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Finite element discretizations of problems in computational physics often rely on adap-
tive mesh refinement (AMR) to preferentially resolve regions containing important features 
during simulation. However, these spatial refinement strategies are often heuristic and rely 
on domain-specific knowledge or trial-and-error. We treat the process of adaptive mesh 
refinement as a local, sequential decision-making problem under incomplete information, 
formulating AMR as a partially observable Markov decision process. Using a deep rein-
forcement learning (RL) approach, we train policy networks for AMR strategy directly from 
numerical simulation. The training process does not require an exact solution or a high-
fidelity ground truth to the partial differential equation (PDE) at hand, nor does it require 
a pre-computed training dataset. The local nature of our deep RL (DRL) allows the pol-
icy network to be trained inexpensively on much smaller problems than those on which 
they are deployed. The new DRL-AMR method is not specific to any particular PDE, prob-
lem dimension, or numerical discretization. The RL policy networks, trained on simple 
examples, can generalize to more complex problems, and can flexibly incorporate diverse 
problem physics. To that end, we apply the method to a range of PDEs, using a variety of 
high-order discontinuous Galerkin and hybridizable discontinuous Galerkin finite element 
discretizations. We show that the resultant DRL policies are competitive with common 
AMR heuristics and strike a favorable balance between accuracy and cost such that they 
often lead to a higher accuracy per problem degree of freedom, and are effective across a 
wide class of PDEs and problems.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

In recent decades, the finite element community has developed principled, efficient techniques for solving partial differ-
ential equations (PDEs). Not only are these techniques extremely general methods that may be applied to almost any PDE, 
they also provide guarantees such as stability, consistency, and convergence [1,2]. On the other hand, the machine learning 
community has developed a broad set of methods to learn latent patterns from large datasets in the absence of a model 
[3–5]. However, for problems in computational physics, it is often the case that the PDE is an excellent model of the un-
derlying physical phenomena, often down to the molecular level, where the continuum assumption begins to lose validity. 
Attempts to use machine learning to learn solutions to PDEs directly have shown promise for relatively trivial problems, but 
are as of yet subject to several failure modes in terms of generalization to even moderately more complicated problems [6]. 
Rather than ignoring the extensive body of work in either field, we propose combining techniques from numerical math-

* Corresponding author.
E-mail addresses: foucartc@mit.edu (C. Foucart), pierrel@mit.edu (P.F.J. Lermusiaux).
https://doi.org/10.1016/j.jcp.2023.112381
0021-9991/© 2023 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2023.112381
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2023.112381&domain=pdf
mailto:foucartc@mit.edu
mailto:pierrel@mit.edu
https://doi.org/10.1016/j.jcp.2023.112381


C. Foucart, A. Charous and P.F.J. Lermusiaux Journal of Computational Physics 491 (2023) 112381
ematics and machine learning in order to preserve mathematically hard-earned guarantees while improving accuracy and 
efficiency by applying machine learning to the peripheral aspects of numerical methods which lack a model and rely purely 
on heuristics. Adaptive mesh refinement is one such aspect.

Uniform meshes are often computationally inefficient for finite element simulations in that the mesh density required 
to resolve complex physical features such as steep gradients or small-scale processes is used everywhere over the compu-
tational domain, even in regions where the numerical solution is smooth and much coarser resolution could be used. In 
many problems, such features are dynamic: eddies, meandering jets, or nonlinearly evolving cracks constitute some exam-
ples. To optimize efficiency, adaptive mesh refinement (AMR) techniques are a class of methods that dynamically modify 
the computational mesh during simulation in an attempt to increase resolution specifically where it is needed [7].

Most AMR techniques follow an iterative procedure of numerically solving the PDE, estimating the error on each element, 
marking a subset of the mesh elements for refinement or de-refinement (coarsening), and executing the alterations to 
the mesh [8,9]; this well-established paradigm is commonly referred to as the SOLVE→ESTIMATE→MARK→REFINE loop, 
terminology we will use in the present work. Following each numerical solve, the ESTIMATE process involves estimating 
the discretization error on each cell in the mesh. In this paper, we draw the distinction between an error estimator, which 
provides objective measures of error in a specific norm, and an error indicator, which offers an empirical indication as to the 
local magnitude of numerical error but provides no theoretical guarantees. The MARK process selects cells for coarsening and 
refinement based on the estimates of the error. Two common approaches are bulk refinement and fixed-number refinement 
[8,10–15]. The former marks all the cells responsible for a specified percentage of the (estimated) total error for refinement 
and similarly for coarsening. The latter refines and coarsens a fixed percentage of the total number of cells.

While AMR methodologies have allowed computational scientists to solve problems which are completely intractable on a 
uniform mesh [16], the application of AMR strategies remains largely heuristic, and best practices are not universally agreed 
upon [7]. The process of estimating the error on each cell is often complex, dependent on both the PDE and the numerical 
method used to solve it, and constitutes an active subject of research [17–19]. In general, for nonlinear partial differential 
equations, it is often difficult, and in some cases, impossible to provide an upper bound on the error. Even in the situations 
where rigorous error estimation is possible, the bounds on the error may not be tight, or may apply to a limited subset 
of problems, rendering the estimator ineffectual. As a consequence, in practice, these estimators tend to be optimistically 
applied as ad hoc error indicators. A relevant example is the well-known Kelly error “estimator” [20], which is derived 
from analysis specifically for the Poisson equation, but is widely employed in AMR strategies for the spatial discretizations 
of many other PDEs [21–25] despite its lack of theoretical applicability. Equally important, but often overlooked in the 
literature, the MARK process is also fraught with challenges. In attempting to refine only the cells which constitute a certain 
percentage of the error, bulk refinement strategies can be expensive in cases with very few cells at singularities, miss 
important features of the solution, and present difficulties controlling the number of cells in the mesh [12,15]. With fixed-
number refinement, the number of cells in the mesh can be readily controlled, but the approach can wastefully refine too 
many cells [12]. Furthermore, the parameters in either of these methods (i.e., the algorithmic realization of a refinement 
strategy with regard to the percentages of the estimated error to refine and coarsen in the case of bulk refinement or exactly 
how many cells to refine and coarsen in the case of fixed number refinement) are choices typically made a priori before a 
numerical simulation begins. In doing so, the balance between coarsening and refinement is implicitly assumed to be static 
in time, rather than dynamically driven by the behavior of the underlying solution and available computational resources.

As a result, even after decades of research, in practice, AMR strategies remain largely unprincipled and often require 
domain-specific knowledge, trial and error, or manual intervention. Selecting and combining an efficient set of AMR heuris-
tics for a new problem is a challenging endeavor and an open research problem in general [12]—there exists a clear need 
for an automated, flexible, and principled approach to AMR, motivating the present research.

We propose the treatment of AMR as a partially observable Markov decision process (POMDP) that can be interpreted 
as a local Markov decision process (MDP) on each element and apply a deep reinforcement learning (RL) approach [26] in 
which we train an agent to increase or decrease mesh resolution, balancing improved accuracy against the computational 
cost associated with each mesh modification decision. Deep reinforcement learning replaces the expected reward function 
from the well-known classical Q-learning algorithm with a neural network as a function approximator [27], allowing for the 
discovery of arbitrarily sophisticated decision-making policies based on unstructured input data [28,29] and obviating the 
need to manually engineer aspects of the strategy. In doing so, we replace the ESTIMATE and MARK processes in AMR with 
a trained RL policy learned from numerical simulation.

In the present work, we focus primarily on high-order discontinuous Galerkin finite element methods (DG-FEM), in part 
due to their incredible success in modeling a wide range of phenomena in computational physics (see [2,30] and references 
therein) and due to their discontinuous representation of the numerical solution. It is this discontinuous representation that 
reliably links the smoothness of the local solution as measured by the interface jumps to local error [31] in a way that 
can be well-leveraged by a decision-making agent, as we develop in §2.2.2. The same property gives rise to the simple and 
effective non-conformity error estimator and its variants examined in the DG-FEM literature [19,32–35]. As demonstrated 
in what follows, the DG-FEM discretization plays an important role in the construction of the observation spaces for the 
reinforcement learning problem. However, in principle, our methodology could be applied with minor modifications to 
classical continuous Galerkin finite element methods or even other numerical methods such as finite difference or finite 
volume methods.
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1.1. Related work and novel contributions

Optimal mesh refinement strategies have been shown to be theoretically learnable in a recurrent neural network setting 
[36]. The application of deep RL specifically to problems in computational physics is in its infancy, and recent work at 
the intersection between the disciplines can be found in [37–39]. A deep RL approach for the related problem of mesh 
generation is explored in [40]. The work in [41] constitutes the first attempt to formulate AMR as an RL problem and 
demonstrates the feasibility of the approach. The present work was developed concurrently and independently, and we 
formulate the deep RL problem differently. To avoid growing and shrinking action and observation spaces, our decision-
making problem is inherently local rather than defined over the entire mesh; to that end, our observation space includes 
measures of local non-conformity of the solution. We elect not to impose a max refinement depth or provide a hard limit 
on the refinement budget in the action space; rather, we impose these restrictions implicitly through our reward function. 
Accordingly, we do not aim to maximize total error reduction; our reward function seeks to strike a tunable balance between 
the accuracy of the numerical solution and available computational resources.

In this work, we present novel theory and schemes that use a POMDP representation to formulate AMR as a deep RL 
problem under incomplete information and obtain a trained RL policy that can be thought of as a custom error indicator 
discovered through trial and error. To the best of our knowledge, this is the first work that includes both refinement and 
de-refinement actions as part of the resultant policy. We provide a very general framework for choosing an observation 
space that can incorporate physically relevant features of the PDE to be solved. The methodology is non-reliant on an exact 
solution or ground truth during model training or deployment. The agent learns a cost-effective refinement and coarsening 
strategy that balances improved solution accuracy with computational cost, as opposed to a hard threshold.

DG-FEM methods have been shown to be competitive in the under-resolved regimes of fluid flow simulation, both in 
the sense of stability and robustness of the schemes [42], and in their ability to transport high-frequency features over 
long time-integration horizons without altering the shape of the features or losing amplitude (dispersion and dissipation) 
[43,44]. Therefore, practically, the ability of DG-FEM schemes to capture and preserve physical features is a more important 
criterion of merit than the norm-measured errors often presented in academic convergence studies, (see [30], pp. 35-48). 
This is crucial, as it suggests that any performant AMR technique should be measured against its ability to resolve dynamical 
features while making efficient use of problem degrees of freedom. This motivates the specific form of our reward function, 
as well as informs our primary objective of this work; to obtain an AMR policy that accurately resolves features of the 
numerical solution and efficiently uses computational resources.

The paper is organized as follows. In §2, we introduce our RL formulation of the adaptive mesh refinement problem. 
The partially observable Markov decision process is described in §2.2, with the action and observation spaces detailed in 
§2.2.1-§2.2.2. The design and implementation of a new reward function that allows for model training without the need 
for exact or ground-truth solutions to the underlying problem are provided in §2.3. Procedures for training and deployment 
are given in §2.4, and a brief discussion of the deep learning policy architectures employed therein is specified in §2.5. The 
discontinuous Galerkin spatial discretizations for the numerical forward models are provided in §3 for different PDEs. In §4, 
we demonstrate the efficacy of the methodology on a set of numerical test cases spanning a variety of PDEs and numerical 
methods. We show that the resultant RL policies can outperform widely-used AMR heuristics in terms of accuracy per degree 
of freedom and that the policy corresponding to a single trained model generalizes well to different boundary conditions, 
forcing functions, and problem sizes. We offer concluding remarks in §5.

2. Deep reinforcement learning framework

Deep reinforcement learning combines reinforcement learning with deep learning using a neural network to represent 
the value function, policy, or model considered in a classical RL setting [45]. Similar to other deep learning approaches, the 
network is typically trained by optimization of a loss function over many episodes in which a strategy that maximizes the 
expected reward (1) is determined through trial and error. This approach is attractive, as it does not require domain-specific 
knowledge, nor does it require a large training data set; training data is generated experientially by “self-play” as the agent 
interacts with its environment.

Formulating an RL approach (§2.1) to a problem involves describing the underlying decision process and representation of 
the agent and the state (§2.2). We must specify a reward function (§2.3) which encodes desirable behaviors of the resultant 
learned policy. Lastly, we must specify the neural network architectures which are to represent the different parts of the 
RL problem (§2.5). The subsections that follow present our novel formulation of adaptive mesh refinement as a deep RL 
problem.

2.1. Notation

Reinforcement learning is characterized by a decision-making agent that interacts with an environment described by a 
state S . We consider the discrete-time case: at time step t ∈ {0,1,2, . . .}, the observable state of the environment is St and 
the action selected by the agent is At , the latter of which gives rise to the reward Rt+1 and modified state St+1.

A partially observable Markov decision process (POMDP) is a formalism for describing a sequential decision-making 
process under incomplete information [46]. A POMDP is characterized by (S, A, R, T , O, O , γ ), where the sets S , A, and 
3
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Fig. 1. (a) Adaptively refined elements in a computational mesh Th generated from a single element. (b) Underlying data structure representation as a tree, 
with inactive parent elements and active elements as the leaves of the tree. (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)

R are the sets of possible states, actions, and rewards, respectively. The state transition function T : S × A × S → [0, 1]
encodes the distribution of transition probabilities from a state St = s to St+1 = s′ given the action a; that is, T (s, a, s′)
returns the probability of transitioning to state St+1 = s′ under the action At = a executed in state St = s. The set O is the 
set of possible observations, and the probability distribution O (o|s, a) describes the probabilities over the set of possible 
new observations O t+1 = o ∈ O upon taking action At = a in state St = s. The scalar γ ∈ [0, 1] is a time discount factor—a 
lower discount factor motivates the agent to favor taking actions early. A POMDP differs from a standard Markov decision 
process (MDP) in that the agent does not have access to the complete state St , but rather, indirect observations of it.

The goal of RL is to find a stochastic policy function π : O → A that maps the observation space, which we take as a 
subset of the entire space S , to the set of actions that maximizes the expected reward

Q t(s,a) = Eπ

[ ∞∑
k=0

γ k Rt+k+1 | St = s, At = a

]
(1)

over an infinite time horizon [47].

2.1.1. Mesh description
We now provide the notation for the computational mesh and finite-element operations (§3). We let Th = ∪i Ki be a finite 

collection of non-overlapping elements Ki that discretizes the entire problem domain � ⊂Rd . We refer to the boundary of 
the problem domain as �. The set ∂Th = {∂ K : K ∈ Th} refers to all boundary edges and interfaces of the elements, where 
∂ K is the boundary of element K . For two elements K + and K − sharing an edge, we define e = ∂ K + ∩ ∂ K − as the edge 
between elements K + and K − . Each edge can be classified as belonging to either ε◦ or ε∂ , the set of interior and boundary 
edges, respectively, with ε = ε◦ ∪ ε∂ .

The elements K + and K − have outward pointing unit normals n+ and n− , respectively. The quantities a± denote the 
traces of a on the edge e from the interior of K ± . When relevant for element-wise operations, we take as convention that 
the element K − refers to the local element, and K + to the neighboring element. The jump �·� operator for scalar quantities 
are then defined as �a� = a− − a+ on the interior faces e ∈ ε◦ . On the edges described by ∂Th , we can uniquely define the 
normal vector n as outward for a given cell and inward for its neighbor.

2.2. Elemental refinement as a local Markov decision process

As per the approach described in [10,48] and references therein, the computational mesh is composed of linear, quadri-
lateral, or hexahedral elements, and represented by a tree data structure. Upon refinement of an element, 2d child elements 
are generated by bisection and marked as active, while the parent element is marked as inactive. The active cells of the 
computational mesh at any given time are the leaves of the tree. This process is schematically illustrated in Fig. 1. In this 
paper, we refer to elements (active or inactive) which share the same parent element as “sibling” elements.

The state St is characterized by the current computational mesh Th , its numerical solution, uh , and any data known to 
the PDE (boundary conditions, forcing functions, etc.), which we refer to as D. Although the POMDP would be well-defined 
if the observation space O is the set of all possible mesh configurations and numerical solutions, and even some nonlinear 
functions of these variables, such choices of the global state and observation space would be computationally intractable, as 
the agent could encounter a combinatorially growing action space to explore.

In light of this fact, we consider a local description of the state as the POMDP observation space used to train the agent. 
During training, the agent observes a single cell locally, takes action on the current cell alone, and receives a reward which 
is the effect of its local action on the entire computational domain. Defining the POMDP observation space in this way, 
such that O ⊆ S , allows for a fixed action space size as the size of the observation space is known and fixed. We can then 
formally define the current state St as the union of the observation space on every element of the mesh; St = ∪K∈Th O K (t). 
Following every action, the agent is subsequently moved to another cell in the mesh randomly, according to a distribution 
Bt(O t , St+1) which encodes the POMDP belief in the state of the environment and which cell should be visited next. In this 
4
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work, for simplicity, we take the distribution to be uniform over all cells in the mesh. However, a Bayesian treatment of the 
belief state is also possible within our RL formulation.

Although it may seem counter-intuitive to train the agent on small subsets of the entire state space, formulating the 
learning problem locally in this way has several advantages. Considering the entire state of the mesh as an MDP leads to 
a growing and shrinking action space as the mesh changes, with a combinatorially growing number of action possibilities; 
this can be addressed [41]—however, the complicated action space may present training and generalization difficulties. 
Second, many problems in computational physics are governed by PDEs with strong spatial locality, which is why the linear 
systems arising from the discretization of PDEs are typically sparse. Therefore, viewing the RL problem on a single element 
rather than on the entire mesh makes sense, as the numerical solution is typically more sensitive to local phenomena. 
This is not always the case; e.g., in elliptic PDEs, errors affect the numerical solution globally [49–51]. To address this, we 
specifically include elliptic PDE test cases in our numerical experiments in §4. Lastly, the resultant trained neural network 
constituting the RL policy has the intuitive interpretation of a custom cell-wise error indicator learned during training. With 
this interpretation, it can be seen that the same trained model can be deployed repeatedly over the entire mesh, in parallel 
if desired.

2.2.1. Action space
The action space of the agent is the discrete set A = {coarsen, do nothing, refine}, with respect to the current 

cell. The goal of the RL problem can be stated succinctly as: train the agent such that it refines in areas that are locally 
under-resolved, coarsens in areas that are locally over-resolved, and takes no action otherwise. Furthermore, the agent 
should take these actions flexibly and efficiently with respect to the available computational resources.

While it is always possible to refine, the mesh may be in a state such that it is not topologically possible to coarsen 
the current cell. This is because the current cell could be at the coarsest possible level of the mesh, e.g., a computational 
mesh comprised of a single cell, or because the siblings of the current element could have arbitrarily many children, and 
coarsening is only possible when all the sibling cells are at the highest possible refinement level (i.e., leaves on the tree). 
For example, in the mesh depicted in Fig. 1, all of the elements marked as blue can be coarsened, whereas those marked as 
gray can not. Our implementation is such that if coarsening is not possible, the agent defaults to doing nothing.

2.2.2. Observation space
The observation space O is the observable portion of the total state S . The observation space on an element K ∈ Th of 

the computational mesh consists of:

A. The averaged absolute jump in the numerical solution over the boundary of the cell, denoted

�K = 1

|∂ K |
∫
∂ K

∣∣�uh�
∣∣ d∂ K

as well as �K ′ for the cell neighbors K ′
B. The average integrated jump across all mesh elements 

∑
K �K /NK

C. The current usage of available computational resources p
D. Any physically relevant features of the numerical solution or data φ(uh, D) local to the cell, where φ(·) refers to a 

feature and D refers to available data

The rationale for the inclusion of item (A.) is that discontinuities present at the element interfaces measure the non-
conformity of the numerical solution. This is due to the assumption that, in the absence of a physical discontinuity, the exact 
solution is continuous across element interfaces. This observation is borne out by straightforward analysis, which shows a 
strong relationship between the residuals of the numerical solution uh over the element interior and the jumps across the 
inter-element boundaries [31], leading to the development of so-called “non-conformity” error estimators [35] specific to 
discontinuous Galerkin finite element methods.

Although formulating the observation space of the POMDP as a completely local problem is computationally attractive, it 
is clear that in the absence of global information, the agent should always perform the refine action. Items (B.) and (C.) 
both serve the purpose of communicating global information regarding the relative utility of local refinement to the local 
decision process.

The inclusion of the average integrated jump over all mesh elements provides information about the relative estimate 
of the error on the current cell as compared to other cells in the mesh. During training, this element of the observation 
space allows the agent to decide when to forgo the opportunity to refine the current cell in order to spend computational 
resources elsewhere in the mesh, where the numerical errors may be greater than those observed locally.

The scalar p ∈ [0, 1] indicates the current usage of available computational resources. In this work, we take p to be the 
fraction of active mesh elements out of a user-specified maximum number of elements. However, p need not have this 
representation: in the case of an HPC application, the value of p could be measured directly by monitoring CPU or memory 
usage in real time. Alternatively, p could be defined with respect to a maximum allowable wall-clock time per solution 
time step or could be computed from some other a priori allocation of computational resources such as RAM or arithmetic 
5
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Fig. 2. Example of the non-hortative polynomial barrier functions B(p) = √
p/(1 − p) and hortative barrier function B(p) = p/(1 − p) − [1/

√
p − 1].

throughput. Regardless of how the computational usage p is defined, its inclusion in the observation space serves to indicate 
to the agent the availability of computational resources; the reward function §2.3 specifies the cost-benefit relationship of 
making use of them.

Due to item (D.), this observation space is very flexible and general. This is by design, as it allows the user to include 
physically or computationally relevant information which may help the agent learn a more effective strategy. As an exam-
ple, the advection problem as described in §3.2 may include the local convective velocity in the observation space, as it 
determines the flow of information.

Remark. In this paper, we emphasize discontinuous Galerkin methods due to the simplicity and effectiveness of the non-
conformity of the local solution as a proxy for the local error. In the case of classical continuous Galerkin finite element 
schemes, the jump of the solution along the element boundary is identically zero, due to the continuous nature of the 
approximation spaces in which the numerical solution is sought [1]. However, item (A.) can be readily replaced with other 
indicators of non-conformity in order to generalize the methodology to other finite element discretizations. For example, 
the jump of the solution gradient along the element boundary can be applied as a simple surrogate in the continuous 
Galerkin case—the core principle is to select a numerical quantity that vanishes as the numerical solution approaches the 
exact solution of the PDE. However, more sophisticated indicators of non-conformity exist [18].

2.3. Designing the reward function

The reward function is an environment-provided reinforcement signal that determines the immediate reward or penalty 
due to each decision on the part of the agent [27]. In that sense, the reward function is central to the ultimate behavior 
of the agent after training and should encode all the information pertaining to what we wish our agent to accomplish. For 
AMR, the reward function used to train the agent should strike a balance between improvements in accuracy and incurring 
additional computational costs. With these conditions, our proposed reward function takes the general form of

[accuracy] − γc[cost]B(p). (2)

The coefficient γc is a scaling factor expressing the relative importance of the accuracy of the solution versus increasing 
computational cost in the RL agent’s policy; it can either be tuned as a hyperparameter or empirically computed for differ-
ent computational regimes. The function B(p) : [0, 1) → [0, ∞) acts as an asymptotic barrier discouraging the agent from 
exceeding the limit of its computational resources. Two choices are shown in Fig. 2. The barrier function can be modified 
to encourage the agent to use a certain percentage of resources; for example, to incentivize aggressive refinement in the 
under-resolved case, which we refer to as a barrier function “with hortation”. In this paper, unless otherwise specified, we 
use the non-hortative barrier function B(p) = √

p/(1 − p).
It remains to define a metric for improvement in solution and change in computational cost for each of the terms in 

equation (2).
Accuracy. The optimality properties of the numerical solution arising from continuous and discontinuous Galerkin finite 

element discretizations ensure that the error of the solution (measured in an appropriate norm) decreases or remains 
the same upon any refinement of the computational mesh [1,2,31]. These properties are crucial, as they guarantee that 
any change in the error of the numerical solution, e(uh) = ‖uh − uexact‖L2(�) , that arise as a result of refinement will be 
6
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Fig. 3. Schematic of 
uh upon refinement. The RL agent’s new location is sampled from the belief distribution BtRL (O tRL , StRL+1).

monotonically non-increasing. Therefore the fundamental idea is to reward any change in the numerical solution upon 
refinement, and to penalize any change to the numerical solution upon coarsening. We define the quantity


uh =
∑

K∈Th

∫
K

|utRL+1
h − utRL

h |dK (3)

to represent the change in the solution, upon the action At , as is schematically illustrated in Fig. 3. From here onward, we 
will use the integers tRL and tRL + 1 to refer to a RL time step corresponding to the POMDP notation in §2.1 and use t
to refer to time in the case of a time-dependent PDE. The quantity 
uh represents the global difference in the numerical 
solution as a result of different successive levels of local refinement. The computation of 
uh is always performed by first 
interpolating the coarser of the two solutions onto the finer of the two grids, then performing the integration. This way, the 
change in solution 
uh upon refining and coarsening the same element are identical in magnitude, but with opposite signs, 
making every decision by the agent to coarsen or refine reversible.

Naively applying the reward +
uh upon refinement and −
uh upon coarsening is logical; however, this choice often 
results in an inconsistent reward signal due to scaling. One of the attractive features of high-order finite element methods is 
that the error in the numerical solution decreases quickly with respect to the mesh element size for problems with smooth 
solutions, typically as 1/hporder where h is a representative size of a mesh element, and porder is the polynomial order of the 
scheme [1,2]. As a result, the error in numerical solutions often spans many orders of magnitude over a small number of 
mesh refinement cycles. To account for these large differences in the scale of the error, and to prevent the initial refinements 
from dominating the total achievable reward during training, we scale the rewards logarithmically, awarding the agent

R
u = ± [log(
uh + εmachine) − logεmachine] ,

where the positive and negative signs apply to the cases of refinement and coarsening, respectively. Here, εmachine is a 
representation of machine precision, which we take to be 10−16, and is included for the edge cases in which refinement or 
coarsening does not change the numerical solution. Of course, it can also be a desired accuracy for the numerical solution. 
Lastly, the additive factor is chosen to center the positive and negative rewards around zero, rather than log(εmachine) for 
interpretability, and follows from our specific choice of machine precision.

Cost. We can specify the reward due to the change in computational cost upon action atRL as the quantity

R
C = B
(

ptRL+1)− B
(

ptRL
)
. (4)

The sign of R
C is not explicitly dependent on the action atRL , as it purely relates to the increase or decrease in computa-
tional cost as measured by p before and after the action occurs.

The reward function. Combining the constituent components, the final explicit form of the new reward function that we 
employ is

R(stRL ,atRL) =

⎧⎪⎨
⎪⎩

+ [log(
uh + εmachine) − log(εmachine)] − γc R
C , if atRL = refine

− [log(
uh + εmachine) − log(εmachine)] − γc R
C , if atRL = coarsen

0, if atRL = do nothing.

(5)

As a convention, we take RtRL+1 = R(atRL , stRL) to be the reward returned by the environment, given the input of action and 
state at time tRL.

We remark that equation (3) can be naively applied to vector-valued problems as well, with uh comprising a vector-
valued state rather than a scalar-valued one. However, care should be taken in selecting this state and performing differenc-
ing between refinement levels. For example, in the case of the incompressible Navier–Stokes equations, the difference can 
be computed with the velocity field alone or involve the pressure. In this case, relative scaling between the fields becomes 
important in preserving the reward signal.
7
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2.4. Training and model deployment

To train the model on a static problem, we begin each episode with a very coarse mesh. The agent is placed randomly 
on a cell in the mesh; after collecting the reward for each action, the agent is moved to a different element randomly as 
described in §2.2. After a large given number of actions have occurred, the episode ends, with early termination possible in 
the case of repeated do nothing actions. If at any point the agent exceeds the allotted computational budget, it receives 
a large negative reward and the episode terminates (see Appendix C). For time-dependent problems, the training is similar. 
The typical RL action/reward cycles depicted in Fig. 3 are performed within a single time step, using the previous time solu-
tion state ut−1

h as the starting condition. After a random number of iterations, the current RL-iterated solution is advanced to 
the next time step and the process is repeated. We sample from a uniform distribution Uniform(1, max episode iterations)
to determine the number of iterations before the solution is advanced in time. In order for experience signals to be prop-
agated to the policy network during training, all that matters is that there are areas of under- and over-resolution in the 
numerical solution; as long as the time advancement allows this to occur, other valid heuristics for advancing the solution 
are possible.

For model deployment, the trained model considers every cell in the mesh sequentially, in the order specified by the 
non-conformity estimator, and makes a decision based on the local observation on that particular element. The percentage p
of resources in use is updated in between elements so that the model may update its recommendation. This constitutes the 
marking process—once every element has been visited, the recommendations of the RL policy can be executed, concluding a 
single AMR “cycle” for the RL model. The number of cells allowed as a budget during model deployment can be significantly 
larger than that used in training. The trained policy network is agnostic to the actual maximum number of cells allocated; 
rather, it sees only the percentage of the available cells currently in use through the parameter p.

2.5. Policy and deep learning architectures

We now describe the particular architectures we used for our AMR agent. Our deep Q-network [52] is the simplest policy. 
It consists of an input layer, the size of which corresponds to the size of the observation space, two hidden-layers, each with 
64 neurons, and an output layer with one neuron for each possible action. Rectified linear units (ReLUs) are chosen as our 
activation functions. Taking the argmax of the output yields the action we take (assuming we are using the optimal policy 
deterministically).

The Advantage Actor-Critic (A2C) policy [53] uses the same network architecture as the deep Q-network, but it trains two 
networks, one to estimate the value function (the critic) and one to determine the optimal policy (the actor). At each step, 
the actor chooses an action that the critic evaluates to estimate the state-value and improve the policy of the actor. Finally, 
the Proximal Policy Optimization (PPO) policy [54] uses the same network architecture as A2C; the main difference is that 
PPO uses clipping in the objective function so that policy updates remain relatively small. We compare the performance of 
these algorithms in §4.1.1.

2.6. Summary: reinforcement learning framework

The design of the reward function is pivotal in RL. The idea behind the reward signal (5) is illustrated in Fig. 3. When 
the agent uses resources to refine the solution, it accumulates a reward corresponding to how much the numerical solution 
changes as a result of the refinement (R
u) and is penalized according to the increased usage of its resource budget (R
C ). 
In the limiting case, in which the solution is perfectly resolved, the agent accrues only penalization for additional refinement. 
Conversely, when the agent elects to coarsen the resolution, it is rewarded according to the resources it saves but pays for 
any change in the numerical solution. In the limiting case where the solution is perfectly resolved with more elements 
than necessary, the agent receives a reward only for decreasing the number of elements, as the numerical solution does 
not change upon coarsening. In essence, the reward function provides a signal which communicates the trade-off between 
accuracy and computational cost. To preserve the reward signal, the reward function logarithmically scales and machine-
precision-normalizes the quantities R
u and R
C , which can span many orders of magnitude. The hyperparameter γc is a 
tunable setting that reflects the degree of displeasure incurred upon using additional resources, effectively weighting the 
user priority of accuracy versus cost.

By formulating the sequential decision process locally as a POMDP, the observation space provides the link between the 
local solution data and its conformity to the cost-benefit trade-off of refinement in that region. Informally speaking, the 
observation O tRL provides a signal relating local solution conformity to that of the global solution as well as the remaining 
computational resources and other potentially relevant data.

We summarize the algorithm for a training time step and model deployment in Fig. 4. The notation utRL
h = M(StRL )

describes running the forward model on the mesh state StRL to compute the corresponding solution utRL
h by numerically 

solving the PDE. The trained policy network is denoted πh (§2.2), episode iterations denote a chosen number of maximum 
iterations during training, and we use the Boolean done as a sentinel for episode termination. Lastly, we refer to the belief 
distribution over the mesh cells K ∈ Th at state StRL as BtRL (O tRL , StRL ). For the architectures we employ (§2.5), we refer to 
[55] for the complete specification as to how the weights of the policy network are updated as a result of the training steps 
taken.
8
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training_step(AtRL , O tRL ):
KtRL ← cell corresponding to O tRL

if AtRL = refine
StRL+1 ← refine KtRL

if AtRL = coarsen
StRL+1 ← coarsen KtRL

update utRL+1
h =M(StRL+1), ptRL+1

compute 
uh (on finer mesh) via (3), R
C via (4)
compute RtRL+1 via (5)
sample cell KtRL+1 ← BtRL (O tRL , StRL+1)

O tRL+1 ← compute observation space for KtRL+1
if ptRL+1 > 1

RtRL+1 ← large, negative reward
done ← true

if iteration ≥ episode iterations
done ← true

return RtRL+1, done, O tRL+1

model_deployment(S0, πh):
S ′ ← S0
{T } ←sort K ∈ Th by �K = ∫

∂ K �uh�d ∂ K
For K ′ ∈ {T }

O K ′ ← compute observation space for K ′
AK ′ ← πh(O K ′ ) query policy network
execute action AK ′ , update S ′, p

compute new solution u′
h ←M(S ′)

return u′
h , S ′

Fig. 4. Deep RL-AMR. Algorithms for a single RL training time step (left) and for the deployment of the trained policy over a single refinement cycle (right). 
The training step takes as input an action AtRL and an observation O tRL , and returns the reward RtRL+1, the Boolean episode termination condition done
(default false), and the new observation O tRL+1. The model deployment procedure takes as input a trained policy network πh and starting state S0; it 
returns the proposed next mesh state S ′ and the updated numerical solution u′

h .

3. Finite element spatial discretization and problem physics

3.1. Notation and approximation spaces

We define the inner products over a set D ⊂Rd and its boundary ∂ D ⊂Rd−1 using typical discontinuous Galerkin finite 
element notation as

(c,d)D =
∫
D

cd dD, 〈c,d〉∂ D =
∫
∂ D

cd d∂ D.

Let P porder(D) denote the set of polynomials of degree porder on a domain D . We consider the discontinuous finite 
element spaces

W porder
h =

{
w ∈ L2(�) : w

∣∣
K ∈ P porder(K ) ∀K ∈ Th

}
,

V porder
h =

{
v ∈

[
L2(�)

]d : v
∣∣

K ∈ [P porder(K )]d ∀K ∈ Th

}
,

M porder
h =

{
μ ∈ L2 (εh) : μ

∣∣
e ∈ P porder(e) ∀e ∈ εh

}
,

where L2(�) is the space of square-integrable functions on the domain �. Informally, W porder
h represents the space of 

piecewise discontinuous polynomials of degree at most porder on every element in the mesh.

3.2. Linear advection equation

We will consider the linear advection equation of a tracer u

∂u

∂t
+ ∇ · (cu) = f in �,

u = gD on �in,

(6)

on the domain � with boundary � separated into inflow and outflow regions � = �in ∪ �out, that are defined according to 
the continuous, divergence-free advection velocity field c and outward normal n,

�in = {x ∈ � : c · n ≤ 0} ,

�out = {x ∈ � : c · n > 0} .
(7)

The linear advection problem defined in equation (6) admits the following semi-discrete discontinuous Galerkin discretiza-
tion [30,31]: we seek uh ∈ W porder such that
h

9
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(
w,

∂uh

∂t

)
Th

− (∇w, cuh)Th
+ 〈

�w�, u∗ (c · n)
〉
ε◦ + 〈w, uh(c · n)〉�out = (w, f )Th − 〈w, gD(c · n)〉�in

, (8)

for all w ∈ W porder
h . There are many choices for the single-valued, inter-element numerical flux u∗ . To mimic the physics of 

the problem, we use the common upwinded flux

u∗ =
{

u+
h , c · n < 0

u−
h , c · n ≥ 0.

In the steady case, the time derivative term is set to zero. In the unsteady case, a standard explicit time-integration scheme 
can be used for temporal discretization using a method of lines approach [2]; we use LSERK-45 [56].

3.3. Advection-diffusion equation

We will show that the methodology generalizes well across both different problem physics and different finite element 
discretizations. To do so, we will consider advection-diffusion PDEs, which include, as a subset, second-order Poisson-type 
problems. Namely, we consider the set of problems described by the PDEs

∂u

∂t
+ ∇ · (cu) − ∇ · (κ∇u) = f , in �

(−κ∇u + cu) · n = gN , on �N ,

u = gD , on �D ,

(9)

where �D and �N denote the Dirichlet and Neumann segments of the boundary, respectively. The problem in equation (9)
admits a hybridizable discontinuous Galerkin (HDG) formulation, developed in [57]: we seek (qh, uh, ̂uh) ∈ V porder

h × W porder
h ×

M porder
h such that (

v, κ−1qh

)
Th

− (∇ · v, uh)Th
+ 〈

v · n, ûh
〉
∂Th

= 0(
w,

∂uh

∂t

)
Th

− (∇w, cuh)Th
+ (

w, ∇ · qh

)
Th

+ (
w, (c · n)ûh

)
∂Th

+ 〈
w, τ (uh − ûh)

〉
∂Th

= (w, f )Th〈
μ, qh · n + (c · n)ûh + τ (uh − ûh)

〉
∂Th

= 〈μ, gN〉∂Th

(10)

for all (v, w, μ) ∈ V porder
h × W porder

h × M porder
h . We take the diffusion coefficient κ = 1 and choose the stabilization parameter 

τ = κ/� + |c · n|, where we use as a diffusion length scale � = 1/5. In order to solve Poisson-like problems, we set the 
convective velocity field c to zero. In the unsteady case, an implicit time-integration scheme can be applied for the temporal 
discretization; we use the third-order backward difference formulae (BDF3). We refer the reader to [57] for a thorough 
discussion of these choices.

3.4. Error indicators and AMR heuristics

For the test cases in §4, we benchmark the RL policy against two common AMR heuristics, the Kelly Error indicator and 
a gradient indicator. The indicators are shown in Table 1.

The Kelly indicator uses parameters cF = nF = hK /24 for element width hK . The approximate gradient is formed using 
the distance vectors y′

K = x′
K − xK between the cell centers of element K and its neighbors K ′ , as well as the matrix

Y =
∑

K ′

(
yK ′

‖yK ′ ‖
yT

K ′
‖yK ′ ‖

)
.

We scale the approximate gradient in Table 1 by a power of the mesh width, using h1+d/2
K ||∇̃uh||, where the integer d

represents the spatial dimension of the problem. Apart from being widely used, the Kelly indicator is a natural choice 
of estimator to compare with the RL-agent’s policy network, as it also gauges error by measuring local nonconformity—
specifically, in the jump of the gradient of the solution across element faces. We avoid using the non-conformity error 

Table 1
Cell-wise error indicators, contributions by face.

Error indicator faces F = K ∩ K ′ boundary face �N

Kelly
∑

F∈∂ K cF
∫

F

�
∂uh
∂n

�2
dF nF

∫
F

∣∣∣gN − ∂uh
∂n

∣∣∣2
dF

Gradient-based Y −1 ∑
K ′

yK ′∥∥yK ′
∥∥ uh (xK ′ )−uh (xK )∥∥yK ′

∥∥ -
10
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indicator itself, as it is known to exhibit undue dependence on previous refinement history and is recommended to be used 
in conjunction with other estimators [35]. To execute an AMR strategy based on either of these estimators, we use either a 
bulk or fixed-fraction rule. As described in §1, a bulk strategy refines and coarsens the cells in which the top and bottom 
percentages of the estimated error occurs; therefore the actual number of cells coarsened or refined is entirely dependent 
on the estimate. On the other hand, a fixed-fraction refinement strategy sorts the cells according to their error estimates and 
refines and coarsens a top and bottom percentage of the total number of cells. We denote these strategies as bulk(refine 
percentage, coarsen percentage) and, similarly, fixed(·, ·); e.g., fixed(0.4, 0.6) refers to an AMR strategy where the top 
40 percent of cells in terms of their estimated error are refined and the bottom 60 percent are coarsened. For additional 
details on both these indicators and refinement strategies, see [21]. Budget constraints can be applied to AMR heuristics 
as well. Imposition of a maximum depth on the tree data structure representing the mesh effectively limits the number of 
cells as well as the minimum cell width. Alternatively, regardless of the depth of the tree, a maximum number of cells can 
be imposed directly, after which no refinement is allowed to occur. A disadvantage to both these constraints is that they are 
simple and arithmetic in nature and make no use of the current state of the solution or percentage of resources used.

3.5. Numerical implementation

The finite element forward models were implemented in C++ and make use of the finite element library deal.II [21]. 
The POMDP characterizing the RL environment was implemented using the OpenAI Gym framework [58], and the custom 
deep RL architectures were implemented in the open-source RL framework Stable-Baselines 3 (SB3) [55].

Unless otherwise specified, the policy architecture used is A2C, and we take the hyperparameter γc = 25 (see §2.3, §4.1), 
which we empirically found to give good performance over a wide range of test cases. The main DRL-AMR parameters for 
each numerical experiment are listed in Table 2. Additional details on RL training are given in Appendix C. As is typical 
in deep RL, the particular number of training time steps used is not particularly meaningful as compared to the order of 
magnitude of the total number of steps (see discussion in §4.1.1), as long as the policy network is given sufficient time to 
increase its mean episodic reward significantly from its starting performance. For all experiments, we used on the order 
of 105 RL training time steps, consisting of 100-200 time step episodes, and training took on the order of 1-3 hours on a 
desktop computer without GPU acceleration. More detailed benchmarking would be extraneous, as performance in terms 
of training time is dominated by the cost of running the numerical solver rather than updating the policy network, for 
all but trivial problems. Similarly, we benchmark the resultant heuristics and policy networks using L2-error per degree of 
freedom as a figure of merit. Model deployment requires only a forward pass through the policy network, whereas AMR 
heuristics require computation of the relevant estimators; however, these two operations happen in different programming 
languages, making CPU-time or wall-clock time performance comparisons between the two unclear. However, as problem 
size grows, the cost of running the numerical solver dominates the time-to-solution. Since the underlying PDE solvers are 
the same for both the DRL-AMR and heuristic approaches, we avoid comparisons using CPU time or wall-clock times and 
show L2-error per degree of freedom directly, as this metric succinctly illustrates the cost of obtaining a given accuracy 
using each approach.

All linear systems arising from the finite element discretizations are solved using direct solvers (UMFPACK) to avoid 
the complicating factors of iterative solver tolerances and stopping criteria. All surface and volume integral operators are 
discretized with Gaussian quadrature using porder + 1 one-dimensional (1D) quadrature points in each spatial direction, 
where porder is the polynomial order of the finite element space W porder

h .
L2-errors, when shown, are computed as a post-processing step using a known exact solution and numerically integrated 

using porder + 3 Gaussian quadrature points in each spatial direction to ensure that the calculation of errors is not adversely 
affected by integration error. We re-emphasize that no exact solutions are used at any point during training or deployment 
of the RL model itself.

4. Numerical experiments

The numerical experiments are designed to demonstrate the features and performance of the deep RL AMR (DRL-AMR) 
approach. We start with a 1D, steady linear advection problem in §4.1 as an illustrative example to exhibit the feasibility of 
the approach and to demonstratively explore the characteristics of the RL policy. We discuss details related to training and 
model evaluation, compare the performance of different RL algorithms, and easily interpret results due to the simplicity of 
the test case.

Subsequent experiments focus on the performance and generalizability of the DRL-AMR method. In §4.2, we use the 
same trained RL model as in §4.1, but apply it to a different linear advection problem to demonstrate generalization of 
the policy to different boundary conditions and forcing functions. In §4.3, to show the generalization of the method to 
unsteady dynamics, we train a model on a 1D time-dependent advection problem. Lastly, to support the claim that the 
approach is not specific to a particular PDE or finite element scheme, we apply the DRL-AMR framework to the Poisson 
equation discretized with an HDG scheme (§3.3). As the Poisson equation is a second-order, elliptic PDE, its solutions are 
characterized by different physics than the hyperbolic, first-order advection problems solved in §(4.1-4.3). Similarly, as HDG 
schemes are mixed methods, their formulation (10) involves vector-valued finite element spaces and use of a traced finite 
11
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Table 2
Numerical experiments of §4: Training parameters of the DRL-AMR models, AMR heuristics, and indicators.

§ porder γc training episodes training budget AMR heuristic indicator

4.1 3 25 2 · 104 25 cells bulk(0.5, 0.5) gradient-based
4.2 3 25 2 · 104 25 cells fixed(0.5, 0.1) Kelly
4.3 3 100 5 · 104 25 cells bulk(0.5, 0.1) gradient-based
4.4 3 25 2 · 105 20 cells fixed(0.5, 0.5) Kelly
4.5 2 25 2 · 105 110 cells bulk(0.5, 0.5) gradient-based
4.6 4 25 3 · 105 200 cells bulk(0.5, 0.5) Kelly
4.7 3 25 3 · 105 200 cells bulk(0.6, 0.4) Kelly

element space [57] on the mesh skeleton; that is, the underlying numerical method is significantly different than those used 
for the solution of the advection equation (cf. (8)).

To show that the methods are not relegated to small or one-dimensional problems and that the DRL-AMR method 
generalizes to higher spatial dimensions and larger, more complex problems, we examine the performance of deep RL 
policies trained on 2D problems in §(4.5-4.6). The steady advection problem in §4.5 allows evaluation of DRL-AMR in 
the context of the two-dimensional generalization of the problem in §4.1. The steady advection-diffusion problem in §4.6
examines the effectiveness of the deep RL policy when both advection and diffusion processes occur, and highlights its 
ability to detect and resolve non-trivial features in an automated way by using solution smoothness. The unsteady advection 
problem in §4.7 shows the ability of DRL-AMR to preserve salient physical features of a numerical solution over long-time 
integration horizons. Throughout the entire set of numerical experiments, we focus on the goal stated in the introduction 
of providing a numerical solution that captures all physically relevant features efficiently in terms of problem degrees of 
freedom, avoiding spurious diffusion and dispersion effects due to under-resolution.

The parameters used in training the RL models for all numerical experiments are shown in Table 2, along with the AMR 
heuristics to which we compared the models.

4.1. Steady 1D linear advection

For proof-of-concept, we consider the linear advection equation described in §3.2 on the 1D spatial domain � = [0, 1]. 
We choose the boundary conditions gD at the inlet and forcing function f such that the exact solution takes the form

u(x) = 1 − tanh [α(1 − 4(x − 1/4))] ,

where we take as the steepness parameter α = 10. As the exact solution has the form of a smooth step function, the 
resultant meshes and numerical solutions are easily interpretable—resolution should be concentrated in the steep gradient 
region around the “step”. In light of this, we will use this illustrative example to demonstrate the features of the trained 
deep RL policy, as well as the details of training and model deployment. Subsequent sections will focus on generalizability.

Using a numerical solution of polynomial order porder = 3, we train the RL-agent for 2 · 104 episodes on a computational 
“budget” of 25 cells (§2.3). However, at the time of model deployment, we are free to give the trained RL policy whatever 
budget we wish; we emphasize that this is because in general, we would like to train our model on much cheaper problems 
than those we intend to solve.

During deployment, starting with a very coarse mesh consisting of 4 elements, we perform 6 AMR cycles comparing 
the DRL-AMR model to an AMR heuristic that attempts to refine the elements responsible for the top 50 percent of the 
total error and attempts to coarsen the elements responsible for the bottom 50 percent of total error as measured by the 
approximate gradient error indicator (Table 1). That is, a bulk(0.5, 0.5) strategy (see §3.4). We expect this heuristic indicator 
to perform well, as this test case has only one feature, the steep gradient in the center of the domain.

Fig. 5 shows the numerical solution and meshes proposed by the two approaches. We see that the deep RL agent 
deployed with a 25-cell budget is able to find a high-quality solution with fewer elements than that of the AMR heuristic 
recommendation. This is corroborated by the more precise comparison in Fig. 6, which shows that at model deployments 
with budgets of 25 and 500 cells, the RL agent outperforms the AMR heuristic over six refinement cycles in terms of L2-
accuracy per degree of freedom. That is, the RL policy provides a numerical solution of approximately the same accuracy as 
that of the AMR heuristic, but does so with fewer degrees of freedom after the refinement cycles, both on the problem size 
it was trained on, as well as at a much larger problem size.

Although for 1D problems, differences in problem degrees of freedom are small, this example illustrates the central 
difference between the learned policy and the classical AMR approaches. AMR algorithms mark cells for refinement either 
in terms of the estimated volume fraction of total error in the case of bulk refinement or by a certain number of cells in 
the case of fixed-number refinement. In either case, the AMR algorithms rely on estimators purely to decide which cells to 
refine, but the actual refinement behavior is in some sense, specified a priori. Similarly, the commonly-used way to prevent 
AMR heuristics from continuing to refine beyond a computational limit is to manually specify a max refinement depth, again 
an a priori choice uninformed by the particulars of the solver or PDE, and specified everywhere. The DRL-AMR approach, 
in contrast, not only estimates which cells are likely responsible for a disproportionately large or small share of the total 
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Fig. 5. Steady 1D linear advection (§4.1). Numerical solution with the mesh resulting from 6 cycles of refinement, using the approximate gradient error 
indicator as an AMR heuristic and the deep RL policy resulting from training. The exact solution is overlaid (dashed) in both cases for comparison.

Fig. 6. Steady 1D linear advection (§4.1). L2-error plotted against problem degrees of freedom over 6 cycles of refinement, using the gradient-based error 
indicator as an AMR heuristic and the deep RL policy: (6a) deployed with a computational budget of 25 elements; (6b) with a computational budget of 500 
elements.

error but also estimates a stopping point, beyond which the solution smoothness indicates that additional decreases in error 
are likely to be marginal from the perspective of adding new unresolved features to the solution. This is because, during 
training, the RL agent is given global information related to available computational resources, which it balances against the 
expectation of change in the solution upon local refinement with respect to computational cost.

Where the stopping point occurs, in terms of the solution error, is controllable through the hyperparameter γc . A larger 
value of γc means a cheaper numerical solution with a greater aversion to incurring a cost. On the other hand, a small 
value of γc will result in a numerical solution with a lower error and less tolerance for interface jumps. Informally, γc is a 
user-specified setting indicating the trade-off between cost and accuracy, and is a way to inform the agent “how accurate” 
versus “how cheap” to make the solution. In Appendix A, we provide an approach to remove γc as a training hyperparameter 
entirely, and instead make it a user-chosen value during deployment by modifying the policy architecture; however, this 
discussion is beyond the scope of the main contributions of this paper, and we train using a single value of γc for all of 
the numerical experiments in this section. Next, we explore the training and deployment behavior of the RL policy for this 
simple case to better understand the model.

4.1.1. Training and deployment considerations
Initialization. At the start of each training episode, we can either allow the RL agent to begin on the coarsest possible 

mesh (coarse initialization) or initialize the mesh to a random state by performing a random number of refinements.
Random initialization and coarse initialization perform similarly for the small problem sizes on which they are trained; 

however, per unit training time, we find that random initialization often yields better policies when deployed on substan-
tially larger problems. Fig. 7b compares the performance of two DRL-AMR models trained for 105 training time steps, one 
with the mesh in a coarse state at the beginning of each episode, and the other with a mesh in a random state at the begin-
ning of each episode. Both models were trained on the linear advection problem in §4.1 with a maximum budget of 25 cells 
but were deployed with a budget of 500 cells over six refinement cycles. Comparing the accuracy with the problem degrees 
of freedom, it is clear that the model trained with random initialization significantly outperforms the model with coarse 
initialization. Both models begin the refinement cycle on the same coarse mesh during deployment. The model trained with 
random initialization finds a solution of the same accuracy but uses only half the elements as the model trained with coarse 
initialization. We obtained similar results for other test cases we ran.
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Fig. 7. For the steady linear advection test in §4.1: (a) Performance achieved during training for different deep RL training algorithms, as measured by 
average episode reward (solid lines). Shaded bands indicate the rolling sample standard deviation of the episodic reward over a 10 episode window. (b) 
Performance of DRL-AMR models trained using random state initialization and coarse initialization, as measured by L2-error per degree of freedom over 6 
refinement cycles (on a 25-cell budget example and deployed with a 500-cell budget).

We hypothesize that random initialization during training leads to a more aggressive exploration of the action space and 
produces better results because initializing the mesh to a random state produces regions that are over-refined and under-
refined. On the other hand, initialization on a coarse mesh tends to produce an under-resolved solution everywhere, leading 
the agent to become biased towards refinement during deployment. As might be expected, in the limit of long training 
times, performance becomes comparable between the two initialization strategies.

In light of these performance advantages, all results shown correspond to models trained using random initialization.
Learning algorithms. The performance—as measured by mean episodic reward—for the three RL policy architectures 

(DQN, A2C, and PPO, see §2.5) are shown in Fig. 7a. The sample variance bands are found to tighten non-monotonically 
over the training duration, indicating more consistent performance. All three algorithms achieve similar mean reward and 
variance after roughly 25,000 training time steps, successfully solving the problem. However, as is common in RL problems, 
the model performance during training is non-monotonic, and it is advantageous to periodically save the most performant 
model state for deployment, rather than deploying the policy occurring at the end of the training window. The most per-
formant model at any time during training is defined as the model with the highest mean episodic reward over a given 
lookback window–we use the SB3 library default of 500 training time steps. In general, we have not found any particular 
architecture to be consistently better in terms of performance over the set of test cases considered in this paper. We note 
however that we have not yet attempted to accelerate the training process through optimization of training parameters such 
as batch size and episode length.

Model deployment. Unlike the AMR heuristic, the deployed DRL-AMR model finds solutions by apportioning computa-
tional resources over the mesh in a way that handles the smoothness/efficiency trade-off, then changes the mesh topology 
over the subsequent refinement cycles in order to increase accuracy. The DRL-AMR algorithm thus considers a richer set of 
strategies than a purely greedy strategy.

To illustrate this, Fig. 8 shows the mesh and resultant numerical solution over a set of six refinement cycles for an 
RL-agent trained in the same manner as in §4.1, but with a hyperparameter value of γc = 100, chosen to provide coarser 
solutions for the ease of visualization. Although cycles 2-6 all contain the order of 10 elements, the topology of their 
allocation over the domain changes to concentrate around the steep gradient region. This showcases a particular strength 
of the method: namely, that the decision of the number of elements to use during the exploratory cycles while preserving 
solution smoothness is delegated to the machine learning model, rather than manually needing to be specified. This allows 
the number of elements to increase and decrease exploratively, as opposed to AMR heuristics, which must increase or 
decrease the number of elements according to the error estimator or by a fixed number.

In practice, the cost of each cycle depends on the problem size but we find that the trained RL policies reach a converged 
mesh state in a few cycles, typically around 5-10, independent of problem size. This is in part because the number of cells 
can potentially double or halve every cycle, so locally under-resolved regions either become resolved very quickly, or the 
computational budget is approached and refinement recommendations become more conservative.

Introspection of the neural network model. As a deep RL policy is ultimately a neural network, we can query the trained 
neural network in order to visualize the policy suggestions for different inputs. Here, we are interested in visualizing the DRL 
recommendations (refine, no-change, or coarsen) as a function of generic solution properties. The input space to a policy 
network is the observation space and, in our case, it includes the numerical solution over the element. To sample this 
network, we could for example use the solutions on all elements and marginalize over these element solutions to create a 
map (decision versus solution properties). However, this sampling may not be sufficiently complete (limited by the element 
solutions used) and solution properties would need to be defined. To avoid to these issues, as discussed in §2.2.2, we could 
instead change the observation space and retrain a new DRL model for which we can easily sample the entire observation 
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Fig. 8. Steady 1D linear advection (§4.1). State of the numerical solution and mesh during the deployment of the deep RL agent AMR policy, over six 
refinement cycles.

space and easily interpret results. Therefore, we train a new model using a reduced input observation space consisting only 
of the cell boundary jump, the mean boundary jump over all cells, and the current use of computational resources p. The 
purpose of this visualization is not to evaluate the performance of this simpler model but to show that such DRL-AMR 
networks are able to learn a sensible mapping between the observation space and the refinement recommendation.

Fig. 9 shows the recommendations of the simplified model trained on the problem in §4.1 using a value γc = 25. We con-
sider a range of [-16, -1] in log space, as these are the range of jump values encountered by the network for this test case; 
recommendations outside of this region are uninformed by data encountered during training. Each sub-figure shows the 
decision boundary regions corresponding to the action recommended by the policy. At low use of computational resources 
(p = 0.3), the model suggests mostly refinement, even in regions where the observed boundary jump is significantly lower 
than the average over the entire mesh. We hypothesize that this corresponds to exploratory refinement in some sense. 
At moderate use of computational resources (p = 0.5), the model provides more conservative recommendations, suggest-
ing refinement where the local boundary jump exceeds the mesh mean and is not less than 10−8 in terms of magnitude. 
When computational resources become scarce (p = 0.7), the model suggests coarsening except in regions where the local 
log boundary jump is much greater than the mean. The decision boundaries are highly nonlinear, even for this simplified 
observation space. This demonstrates the potential power and flexibility of the DRL-AMR approach, as it learns complex 
relationships between any physical relevant information included in the observation space and the utility of coarsening or 
refining.

4.2. Generalization to different boundary conditions and forcing functions

We deploy the same trained DRL-AMR model in §4.1 to the same PDE, but on a different domain � = (−4, 4), with a 
different set of boundary conditions and forcing. We choose the boundary conditions gD at the inlet and forcing function f
such that the exact solution takes the form

Fig. 9. Samples of the policy recommendation of a newly trained DRL-AMR network for steady 1D linear advection (§4.1), as a function of a simplified 
observation space consisting of the cell boundary jump, mean jump, and current use of computational resources. Decision boundaries are shown between 
network recommendations to coarsen (blue), do nothing (gray), and refine (salmon). The dashed line indicates where the local boundary jump is the same 
as the mean cell-wise boundary jump over the entire mesh.
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Fig. 10. DRL-AMR model trained on the test case in §4.1 but deployed on the problem in equation (11). Numerical solution with the mesh resulting from 
6 cycles of refinement, using the Kelly error indicator as an AMR heuristic and the RL policy resulting from training. The exact solution is overlaid in both 
cases for comparison.

u(x) = sin(nx)exp

(
−1

2
x2
)

. (11)

At the time of model deployment, we give the trained RL policy a budget of 100 elements. We evaluate the model over 
6 AMR cycles this time using an AMR heuristic which makes use of the Kelly error indicator (Table 1, [20]) and implements 
a fixed(0.5, 0.1) strategy, as described in §3.4.

The final mesh and numerical solution for both is shown in Fig. 10. Our findings are similar to the test case in the 
previous section. Both methods find a mesh and corresponding numerical solution that very closely matches the exact 
solution, however, the RL policy finds a coarse mesh on which the solution is well represented and stops refinement past 
the fourth refinement cycle. Similar to Fig. 6, after the six refinement cycles, the RL policy returns a mesh that provides 
strictly better accuracy per problem degree of freedom (not shown).

This highlights the generality of the method; the RL policy did not suggest refining close to the center of the domain as it 
did for the example in §4.1. This is to be expected, as the RL agent is never given global location information during training, 
only local cell information along with the surrounding interface jumps; therefore it’s impossible to over-fit the RL agent to a 
specific training example during training. However, we remark that if the agent were trained against a pathological example 
such as the Weierstrass function, where the correct action could always be to refine, this will be reflected in the trained 
model, although this can hardly be considered overfitting. Because the agent learns to relate features of the PDE and local 
jumps to the local smoothness of the solution, we find that the agent generalizes well across different test cases from the 
same PDE. This is an important characteristic of the approach, as we wish to deploy the trained model on problems of 
interest other than the subset on which the model was trained.

4.3. Unsteady 1D linear advection

As an extension to the steady experiments, we consider the time-dependent Sommerfeld wave equation

∂u

∂t
+ c

∂u

∂x
= 0 in � × [0, T ],

u(x, t) = gD(t) on �in,

u(x,0) = u0 ,

on the computational domain � = (−4, 4). The Dirichlet boundary condition gD(t) at the inlet is chosen according to the 
exact solution to the time-dependent wave equation uexact(x, t) = u0(x −t). We consider numerical solutions at a polynomial 
order porder = 3.

Gaussian pulse: training and deployment. In the first example, we use a Gaussian initial condition u0 = exp
(
− 1

2σ 2 (x − μ)2
)

. 

The scalar constants are μ = −4 and σ 2 = 0.25, and the background velocity field is taken to be c = 1. The outlet boundary 
of the domain is taken to be an outflow condition.

We train the DRL-AMR model for 5 · 104 RL time steps using the time-dependent solver and training procedure as 
detailed in §2.4 with a computational budget of 25 elements and using a scaling factor value γc = 100 to render a relatively 
coarse numerical solution (2), as the computational cost is more heavily penalized. All other training parameters assume 
the default values (§3.5). For the AMR heuristic, we employ a gradient indicator (Table 1), that approximates the gradient 
of the numerical solution to estimate the error. Given the fast-decaying tails of the Gaussian pulse being advected, the 
gradient-based refinement indicator can be expected to accurately recommend coarsening outside of the pulse.

During deployment, we allow the AMR heuristic and the RL policy to perform one cycle of refinement/coarsening at 
every time step before advancing the numerical solution in time. We consider an increased budget of 100 elements for the 
RL-agent, and for the AMR heuristic we perform a bulk-refinement approach where we refine the cells responsible for the 
top 50 percent of the numerical error as measured by the gradient indicator, and coarsen the bottom 50 percent of the 
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Fig. 11. Unsteady 1D linear advection: Gaussian pulse. Numerical solution with time-dependent AMR policies using a gradient-based heuristic (left column) 
and the trained RL policy (right column), at times T = 1.6 (top), T = 4.2 (middle), and T = 6.9 (bottom).

numerical error as measured by the same, i.e., a bulk(0.5, 0.5) strategy. Using a time step 
t = 0.01, we simulate to a final 
time of T = 7. The results are shown in Fig. 11. Similar to the other experiments, we find that both algorithms are able to 
capture the advection of the initial condition; the RL policy does so using a computational mesh with far fewer elements 
than the AMR heuristic. Namely, the DRL-AMR model is able to preserve the features of the solution while using fewer than 
25 percent of the computational cost incurred by the AMR heuristic. Due to the increased value of γc as compared to the 
other numerical experiments considered thus far, the RL agent is more tolerant of a lack of smoothness in the solution. This 
is reflected in the small discontinuities of the numerical solution at the location x = 0 at t = 1.6 and at x = 2 at t = 6.9.

Deployment on multi-feature wave advection. We showed in §4.2 that the trained policy was able to generalize beyond 
its training setup in terms of boundary conditions and forcing functions for the steady advection problem. To highlight 
the same in this time-dependent case, we use the policy network trained on the time-dependent wave equation example 
(Fig. 11), but deploy it on a more feature-rich initial condition

u0 =
(
α1e

− 1
2σ2 (x − μ) + α2 sin (α2x)

)
(x − 2π) (12)

with parameters α1 = 3, α2 = 2, μ = 0, and σ = 2/25, a different background velocity c = π , and a larger budget of 350 
cells.

The domain and background velocity field are chosen as � = [−2π, 2π ] and c = π , respectively, such that the exact 
solution is advected to its initial profile at the final time T = 4. To ensure the numerical error is primarily due to spatial 
discretization rather than temporal error, we use for time-marching a fourth-order explicit Runge Kutta (LSRK4) scheme 
and a small time step 
t = 1 · 10−3. For spatial discretization, we use the discontinuous Galerkin scheme of §3.2 with 
a polynomial order porder = 3. We compare the performance of the RL-agent to an AMR heuristic using the Kelly error 
estimator and a bulk(0.5, 0.3) strategy.

Numerical results are shown in Fig. 12 and Fig. 13. Fig. 12a shows the initial condition and the mesh of 64 elements 
on which the AMR heuristic and RL agent are initialized. Fig. 12b shows the numerical solution and mesh given by the RL 
policy network at t = 1. Qualitatively, the features of the initial condition have been well-preserved, despite the use of only 
27% of the active cell budget; the L2-errors at the final time were 3.13 · 10−2 and 3.21 · 10−2 for the AMR heuristic and the 
RL-agent solution, respectively. To provide a more thorough comparison, Fig. 13 compares the numerical solutions provided 
by the AMR heuristic and the RL agent at the final time T = 4; both demonstrate agreement with the exact solution–
however, the RL-agent does so using far fewer elements. The RL-agent uses only 92, fewer than half of the 210 cells used 
by the AMR heuristic.
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Fig. 12. Unsteady 1D linear advection: multi-feature wave. (Left) Initial condition (12) and initial mesh of 64 elements. (Right) Numerical solution at time 
t = 1, integrated using RL-agent (94 active cells) trained on the Gaussian pulse. The mesh is shown with transparency for ease of visualization.

Fig. 13. Unsteady 1D linear advection: multi-feature wave. (Left) Numerical solutions and corresponding meshes at the final time T = 4 for the RL-agent 
trained on the Gaussian pulse and for the AMR heuristic, along with the exact solution. (Right) Zoomed-in center region corresponding to the box in (a).

Although both approaches appear to prioritize refinement in roughly the same regions, by examining the fast-varying 
feature in the center region, depicted in Fig. 13b, we see that the RL agent is more selective about refinement, even in 
local regions with sharp features. To explain this, we remark that the reward function is formulated such that the agent 
learns a map between a local observation and the expected utility of refinement; therefore, even if the agent is in an area 
of “interesting” activity, the numerical solution on a particular element may suggest that there’s diminishing local utility to 
performing refinement. Moreover, the use of neighbor cell information, as well as the convective velocity in the observation 
space can result in anticipatory behavior in the recommendations, whereas the AMR heuristic will not.

We emphasize that due to the local nature of the observation space, over-fitting to a particular feature encountered 
during the training example(s) is not something to be concerned with, as the agent never has access to the solution as a 
whole, and the same feature will be covered with different numbers of cells over coarsening and refinement. Ultimately, the 
RL agent is primarily concerned with learning the relationship between a local signature of the numerical solution and the 
conformity of the solution; this is why the agent performs well at preserving solution features. In that sense, the DRL-AMR 
approach is advantageous in that applying it should not be particular to a specific PDE or numerical scheme, a claim we 
investigate in the next section.

4.4. Generalization to different PDEs

To demonstrate that the DRL-AMR approach is not specific to the advection equation considered above, we apply it to 
the second-order Poisson equation, a subset of advection-diffusion PDEs (§3.3).

−∂2u
2

= f in � = (−1,1), (13)

∂x
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Fig. 14. Steady 1D Poisson problem (13). (Left) Mesh distribution and corresponding numerical solution resulting from 6 cycles of refinement using the 
trained RL policy with a budget of 36 cells; the exact solution (14) (black, dashed line) is overlaid for comparison. (Right) L2-Error of the numerical 
solution vs problem degrees of freedom over 6 mesh refinement cycles for the RL agent and the Kelly error estimator as AMR heuristic.

with mixed boundary conditions consisting of a Dirichlet condition u = gD on boundary �D = {−1} and Neumann condition 
∇u · n = gN on boundary �N = {1}. The boundary conditions and forcing function are deduced from the exact solution, 
chosen to be a superposition of Gaussian functions

u =
3∑

i=1

1

σ
√

2π
exp

(
− (x − ri)

2

σ 2

)
(14)

with parameters r1 = −1/3, r2 = 0, r3 = 1/3 and σ = 1/10. We discretize the problem using HDG finite elements as de-
scribed in §3.3, with polynomial order porder = 3. We set the diffusivity coefficient κ = 1 and the convective velocity c = 0.

We train an RL model for 2 · 105 training time steps, and all non-specified training parameters assume the default values 
(§3.5). Results of the trained RL policy are shown in Fig. 14. We see that the features of the solution are well resolved, and 
match the exact solution.

Furthermore, the trained policy identifies regions on the outer edges of the Gaussian mixture as in need of refinement; 
we hypothesize that this region is specifically sensitive to Gibbs phenomena caused by the change from a near-zero solution 
to a non-trivial one. The more precise comparison between L2-error and problem degrees of freedom in Fig. 14 shows that 
the DRL-AMR model outperforms the AMR heuristic. As the Kelly error indicator was specifically designed for this type of 
Poisson problem and can be referred to as an error estimator in this context, the fact that the RL policy is competitive is an 
encouraging result.

Lastly, the PDE in (13) is elliptic. The Green’s function for the Laplacian operator decays as 1/r, where r is the euclidean 
distance from the point in question, in contrast to the advection equation, where errors are advected along with the solution 
along characteristic paths. Therefore the numerical solutions as well as effective adaptive refinement strategies can be 
expected to be of a different character than those for purely hyperbolic problems. The fact that the RL methodology was 
nonetheless able to satisfactorily solve the problem lends credence to the POMDP formulation and use of a local observation 
space during training.

4.5. Steady 2D linear advection

To examine the generalizability and performance in the context of larger, higher-dimensional problems, we solve the 
steady version of the linear advection equation (§3.2) on the two-dimensional (2D) spatial domain � = (0, 1)2 with a 
circular, counter-clockwise convective velocity field c(x) = 1/ ‖x‖2 (−x2, x1). On the inflow boundary �in, we specify the 
boundary condition gD according to the chosen solution,

u(r) = 1 − tanh (α(1 − 4(r − x0))) , (15)

where r denotes the radius in cylindrical coordinates. We use the parameters α = 10, x0 = 1/4 and forcing function f = 0. 
The exact solution is a two-dimensional, cylindrical coordinate generalization of the test case considered in §4.1; that is, the 
solution contains a smooth, steep gradient. However, unlike the test case in §4.1, due to the higher problem dimensionality, 
the steep gradient is present both in the domain interior as well as at the domain boundary.

To train the network, we solve the linear advection problem

∇ · (cu) = 0, in �,

u = u(r), in �in

using the DG discretization given in §3.2 with elements of polynomial order porder = 2, and deploy the model on the same 
problem. However, we train the RL policy network with a resource budget of only 110 cells, limiting the learning process to 
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Fig. 15. Steady 2D linear advection. Numerical solution overlaid with the mesh refined using a gradient-based error indicator and the RL policy (1000 cell 
budget). (Top row) Entire problem domain. (Bottom row) Zoomed-in portion of the domain where the steep gradient meets the left outflow boundary.

a relatively small number of elements compared to the deployment budgets; all other training parameters are the default 
values (§3.5). After 2 · 105 training, time steps, we deploy the trained RL policy over a series of 6 refinement cycles, starting 
with a coarse mesh of 25 elements with 5 elements in each direction.

We compare the performance of the RL agent to the gradient-based error indicator (Table 1) that uses a bulk(0.5, 0.5) 
refinement strategy. The AMR heuristic is given an effective budget of 3200 cells by limiting the maximum refinement 
depth; we compare this approach to RL policies with both larger and smaller budgets. Similar to the test case considered 
in §4.1, this AMR heuristic can be expected to perform well, given the steep gradient as the dominant feature of the exact 
solution.

In Fig. 15, we show the two numerical solutions overlaid with the final meshes and find that the RL policy is able to 
outperform the heuristic. The RL policy was deployed with a budget of 1000 cells; it makes use of roughly 2/3 of its budget 
allocation by the final refinement cycle. Qualitatively, both approaches are able to resolve the steep gradient; however, 
compared to the AMR heuristic, the RL agent has much more conservatively refined the mesh around the slope. Instead, 
the RL agent refines preferentially in the region where the steep gradient encounters the outflow boundary (cf. Fig. 15c 
and Fig. 15d). In training, the RL agent learned that the numerical solution is sensitive to the discontinuities arising where 
the gradient meets the outflow boundary. Although the agent has no information on where cells are located, the cells in 
this problem region exhibited behaviors in their observation space that indicated the numerical solution would improve by 
refining them. That is to say, the RL policy learned a non-trivial, spatially-heterogeneous strategy for regional refinement. 
In contrast, the gradient-based indicator detected the steep discontinuity but was not able to exploit the sensitivity of the 
error to the resolution close to the outflow boundary.

In Fig. 16, we show the L2-norm of the solution errors as a function of the number of degrees of freedom in the numer-
ical discretization at each level of the refinement cycle, showing results for the RL policy deployed at different cell budgets, 
specifically 200, 1500, and 5000 elements. By the final refinement cycle, the RL policy finds a solution of comparable or 
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Fig. 16. Steady 2D linear advection. L2-error as a function of the number of degrees of freedom for the refinement cycles resulting from a gradient-based 
error indicator and the RL policy.

better accuracy than that of the AMR heuristic for the same number of degrees of freedom. With a budget of 5000 cells, 
the RL agent remains well under budget but substantially outperforms the AMR heuristic. This is due to the aggressive 
refinement of the heuristic around the gradient region; after five refinement cycles, nearly all the mesh cells are located 
in this region, and an additional refinement cycle results in performance similar to a uniform refinement i.e., nearly qua-
drupling the degrees of freedom. This poor performance of the AMR heuristic can be somewhat attributed to the nature of 
the problem, as discontinuous Galerkin methods for transport equations can be plagued by reduced convergence rates on 
arbitrary meshes, especially meshes which are not flow-aligned [59], as is the case in this example.

4.6. Steady 2D advection-diffusion equation

Section §4.5 involves a relatively simple steady numerical solution, with a single steep gradient region. It is natural to 
ask whether the methodology can capture solutions with more complicated features. In this section, we thus consider the 
steady advection-diffusion problem (9) with mixed boundary conditions, and the less straightforward hybridizable finite 
element discretization (10) of the same.

We choose a circular velocity field c = (x2, −x1) in the domain � = (−1, 1)2. The top and bottom boundary conditions 
are Dirichlet �D , whereas the left and right conditions are Neumann �N . The boundary values and forcing function are 
deduced from the exact solution, a superposition of Gaussian functions chosen to create non-trivial features. The details 
of the exact solution are given in Appendix B. The problem is discretized at polynomial order porder = 4 and makes use 
of element-local post processing, resulting in an observed optimal convergence order of porder + 2 upon uniform mesh 
refinement (see [57]).

We train the RL policy for 3 · 105 training time steps, using a budget of 200 cells; all other training parameters are the 
default values (§3.5). As in the other numerical experiments, the training budget was chosen to be significantly cheaper than 
the deployment budget. For comparison, we consider an AMR heuristic that makes use of the Kelly error indicator with a
bulk(50, 50) refinement strategy, refining and coarsening cells responsible for the top 50 percent and bottom 50 percent of 
the total estimated error, respectively. The AMR heuristic is given an effective budget of 3200 cells by limiting the maximum 
refinement depth, applying a cell limit as discussed in §3.4. We compare this approach to RL policies with both larger and 
smaller budgets; we choose larger and smaller budget as a comparison because, as is shown in the following, the RL-policy 
network recommends substantially fewer cells than the AMR heuristic in either case. Both strategies are employed over 5 
refinement cycles, beginning from the coarse mesh shown in Fig. 17a.

The results of the comparison between the two algorithms are given in Fig. 17. Examination of the L2-error per degree 
of freedom (not shown) again demonstrates that the RL agent is competitive with any of the AMR heuristics considered in 
this paper. However, in this experiment, we focus on the relative ability of the heuristic and RL AMR strategies to resolve 
relevant features of the solution, pursuant to the discussion in §1.1. We see from Fig. 17a that on the coarse starting mesh, 
the numerical solution is acutely under-resolved. Both the AMR heuristic (Fig. 17b) and the trained RL agent (Figs. 17c, 17d) 
are able to satisfactorily resolve the features of the numerical solution, but the RL agent does so with a more parsimonious 
allocation of elements over the mesh. Even when the computational budget is increased from 1500 cells to 5000 cells, the 
RL agent makes only minor adjustments to the mesh.

The explanation for this is that the trained DRL-AMR model makes decisions based on the learned relationship between 
the features of the observation space local to each element, and the change in the numerical solution upon refinement. The 
HDG finite element schemes (10) enjoy a faster convergence rate and, typically, better overall accuracy than the advection 
DG scheme (8) due to its dual formulation and element-wise post-processing, as discussed above. Additionally, we use a 
relatively high-order (sixth-order effective convergence rate) finite element scheme as compared to the smooth step example 
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Fig. 17. Steady 2D advection-diffusion. Numerical solutions overlaid with the corresponding final mesh.

in §4.5, which exhibited second-order convergence. The RL policy is able to detect the fast convergence to the exact solution 
(according to the local numerical solution as well as the jump discontinuities over the boundary of each element) and 
elects to use only a small portion of its computational budget in order to resolve the solution, approximately 8 percent 
and 2 percent for budgets of 1500 cells and 5000 cells, respectively. We hypothesize that the inclusion of additional HDG-
specific features into the observation space, such as the numerical gradient qh or the approximate numerical flux on the 
mesh skeleton ûh (10) could additionally improve performance.

In summary, the RL policy is able to judiciously allocate resources in order to capture non-trivial features of a numerical 
solution. Furthermore, the generality of the RL methodology extends to more complicated finite element schemes and is 
able to take advantage of their properties—in this case, high-order convergence due to a post-processed solution.

4.7. Unsteady 2D linear advection

In section §4.3, we showed that the RL policy, trained on a simple unsteady example, was able to perform well when 
deployed on a much more complex flow, with a different setup than that seen in training. We also showed that the complex 
features of the solution were preserved over many time integration steps. In this section, we extend these results to two 
dimensions: specifically, unsteady 2D linear advection problems (§3.2).

Unsteady 2D Gaussian pulse advection: training. For DRL training, we employ the advection of a simple Gaussian as illus-
trated in Fig. 18, extending the Gaussian pulse of §4.3 to 2D. The initial tracer condition (Fig. 18a) is

u0 = exp

(
− 1

2

(
(x − μx)

2 + (y − μy)
2
))
2σ
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Fig. 18. Unsteady 2D Gaussian Pulse advection: Training test case setup. The locations of inflow boundary conditions are highlighted in gray.

Fig. 19. Unsteady reversible 2D ring advection. Numerical solution on a 64 × 64 uniform grid.

where μx = 0, μy = 0.75, and σ = 1/25. The convective velocity is c = (2π y, −2πx) over the region � = (−1, 1)2, with 
numerical fluxes and upwind boundary conditions as specified in §3.2, specifically inflow boundary conditions uh = 0 on 
�in shown in (Fig. 18b) and no boundary conditions imposed on the outflow boundaries �out (§3.2). We train the DRL agent 
for 3 · 105 training time steps on a budget of 200 cells; all other training parameters assume the default values (§3.5 and 
Appendix C).

Unsteady reversible 2D ring advection: deployment. Once trained, we deploy and benchmark the DRL agent’s performance 
against a more complex unsteady linear advection (§3.2). Inspired by the novel advection-diffusion test case in [60], we 
consider the advection of a thin ring by a reversible swirl flow (Fig. 19). The initial tracer condition is given by

u0 = exp

(
− 1

2σ 2

(√
(x − x0)2 + (y − y0)2 − r0

)2
)

, (16)

specifying a ring with inner radius r0 and approximate thickness 3σ centered at the point (x0, y0). For this test case, 
we choose the parameters r0 = 0.2, (x0, y0) = (0.25, 0.25), and 3σ = 0.05, describing a thin ring centered in the bottom 
right-hand corner of the domain, depicted in Fig. 19a. The velocity field is given by the reversible swirl flow

c(x, y, t) =
(

3

2
a(t) sin2(πx) sin(2π y), −3

2
a(t) sin2(π y) sin(2πx)

)
(17)

over the square domain � = (0, 1)2. Here 0 ≤ t ≤ 1, a(t) = 1 if t < 0.5, and a(t) = −1 if t ≥ 0.5, which reverses the direction 
of the flow field at t = 0.5. At the time T = 1, the analytical initial tracer distribution returns to its initial location due to 
the flow symmetry and can be compared to the initial condition to measure the error in the numerical solution. The inflow 
boundary conditions and forcing function are taken to be zero over the duration of the simulation; however, the locations 
of the inflow and outflow boundaries switch over the course of the time integration. The presence of steep gradients in 
the solution along the inner and outer circumferences of the ring during both the forward and backward swirl advection 
process makes this problem challenging, as well as a suitable test case to assess the ability of a numerical scheme to avoid 
spurious diffusion and dispersion, and to preserve features of the analytical solution [60].

All numerical simulations are run at polynomial order porder = 3 and use a small time step 
t = 10−3 over the LSERK45 
time-marching so that the total error is dominated by the spatial discretization error.
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Fig. 20. Unsteady reversible 2D ring advection. AMR heuristic (top row) vs DRL agent (bottom row).

During deployment, we compare the trained DRL-AMR model to an AMR heuristic which uses the Kelly error indicator 
with a conservative bulk(60, 40) refinement strategy. Both strategies start on a fine, uniform mesh of 64 × 64 elements 
and are allowed 6 refinement cycles during initialization, after which, they are allowed one refinement cycle per time step 
for the duration of the simulation. In order to prevent the number of degrees of freedom from growing unbounded over 
time integration for the AMR heuristic, we apply an effective resolution requirement by specifying a maximum refinement 
depth of 4 as discussed in §3.4, corresponding to the finest possible grid of 64 × 64 cells. To provide a fair comparison, the 
RL policy is deployed with an equal maximum cell budget of 642 = 4096 elements.

For baseline comparison for the AMR heuristic and the RL policy, we show first in Fig. 19 the numerical solution for a 
uniform grid of 64 × 64 elements, corresponding to the resolution limit for the AMR heuristic. Qualitatively, the uniform 
grid simulation is able to preserve the features of the ring over the forward and reverse advection, up to final integration 
time t = 1 (Fig. 19c).

The proposed meshes and resultant numerical solutions for the AMR heuristic and RL policy are shown in Fig. 20. As can 
be seen in panels 20a, 20b, 20d, and 20e, the qualitative features of the numerical solution resulting from both schemes 
are very similar to that of the uniform grid simulation (Fig. 19); that is, both approaches are able to successfully resolve 
the features of the solution. Similar to the other experiments, the RL agent is able to achieve comparable accuracy to the 
AMR heuristic, but with a comparatively coarser mesh, as is corroborated in Figs. 20c and 20f. The numerical errors for each 
approach are comparable and within 10 percent of the numerical error resulting from the uniform mesh. However, in this 
particular test case, at each time step, the RL-agent used far fewer elements.

The L2-norm of the errors for the three numerical solutions at final time T = 1 are provided in Table 3 and the time 
series of active cells for both the AMR heuristic and the RL agent are shown in Fig. 21. They confirm that the DRL-AMR 
agent can achieve the same accuracy for a much smaller cell budget.

Table 3
Unsteady reversible 2D ring advection. Comparison of numerical errors at final time T = 1. The evolution 
in time of the number of active cells is provided in Fig. 21.

Refinement method L2-error Percent change

Uniformally refined mesh (4096 cells), ground truth 1.8316 · 10−2 -
AMR Heuristic (Kelly) 1.9553 · 10−2 6.8%
DRL Agent 1.9630 · 10−2 7.2%
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Fig. 21. Unsteady reversible 2D ring advection. Number of active cells versus time during deployment (post-initialization).

4.8. Discussion of numerical experiments

The numerical experiments in §4.1-§4.2 demonstrated a proof of concept for the DRL-AMR approach; we were able to 
train a model on a small budget and apply it effectively to larger, different problems governed by the same PDE. Our exper-
iments indicated that random initialization led to a better exploration of the decision space and that all learning algorithms 
considered were able to solve the problem. We saw that for a simplified observation space, the neural network representing 
the trained RL policy was interpretable in terms of local solution conformity. The numerical experiments in §4.3-§4.4 showed 
that the method generalizes to time-dependent problems, as well as to different PDEs with mixed boundary conditions and 
significantly more complicated numerical schemes.

The test case in §4.5 demonstrated that the RL agent was able to learn a spatially heterogeneous, non-trivial strategy 
to increase accuracy per cost by preferentially refining around a problem region on the boundary, a strategy on which the 
AMR heuristic was not able to capitalize. The advection-diffusion problem in §4.6 extended the findings in §4.4 to higher 
dimensions and exhibited the ability of the RL policy to take advantage of the fast convergence of a post-processed solution 
as well as to resolve non-trivial features of a numerical solution cheaply. Lastly, the unsteady 2D advection problem in §4.7
displayed the ability of the trained RL policy to preserve similar non-trivial features over the course of time integration in 
problems with dynamic, sharp gradients.

Overall, our DRL-AMR methodology is flexible and effective at delivering efficient, high-quality solutions for both static 
and time-dependent problems over a wide range of different PDEs, boundary conditions, dimensions, and problem sizes.

5. Conclusions and future work

We introduced a novel deep reinforcement learning formulation for adaptive mesh refinement based on a partially 
observable Markov decision process designed to balance numerical accuracy with computational cost, with the goal of 
providing a learned, high-quality strategy for resolving solution features efficiently. The underlying idea is that rather than 
hand-designing a heuristic error indicator a priori, the reinforcement learning agent will instead learn one through trial 
and error during training by solving many inexpensive problems. This is advantageous because the learned policy network 
can be arbitrarily complex and make use of any feature included in the observation space, including information about 
computational cost. Furthermore, training the RL policy requires no domain-specific knowledge, as the relevant information 
is encoded in the numerical solver, and, more abstractly, in the underlying PDE. Conversely, specific features of a numerical 
scheme such as polynomial degree, convergence order, and problem dimension are implicitly considered in training through 
use of the numerical solver, as opposed to having to be analyzed and explicitly specified in the case of a manually-defined 
error indicator.

Our implementation shows that the resultant trained policies are able to execute adaptive refinement strategies which 
are competitive with, and in many cases, better than common AMR heuristics in terms of accuracy of the final solution 
per problem degree of freedom. Our methodology is not specific to any particular PDE, spatial dimension, or numerical 
scheme, and can flexibly incorporate physical or temporal history data into the observation space. The local nature of the RL 
problems allows for training the RL agent on small problems and deploying the policy on much larger problems, ensuring 
scalability. Lastly, at no point during training nor model deployment do we ever make use of an exact solution or a “ground 
truth.”

Future work could incorporate p-refinement into the learning process to allow the RL agent access to a richer set of finite 
element representations of the numerical solution, incorporate a more sophisticated belief distribution as to the regions 
of under- or over-resolution in the numerical solution, or integrate transfer learning using existing error estimators to 
accelerate training. Finally, the application of the new DRL-AMR schemes to vector-valued problems such as the Navier–
Stokes equations and geophysical equations such as those used in storm surge [61,62], ocean [63–67], and atmospheric 
[68] applications, as well as studies of related numerical topics such as slope-limiting, preconditioning, and adaptive time 
integration, are the subject of ongoing research.
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Appendix A. Tunable policies

Computational resources are user- and time-dependent. For different applications, or even in the middle of a simulation, 
we may seek to adjust how aggressive our reinforcement learning agent is in refining or coarsening our mesh. We directly 
encode the trade-off between accuracy and computational cost in hyperparameter γc , which the user may tune freely. 
However, naively changing γc would require re-training our reinforcement learning agent. Next, we show how we can avoid 
re-training while simultaneously allowing for policy tuning.

The more general setting to this problem is multi-objective reinforcement learning (MORL). We seek an agent that is 
optimized over a continuum of objective functions depending upon γc . The value function V π

t (st) is the expected reward 
following policy π given state st . Traditionally, V π

t : S →R maps an observation to a scalar, but in MORL, the value function 
V π

t : S → Rd maps an observation to a d-dimensional vector indexed by the different objective functions. In our case, the 
value function V π

t (st; γc) : S → Cb(R) maps an observation to a bounded continuous function. Most approaches in the 
MORL literature attempt to find either a single policy by scalarizing the vector-valued V π

t or multiple policies by repeatedly 
training over different objective functions (see [69] for a literature review). However, due to a particular feature of our 
expected reward function Q t , we are able to simply learn over a continuum of objective functions.

Consider an expected reward function Q t :O×A →R that can be split into two parts: a function that can be explicitly 
computed given the observation, i.e. the “known” function Q (k) , and a function that needs to be learned, Q (l) .

Q t(s,a;γc) = Q (k)
t (s,a;γc) + Q (l)

t (s,a) (18)

There is no reason to learn Q (k) if it can be explicitly computed; instead, we should just represent Q (l) with a deep neural 
network as in deep Q-learning. Then, the outputs of the two Q functions can be combined at the end, and the argmax of 
the resulting sum will be the action that we take. Importantly, the hyperparameter γc is only an argument of the known 
function that we can explicitly compute. This allows us to learn one function Q l but then change our policy adaptively as a 
function γc . Computationally, we really learn the function Q̂ t : S → R|A| that maps an observation to the expected reward 
for every action in the action space, and we denote this modified and approximate expected reward function with a hat. In 
Fig. 22, we delineate a traditional deep Q-learning policy π from a tunable policy π̃ .

In our particular case, the reward function (2) is naturally decomposed into a part that needs to be learned and one that 
can be explicitly computed: the accuracy needs to be learned but the computational cost and barrier function are explicitly 
known. Call these partial rewards R(l) and R(k) , respectively. We can write our Q function as follows.

Q t(s,a) = E

[ ∞∑
i=0

γ i
k R(k)

t+i+1 +
∞∑

i=0

γ i R(l)
t+i+1

∣∣∣∣∣ St = s, At = a

]
(19)
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Fig. 22. We depict a vanilla policy based on Deep Q-Learning and a tunable policy. The tunable policy splits the Q̂ function into known and learned 
functions. The learned function is represented by a neural network, while the known policy can be evaluated explicitly given the observations. In the 
tunable policy, the hyperparameter γc is an input to the known Q̂ (k) function which does not have to be re-learned.

Above, we have used different discount factors γk and γ for R(k) and R(l) , respectively. We consider the case where 
γk = 0. In our example, setting the discount factor on the computational cost to zero is justified in that we are usually only 
concerned with the computational cost at a given instant. Furthermore, the computational load on a machine is often highly 
unpredictable; for example, other users may submit jobs in the middle of our simulation. As such, a greedy approach to 
discounting the computational penalty is desirable, and we may rewrite our expected reward as follows.

Q t(s,a) = E
[

R(k)
t+1

∣∣∣ St = s, At = a
]

︸ ︷︷ ︸
Q (k)

t

+E

[ ∞∑
i=0

γ i R(l)
t+i+1

∣∣∣∣∣ St = s, At = a

]
︸ ︷︷ ︸

Q (l)
t

(20)

With that, we have defined our known and learned Q functions, and to train we simply omit R(k) from our reward 
entirely by setting γc = 0. Once trained, we append Q (k) to the end of our Q (k) network in order to make predictions, and 
γc may be set arbitrarily without retraining. We note that separable rewards are not limited to this case where we balance 
computational cost and simulation accuracy, and we posit that there are many other areas where this framework may be 
beneficial.

While we have described how to perform MORL in instances where Q is separable and the action space is discrete, this 
framework should be extendable to the continuous case. In actor-critic policies where the critic learns the Q function (e.g. 
deep deterministic policy gradient (DDPG) [70], twin delayed DDPG (TD3) [71], and soft actor critic (SAC) [72] methods), one 
should be able to apply a similar methodology: after learning Q (l) , one should be able to append Q (k) . In the continuous 
case, however, the actor must be re-trained since we cannot just take the argmax of a continuous action space. Fortunately, 
re-training the actor should be computationally inexpensive since the policy networks tend to be small, and we can just 
randomly sample from the action space. That is, we do not need to re-sample from our environment; instead, as we already 
know our Q function, we simply need to re-train the actor to maximize the estimated reward given an action from our 
action space. This procedure is the subject of ongoing research.

Appendix B. Exact solution, §4.6

The exact solution is given by

u(x) =
25∑

i=1

1

2πσ 2
exp

(
− 1

σ 2
‖x − xi‖2

)

with parameter σ = 1/10 and source centers xi described in Table 4.

Table 4
Description of source centers, where α = 1.1.

i xi = (x1, x2/α)

1 (-0.75, -0.25) 6 (-0.25, -0.25) 11 (0.125, -0.75) 16 (-0.75, -0.625) 21 (-0.25, -0.375)
2 (-0.75, -0.75) 7 (-0.25, -0.50) 12 (0.5, -0.75) 17 (-0.50, -0.625) 22 (0.125, -0.625)
3 (-0.75, -0.50) 8 (-0.25, -0.75) 13 (0.5, -0.5 ) 18 (-0.25, -0.625) 23 (0.5 , -0.625)
4 (-0.50, -0.25) 9 (0.125, -0.25) 14 (0.5 , -0.25) 19 (-0.75, -0.375) 24 (0.625 ,-0.25)
5 (-0.50, -0.50) 10 (0.125, -0.50) 15 (0.75 , -0.25) 20 (-0.50, -0.375) 25 (0.125, -0.375)
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Appendix C. Additional training parameters

For all numerical experiments, we used a time discount factor γ = 0.99, which is the default for the Stable-Baselines-
3 library. The large negative reward accrued by the agent upon running out of computational resources was taken to be 
Rexceed = −1 · 103; this was important as a learning signal in the cases where the RL agent was trained on a small compu-
tational budget, as the barrier function B(p) in (2) is undefined outside p = 1. Training episodes were terminated after a 
finite number of iterations, we used 200; this choice is arbitrary, as long as the number of iterations is large enough that 
it is possible for the agent to approach its computational budget and receive the large negative reward for doing so. The 
parameters used for RL training were given in Table 2.
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