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Abstract Regional ocean models are capable of forecasting
conditions for usefully long intervals of time (days) provided
that initial and ongoing conditions can be measured. In
resource-limited circumstances, the placement of sensors in
optimal locations is essential. Here, a nonlinear optimization
approach to determine optimal adaptive sampling that uses the
genetic algorithm (GA) method is presented. The method de-
termines sampling strategies that minimize a user-defined
physics-based cost function. The method is evaluated using
identical twin experiments, comparing hindcasts from an en-
semble of simulations that assimilate data selected using the
GA adaptive sampling and other methods. For skill metrics,
we employ the reduction of the ensemble root mean square
error (RMSE) between the “true” data-assimilative ocean sim-
ulation and the different ensembles of data-assimilative
hindcasts. A five-glider optimal sampling study is set up for
a 400 km × 400 km domain in the Middle Atlantic Bight

region, along the New Jersey shelf-break. Results are com-
pared for several ocean and atmospheric forcing conditions.
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1 Introduction

Modern models, with suitable initial and boundary condition
measurements, have a demonstrated capability to produce ac-
curate forecasts over several days (Robinson et al. 1999, 2003;
Ramp et al. 2009, 2011; Haley et al. 2009; Lermusiaux et al.
2011; Hoteit et al. 2013). In order tomaintain forecast capability
by accounting for errors in the initial and boundary conditions,
as well as errors within the scales not resolved by the compu-
tational model, a continuous set of measurements must be tak-
en. The technique of measuring the ocean and integrating these
measurements is termed data assimilation and has been shown
to be successful (e.g., Robinson et al. 1998; Lermusiaux et al.
2006b; Edwards et al. 2015). The challenge facing ocean fore-
casters is that ocean sampling will always be resource limited.
An approach is needed to determine the places within the ocean
volume where measurements will produce the best ocean esti-
mate or forecast. The combination of ocean forecasts, sampling
network planning using model feedback, and data assimilation
is referred to as optimal adaptive sampling. This paper presents
a method for optimal sampling of oceanographic features for
data assimilation. A quantitative validation of the method’s
ability to find an optimal sampling strategy is made. The focus
of the methodology is to generate a set of targeted observations,
which are consistent with a user-defined cost function, permit-
ting the weighting of specific oceanographic dynamics, spatial
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variability, and model uncertainty. The quality of the targeted
observations is evaluated using identical twin experiments, sim-
ilar to the approach of Hamill et al. 2013 where a meteorolog-
ical numerical assimilation experiment using targeted Winter
Storm Reconnaissance (WSR) data was conducted to evaluate
the value added.

There has been substantial work in the field of path planning
and adaptive sampling in the past decade, particularly with the
development of autonomous underwater vehicles (AUVs) for
ocean data collection. For general reviews on oceanic path plan-
ning, we refer to Lolla (2012), Lolla et al. (2014a), and
Lermusiaux et al. (2016) and for general reviews on oceanic
adaptive sampling to Curtin et al. (1993), Leonard et al. (2007),
Lermusiaux (2007), and Roy et al. (2007). Recent efforts for
autonomous adaptive sampling include adaptive sampling via
Error Subspace Statistical Estimation (ESSE) with nonlinear pre-
dictions of error reductions (Lermusiaux 2007); control of coor-
dinated patterns for ocean sampling (Zhang et al. 2007); a math-
ematical approach to optimally sampling targeted environmental
hotspots in the “MASP uncertainty framework” or multi-robot
adaptive sampling problem (Low et al. 2013); Mixed Integer
Linear Programming (MILP) for optimal sampling path planning
(Yilmaz et al. 2008); nonlinear optimal sampling path planning
using genetic algorithms (Heaney et al. 2007); dynamic program-
ming and onboard routing for optimal sampling path planning
(Wang et al. 2009); command and control of surface kayaks over
the Web, directly read from model instructions (Xu et al. 2008);
automated sensor networks aiming to facilitate ocean scientific
studies (Schofield et al. 2010), and optimal design of glider-
sampling networks (Alvarez and Mourre 2012; Ferri et al.
2015). Many adaptive sampling efforts involve feature-based
sensing, whereas others involve statistically measured improve-
ments in the multiscale model fields. Oceanographic uncertainty,
from model covariance estimates, can be used to help define the
search strategy. Frolov et al. (2014) used the best linear unbiased
estimator (BLUE) algorithm to build the search paths for both a
set of space-filling algorithms (a “stretched lawnmower” and an
A* algorithm) and a nonlinear genetic algorithm (GA).
Application to a simulated autonomous sampling network, ad-
dressing distribution of phytoplankton off the central coast of
California, quantitatively demonstrated that the optimal sampling
approach (GA) outperformed the space-filling algorithms be-
cause of its ability to revisit areas of higher uncertainty.
Adaptive sampling using clustering techniques have been ap-
plied to the adaptive sampling problem where covariance infor-
mation was unavailable, but the field variance can be used
(Cococcioni et al. 2015). This clustering approach has the advan-
tage of being computationally efficient and permits the combina-
tion of maneuverable and non-maneuverable assets. In addition
to model-based adaptive sampling used in a mission-planning
mode, adaptation directly from the sampled data can be per-
formed. A front-following technique (Petillo et al. 2015) was
developed to autonomously direct a vehicle in two and three

dimensions to follow an isotherm associated with an oceano-
graphic front directly from the observations of a CTD sensor
on the vehicle. Other observation targeting techniques used in
meteorology and weather forecasting (Berliner et al. 1999) in-
clude schemes based on the ensemble transform methods and
Gaussian updates (Bishop et al. 2001; Majumdar et al. 2002) as
well as breeding methods, either in the full-state space (Toth and
Kalnay 1997, Lorenz and Emanuel 1998) or in an unstable sub-
space (Carrassi et al. 2007; Lermusiaux et al. 2007).

Intuitively, we expect that placing sensors in regions where
there is significant model uncertainty (Lermusiaux 2006,
Lermusiaux et al. 2006a), forecast sensitivity to current con-
ditions, strong ocean dynamics such as fronts (Ogren et al.
2004, Leonard et al. 2007; Zhang et al. 2012), or acoustic
sensitivity would be advantageous. The approach presented
here utilizes the genetic algorithm (GA) iterative search meth-
od to determine optimal placement of sensor suites within
ocean fields produced by ocean forecast systems. Here, opti-
mal means the spatial-temporal sampling scheme which min-
imizes a user-defined cost function, typically a combination of
model variability, ocean dynamics, and acoustic sensitivity. A
more formal notion of optimality would involve identification
of a sampling scheme that brings a forecast model output the
closest to reality as possible, given the sensor assets. This is
not done here, as it involves an additional level of complexity
(e.g., Lermusiaux et al. 2016; Lolla 2016) to an adaptive sam-
pling cost function that is already complex. For similar rea-
sons, but also because our planning duration will be limited to
a few days, we will not consider the effects of ocean currents
in planning the path of vehicles. For such effects of currents,
we refer to Lolla et al. (2014a,b, 2015), Subramani et al.
(2015), and Subramani and Lermusiaux (2016). The present
genetic algorithm procedure was originally presented in
Heaney and Duda (2006) and Heaney et al. (2007), but was
not evaluated within a multiscale ocean environment and in a
systematic fashion, using a statistical ensemble of simulations.
In this paper, the same approach is applied to an ocean envi-
ronment that includes multiscale dynamics, from internal tides
to mesoscale and larger scale dynamics. The ocean region is
around the Shallow Water 2006 (SW06) experiment area,
within theMiddle Atlantic Bight shelf-break front region, near
the Hudson Canyon. The genetic algorithm approach itself is
also extended to multiple ocean sensing platforms and to more
complex cost functions that combine diverse objective func-
tions, so as to illustrate the versatility of the genetic algorithm.
A critical investigation is a quantitative analysis of the solu-
tion behavior (convergence and uniqueness) and a statistical
validation of the performance of the adaptive sampling plan
based on an ensemble of simulations that assimilate the opti-
mally sampled data (instead of a single simulation that assim-
ilates this data). As part of the latter statistical Observation
System Simulation Experiments (statistical OSSEs), the best
and mean performances of the genetic algorithm sampling are
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compared to these of two other sampling schemes, a random-
sampling plan and a classic gridded-sampling plan. Two dy-
namical regimes are also considered in these OSSEs, the re-
gimes before and after the passage of a tropical storm over the
region. A final difference is that the benchmark “true” ocean
state estimate is a multiscale reanalysis from a realistic two-
way nested data-assimilative ocean simulation (e.g., Haley
and Lermusiaux 2010) that was validated by comparisons
with independent observations.

The paper is organized as follows. In Section II, the
ShallowWater 2006 experiment and ocean model are present-
ed. The genetic algorithm (GA)-based optimization method is
presented in Section III. The behavior of the solution for a
single platform and for a five-glider sampling scheme is pre-
sented in Section IV. The validation of the approach is pre-
sented in Section V. A comparison of the GA solution with
random-sampling solutions and an oceanographically relevant
sampling strategy is completed. For quantitative comparisons,
a “shooting method” and a full Observing System Simulation
Experiment (OSSE) are employed. For the OSSE, observables
(temperature/salinity) from the GA-selected paths are assimi-
lated into an independent ocean ensemble simulation.
Section VI contains the summary and conclusion.

2 Shallow Water 2006 and ocean modeling system

The Office of Naval Research sponsored Shallow Water 2006
(SW06) experiment included collection of a large set of ocean-
ographic and acoustic measurements on the New Jersey Shelf/
Hudson Canyon region of the Mid-Atlantic bight (Tang et al.
2007, Chapman and Lynch 2010, Lin et al. 2010). The oper-
ation took place in late July–September 2006. The effort in-
cluded moored and shipboard physical oceanographic obser-
vations. Data-driven ocean modeling associated with the pro-
ject was done with a primitive equation (PE) ocean model of
theMultidisciplinary Simulation, Estimation and Assimilation
System (MSEAS Group 2013). The MSEAS-PE modeling
was adopted to create the synthetic ocean for this study.

Reanalysis physical fields of the SW06 operational area
were created using the MSEAS free-surface PE (Fig. 1). The
MSEAS-PEwas configured for implicit two-way nesting. The
coarse domain was a 522 km × 447 km domain, with 3 km
resolution, to simulate the region of influence. The fine do-
main was a 172 km× 155 km domain, with 1 km resolution, to
refine the simulated dynamics in the main acoustic test region
just south of the Hudson Canyon. This site was chosen due to
the complex bathymetry and oceanography of the shelf-break
environment. Both domains employed 30 terrain-following
vertical levels in a double-sigma configuration (Haley and
Lermusiaux 2010). The bathymetry used was a combination
of the NOAA Coastal Relief Model (NOAA 2006) combined
with V8.2 (2000) of the Smith and Sandwell topography

(Smith and Sandwell 1994) in the deep regions. The estima-
tion of the initial conditions was based on two objective anal-
yses, one inshore and one offshore of the expected shelf-break
front, using both in situ synoptic data (Rutgers SeaGliders,
NMFS cruises, CTD casts collected aboard the research ves-
sels Knorr, Quest and Tioga, as well as Scanfish data) and
historical data (NMFS, World Ocean Data Base, Gulf
Stream Feature analyses, Buoy data, etc.). These two analyses
were combined using a shelf-break front feature model (Sloan
1996; Lermusiaux and Robinson 1999; Gangopadhyay et al.
2013). The Gulf Stream was initialized based on historical
CTD profiles and estimates of its position based on SST and
NAVOCEANO feature analyses. Dynamically balanced ini-
tial velocity fields were constructed from the mapped
temperature/salinity (T/S) fields, reduced dynamics and kine-
matic constraints at the coasts (Haley et al. 2015). The simu-
lations were forced with atmospheric fluxes derived from
weather research and forecasting (WRF) model simulations
(J. Evans, personal communication) and FNMOC (The US
Navy Fleet Numerical Meteorology and Oceanography
Center), and laterally forced with linear barotropic tides
(Egbert and Erofeeva 2002, Logutov and Lermusiaux 2008).
Twice-daily assimilation of the synoptic data was applied to
control uncertainties. SST was also assimilated on relatively
cloud-free days (August 14, 17, 19, 21, 23, 25).

As part of the MSEAS reanalysis fields, an ensemble of 17
simulations was constructed using different perturbations of
initial conditions and model parameters using the Error
Subspace Stat is t ical Estimation (ESSE) schemes
(Lermusiaux 2004, Lermusiaux 2006, Lermusiaux, Chiu
et al. 2006a) and representing expected uncertainties including
unknown variability. Two distinctive periods were selected to
investigate how optimal sampling paths vary due to a change
in the mean ocean state, in response to the passage of a strong
storm. The first period is August 24–27 2006, prior to the
passage of tropical storm Ernesto. The second is 4–7
September 2006, after the passage of Ernesto. Using these
ensembles of simulations, four different classes of sampling
strategies were generated and compared twice, once for each
of the two periods (Section V). Each of these sampling strat-
egies simulated a fleet of five gliders operating for 2 days in
the shelf-break region. The ensemble average and standard
deviation of the temperature along the isopycnal surface
σ = 24.7 g/cm3 surface for the two periods are shown in Fig. 1.

Although appreciable efforts were made to bring the
model ocean fields as close as possible to the true
ocean state at the time of the SW06 field effort, the
fidelity of the model ocean fields is not essential to this
study. However, the good quality of the model fields
gives some confidence that the evaluation of the genetic
algorithm optimal sampling determination scheme
(GAOSDS) applies to the real ocean, not simply to a
specialized or idealized synthetic ocean field.
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3 Optimal sampling approach

In order to solve the sensor placement problem with a compu-
tational optimization algorithm, two sets of ancillary algorithms
are required. The first maps a single point in the multi-
dimensional search space to a platform laydown, defining start
positions and times and subsequent turns for all vehicles. The
second is a definition of the cost function that is used to evaluate
the fitness or energy of each laydown. Section IIIA defines the
search platform and Section IIIB the cost function. Section IIIC
presents the genetic algorithm approach used to determine the
optimal plan. Note that once the search plan mapping and cost
functions have been defined, any numerical optimization algo-
rithm can be applied to the chosen objectives. The two most
common optimization schemes are genetic algorithms and sim-
ulated annealing. We also note that to handle conflicting objec-
tives and cost functions, multi-objective optimization, linear or
even nonlinear (e.g., Miettinen 2012), can be employed.

3.1 Individual sensor definition

Aplatform is defined as any sensor system that can be deployed
in the ocean and return data. Relevant ocean platforms are
gliders, autonomous underwater vehicles (AUVs), thermistor
moorings, acoustic measurement systems, buoys, shipboard
tow-yo (Scanfish), and XBT measurements. The code which
generates a platform sampling pattern must convert a vector of
search values (genes) β = [0 1] (random with a uniform a priori
probability density function (pdf) in the first generation) to a
position vs. time vector r(t). The simplest platform is a

stationary mooring, which has no time-dependence and is sim-
ply defined as r = [β1X β2Y] where X and Y are the maximum
dimensions of the domain in latitude/longitude. Shipboardmea-
surements, which have high flexibility, can be broken into a set
of straight survey lines with initial start positions and length and
direction of each radial run.

The type of measurement considered here is a set of undu-
lating autonomous sub-surface gliders. Each glider has an initial
position (x,y) and bearing. Each glider is deployed for 48 h with
a single turn at 24 h. The turn is a random value with a uniform
pdf between −35° and 35°. The limits are chosen to prevent the
glider from turning back on itself and yield paths that are closer
to straight, the traditional method of deploying gliders. The
horizontal glider velocity through the water is 30 cm/s. The
glider is subject to the local depth averaged time varying veloc-
ity vectors. Note that the depth dimension has been collapsed
and a 2-dimensional search pattern is sought. For this particular
implementation, the glider attempts to maintain a particular
bearing by adaptively steering to maintain its preferred bearing.
In some regions of the ocean, where currents are strong, it is not
possible to maintain a particular heading with a glider. The
current implementation of the GA does not include 3-
dimensional tracks of the platforms, but simply inputs a min-
max depth excursion for each platform. This sidesteps the im-
portant issue of sampling aliasing due to the slow vertical mo-
tions of the gliders. For the temporal and spatial scales resolved
in current oceanographic models, these aliasing issues are not
significant. The inclusion of forecast currents in the generation
of glider search paths is critical to the GA forming glider paths
that are experimentally achievable.

Fig. 1 Reanalysis fields
computed using the MSEAS
primitive equation ocean model
and the Error Subspace Statistical
Estimation (ESSE) scheme for the
SW06 region. a August 24–27
ensemble mean of the
temperature (T along the 24.7 g/
cm3 isopycnal). b August 24–27
ensemble standard deviation of
the T. c September 4–7 ensemble
mean of the T (along the 24.7 g/
cm3 isopycnal). d September 4–7
ensemble standard deviation of
the T. Each panel is the temporal
average over the modeled time
period of 48 h
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3.2 Cost function definition

The general approach is to evaluate the cost function for
a set of platform laydowns (glider-sampling paths ri(t)
in the examples that follow). As defined below, the cost
function has a scalar value for each platform laydown
plan. Given that cost functions are scalars, multiple cost
functions can be defined and added in a normalized
weighted fashion. Each of these individual cost func-
tions is termed a constituent cost function (CCF). The
weighting vector (W) determines the linear combination
of constituent cost functions, termed the global cost
function, which is to be minimized.

Within this framework, the cost function incorporates what
the user determines to be “optimal”. Specifically in this paper,
we refer to optimal as “the platform laydown having the min-
imum user-defined cost function upon attainment of the nu-
merical search exit criterion”. It is up to the user to define a set
of cost functions tailored to the ocean physics, model uncer-
tainty measures, and other factors judged to be important.
Quite regularly, the GA optimization (minimization) yields
platform laydown patterns that sample the regions of the
highest model uncertainty or most-active ocean dynamics, as
desired. For more general cases, multi-objective optimization
approaches (e.g., Miettinen 2012; Collette and Siarry 2013)
can also be employed to merge different cost functions and
objectives in a quantitative fashion.

In order to reduce the computational burden of cost
function evaluation, it is desirable to reduce the field from
four dimensions to three by collapsing the depth spatial
dimension (z) and retaining lateral dimensions along with
time (t). In order to sample the ocean fields, several op-
tions are available including the depth average, the sur-
face field values (e.g., temperature), an average of the
surficial waters (z < 50 m), or the ocean field along a
particular isopycnal (e.g., for temperature, Tσ). With an
eye toward application of oceanographic forecasting in
predictive acoustic computations, the density isopycnal
of σ = 24.7 g/cm3 is selected. Variations of temperature
along this isopycnal indicate boundaries between shelf
and slope waters in the Mid-Atlantic Bight region.

Two types of averages will be performed in the computation
of cost functions: spatial averaging at sensor positions formoving
sensors, 〈⋅〉p, and averaging over ensembles of model states, 〈⋅〉e.

1) Measured temperature spatial variability (Fσ)

The first CCF is defined to capture to ocean spatial
variability. The spatial variability cost function is the
negative of the standard deviation of the temperature
on the isopycnal surface σ = 24.7 g/cm3 measurements
over the glider paths. Rather than averaging over en-
sembles, and thereby smoothing out the spatial features,

the ensemble that is closest to the mean is selected. It is
defined by

Fσ ¼ − Tσ rð Þ−Tσ

� �D E1=2

p

where Tσ is measured temperature along each path and Tσ

¼ Tσh ip is the mean sampled temperature of the individual

platform. The cost function value for the platform laydown
is the mean of the sensor Fσ values over platforms. Note that
the motion of the glider is taken into account, so that tem-
perature values along a path are extracted from the forecast
at sequential times. This cost function yields strong negative
values in regions where there are fronts or other strongly
range-dependent temperature fields. The philosophy is that
measurements taken where the ocean is the most dynamic
(on temporal-spatial scales defined by glider sampling) will
produce the most improvements in model forecast skill.
This cost function, labeled Fσ for identification purposes
throughout the paper, for regions where the oceanographic
spatial scale lengths (Rossby radius) are larger than the
glider-sampling path, is effectively an edge (front) detector.
In this paper, the cost functions for each glider will be aver-
aged, so the square root is taken before gliders are averaged.
The temperature field Tσ along the chosen isopycnal is com-
puted as a function of time and used as the input temperature
field for the cost function computation.

2) Model forecast variability (Ffv)

The model uncertainty cost function is the standard
deviation of the ensemble model temperature fields as a
function of x, y, and t. The isopycnal σ = 24.7 g/cm3 is
used to collapse the depth dimension for each model fore-
cast. The cost function is the negative mean of the model
uncertainty field (ensemble standard deviation) computed
along the trajectory of the glider. This is a normalized
path integral through the model uncertainty space and will
select glider paths that sample at regions where there is
the most model variability. The mathematical expression
for the Ffv cost function for each platform path (p) is:

Ffv ¼ Tσ r; tð Þ− Tσ r; tð Þh ie
� �2D E

e

D E
p

3) Distance potential (D)

A constituent cost function that penalizes sample strategies
that place multiple platforms within a particular temporal or
spatial distance of each other is added to the oceanographic
cost functions. This cost function, termed the distance
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potential (Leonard et al. 2007), uses two algebraic inverse
functions with user-specified temporal and spatial lengths:

D ¼ 1

Δr=r̂−α

� �2

þ 1

( )
1

Δt=t̂−t

� �
þ 1

� 	
−1

where Δr and Δt are the spatial and temporal separation be-
tween all platform pairs, r̂ and t̂ are temporal and spatial cor-
relation distances (10 km and 24 h in this case) and α is a
numerical scaling factor (∼0.001) controlling the slope of the
function and preventing infinity when eitherΔr orΔt is zero.
The cost function is defined to be very large for positions
within a correlation time or length and zero for positions well
outside of these lengths. For the simulations presented here,
the spatial correlation length is taken to be 20 km (an estimate
of the first baroclinic Rossby deformation radius) and the tem-
poral correlation length is taken to be 12 h. The distance-
potential cost function is effectively a constraint. The algebra-
ic difficulty of parameterizing a constraint for integer pro-
gramming approaches (Yilmaz et al. 2008) is bypassed by
the inclusion of a cost function. The numerical optimization
scheme selected will eliminate platform paths that violate this
constraint automatically. The addition of new sorts of opera-
tional constraints can be achieved by simply including a cost
function that penalizes paths that violate this constraint. Such
an operational constraint—minimum water depth of opera-
tion—is presented next.

4) Boundary cost function (B)

It is probable that there will be operational con-
straints associated with the deployment of sensing plat-
forms. For gliders, this certainly includes a minimum
water depth of operation. Other geographic boundaries
can exist, such as international borders or water-space
exc lus ion zones dur ing exerc i ses . Ra ther than
implementing these constraints as complicated mathe-
matical systems for the definition of glider paths, a
boundary cost function is defined and solutions that
have glider paths outside a preferred zone of operation
are severely penalized with a large positive cost func-
tion constituent. The optimization approach will then
automatically de-select (kill) these individuals. This
comes at a small computational cost but is well worth
the conceptual simplicity. For the simulations presented
below, one boundary cost function is used, assigning a
value of 100 to any glider sampling that has a glider in
water shallower than 50-m depth (this includes glider
paths lying over land).

5) Global cost function (E)

The global scalar cost function is what the genetic algo-
rithm seeks to minimize. In defining the optimal deployment
configuration of this diverse suite of sensors, it is up to the user
to provide weights for the linear combination of constituent
cost functions. This permits the user to weigh ocean dynamics,
ocean variability, or any other assortment of cost functions
(such as acoustic sensitivity). The weighted, normalized cost
function E is computed as follows:

E r!
� �

¼
X

i

WiCi r!
� �

σ Cið Þ þWBB r!
� �

þWDD r!
� �

whereWi are weights and σ(Ci) is the standard deviation com-
puted for each of the constituent cost functions Ci. The under-
lying principle is that for a specific survey plan, or sensor
geometry, a variety of constituent functions (C) can be used
at the discretion of the user, each evaluated from the modeled
values of the field. The user selects the relative weights Wi.
Normalization of the various constituent cost functions is con-
ducted by computing the spatial standard deviation of the
estimated cost function morphology. Normalization by the
standard deviation non-dimensionalizes the cost function
and permits the combination of many different surfaces with
possibly disparate scales. Each normalized cost function is a
dimensionless, normalized scalar, permitting the user-defined
weighted sum to be the global cost function used for optimi-
zation. In Fig. 2, the cost function morphology is estimated for
the August 24–27 and September 4–7 time periods for each
cost function, Fσ, Fv and a normalized linear combination
(Wi = 1, for i = 1,2). To estimate the morphology, a brute force
mapping is performed. The region is divided into a subset
(100 × 100) of uniformly spaced points. Two gliders are
launched from each point. One travels due east for 24 h, the
other due north for 24 h. Currents are neglected making these
paths straight. The cost function is evaluated for each path and
the minimum of the two is used as the estimate of the cost
function morphology for that starting point. This morphology
estimation is used only for computation of the dynamic range
of each cost function and for plotting purposes. The optimiza-
tion result is expected to outperform this search for a mini-
mum value of the cost function. This modified brute force
mapping permits a qualitative understanding of the shape of
the cost function, particularly with respect to initial launch
position. A complete computation of the cost function, using
1° resolution in the bearing and 200 × 200 points in the hor-
izontal for a glider that has an initial direction and a single turn
would be (200 × 200 × 360 × 360) = 4.8 × 109 computations
per constituent cost function. The cost functions plotted in
Fig. 2 show how the ocean in this region is substantially dif-
ferent for the two time periods. Figure 2 also illustrates both
how different cost functions highlight different features and
how the normalized combination can involve information
from each cost function.
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3.3 The genetic algorithm technique

The genetic algorithm (GA) is a standard searching technique
for solving constrained large-dimensional nonlinear optimiza-
tion problems (Goldberg 1989). The GA has been successful-
ly applied to many of these problems, including for example
geo-acoustic inversion in underwater acoustics (Gerstoft
1994, Gerstoft and Gingras 1996). The algorithm is loosely
based on the process of natural selection in evolutionary biol-
ogy. A gene is defined as a vector that uniquely determines a
parameter of the search space, such as sensor platform deploy-
ment coordinates. Based upon the analogy of natural selec-
tion, a population is generated from a random sampling of a
particular gene pool, which spans the multi-dimensional
search space. A population is a set of individuals, each having
a set of genes specifying a unique measurement plan, which
we refer to as the sensor laydown. Thus, for the example five-
glider problem to be outlined below, each individual repre-
sents a different time/space transect pattern. Beginning with
an initial random-sampling scheme (first generation), and it-
erating over generations, a cost function (or fitness) of each
individual is computed. Using this information, fit individuals
are selected and mated and a new generation of individuals is
produced. Unfit individuals (those with poor cost function
values) are not reproduced. A random crossover of parent
genes generates the genes of the children. To reduce the prob-
ability of converging to a local cost function minimum, a
small fraction of random mutations of individual genes are
permitted for each generation. Reproduction and fitness test-
ing occurs until an exit criterion is met. Example exit criteria
are a minimum percentage change in the cost function (appar-
ent convergence), or a maximum number of generations.

4 Optimization convergence and uniqueness

4.1 Single-platform solutions

In order to best examine the convergence and uniqueness of
the optimization solutions, repeated searches were performed
for a single-platform measurement system. The system was
composed of a 48-h deployment of one glider, with a single
turn at the 24-h mark. This gives four elements in the search
vector (launch latitude, launch longitude, initial heading,
heading after turn). The glider parameters are as follows: hor-
izontal speed 30 cm/s, operating depth 0–600 m (or seafloor).
The GA solution was computed for two time periods and two
cost functions: Aug-Fσ, Aug-Ffv, Sep-Fσ, Sep-Ffv. The GA
parameters were as follows: 100 individuals, 80 generations,
80 % crossover fraction, 3 % mutation fraction, and the 4 best
individuals were kept each generation. The GAwas run with
different random starting fields (with a uniform pdf) 20 times
for each case. Sensitivity of the GA solution to specific pa-
rameter sets has been presented elsewhere (Gerstoft, Hodgkiss
et al. 2003). The values of the best cost function value at each
generation as a function of generation is plotted in Fig. 3 for
each of the four cases. For each example, the boundary cost
function (B) is added to the constituent cost function. The
distance-potential cost function is not computed for a single
platform (WD = 0).

Figure 3 shows that all of the single-glider GA solutions
converge by 40 generations (many by 20). The convergence to
different values indicates that the search has settled in local
minima of the cost function. For the Aug-Fσ and Aug-Ffv

cases, there are clearly two clusters of cost function values,
indicating clumpiness of the numerical values of the local

Fig. 2 Estimated cost function
morphology. The left column (a,
d) is for the spatial variability of
the measured Fσ and is a measure
of the standard deviation in space
across the closest-to-mean
ensemble Tσ surface. The center
column (b, e) is for model
uncertainty Ffv and is the time
average of the ensemble
variability of the Tσ surface. The
right column (c, f) is for the
normalized (uniformly) weighted
global cost function. a–c (upper
row) August 24–27 period, d–f
(lower row) September 4–7
period
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minima that are capable of halting GA search evolution. The
Sep-Fσ clearly converges to a tightly limited range of cost
function values for all 20 cases. The Sep-Ffv example also
converges in this way to a local minima, with the exception
converging on the best solution. The slower rate of conver-
gence of solutions for the Aug-Ffv case compared with the
Sep-Ffv case is an indication of the comparatively complex
morphology of the ocean in Aug-Ffv.

The solutions are plotted in Fig. 4 on top of the contour
plots of the estimated cost functionmorphology. This provides
insight into the uniqueness of the solutions. The colors of each
solution are rank-ordered from best to worst (red to blue) as in
Fig. 3. Aug-Fσ has clusters of solutions. The best solutions lie
along the shelf-break in the southwest corner of the domain.
Others lie in apparent local minima in the northeast. The Aug-
Ffv solution is spread amongst four minima, each with similar
cost function values. For this cost function morphology
(contoured), there is not a clear unique solution. The Sep-Fσ

solutions all lie within a global minimum in the northeast
corner of the region. The Sep-Ffv solutions are found in four
different locations, with the best ones in the northernmost
portion of the region. Note that all four cost functions produce
optimal glider searches in different regions of the domain.

4.2 Multiple-platform solutions

Much of the utility of the GA solution approach outlined here
lies in its ability to optimize the locations of multiple diverse
platforms simultaneously. When multiple platforms are used,
the convergence and uniqueness behavior of the GA solution
differs from single-platform behavior, whereas with a single

platform, the GA demonstrated a tendency to fall into a local
minimum and thereby limit the final value of the cost function;
the solution behavior with multiple platforms is for each plat-
form to sample a different minimum. The distance-potential

Fig. 4 Solution searches set for single-glider, single cost function GA
runs. Twenty solutions, rank-ordered red to blue (best to worst) are shown
for a Aug-Fσ, spatial variability cost function for August 24–27. b Aug-
Ffvmodel uncertainty for August 24–27. c Sep-Fσ, spatial variability cost
function for September 4–7. d Sep-Ffv model uncertainty for September
4–7

Fig. 3 Single-glider, single cost
function convergence. Cost
function value vs. generation
number is plotted for a Aug-Fσ ,
spatial variability cost function for
August 24–27. b Aug-Ffv model
uncertainty for August 24–27. c
Sep-Fσ, spatial variability cost
function for September 4–7. d
Sep-Ffv model uncertainty for
September 4–7. The solutions are
plotted in rank-ordered color (red
to blue) from best to worst
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cost function prohibits two gliders from sampling the same
local minima. In this section, the behavior of the GA solution
for a five-glider optimization is presented. Each glider is de-
ployed for 48 h with a single turn at 24. Thus there are four
search parameters per glider, giving a search space with a
dimensionality of 20.

4.2.1 Single constituent cost functions

The five-glider optimization was conducted using the spatial
variability (Fσ) and model uncertainty (Ffv) cost functions
separately for each of the time periods of interest (Aug-Fσ,
Aug-Ffv, Sep-Fσ, Sep-Ffv). For each cost function and time
period, 20 GA solutions were computed. The parameters for
the GA runs were the same as for the single-glider case with
the exception of the maximum number of generations, raised
to 140 for the five-glider case. The distance-potential constit-
uent cost function (D) is added to the Ffv or Fσ and the B cost
functions to prevent gliders from lying within a specified cor-
relation time and space from one another. For brevity, the
results for only two of the simulations, Aug-Fσ and Sep-Ffv
are presented here. The others exhibit similar tendencies.

In Fig. 5, the results for the Aug-Fσ cost function are pre-
sented. The upper left panel plots the cost function value vs.
generation to display convergence. Note that the GA does not
converge for this case until roughly 110 generations (and so-
lutions are assumed to improve beyond that). Compared with
the single-glider case shown in Fig. 3, there is less clustering
of the GA solutions, an indication that with multiple gliders,
the solution is less likely to be trapped within a local minima.
For this case, the best solution has a cost function that is
substantially better than the other 19 simulations. The solution

set (upper right panel of Fig. 5) reveals that there is significant
spatial clustering of solutions in the local minima of the esti-
mated cost function morphology. Several locations are sam-
pled by gliders from every solution. Note that gliders that
sample unique positions of the domain are generally associat-
ed with poorer solutions (blue).

The lower two panels of Fig. 5 plot the GA best solution
over the temporally averaged Tσ of the nearest-to mean en-
semble and the estimated cost function morphology (left/right
respectively). From the Tσ plot, we see that four gliders lie
near the shelf-break with one inshore in the Hudson River
region. From the cost function morphology plot, we see that
each glider passes through a local minimum of the cost func-
tion estimate. The five-glider solution best score (−1.763) is
not as good as the best score found by a single-glider rectan-
gular brute force search (−2.1). This is expected because when
a glider lies in the global minimum for the five-glider case, the
other gliders must lie in other regions (with higher cost func-
tion contribution) due to the action of the distance-potential
cost function. The effect of including currents can be seen in
the track of the glider at longitude 70° W and 40° N. This
glider exhibits a double loop over 48 h indicative of a tidal
watch circle.

The results for the Sep-Ffv cost function are plotted in
Fig. 6. As with Fig. 5, there is a clustering of cost function
values with generation number. The search converges by
roughly 110 generations. The solution set, shown in the upper
right panel of Fig. 6 indicates that all solutions are oriented
across local slopes and are clustered in four to six general
regions. Unlike the model uncertainty case Fσ shown above,
in this case crossing the front is the important sampling fea-
ture, and each optimization yields glider tracks crossing the

Fig. 5 August 24–27 five-glider
results for the Fσ cost function. a
Cost function convergence vs.
generation number. b Solution set
of locations of each GA solution.
c Best solution (C = −1.763)
glider locations plotted on the
temporally averaged Tσ surface. d
Best solution plotted on the
estimated cost function
morphology
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fronts that are present. For spatial variability cost functions,
the glider searches with large spatial extents (moving with the
currents across fronts) are generally preferred.

The sample strategy of the best solution is plotted in
the lower two panels (time averaged of the closest to
mean Tσ and estimated cost function morphology,
left/right respectively). The algorithm has found solutions
with all five gliders crossing fronts. It is evident from the
estimated cost function morphology that each glider
crosses a region where the estimated cost function mor-
phology had a local minimum. The best solution score of
−4.033 is significantly better than the brute force search
solution of −2.5, even with the score being the average for
five gliders. This is due to the constraint that heading is
fixed to 0° and 90° in the brute force search. The GA can
find glider orientations that cross the shelf-break front
perpendicularly, thus raising the value of the standard de-
viation of the measured temperature and reducing the cost
function score.

In order to demonstrate the capabilities of the GA to
find oceanographic regions of interest, in Fig. 7, the “da-
ta” from the “true” ocean along GA-selected sample
tracks are plotted over the ensemble values. The upper
row is for glider paths found using the GA with the model
uncertainty (Fσ) cost function and the lower is a set of
tracks determined using the spatial variability (Ffv) cost
function. Note the significant ensemble spread from glider
paths selected using the Fσ cost function. This is as ex-
pected since the GA is optimizing for tracks that sample
regions of high ensemble variability. For the lower row in
Fig. 7, the spatial variability cost function (Fσ) is used and

the GA has selected tracks with large measurement vari-
ability (i.e., crossing fronts or traversing eddies). Most of
the Ffv-optimized tracks lie along fronts, some with model
ensemble variability (gliders 2 and 3), others without.

This raises the question of which sort of data to measure.
Clearly from Fig. 7, the glider tracks selected using the Fσ cost
function can be used to select which of the ensembles is closer
to the truth and assimilation of these values will reduce the
ensemble spread (uncertainty). Some of these positions, how-
ever, have little temperature spread across the measured en-
semble and are not associated with fronts. Paths found using
the Ffv cost function, by contrast, all cross major fronts, yet
some of these have little ensemble variability. Are measure-
ments in locations where there is little dynamics but high-
model uncertainty more valuable than measurements in re-
gions that are highly dynamic, like across ocean fronts, yet
there is little model uncertainty? This is an open question and
an area of active research. The utility of the GA solution is that
we can, for the moment, combine these cost functions.

4.2.2 Global cost functions

Here, five-glider sampling patterns are shown for optimi-
zations involving global cost functions. For the August
24–27 and September 4–7 time periods, an ensemble of
optimizations were performed using the normalized
(uniformly) weighted sum of the Fσ, Ffv, D, and B con-
stituent cost functions. For the global cost function, we
expect the solution to contain glider sampling in regions
with substantial inter-ensemble variability (Fσ cost func-
tion) as well as significant spatial variability compatible

Fig. 6 September 4–7 five-glider
results for the Ffv cost function. a
Cost function convergence vs.
generation number. b Solution set
of locations of each GA solution.
c Best solution (C = −4.033)
glider locations plotted on the
temporally averaged Tσ surface. d
Best solution plotted on the
estimated cost function
morphology
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with features such as fronts (the Ffv cost function).
Figure 8 shows results for August 24–27. The GA param-
eter set is identical to runs described in the previous sec-
tion. Results converge by 110 generations. The collection
of solutions reveals that cross-shelf tracks are favored and
that many of the tracks are clustered at the most offshore
(southeast) front position where temperatures range from
16 to 18 °C. The tracks of the best solution gliders tend to
cross fronts, but there is also a glider in the northeast
corner, previously pointed out to be a location of signifi-
cant inter-ensemble variability.

The numerical cost function result for the minimized (best)
solution is −3.436, lower than the brute force search score of
−3.0 (read from the color scale of Fig. 8b). It is interesting to
note that the global minimum encountered in the brute force
(located in the center) is not selected by the GA best solution.
It is likely that the average value of each of the glider solutions
found is better than −3.0 so that placement of a glider track in
this “global minimum”would not improve the combined five-
glider score.

The September 4–7 results using the global cost function
are presented in Fig. 9. The convergence curves show little
variability, settling on a rank ordering by generation 90, but

with continued improvement to 140. The solution set reveals
significant clustering of glider tracks across four or five main
fronts. The best solution places three gliders (clearly separated
by a correlation scale of 20 km) crossing a front in the northern
most area of the model domain. These three glider tracks
could be reduced to two tracks or even a single track by in-
creasing the correlation length to 50 or 100 km. The GA best
solution score of −3.642 is significantly better than the brute
force search solution of −2.6 (taken from the scale of Fig. 9d).
In fact, beyond 50 generations every GA solution has a better
score than the brute force search estimates, which have severe-
ly constrained track geometry.

5 Validation

In Sections 1–4 of this paper, the method and behavior of the
optimal sampling approach using the genetic algorithm has
been presented. A goal of this paper is to validate that the
platform laydown solutions determined by the GA are indeed
optimal. Unlike the Mixed Linear Programming method
(Yilmaz 2005; Yilmaz, et al. 2008) and simulated annealing
(Collins and Kuperman 1991), mathematical proof of

Fig. 7 August 24–27 glider sample values of Tσ for paths selected by
model uncertainty (Fσ) (upper row: a–e) and spatial variability (Ffv)
(lower row: f–j) from the ensembles (lines) and true ocean (*). Clearly

the Fσ cost function is finding glider tracks that sample where the
ensembles are most varied. The Ffv cost function is finding solutions
across dynamic regions, sometimes without much model variation
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optimality for the GA is not possible. We settle for demonstra-
tion that the GA solutions provide value added and are better
than other sampling approaches. Two separate approaches to
measuring value added are applied. The first is the shooting
method, where the ensemble that has predicted values closest
to the “measured” values is selected as the model forecast field
and the second is the full assimilation of measured data. The
second approach is a classic Observational Systems
Simulation Experiment (OSSE).

Two alternative sampling strategies will be compared with
the GA-based search method results to evaluate adaptive sam-
pling performance. One strategy, termed the random deploy-
ment, is a random selection from a viable set of searches gener-
ated using random initial conditions with a uniform pdf. The
first generation of a particular GA solution is used. Recall the
search is initiated from random set (uniform pdf) of each search
parameter. From this set, the distance-potential (D) and bound-
ary (B) cost functions are evaluated. Search strategies that

Fig. 9 September 4–7 five-glider
results for the global cost
function. a Cost function
convergence vs. generation
number. b Solution set of
locations of each GA solution. c
Best solution (C = −3.642) glider
locations plotted on the
temporally averaged Tσ surface. d
Best solution plotted on the
estimated cost function
morphology

Fig. 8 August 24–27 five-glider
results for the global cost
function. a Cost function
convergence vs. generation
number. b Solution set of
locations of each GA solution. c
Best solution (C = −3.436) glider
locations plotted on the
temporally averaged Tσ surface. d
Best solution plotted on the
estimated cost function
morphology
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survive this pass (meaning the gliders do not run aground and
are not too close to each other in time or space) form a set from
which the random search is drawn. This approach can be
thought of as a coverage-constrained, optimal operating depth
approach. It is the optimal strategy that was applied in the
AOSN-II experiments in Monterrey Bay. The second strategy
is a simplified grid approach based upon intuition of the region’s
physical oceanography. For shelf-break front environments, the
gliders are spread out spatially and set to transect the region of
dynamical oceanography. This grid approach is the current tech-
nique used in the absence of adaptive sampling. During the
SW06 field test, six gliders were deployed by Rutgers
University. Five of them made transects across the shelf-break
front, perpendicular to the shelf. The gliders sampled fromwater
depth 60 to 600 m and then turned back. For the grid sampling
approach, five gliders have been placed manually roughly equi-
distant from each other throughout the operational region, also
ranging from 60- to the 600-m-deep locations (Fig. 10). The
distance between these isobaths can be significantly larger than
40 km, so a random start position was selected. An ensemble of
20 grid sampling paths was created.

5.1 Shooting method

A means of evaluating various glider-sampling strategies is
sought that does not require a full data assimilation computation.
A candidate approach, referred to as the shooting method, is
presented here. The method involves the selection of the “best”
candidate from an ensemble of ocean model forecasts using

measurements from a true ocean. The goal here is to compare
three different techniques for selecting the measurement paths.
For this demonstration, the ensemble and true oceans described
in Section II will be used. The true ocean has been generated by
assimilating all available data from the SW06 experiment. For
each forecast ensemble, there is no assimilated data. The best
ensemble is selected by comparing the forecast fields with the
“measurements” taken from the true ocean. Measures of the
correlation of the best ensemble with the true ocean are used to
evaluate different sampling strategies. This comparison is a harsh
test compared to the full data assimilation approach because
temporal and spatial coherence scales permit the assimilation of
measurements to affect non-local fields.

The first step in the procedure is to use a search strat-
egy (i = {GA, random, grid}) to determine a glider-
sampling strategy xi(t). Unlike the GA search strategy,
the random and grid approaches have no a priori method
to differentiate between different candidate strategies. In
order to resolve this conflict (and not choose a particularly
good or particularly bad search strategy), an ensemble of
search strategies will be computed and their subsequent
utility will be averaged. For each search strategy, the mea-
surement values Tdata

i (t) are extracted from the true
ocean. Forecasts for each search strategy are then gener-
ated for each ensemble Tforecast

i (t). The root mean square
error (RMSE) is computed between the forecast field and
the measured data for each ensemble. The selected, or
best, forecast for each search strategy option is the ensem-
ble with the minimum RMSE. The final step involves

Fig. 10 Paths selected for the “grid” sampling approach, based upon oceanographic intuition. Each path consists of a cross-slope sample from the 60-m
isobath to the 600-m isobath. A 48-h straight path sample was taken from each line (this is a subset of the blue lines shown)
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scoring the search strategies, by computing the utility. The
utility is the entire-domain RMSE computed for each
search strategy. For the random and grid search strategies,
the utility is averaged across each possible search strategy.

The following method was used to select a search from
the 100 random search strategies in the random set. First,
all searches which yielded ensemble 3 for the August 24–
27 time period were selected. This included 31 search
strategies. The GA cost function was evaluated for those
searches with a cost function value of greater than 20
were discarded. These solutions either had gliders run
ashore (the boundary cost function) or gliders lay on
top of each other (the distance-potential cost function).
A search strategy was chosen randomly from the remain-
ing (26). The first search within the grid ensemble was
chosen since, by definition, all of these paths satisfy the
boundary and distance-potential constraints. The search
paths used for data assimilation are shown in Fig. 11
for the August (left panel) and September (right panel)
time periods. The grid and random search paths are the
same for both time periods. For illustration, the cost func-
tion values using the GA cost function for each five-
glider search strategy were computed. For the August
time period, the GA, grid, and random cost function
values (these are RMS Temp) are −3.44, −1.33, and
−0.46 °C, respectively. For the September time period
the GA, grid, and random cost function values are
−3.59, −1.89, and −0.67 °C, respectively. These results
demonstrate how the GA has placed gliders at positions
where there is substantially more ensemble variability
and spatial variability.

For a so-called optimal sampling strategy, the ensem-
ble with minimum along the tracks should also have the
domain-wide minimum. Thus, the tracks would provide
representative sampling of the domain, sufficient to de-
termine which ensemble member was closest to the
truth. This is a method for using data to direct compu-
tational modeling results towards the most reliable at-
tainable solution without the expensive step of assimi-
lating data. To summarize, the procedure is as follows:

1. Optimization algorithm: generate sampling tracks (GA,
grid, random) and take “measurements"
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3. Select best ensemble ocean with the minimum measured
track RMSE

4. Compute utility (U)—domain-wide RMSE for selected
ensemble
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5. For random and grid search strategies, average U, across
various solutions (i). Compare the U various search
strategies

There are several options for handling the vertical averag-
ing of the temperature fields in the computation of the RMSE.
These include using the entire water column (all depths), the
surface average (z < 50 m) and the Tσ surface. The Tσ surface

Fig. 11 Search strategies for
comparison using full data
assimilation. The grid (black),
random (white), and comb (blue)
paths are the locations of the five
gliders over the 48 h of data
collection. The locations are
overlaid on the Tσ surface for
August 24–27 (a) and September
4–7 (b)
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is chosen because the GA cost functions were built from this
surface. Physical oceanographic processes that drive the
RMSE at depth or near the surface are not well sampled by
this particular implementation of the GA and are therefore not
suitable for comparison. An illustration of the results is shown
in Fig. 12. For the August (left) and September (right) time
periods, the RMSE values for the model domain (blue solid
line); the global GA solution, which matches both cost func-
tions of equal weighting, (magenta line); the mean random
sampling (cyan line); and the GA best (thick *) are plotted.
For the August time period, according to the model domain
RMSE, ensemble member 3 is closest to the true state with a
value of 0.71 °C. Realizations 5, 9–12, and 15 all have values
near 0.79 °C. The GA best and random sampling means select
the best realization (number 3). The random search approach
is almost perfectly correlated with the model domain RMSE.
The GA is less correlated, possibly because of sampling with-
in dynamic regions (note the significantly higher data-forecast
RMSE values) and possibly because the sample size of 20 is
not large enough to ensure proper statistics. For the September
time period (right panel), according to the model domain
RMSE, realization 11 is the best with a value of 0.64, while
realizations 2–3, 9–10, 12–13, and 15 have values near
0.70 °C. The grid results are not shown for clarity. The mean
grid RMSE values were poorly correlated with the model
domain RMSE. In particular for the September time period,
the grid method selected exclusively realizations 4 and 14,
both with poor model domain RMSE values (∼0.75 °C).

This begins to highlight the difficulty in “selecting” an ocean
based upon five measurements over a 400 × 400 km region.

The RMSE averages from the two time periods are presented
in Table 1. The average of all the ensemblemembers is presented
at the top. Without any sampling, a random selection of an en-
semble to use as the model forecast would yield this value as the
domain-wide RMSE. Results for the best GA solution and the
mean of all the GA solutions are presented, as well as for the
mean of the grid and random sample strategy solutions.

The very poor performance of the grid sampling during
the September time period can be explained by the fact
that the tropical storm Ernesto drove much of the shelf-
break front out into deeper water. All grid sample paths
are now well inshore of the dynamic oceanography that is
a valuable discriminator between the ensemble members.
The general difference between the best and the mean GA

Fig. 12 Comparison of RMSE
for GA sampling measurements
(best *; random—cyan line;
grid—magenta line) and region-
wide model-true ocean (blue
line). a August 24–27 frame. b
September 4–7 frame. Note the
spread in rank and the correlation
between the GA measurements
RMSE and the model domain
computations

Table 1 RMSE averages (°C)

Sampling August 24–27 September 4–7

<|Ens-True|> 0.82063 0.74857

Global GA (best) 0.71207 0.64251

Fσ (best) 0.77718 0.67231

Ffv (best) 0.77718 0.75846

<grid> 0.77572 0.74957

<random> 0.76348 0.70419
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solutions is an indication that each GA solution is
selecting a different ocean state. This indicates that al-
though the cost functions’ final values are very close
and the glider positions are located in qualitatively similar
regions of the ocean (along the fronts), they produce dif-
ferent results. When we look at the error surface map in
Fig. 13, we see that the spatial scales of these error values
are quite small (∼ a Rossby radius). Therefore, some
gliders will select a large region of error while others will
miss these regions, even though both are measuring the
front. The result is that the selection of a particular en-
semble is effectively random. This shows that we do not
have enough gliders to uniquely sample the environment
and differentiate accurately between various ocean states.

When looking at the error maps for August 24–27
(Fig. 13), it is clear that realization (ensemble member)
3 is the best and it has regions of error located near the
shelf-break front in the Northeast. This is a region well
sampled by the GA and if one of these hot spots is sam-
pled by a glider, this ensemble will be rejected. The ran-
dom sampling however is much less likely to sample this
region. The area of the hot spot region divided by the area
of the entire model domain is smaller than 1/10. This
means that the random sampling is less likely to reject

ensemble member 3 or, conversely, is more likely to reject
all members besides 3. For the 100 random-sampling
runs, 35 of them selected member 3.

Note that the shooting method is not a proper test of sam-
pling strategies for data assimilation. The shooting method
approach selects the ocean ensembles that have minimum
RMSE between the measurements and the models.
Collecting data for assimilation into a model from these areas
would yield data closest to the true ocean, which will have the
smallest impact on the model.

For the shooting method experiment, data were taken
from observations of the true ocean along optimization-
derived five-glider sample paths, and for control pur-
poses, along alternative five-glider sampling paths.
The RMSE (Tσ) between the observations and the mod-
el forecasts were computed and the minimum RMSE
member of the forecast ensemble was selected as the
best fit ocean. To compare the value added of various
sampling networks, the model domain-wide RMSE (Tσ)
was computed for each ensemble. For the August 24–27
time period, the ensemble RMSE was 0.82. The GA-
derived results for the global cost function were 0.71
and 0.78 for the best and mean, respectively. The con-
trol sampling scheme derived from oceanographic

Fig. 13 Error maps for
ensembles for August a 3, b 11, c
12, and d 16. The glider mean
measurement RMSE are 1.46,
1.35, 1.31, and 0.99, respectively
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intuition (perpendicular to the shelf break from 60 to
600 m) and a random-sampling scheme produced best
values of 0.78 and 0.76, respectively. For the September
4–7 time period, the ensemble RMSE was 0.75. The
GA-derived results for the global cost function were
0.64 and 0.68 for the best and mean, respectively.
Using a sampling scheme derived from oceanographic
intuition and a random sampling produced best values
of 0.75 and 0.70, respectively. The best GA-derived
sampling scheme selects the best ocean (smallest model
domain RMSE) in all cases and is a significant positive
result. The mean of the GA-derived results, however,
performs comparably to the random sampling. With
the exception of the September-gridded sampling
scheme, all of the sampling methods reduce the
RMSE. The grid oceanographic sampling scheme suf-
fers in the September time period because all of the
dynamic oceanography shifts off the shelf-break as a
result of the strong winds encountered during tropical
storm Ernesto. A significant question is “Why does the
random-sampling scheme perform relatively well?”.
Both the grid pattern and the GA-based searches pref-
erentially select sampling paths that are in the shelf-
break, a region of high oceanographic variability. The
regions of high RMSE, even for the best ocean, are in
this area. If a particular sample happens to land on one
of these hot spots, the shooting method will penalize
this realization for the local RMSE, even though it has
the minimum domain RMSE. The random-sampling
scheme is less likely to fall on a hot spot and reject
the best oceans. This selection process is very local
(there is no assimilation and therefore no advection)
and is very sensitive to the exact positions of the
gliders.

5.2 Observational Systems Simulation Experiment

In order to evaluate the value added from sampling and then
assimilating the data (the truly optimal adaptive sampling
problem), we proceed to assimilate data from the true ocean
using samples selected from the GA, random, and grid search
algorithms.

The OSSE was completed by sampling six data sets
from the simulated true ocean, using the three sampling
methods in both the pre-Ernesto (August 24–27, 2006)
and post-Ernesto (September 4–7, 2006) time periods.
Each of these data sets was then assimilated into each of
the 17 ensemble members over the first 2 days of the
simulations (102 simulations in total). On the third simu-
lation day, root mean square (RMS) errors and pattern
correlation coefficients (PCC) were calculated for temper-
ature and salinity at three depths (0 m—mixed layer;
30 m—thermocline; 100 m—deep) to evaluate the im-
pacts of assimilating the different sampling schemes.
Figure 14 shows the RMS errors for the genetic algorithm
and random-sampling schemes relative to the RMS errors
for the regular grid sampling scheme. Also displayed in
each panel is the average value for each curve. On aver-
age, the RMS temperature error for the genetic algorithm
sampling is 6 % better than the regular grid in the August
period (Fig. 14a) and 1 % better in September (Fig. 14b).
The PCC show similar results with 4 % improvement in
August (Fig. 15a) and 2 % improvement in September
(Fig. 15b). For salinity, the RMS improvements were
8 % in August (Fig. 16a) and 5 % in September
(Fig. 16b) and the PCC improvements were 6 % in
August (Fig. 17a) and 4 % in September (Fig. 17b).

These numbers may seem small, but they are in fact signif-
icant for three reasons: (i) the amount of data simulated is very

Fig. 14 Temperature RMS errors for runs assimilating pseudo-data
sampled according to the genetic algorithm and random starting points,
relative to the temperature RMS errors for runs assimilating pseudo-data
sampled on a regular grid. a Prior to tropical storm Ernesto, b after

Ernesto. Each panel shows the relative RMS errors for each ensemble
member. Also shown in each panel is the numerical value for the average
of each curve
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small (only a few gliders over 2 days in a large 500-km-long
domain); (ii) the cost function for the GA does not focus per se
on ocean predictive skill, but it still leads to improvements;
and finally (iii), obtaining comparable skill improvements
solely from upgrading the model would require several man-
years of effort, as quantified for example for atmospheric pre-
diction systems. Hence, in this shelf-break region, just a little
bit of data well sampled using the GA instead of a regular grid
sampling algorithm can lead to as significant improvements as
updating the modeling system over several years.

Overall, the performance in salinity is a bit better than that
for temperature, which is encouraging since the main density
driver of the flow in the region is salinity. Also, the increase in
performance using the GA instead of a regular grid sampling
algorithm is a bit larger before the storm than after the storm.
This is in part because the density isopycnal along which most
of the GA cost function terms are evaluated is better suited for

the field before than after the storm. Ideally, the density
isopycnal should be modified or several density isopycnals
should be included in the cost functions so as to cover the
range of dynamically significant densities in the region.

6 Summary and conclusion

In this paper, a method for determining optimal paths for
ocean sampling was presented. The term “optimal” refers to
the paths that minimize a user-defined cost function within the
specified time constraints. The problem is posed as a
constrained nonlinear optimization problem and is solved
using an implementation of the genetic algorithm. The envi-
ronment considered in this paper was the New Jersey area of
the Mid-Atlantic Bight, where an experiment with extensive
oceanographic sampling was conducted in the fall of 2006

Fig. 15 Temperature PCC for runs assimilating pseudo-data sampled
according to the genetic algorithm and random starting points, relative
to the temperature PCC for runs assimilating pseudo-data sampled on a

regular grid. a Prior to tropical storm Ernesto, b after Ernesto. Each panel
shows the relative PCC for each ensemble member. Also shown in each
panel is the numerical value for the average of each curve

Fig. 16 Salinity RMS errors for runs assimilating pseudo-data sampled
according to the genetic algorithm and random starting points, relative to
the salinity RMS errors for runs assimilating pseudo-data sampled on a

regular grid. a Prior to tropical storm Ernesto, b after Ernesto. Each panel
shows the relative RMS errors for each ensemble member. Also shown in
each panel is the numerical value for the average of each curve
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(Shallow Water 06). Two time periods were used, one just
prior (August 24–27) and one just after (September 4–7) the
passage of tropical storm Ernesto. Using the Multidisciplinary
Simulation, Estimation and Assimilation System (MSEAS),
an ESSE ensemble of 17 model forecasts for each 3-day time
period was created. These forecasts serve as the ocean field
and uncertainty prediction prior to the collection of data. A
true ocean model was computed by assimilating all of the
measured oceanographic data into the set of model forecasts.
The cost functions used in this paper included the ensemble
variability (Ffv), the spatial variability (Fσ), the sum of the two
(global), a distance potential to prevent gliders from sampling
the same body of water, and a boundary function to prevent
platforms from being deployed in less than 50 m of water.

The behavior of the GA technique was examined by using
a single-glider and single constituent cost functions. Searches
using the GA were found to converge within 40 generations
for a single glider and always found a minimum of the cost
function, but sometimes this was only a local minimum. The
results of GA searches were consistent with the estimates
made of the cost function morphology. In cases with a strong
global minimum (Fσ), the method placed all of the gliders
within this minimum. For morphologies with many local min-
ima, near the value of the global minimum, the method did not
always converge on the global minimum. This is likely a result
of not fine-tuning the parameters of the search (number of
generations, number of individuals, mutation rate, etc.) cor-
rectly. It should be pointed out that GA-based optimization,
unlike simulated annealing, is not mathematically guaranteed
to converge. The results presented here are consistent with
previous results using the GA to perform nonlinear
optimization.

The five-glider GA runs demonstrated robustness to the
local-minima problem addressed in the previous paragraph.
When searching for optimal sampling geometries for a fleet

of five gliders, the GA method was able to regularly place a
glider in the global minimum, and place the other four gliders
in local minima. The convergence was significantly slower
(∼110 generations) because of the lack of settling into local
minima. Cost function values for the five-glider GA generally
converged but the spatial sampling was often spread out over
regions of spatial and ensemble variability. In particular, sev-
eral GA-based solutions with the same cost function values
would place gliders along the same front but at different loca-
tions. This is an example of equifinality, where different solu-
tions yield qualitatively similar results.

Two tests were used to quantitatively compare the GA so-
lution with a random sample solution and a control sampling
scheme derived from oceanographic intuition (perpendicular
to the shelf break from 60 to 600 m). These tests were con-
ducted for both time periods. A “shooting method” evaluated
the ensemble member chosen from observations taken using
each sampling strategy and compared the root mean square
error (RMSE) between the true ocean and the selected ensem-
ble member. The genetic algorithm was able to identify hot
spots of the model forecast and take selective measurements
there, permitting adaptation to the movement of the dynamic
oceanographic regions prior to and after tropical storm
Ernesto. The improvement of the ocean forecast using the
GA from this experiment was on the order of 18 %. A full
OSSEwas also conducted, with assimilation of measurements
taken using the sampling strategies above. The GAwas then
found to yield a 4–8 % improvement in the RMSE and pattern
correlation coefficient (PCC) of the forecasts for temperature
and salinity.

By using a combination of model forecast uncertainty and
variability as the physics drivers of the selection of sampling
regions, the adaptive sampling approach presented in this pa-
per leads to a collection of data in regions which have an
optimized impact on forecast accuracy.

Fig. 17 Salinity PCC for runs assimilating pseudo-data sampled
according to the genetic algorithm and random starting points, relative
to the salinity PCC for runs assimilating pseudo-data sampled on a regular

grid. a Prior to tropical storm Ernesto, b after Ernesto. Each panel shows
the relative PCC for each ensemble member. Also shown in each panel is
the numerical value for the average of each curve
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