nt } forms the envelope of highest “vehicle energy at destination” solutions at these
discrete times ti . This set is processed to compute the full Pareto front, P , by eliminating all candidate solutions
from P̃ which are not Pareto optimal:

P = {(ei , ti ) ∈ P̃ | {(e j , t j ) ∈ P̃ | t j < ti and e j > ei } = Ø} .

In other words, a candidate solution (ei , ti ) ∈ P̃ is not Pareto optimal if we can find a solution at an earlier time with
a higher energy, i.e. there is at least a path for the vehicle to reach the end faster and with more energy. Eliminating
all these sub-optimal solutions, we obtain the set of Pareto optimal solutions P .

A.3. Backward solve

Once the forward solve has generated the Pareto front, the backtracking Eq. (29) is integrated to compute the
optimal paths for the selected Pareto optimal solution(s). This is a system of ODEs that is discretized and solved
using standard explicit or implicit schemes, as outlined in [7].

In this work, an implicit first order time integration scheme was used to backtrack all optimal paths. Denoting
the augmented state of the vehicle at time t as (X a,∗

p )t , the discretized form of Eq. (29) is,

(X a,∗
p )t+∆t − (X a,∗

p )t

∆t
= −U a

∗
((X a,∗

p )t , t) − V a((X a,∗
p )t , t). (A.6)

t is important to note that Eq. (A.6) is indeed implicit, as the backtracking equation is solved backward in time
tarting from the final state (X a,∗

p )t f at the final time t f . Therefore, at each time step, (X a,∗
p )t+∆t is known whereas

X a,∗
p )t is the unknown. Solving for (X a,∗

p )t requires the solution of a system of nonlinear equations for which a

xed point scheme can be used. For the benefits of using an implicit backtracking scheme, we refer to [69].
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Appendix B. Semi analytical solution for the highway case

The goal is to compute a semi-analytical solution for the Crossing of a Jet Flow (Section 4.1), so as to validate
ur theory and numerical results. All variables used in this Appendix are defined in Fig. 3.

Consider an initial spherical reachability front centered at (xc, yc, ec) in the augmented state space and with initial
radius r0. Our aim, recall, is to determine Pareto optimal paths originating from anywhere in this reachable set to
the destination that minimize travel time and energy usage. Intuitively, it is clear that any such Pareto optimal path
must originate from a state on the boundary of the reachable set — the reachability front. The unknown start point
of the path from the spherical front can be parametrized using two degrees of freedom as:

xi (α, β) = xc + r0 sin(β) cos(α)

yi (α, β) = yc + r0 sin(β) sin(α)

ei (α, β) = ec + r0 cos(β). (B.1)

The variables α and β correspond to the angular positions of the start point on the front, where α denotes the polar
angle and β the azimuthal angle as defined in the standard spherical coordinate system. Consider now the motion
of the vehicle through the three main segments of the domain — before the jet, within the jet, and after the jet.
Given the constant environment faced by the vehicle in each of these segments, the optimal speed of the vehicle
will be constant within them. The net vertical distance traveled by the vehicle in the first segment before the jet is
given as ∆ỹ1 = ∆y1 − r0 sin(β) sin(α). The net horizontal distance that the vehicle must travel to reach the target
is ∆x = ∆x0 − r0 sin(β) cos(α). The time taken by the vehicle in each segment is given as:

T1(F1, θ1, α, β) =
∆ỹ1

F1cos(θ1)
=

∆y1 − r0 sin(α) sin(β)
F1 cos(θ1)

T2(F2, θ2) =
∆y2

F2 cos(θ2)

T3(F3, θ3) =
∆y3

F3 cos(θ3)
. (B.2)

The total time taken to travel the required vertical distance is then given as T (θ , F, α, β) = T1 + T2 + T3, where
F = [F1, F2, F3]T and θ = [θ1, θ2, θ3]T correspond to the speed and headings in each segment (refer to Fig. 3).
ince the time taken to traverse the vertical and horizontal distances to the target are the same, we have the following
onstraint on the horizontal distance that must be traveled by the vehicle:

∆x0 − r0 sin(β) cos(α) − ∆x(θ , F, α, β) = 0 (B.3)

here ∆x(θ , F, α, β) = F1 T1 sin(θ1) + T2 [F2sin(θ2) + V ] + F3 T3 sin(θ3) corresponds to the horizontal
isplacement of the vehicle, given a set of headings and speeds chosen. Finally, the energy used by the vehicle
s given as eused (θ , F, α, β) = k T1 F3

1 + k T2 F3
2 + k T3 F3

3 , resulting in the energy remaining in the vehicle at the
estination to be:

edest (θ , F, α, β) = ei (α, β) − eused (θ , F, α, β). (B.4)

ith the travel time and energy at destination defined, we can finally define the optimization problem to obtain the
emi-analytical solutions. The Pareto front of the multi-objective optimization problem is built by solving a series
f constrained optimization problems to minimize the travel time:

minimize
F,θ ,α,β

T (θ , F, α, β)

subject to edest (θ , F, α, β) ≥ e f

∆x0 − r0 sin(β) cos(α) − ∆x(θ , F, α, β) = 0.

(B.5)

or each Emin value on the Pareto front, the corresponding minimal arrival time is computed by solving Eq. (B.5).
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