

Autonomous Path Planning to Optimally Harvest Dynamic Fields Manan Doshi^{1*}, Manmeet Bhabra^{2*} and Pierre Lermusiaux³ Dept. of Mechanical Engineering, Massachusetts Institute of Technology (MIT) *Equal Contribution; ¹mdoshi@mit.edu, ²mbhabhra@mit.edu, ³pierrel@mit.edu

Background and Motivation

The optimal collection and monitoring of active materials is essential for the efficient protection and sustainable utilization of the ocean.

Examples of problems we aim to solve

- Time-optimal collection of a field of dynamic marine material
- Time-optimal path planning for dynamically-constrained vehicles that can collect energy from their surroundings

Marine Plastic Pollution

The Ocean Cleanup

Objective and Problem Statement

Find the quickest path for a vehicle:

- From start point to destination
- In a dynamic flow field in which the vehicle is being advected
- While collecting a required amount of background field, which is also dynamic!

 F_{max}

Problem Parameters

- Background flow $\mathbf{V}(\mathbf{x},t)$
- Max vehicle speed
- Vehicle heading
- $\frac{d\mathbf{x}}{dt} = F\hat{\mathbf{h}} + \mathbf{V}(\mathbf{x}, t)$ • Vehicle dynamics

• Destination • Harvesting Dynamics

Current state of the art methods for time-optimal path planning:

- Rapidly exploring random trees
- A^{*} search
- Artificial potential methods

Issues: heuristic dependent,

We base our method on the algorithm developed for time-optimal path planning using the Level Set method – An exact equation which applies in any strongly dynamic background flows

Time Optimal Path Planning with Level Sets

Reachability front

- Contour containing the set of positions that can be reached at a given time
- Implicitly represented as the zero level set of a signed distance function ϕ
- The function ϕ physically corresponds to the following cases:
 - $\circ \phi(\mathbf{x},t) < 0$: Point reachable in time t
 - $\circ \phi(\mathbf{x},t) = 0$: Point on reachability front at time t
 - $\circ \phi(\mathbf{x}, t) > 0$: Point not reachable in time t

Relevant publications: Lolla, T., Ueckermann, M. P., Yiğit, K., Haley, P. J., & Lermusiaux, P. F. J. (2012). Path planning in time dependent flow fields using level set methods. 2012 IEEE International Conference on Robotics and Automation, 166–173. https://doi.org/10.1109/ICRA.2012.6225364 Subramani, D. N., & Lermusiaux, P. F. J. (2016). Energy-optimal path planning by stochastic dynamically orthogonal level-set optimization. Ocean Modelling, 100, 57–77. https://doi.org/10.1016/j.ocemod.2016.01.006 Subramani, D. N., Lermusiaux, P. F. J., Haley, P. J., Mirabito, C., Jana, S., Kulkarni, C. S., Girard, A., Wickman, D., Edwards, J., & Smith, J. (2017). Time-optimal path planning: Real-time sea exercises. OCEANS 2017 - Aberdeen, 1–10. https://doi.org/10.1109/OCEANSE.2017.8084776

$$\mathbf{V} \cdot \nabla \phi = 0$$

$$\begin{split} \sqrt{\frac{|\nabla_x \phi|}{3k \frac{\partial \phi}{\partial c}}} & \frac{\partial \phi}{\partial c} > 0\\ \frac{\partial \phi}{\partial c} < 0\\ \frac{\partial \phi}{\partial c} + F^* |\nabla_x \phi| = 0\\ \\ & \text{Godunov}\\ & \text{Method} \end{split}$$

Results

