Ensemble Forecasting for the Gulf of Mexico Loop Current Region

Patrick J. Haley, Jr.%, Chris Mirabito?, Manan Doshi®, Pierre F. J. Lermusiaux® T
@ Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA
fCorresponding author: pierrel @mit.edu

Abstract—In recent years, the Gulf of Mexico Loop Current
System has received increased attention. Its dynamics and the
warm water it transports from the Caribbean influence the
local weather and ecosystems. The high velocities of the Loop
Current and the eddies it sheds can disrupt important industries.
Accurate forecasting of the Loop Current system is challenging,
in part because of the lack of data over long enough periods of
time, which leads to considerable uncertainty. In this work, we
describe and apply our MIT Multidisciplinary Simulation, Esti-
mation, and Assimilation Systems (MSEAS) and Error Subspace
Statistical Estimation (ESSE) ensemble forecasting methodology
and software to estimate such uncertainty and to inform data
collection in a quantitative manner. The ensemble forecasts
allow for mitigating risks and optimizing data collection. We
demonstrate that our probabilistic system has qualitative skill
for over a month. We show that uncertainty grows along and
around the Loop Current and its eddies, and transfers to depth
from the shelf and slope. Using information theory, we find that
our probabilistic hindcasts can have predictive capabilities for
one to three months, with a slower loss of predictability in the
quieter Loop Current states. Through the use of correlation
and mutual information fields, we optimize future sampling by
predicting the impacts and information content of observations.
We find that the most informative data are those that either
directly sample dynamically relevant areas or sample coastal
modes that are correlated with these areas. Subsurface data are
shown to have more impact on forecasts of one month or longer.

Index Terms—ocean modeling, probabilistic forecasting, pre-
dictability, skill, adaptive sampling, mutual information.

I. INTRODUCTION

In the Gulf of Mexico (GoM), the strength of hurricanes, the
health of coastal and estuarine ecosystems, the exploration and
extraction of oil and gas, the fishing industry, and ultimately
the region’s economy as a whole are heavily influenced by the
location and dynamics of the Loop Current (LC) [1-3]. The
LC is a warm-water current that flows northward from the
Caribbean Sea, protrudes into the GoM, and exits through the
Florida Strait. The degree to which the LC penetrates the GoM
is highly variable. The northernmost extent of the penetration
has a range of 24°N to 28°N [4-7]. This penetration has been
observed to have a bimodal distribution [4, 7—15]. The major
mode of this distribution is centered on 26.5°N to 26.75°N,
with the minor mode centered on 24.5°N to 24.75°N. The
horizontal extent of this penetration is also highly variable in
time, but has been observed to exhibit quasi-periodic behavior,
with the minimum penetration generally occurring in January,
peak intensification and penetration growth occurring during
the springtime months (February to May), and maximum
penetration occurring in July [8, 9, 15]. However, it is not
only the location of the LC, but also its sporadic and episodic
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shedding of long-lived LC Eddies (LCE) that often disrupt lo-
cal ecosystems and industrial operations at sea in the northern,
central, and western GoM [1, 7, 13, 14, 16-22].

The desire to better understand and forecast the highly vari-
able LC system has driven much modeling work. This includes
both isolated hindcasts and forecasts [5, 10, 11, 13, 15, 23—
31] as well as extended forecasting operations [32—40]. The
limited availability of data for these forecasting operations has
led in turn to large uncertainties in long-range model forecasts
of the LC and LCE locations and dynamics. Moreover, the
impact of these limited observations on such forecasts has been
challenging to ascertain in a rigorous, quantitative manner, and
remains an important question in the scientific community.

Thus, the overarching goals of this work are to showcase
principled methods and systems for (i) estimating forecast
uncertainties, and (ii) informing data collection so as to
maximize the impact of the data on longer forecasts. To start
addressing these goals, we (i) employ large (200- to 500-
member) ensemble hindcasts from our MIT Multidisciplinary
Simulation, Estimation, and Assimilation Systems primitive
equation (MSEAS-PE) and Error Subspace Statistical Estima-
tion (ESSE) software to initialize and hindcast uncertainties
and (ii) utilize these ensemble hindcasts to estimate the statis-
tics and probability density functions (pdf) needed to compute
predictive capabilities, predictability limits, and data impact
using correlations and mutual information (MI) fields.

The remainder of this paper is organized as follows. In
section II, we outline our overall forecasting methodology,
including a description of OUR probabilistic ocean modeling
system. We also briefly describe the statistical tools we use to
quantify predictability and data impact. Next, in section III,
we showcase the results of our deterministic hindcasts, and
provide a brief skill assessment. In section IV, we present
our probabilistic hindcasts, describe the evolution of the un-
certainty, and discuss the predictability limits. We discuss
applications of our ensemble hindcasts to optimal sampling
strategies in section V. Finally, conclusions are in section VL.

II. METHODOLOGY

For the probabilistic ocean simulations, we employ our
MIT MSEAS-PE and ESSE systems [41-45]. These systems
have been used for fundamental research and for realistic
simulations in varied regions of the World Ocean [46-52].
Among the many strengths and capabilities of the MSEAS-
PE is its ability to simulate (sub-)mesoscale processes over
regional domains with complex geometries and varied interac-
tions using an implicit two-way nesting/tiling scheme [41]. We
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Fig. 1: MSEAS-PE GoM modeling domain and bathymetry.
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leverage many of our systems’ capabilities, including deter-
ministic and ensemble initialization schemes [42, 53, 54], tidal
prediction and inversion [55], fast-marching coastal objective
analysis [56], subgrid-scale models [57, 58], advanced data
assimilation schemes [59, 60], and path planning and adaptive
sampling [48, 60—62].

Deterministic modeling. We set up our multi-resolution
MSEAS-PE modeling system in the following manner. We
utilized the bathymetry from the Shuttle Radar Topography
Mission (SRTM) 15-arcsecond global map [63-65], plus the
NOAA 3-arcsecond bathymetry for the shelf and slope, to
construct a combination of tiling and telescoping implicit
two-way nested domains, with 1/12.5°, 1/25°, 1/50° and
1/100° horizontal resolution, and with 100 optimized vertical
levels (fig. 1). The model is forced with tides from TPXOS-
Atlas data from OSU [66, 67], adapted to the high-resolution
bathymetry and coastlines [55], and is atmospherically forced
with hourly 1/5° Climate Forecast System (CFS) output from
NCEP [68]. The sub-tidal initial and boundary conditions are
downscaled from the HYbrid Coordinate Ocean Model (HY-
COM) [69, 70], with optimized velocities for high-resolution
coasts and bathymetry [42].

ESSE ensemble hindcasts. We set up our ESSE ensemble
and data assimilation in the following manner. The ensemble
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is atmospherically forced with an ensemble of products from
NCEP and ECMWF (namely 1/5° CFS, 1/4° GFS, and
1/4° ERAS5) [71-73]. The sub-tidal initial and boundary
conditions are downscaled from four different models: the
combined HYCOM and MITgcm [74], the Regional Ocean
Modeling System (ROMS) [75], and the Nucleus for European
Modelling of the Ocean (NEMO) [76]. We initialize large
ESSE hindcast ensembles [58, 60, 77] of 200 to 500 members
with perturbed initial conditions, boundary conditions, and
stochastic forcing [58, 78, 79]. To create 3D PE-balanced
initial ESSE perturbations, we used historical CTD profiles
(2008-2018) from the World Ocean Database [80], which we
quality-controlled and segregated into four water masses (see
fig. 2). We then computed 1D vertical empirical modes for
each region. These vertical modes were combined with 2D
horizontal modes created by an eigendecomposition of the
horizontal correlation matrix (100 km decay scale, 250 km
zero-crossing) to produce 3D temperature and salinity modes
based on each region [53, 54]. Perturbations of magnitude
equal to a fraction of this variability were constructed from
these modes. They were combined based on the fronts of
the deterministic ICs to create 3D temperature and salinity
perturbations for the entire domain. Initial perturbations for
sea surface height (SSH) and velocity were obtained through
geostrophy. Finally, the ensemble fields were initialized at
least 4 days in advance of the first time of interest to allow
PE adjustments. Each ensemble used one to three different
atmospheric forecasts with perturbed amplitudes and phases,
up to around 10 central barotropic tidal forcings with perturbed
amplitudes and phases, and perturbed model parameters.
Correlation fields. Upon completion of the ensemble hind-
casts, we utilize the output to compute ESSE correlation hind-
casts among the field of interest and candidate observations
(location, type, and sampling platforms). For each period and
platform type, we forecast the correlation C'xy between a
candidate observed variable X at one point at the initial
time, and each point of a whole field Y at a given (future)
verification time (e.g., 0, 30, 60, or 90 days later). To obtain
a single overall value of a correlation field, we compute the
Gulf-area-averaged correlation C, summing over only those
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Fig. 2: Locations and standard deviation profiles of historical in situ data, segregated by water mass, used to construct 3D modes for 3D
PE-balanced ESSE perturbations. Shown here are historical April data, used for simulations in the 2015 period.
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Fig. 3: Scaled-vorticity at 2 m depth of a 1/25°-resolution MSEAS-
PE hindcast for June 28, 2015 at 12:00Z.

areas where |C'xy| > 0.2. Since some platforms can measure
multiple variables at multiple depths, we then average C' over
all such variables and depths to obtain a single value (C)
for a given candidate point and verification time. We repeat
this process for each candidate data point, and compare the
values of (C) across all candidate points to determine the
most valuable observation points.

MI fields. Finally, for principled estimation of optimal data
types, platforms, and locations, we consider mutual informa-
tion (MI) [81]. MI provides a rigorous information-theoretic
foundation for this estimation, while correlation provides an
aid in interpretation and a sanity check of MI estimates. MI
measures how much information about random variables is
obtained by observations of other random variables. The MI
between two scalar or vector variables is defined as

MI(X,Y)=H(X) - HX|Y)=H(Y)-HYI|X), (1)

where H denotes the entropy of the distribution.

SSH: CoastWatch

III. DETERMINISTIC RESULTS: LC STATES FORECASTING
SKILL

We examine different states of the LC system: (1) retracted
(the LC “hugs” Cuba and does not penetrate far into the GoM);
(2) extended (the LC penetrates further north into the GoM
before turning south and exiting through the Florida Strait);
(3) either of the previous states with LCEs present [1, 82].
The MSEAS-PE model was run for 1 to 3 months during
three different periods: 2011, 2012-2013, and 2015, chosen
for their different LC states. During June—September 2011, the
LC is extended with a large LCE separation. During December
2012—-January 2013, the LC is transitioning from a long re-
tracted state to an extended state. Finally, the May—June 2015
period is in the middle of a period of LC hyperactivity [19]:
The remnants of eddies Lazarus and Michael are decaying in
the western GoM. The eddy Nautilus detaches from the LC
and splits off a second eddy Nautilus II. By late June eddy
Olympus is shed from the LC.

An example of a 1/25°-resolution deterministic, hindcast of
2 m scaled-vorticity for June 28, 2015 is shown in figure 3.
The vorticity clearly highlights the LC in its extended state
while it is undergoing an eddy shedding/separation event. It
also reflects the presence of the eddies Nautilus, Nautilus II,
and Olympus. Finer-scale features are present along the shelf
break as well, particularly along Campeche Bank and at the
Louisiana—Texas shelf.

A qualitative evaluation of the MSEAS-PE hindcast
skill is made by comparing the SSH field gradients pre-
dicted by MSEAS-PE with those output from NOAA
AOML/CoastWatch [83] for the 2012-2013 and 2015 periods;
these are shown in figure 4. In both periods, there is a
broad qualitative agreement of the SSH gradients, and there
is agreement between the hindcasts and the LC states. The
simulated positions of main features are accurate throughout
these one-month periods. Note, however, that there are some
differences in the 2015 period in the coastal regions near the

SSH: CoastWatch

Final State: June 28

SSH: MSEAS PE Hindcast
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Fig. 4: Comparison of MSEAS-PE hindcast SSH fields with the data-based NOAA AOML/CoastWatch analyses.
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Fig. 5: ESSE ensemble standard deviations: 35-day hindcast fields for June 28, 2015.
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Fig. 6: ESSE ensemble hindcasts of predictability. Shown is the predicted time series of relative mutual information between the initial SSH
field and future SSH fields for the 2011, 2012-2013, and 2015 modeling periods. The insets show the initial state of the LC.

Yucatin peninsula, Louisiana, and northwestern Florida, likely
from tidal effects not included in CoastWatch but present in the
MSEAS-PE simulations. Overall, the underlying deterministic
hindcasts have skill by predicting LC state changes, such as a
ring separation in 2015, one month in advance.

IV. PROBABILISTIC RESULTS: UNCERTAINTY AND
PREDICTABILITY FORECASTS

With reasonable skill demonstrated by the deterministic
hindcasts, we proceed with the ensemble hindcasts that sim-
ulate uncertainties due to initial conditions, boundary condi-
tions, and stochastic atmospheric and tidal forcing. We first
examine the evolution of uncertainty fields. Figure 5 shows the
ensemble standard deviation of the SSH and 500 m velocity
fields and of the temperature field in a north-south section
along 87.5°W. In the 2015 ensemble, the dynamic response
to the stochastic tidal forcing quickly introduces a baseline
uncertainty of about 3 cm in SSH over the entire domain (see
fig. 5a). Larger uncertainty (15 to 25 cm) develops around the
LCE and northeast edge of the LC (in an area unconstrained
by the LCE). A weak tidal response alternately increases
and decreases the SSH uncertainty by the northwest coast
of Florida. Looking deeper at the 500 m velocity (shown in
fig. 5b), we see larger uncertainty (15 to 25 cm/s) develop
around the LCE, in the LC region constrained by topography
and along the topographic slopes. The uncertainty evolves over
the simulation period, first being confined to the continental
shelves and slope (not shown), and then propagating to the
deep waters closer to the center of the Gulf; this is shown
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in figure Sc, with the effect being especially prevalent off the
north slope of Campeche Bank.

We see similar evolution of the uncertainty in the 2011 and
2012-2013 ensembles. One notable difference is in the SSH
uncertainty. Since this is a transition to an extended LC state
with no LCE, the larger uncertainty in the LC extends further
westward to the upstream side of the extension as far back as
to where the LC is constrained by the Campeche Bank.

We next demonstrate our principled ensemble hindcasts of
predictability limits for these modeling periods. To determine
how much information about the future hindcast SSH is in the
initial SSH, we use the pdfs from our large ensemble ESSE
hindcasts and compute the MI between the initial and final
SSH states. The results are shown in figure 6 where time-
series of relative MI are drawn for each of the 3 periods. For
the 2011 period, we find that by day 90 the MI retains 20% of
its original value after about 3 months and is still decreasing
(i.e., the MI has not yet reached its asymptotic value). This
indicates that the SSH predictability limit is approximately
3 months.

Our results also quantitatively confirm that this predictabil-
ity limit varies with the initial state of LC system. Notably,
both the 2011 and 2015 ensembles start in an extended state
with LCE shedding occurring during the simulations. The MI
in both cases drops to 50% of its initial value by day 10.
However, for the 2012-2013 ensemble, which starts in a
retracted state and transitions to an extended state, the MI
does not drop to 50% of its initial value until day 26. Finally,
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Fig. 7: Candidate measurement types and locations considered
(numbered and colored by type) for each candidate observation
platform.

we note that the predictability limit would be longer if we
assumed perfect atmospheric forecasts, but here we account
for atmospheric forecast uncertainty.

V. SAMPLING RESULTS: FORECASTING THE VALUE OF
OBSERVATIONS

A major thrust of the present UGOS efforts is to employ
principled observational campaign design strategies so as to
answer the question of what, where and when to observe (now)
to provide the most information for future forecasts [48, 79].
Our strategy is to use a combination of correlations and MI
fields (computed using our ensemble hindcasts) to predict the
information content and impacts of observations.

We first consider five observational platform types which
were used by UGOS in recent sampling campaigns: (i) current-
and pressure-recording inverted echo sounders (CPIES) [84],
which measure subsurface 7', S, u, and v (at multiple depths);
(i1) autonomous profiling floats (such as Argo [85]; a subset
of observing locations is considered here), which measure
subsurface 7" and S (iii) the West Florida Shelf pressure point
mooring (located off the Dry Tortugas) [86], which measures
subsurface T', S, u, and v; (iv) the Stones mooring [87], which
measures subsurface currents; and (v) coastal ocean dynamics
applications radar (CODAR), a land-based high frequency
(HF) radar [88] that measures surface currents over a given
region (a subset of points in four different sampling regions is
considered here). To these locations we added a hypothetical
inflow array (where the LC enters the GoM), which would
measure subsurface 7', S, u, and v. The set of all possible
measurement locations for our study is shown in figure 7.

Correlation hindcasts for candidate scalar observations. We
examine and compare candidate scalar sampling using correla-
tions. For each period and observation platform, we hindcast
correlations between one given scalar measured variable (at
a particular location and depth) at the initial time with SSH
at three verification times: the initial time, 14 days later, and
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31 days later. A small subset of examples of the resulting
correlation fields for the 2011 modeling period are shown in
figure 8. For that period and LC state, we predict a strong
correlation between the 500 m temperature at one of the CPIES
locations near the downstream side of the extended LC and
the SSH 31 days later, especially around the eastern sides of
the LCE that breaks off and the remaining LC. A moderately
strong correlation exists between the 500 m temperature at one
of the float locations near the downstream side of the extended
LC (a bit north of the CPIES location examined) and the SSH
31 days later around the east and west sides of the LCE. A
weaker correlation exists between the 500 m velocity at the
Stones mooring and the SSH 31 days later around the LCE.
Similarly, we predict a weaker, spotty correlation between the
500 m temperature at the same CPIES location and the eddy
kinetic energy (EKE) at 1300 m 31 days later, between the
LC and the northeast shelf of the GoM.

rofili
T o0

CPIES: 500m T vs. 1300m EKE

Correlation of T (00m) at point with 1300m EKE field, on 04-Aug-2011 12:

CPIES: 500m T vs. SSH

Correlation of T (500m) at point with Eta field, on 04-Aug-

Dashed line = LC at verification,
Solid line = LC at data time 1
= data location

Fig. 8: MIT-MSEAS ESSE correlation hindcasts for the 2011 period.
The target observation (green text) is made at the initial time; the
verification field (red text) is 31 days later. The observation platform
is indicated in bold text for each plot.

Averaged correlation hindcasts for candidate observations.
To heuristically combine correlations between several obser-
vations and the later fields, we turn to the Gulf-area-averaged
correlation ((C), §II). In figure 9 we show bar plots of (C)
between data at each sampling point and SSH at 0, 14, and
31 days after the data sampling for each ensemble period. For
all the periods, the CPIES and floats have the most correlation
with the later SSH. We also see that correlations tend to be
largest for the 2012-2013 period (retracted-to-extended state)
and weakest for the 2015 period (hyperactive period). This is
consistent with our earlier results on the decays of MI (fig. 6).

We next apply our ESSE correlation hindcasts to heuristi-
cally estimate the most valuable sampling locations for each of
the three modeling periods. Figure 10 shows the values of (C)
for each observation platform type and location for the 2015
modeling period. We note that there are three distinct types of
observation locations with high correlation to the future SSH:
(1) observations that directly sample the LC system dynamics;
(2) observations that sample a coastal mode correlated to the
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types, and platforms using MI (eq. 1). An advantage of
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MI is that it naturally extends to multivariate, multi-point
comparisons [48]. Figure 11 shows the predicted multivariate
MI between candidate data sets and SSH 30 days later in

2012/2013

W

the 2011 period. The top row shows the MI between two
different CPIES locations and the SSH 30 days later. Unlike
correlations, these MI values involve temperature, salinity, and

Fig. 9: Comparison of MIT-MSEAS ESSE (C) (predicted Gulf-area-
averaged, variable and depth-averaged correlation with SSH) for each
observation platform and location, verification time, and modeling
period.

2015

LC system; and (3) observations that sample both. During
this time, the LC is in an extended state. Correlations predict
that it is best to sample near the LC edges and between the
LC and eddy Nautilus (sampling the interior of the LC was
less important). Outlying high values of (C) in figure 10
correspond to high-correlation candidate observations of the
second or third types. In contrast, in 2011, when the LC
pinches, correlations predict that it is best to sample the base
of LC and the inflow region (between the Yucatin peninsula
and Cuba), as well as in the Florida Strait (not shown).
Meanwhile, in 2012-2013, when the LC is in the retracted
state, we predict it is best to sample close to the tip of the
LC, as well as in the LC inflow region, and in the Florida
Strait (also not shown). We remark that in all years, the
most important observation locations are those that sample
dynamically relevant areas or sample a coastal mode that is
correlated with dynamically relevant areas; the observation
type is somewhat less important.

MI forecasts for candidate multivariate vector observations.
We now rigorously compare candidate sampling locations,

Sample Locations by Data Type
and LC location on 2015-05-28 _
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Fig. 10: Comparison of (C) for all platform types and locations,

1| ; Mean Correlation by Location and Verificati

o Mean Correlation by Location and Ver

velocity at multiple depths with the later SSH. The first CPIES
point (along the downstream side of the LC) provides much
information on the SSH along the downstream side of the later
LC. The second CPIES point (more on the upstream side of the
LC) provides less information on the LC, but the information
it provides peaks around the location of the LCE. The bottom
row shows another level of aggregation. The bottom left panel
shows the multivariate MI between five CPIES locations (7',
S, u, v at multiple depths) and SSH 30 days later. Here we see
these CPIES locations provide good information concentrated
around the downstream LC and the LCE. Finally, we examine
the aggregate MI between surface velocity measured by the
CODAR station in Florida to the SSH 30 days later. Here the
MI field shows the information is more diffuse and highlights
a coastal mode correlated with the LC.

To obtain a more global picture with MI we can simply
aggregate futher and compute MI for all field points at the later
time and rigorously compute the information that we obtained
heuristically with the averaged (C). Figure 12 shows this
globally computed MI between each type of data (all variables
and depths) at the initial time and the fields (SSH or 1300 m
EKE) at the initial time, 14 days, and 31 days later. Again,
results confirm more information content in the quieter 2012—
2013 period. Results also show that subsurface data (PIES,
floats, the hypothetical inflow array, etc.) commonly have more
impact on the combined SSH and 1300 m EKE hindcasts than
surface-only data (e.g., CODAR) for hindcasts of one month
or longer. The natural aggregation of the MI makes it easier to

CPIES Floats CODAR
Subsurfgge T.S,uv Sut?_erfgcp TS Surface u,v

CODAR (All Regions)
2015) and Verifi

o Mean Correlation by Location and Verifi , Moan Corrlation by tacation

(2015)

s 13 1

B U oA 5 29 B W @ e

Stones Mooring
Subsurface u,v

Inflow Points
Subsurface T,S,u,v

Inflow Points.
nd Ver

. Mooring
Subsurface T,S,u,v

ressure Point Mooring

s ones Mooring
, Mean Correlation by Location and Verificati

sty
2015) , Mean Correlation by Location and Verfi

Data Location

and verification times, based on the MIT-MSEAS ESSE correlation

hindcasts for 2015. There are 3 distinct types of observation locations with high correlation to the future SSH: (1) observations that directly
sample LC system dynamics (blue circles); (2) observations that sample a coastal mode correlated to the LC system (red circles); and

(3) observations that sample both (green circles).
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Fig. 11: MIT-MSEAS ESSE hindcasts of MI fields for the 2011
period. They predict MI between a candidate data set at an initial
time and SSH 30 days later.

predict the potential impact of the hypothetical inflow array.  tem and our ESSE scheme. We explained how to utilize the
ensemble results to compute correlation and MI hindcasts. We
ran one- to three-month-long deterministic hindcasts for three
modeling periods, encompassing common LC configuration
states and transitions. We demonstrated that these underlying
deterministic hindcasts showed qualitative skill. We ran large-
ensemble hindcasts for three time periods and discussed the
evolution and propagation of uncertainty. Specifically, we

(a) Verification field: SSH found that the hindcasted uncertainty grows near the LC and
eddies and that this uncertainty is transferred from the shelf

[ SRS I and slope into the deep water. We estimated predictability
| limits by using the large ensemble ESSE hindcast pdfs to
compute the principled MI between the initial and final SSH
states, and found that significant predictability of SSH can
reach one to three months or more, depending on the LC state.
The decay of predictability when the LC was in the quieter,
(b) Verification field: 1300 m EKE retracted state was slower than during more energetic states. To
predict optimal sampling locations, times, and measurement
variable(s), we ranked candidate data sets according to the
information they provide about the future ocean state, using
a combination of hindcasts of correlation and MI. For the
Finally, we utilize the results of our 2011 ensemble hindcast periods studied, the most informative observation locations are
to predict the information content about future SSH, given a  thoge that sample dynamically relevant areas or sample coastal
set of CPIES locations containing [T', S, u, v] at the initial yodes that are correlated with dynamically relevant areas. If
time. We wish to determine such information content at the  (he [.C is in a retracted state, it is best to sample close to the
initial time, as well as 60 days later (after the LCE separation tip of LC, in the LC inflow region, and in the Florida Strait.
event), and after 90 days. These relative MI fields are shown  {f it is in an extended state, it is best near the LC edges and
in figure 13. As expected, in accord with the LC system petween the LC and an eddy. If it is in an LCE separation
dynamics, the MI values decay over time. Notice that after event, it is best at the base of the LC, inflow region, and the

60 days, some MI peaks are still at 40-50% of their initial  plorida Strait. We also found that subsurface data commonly
value, with the MI spreading. Some information (between 5%  have more impact on hindcasts of one month or longer.

and 15% of the initial value) remains about SSH after 90 days,

again as expected since we are approaching the predictability Our.resulits can be useful for' future studies and observation
limit of the hindcasts, as discussed in section IV. campaigns in the Gulf of Mexico. They can be used to deter-

mine the variables most relevant to LCE separation events, to
guide possible future investments in instrumentation for near-

In this paper, we developed and applied large-ensemble real-time data collection, and to better inform the design of
forecasting in the GoM using our MSEAS-PE modeling sys- future short- and long-term campaigns.

2012/2013

Fig. 12: Comparison of the MIT-MSEAS ESSE hindcast MI with
future SSH and 1300 m EKE for each observation platform, verifi-
cation time, and modeling period.

VI. CONCLUSION
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