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Maximizing Seaweed Growth on Autonomous
Farms: A Dynamic Programming Approach for
Underpowered Systems Operating in
Uncertain Ocean Currents

Matthias Killer ¥, Marius Wiggert

Abstract—Seaweed biomass presents a substantial opportunity
for climate mitigation, yet to realize its potential, farming must
be expanded to the vast open oceans. However, in the open ocean
neither anchored farming nor floating farms with powerful en-
gines are economically viable. Thus, a potential solution are farms
that operate by going with the flow, utilizing minimal propulsion
to strategically leverage beneficial ocean currents. In this work,
we focus on low-power autonomous seaweed farms and design
controllers that maximize seaweed growth by taking advantage of
ocean currents. We first introduce a Dynamic Programming (DP)
formulation to solve for the growth-optimal value function when the
true currents are known. However, in reality only short-term im-
perfect forecasts with increasing uncertainty are available. Hence,
we present three additional extensions. Firstly, we use frequent
replanning to mitigate forecast errors. Second, to optimize for
long-term growth, we extend the value function beyond the forecast
horizon by estimating the expected future growth based on seasonal
average currents. Lastly, we introduce a discounted finite-time DP
formulation to account for the increasing uncertainty in future
ocean current estimates. We empirically evaluate our approach
with 30-day simulations of farms in realistic ocean conditions.
Our method achieves 95.8% of the best possible growth using
only 5-day forecasts. This demonstrates that low-power propulsion
is a promising method to operate autonomous seaweed farms in
real-world conditions.

Index Terms—Marine robotics, underactuated robots, planning
under uncertainty, optimization and optimal control.
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1. INTRODUCTION

ECENT research has shown promising applications of
R seaweed biomass for climate mitigation. It can be used
as human food, as cattle feed that reduces methane emissions
[1], for biofuel and plastic [2], and for carbon capture i.e. when
the biomass is sunk to the ocean floor, it removes carbon dioxide
from the atmosphere [3]. To deliver on this promise, production
must scale by expanding seaweed farming from labor-intensive
operations near shore to automated solutions utilizing the vast
expanse of the open oceans [4]. But conventional farming be-
comes economically infeasible in deeper waters as anchoring
costs increase with depth [5].

A promising solution could be non-tethered, autonomous
seaweed farms that roam the oceans while growing seaweed [6],
[7]. These floating farms need to be able to control their position
to prevent stranding, colliding with ships, or drifting to nutrient-
depleted waters. While they could be steered with powerful ship
engines, the power and, hence, energy costs are prohibitively
high due to the drag force Fp,qq4. Vessels in water require power
P = Fprag - v=C4Ac - v3 where Cj; is the drag coefficient A¢
the cross-sectional area, both of which are large for such farms
[8]. As P is cubic in the relative velocity v, low propulsion
implies low energy usage. Recent studies [9], [10] demonstrated
that an autonomous vessel can navigate reliably to nearby targets
by going with the flow, using its limited propulsion (0.1%)
strategically to nudge itself into ocean currents ([0 — 27%]) that
drift towards its destination. These studies have been extended
to reduce the risk of stranding by incorporating obstacles [11]
and to multi-agent fleets of vessels that navigate while staying
connected in a local communication network [12].

In this letter, we use this low-power steering paradigm for
operating seaweed farms. In contrast to [9], [10], which solves
navigating to a target within a 5-day forecast horizon, our
objective is to maximize seaweed growth along the trajectory
of the farms over longer periods beyond the forecast horizon.
For an autonomous vessel operating approach, there are four
key challenges that we need to address. First, the currents
are non-linear and time-varying. Second, in realistic settings,
only coarse uncertain forecasts are available [13], [14], [15].
Third, the farm itself is underpowered by which we mean that
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Fig. 1. Our method maximizes long-term growth on autonomous seaweed
farm that operate by harnessing ocean currents. We solve for the value function

Forecast that is long-term growth-optimal under the forecast with dynamic
programming. We first compute the expected 25-day growth after the forecast
based on historical average currents (1) and then use it to regularly solve for the
value function over the next 5 days using daily current forecasts (2). Applying the
induced policy 7 porecast s feedback controller ensures high growth despite
imperfect short-term forecasts.

its propulsion is smaller than the surrounding currents, so it
cannot easily compensate for forecast errors. Lastly, we want
to maximize seaweed growth over weeks but forecasts from the
leading providers are only 5-10 days long [14], [15] and the
uncertainty for long-time predictions is high [16]. As summa-
rized in Fig. 1, we are tackling long-term horizon optimization
of a state-dependent running cost with an underpowered agent
in non-linear time-varying dynamics under uncertainty that in-
creases over time. The long-term dependency of seaweed growth
means the objective cannot easily be decomposed into multiple
short-term objectives. While we showcase the method specifi-
cally on autonomous seaweed farms, many other applications
could use environmental dynamics while navigating over long
timeframes in the ocean currents or winds, e.g., for low-powered
sensor systems (balloons, sailboats, or zeppelins for sensing or
building mesh networks for communication) [17].

A. Related Work

Various approaches for time- and energy-optimal path plan-
ning exist for non-linear, time-varying dynamics like ocean
currents [18], [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28], [29], [30], [31]. In the context of navigating within known
currents or flows, researchers have derived Hamilton-Jacobi
(HJ) reachability equations for exact solutions [18], [19], non-
linear programming [20], [32], evolutionary algorithms [21],
and graph-based search methods [22], [24], [33]. However, the
last three techniques are prone to discretization errors and the
non-convex nature of the problem, can lead to infeasibility or
solvers getting stuck in local minima. In contrast, DP based on
the HJ equations can solve the exact continuous-time control
problem.

There is limited research that focuses on maximizing seaweed
growth. In [34], the authors maximize seaweed harvesting using
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autonomous vessels in varied settings. They use a 3D HJ reacha-
bility framework in which the harvesting state is augmented into
the third dimension. They optimize harvesting from stationary
seaweed farms and assume the currents to be known making
it not applicable in realistic settings, additionally the value
function is not suitable for a closed-loop control policy.

For managing current uncertainty, previous work optimizes
the expectation or a risk function over a stochastic solution of
probabilistic ocean flows [26]. However, this is not yet suitable
for operational settings as it demands a principled uncertainty
distribution for flows but most operational forecasts are deter-
ministic. At the same time, robust control techniques, which
aim to maximize the objective even in the face of worst-case
disturbances, are not suitable when considering realistic error
bounds, as the forecast error often equals or exceeds our low
propulsion capabilities. Thus, to mitigate forecast inaccuracies,
frequent replanning in a Model Predictive Control (MPC) fash-
ion has been proposed using either non-linear programming [35],
[36] or employing the HJ value function as feedback policy [9],
which offers the benefits of being both fast and optimal. Another
approach is to use Reinforcement Learning (RL) to learn how
to best operate stratospheric balloons despite wind forecast
uncertainty [31], [37]. While they ran operational experiments
over more than 30 days their objective of staying above a certain
areaisrelatively short-term, rendering RL appropriate. However,
the applicability of RL for long-term objectives, similar to
ours, remains uncertain. To address the increasing complexity
associated with long-time horizons, problems are frequently
divided into multiple subproblems using graph-based methods
or hierarchical RL [38], [39]. These approaches are appropriate
for combinatorial optimization problems, where dividing and
conquering in subtasks is effective. However, this is not suitable
for our problem involving continuous state space and long-time
dependencies. An approach to handle growing uncertainty of
the currents over time is to discount future rewards which is
common in RL settings [40] but not in maritime control.

B. Overview of Method & Contributions

In this letter, we make five main contributions towards con-
trollers that optimize seaweed growth on autonomous seaweed
farms over long periods.

First, we formulate maximizing seaweed growth on an
autonomous farm as an optimization problem that can be
solved exactly with DP in the 2D spatial state of the system
(Section ITI-A). Compared to prior work using HJ Reachability
in 3D [34] to model seaweed growth on stationary farms, our
formulation leads to two advantages: significant reduction of
computational complexity (Section III) and the value function
can be used as feedback policy. This allows for frequent re-
planning in the MPC spirit which is critical to mitigate forecast
uncertainty and can be used for multiple farms [12]. Second, we
extend the value function beyond the forecast horizon, which
leads to a feedback policy that optimizes for long-term optimal
growth (Section III-C). For that, we estimate the expected growth
using historical average currents over a coarse grid and then
initialize the DP over the forecast horizon with these values
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(Fig. 1, Section III-C). Third, to account for the growing uncer-
tainty of the ocean current estimates, we introduce finite-time
discounting into the DP formulation,which to the best of the au-
thors knowledge has not been applied to the context of handling
uncertainty in flow field forecast. (Section III-D). Fourth, we are
the first to run extensive empirical simulations of autonomous
seaweed farms in realistic current settings over 30 days. We first
investigate how different propulsion of the farms would affect
the best achievable seaweed growth with known currents. We
then evaluate how close different configurations of our method
can get to the best achievable growth when only daily, 5-day
forecasts are available (Section IV). Lastly, we open-source our
code, which contains extensive features to simulate, visualize,
and study controllers for 2D vessels operating by harnessing
uncertain ocean currents.

The remainder of the article is structured as follows: in
Section II we define the problem. Section III details the four
components of our method. Section IV contains the performance
evaluation of our methods and baselines, and we conclude with
Section VI and outline future work.

II. PROBLEM STATEMENT
A. System Dynamics

We consider an autonomous seaweed farm as surface vessel
on the ocean with the spatial state € R?. Let the control input
be denoted by w from a bounded set U € R™ where n,, is the
dimensionality of the control. Then, the spatial dynamics of the
system at time ¢ can be modelled by the first order Ordinary
Differential Equation (ODE):

z=f(x,u,t) =v(x,t) + g(x,u,t), t€[0,7] (1)
where the movement of the vessel depends on the drift due to the
time-varying, non-linear flow field v(z, ) — R? and its control
u. We choose a first-order model where the drift and control
directly influence the state, disregarding inertial effects from
motor acceleration and drag forces. This is justified by the fact
that high-drag seaweed farms attain equilibrium velocity within
a few minutes, a timescale considerably shorter than our 30-day
planning horizon.

While our method is generally applicable, we focus on
underpowered settings in the sense that most of the time
max ||g(x,u,t)||2 < ||v(x,t)]|2. We denote the spatial trajec-
tory induced by this ODE with £. For a vessel starting at the initial
state @ at time ¢, with control sequence wu(-), we denote the
state at time ¢ by 512(,200 (t) € R2. The system dynamics ( (1)) are
assumed to be continuous, bounded, and Lipschitz continuous
in x,w [10].

Additionally, we assume the farm has seaweed mass m which
evolves according an exponential growth ODE:

m=m-¥(x,t), tecl0,T] 2)

where W is the growth factor per time unit, e.g. 20%, which

depends on nutrients, incoming solar radiation, and water tem-
perature at the spatial state  and time ¢.
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B. Problem Setting

The objective of the seaweed farm starting from x at ¢y with
seaweed mass m(%() is to maximize the seaweed mass at the final
time 7'. This implies optimizing the growth along its trajectory
£u(')

to,xo"

T
max m(7T) = m(tg) + max / m(s) - \I'(EZJ(';O(S), s) ds
u(") u() Jt, —_—
growth factor

3)
If the currents v are known, our method (Section III) is guaran-
teed to find the optimal value function from which the optimal
control u*(-) and trajectory can be obtained. However, in re-
alistic scenarios only inaccurate, short-term forecasts vpc are
available at regular intervals. These differ from the true flow v
by the forecast error §(x,t). Our goal is then to determine a
feedback policy 7 (x, t) that results in a high expected seaweed
mass E[m(7")]. Hence, in our experiments (Section IV) we eval-
uate our method empirically over a set of missions (zg,t) ~ M
and a realistic distribution of true and forecasted ocean currents
v, 0 FC ™~ V.

III. METHOD

Our method consists of a core DP formulation that optimizes
seaweed growth when the currents are known and three exten-
sions to get a feedback policy 7 that performs well over long-
time horizons when only limited forecasts are available. We first
introduce the core DP formulation to obtain the growth-optimal
value function (Section III-B). Then, we demonstrate using the
value function as feedback policy 7, which is equivalent to
replanning at every time step (Section III-C). This leads to reli-
able performance even if the value function was computed with
inaccurate forecasts. Next, we extend the feedback policy by
estimating the growth beyond the forecast horizon (Section III-C
and introduce a finite-time discount factor III-D). Lastly, we
describe the control algorithm variations developed and discuss
computational aspects (Section III-E and III-F).

A. Maximizing Seaweed Mass With Known Dynamics

We use continuous-time optimal control where the value
function J(x, u(-),t) of a trajectory £ is based on a state and
time-dependent reward R and a terminal reward Rr:

T
Tz, u),t) = /t R (s), 5)ds + Rr(€X)(T),T).

Let J*(x,t) = max, () J(x,u(-),t) be the optimal value
function. Using DP we can derive the corresponding Hamilton-
Jacobi Partial Differential Equation (PDE) [41]:

—W = max [VeJ (x,t) - f(x,u,t) + R(z,t)] (4)
J(x,T) = Rp(x,T). 5)

Computationally, this PDE is solved in the state space dis-
cretized into N grid points along each dimension d [42]. At
each step backward in time we need to compute the gradient
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VJ*(x,t) whichis O(d) for each grid point, so the complexity
scales exponentially with the state dimension as O(dN?), which
is called the curse of dimensionality [41].

Next, we define the reward R and terminal reward Rr to
maximize m(7"). One approach is to solve the PDE in an
augmented state space Zqy,= (2, m)" € R3. If we set R =0
and define the reward as R=m - ¥(x, t), the value function is
our objective ( (3)). However, as the computational complexity
of solving for J* scales exponentially with the state dimension,
we want a reward I that does not depend on the augmented state
m. For that, we introduce the variable 77 = In(m) with the new
dynamics 1) = 2 = U(z,t). As n(m) is strictly increasing in
m, the control w*(-) that maximizes 7(7") is equivalent to w*(-)
maximizing m(7"). We can then reformulate (3) to 1(7'):

T
max n(T) = n(ty) + max/ U( f;)(s),s) ds. (6)
u() u() Ji, "
By setting the reward to R = ¥(«, t) the optimal value func-
tion captures this optimization without requiring m:

T
J(x,t) = max/ U( f(m)(s),s) ds. @)
¢

u(:)

We then solve the HJ PDE for the growth-optimal J*(x, ) in
the spatial state  and obtain w*(-) and the trajectory SZ);)O that
maximize m(7T) at 2NN the computational cost (Section III-F).
This formulation can be applied more generally to optimize the
state of exponential growth or decay ODEs. We can convert the
value of J*(xg,t0) to the final seaweed mass of the optimal
trajectory starting at @, to with m(tp):

T u* () "
m(T) = m(to) - elo ¥ Eomo () ds — (45 . 7" (@0st0)

B. Feedback Policy Based on Regular Forecasts

The value function J* from Section I1I-A allows us to compute
the optimal control w*(x,t) for all «,t and hence a feedback
policy m(a,t) for the vessel or multiple vessels in the same
region [12]. This policy is the optimizer of the Hamiltonian (right
side (4)):

m(x,t) = argmax f(x,u,t) - V. J (x,t), (8)
uel

which can often be computed analytically depending on
g(x,u,t). For our experiment, we take thrust and direction 6 as
control variables: g(u(t)) = ushrust (t)€4(+) With limited scalar
thrust wspryst < Umae and €y as the 2D unit vector with angle
6. The policy is then full thrust along V,J*(x,t): 7m(x,t)=
umw%. While 7 is optimal if J* is based on the true
currents v, it can also be applied when imperfect forecasts Up ¢
were used to compute the value function J;__(z,t). In that
case, an agent at state & executing 7; .. (, t) will find itself at a
different state =’ than anticipated as v differs from 9. But the
control that would be growth optimal under ¥ can again be
computed with 74, (', + At). Applying 7., closed-loop
is hence equivalent to full-time horizon re-planning with 0 at
each time step. This notion of re-planning at every time step at
the low cost of a 2D gradient computation (Section I1I-F) ensures
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good performance despite forecast errors [9]. J7 (z,t) can be
updated daily as new forecasts arrive.

C. Reasoning Beyond the Forecast Horizon

As the growth cycles of seaweed typically spans months, our
aim is to maximize the seaweed mass at an extended future time
Texe after the final time of the 5-day forecast Tr¢. A principled
way to reason beyond the planning horizon is to estimate the
expected growth our seaweed farm will experience from the
state 5;‘7;) (Trc) onward and add this as terminal reward Rt to

).

']';Fc,ext(w? t) = SFC,TFC‘ (.’B, t) +E [J;“m( ;ng) (TFC)a TFC)
T e 0
bremee(@ ) =max [ WED (9),5) ds ©
where JZ . (x,t) is the growth a vessel starting from @ at

u

t will achieve at Trpc and E[J7, ( 757;’)(Tpc), Trc)] estimates
the additional growth from Tr¢ to Tix. The expectation is over
the uncertain future ocean currents.

We propose to estimate E[.J}. | by computing the value func-
tion J7 o based on monthly average currents v for the region
using Section III-A. To compute J7 | we then solve (4) with
RT(:I), Tpc) = J;Tm(w, Tpc).

C ,ext

D. Finite-Time Discounting to Mitigate Uncertainty

As the oceans are a chaotic system, the uncertainty of the
forecasted ocean currents increases over time. We can incorpo-
rate this increasing uncertainty in the value function by using
the finite-time discounted optimal control formulation:

I (@, u(), 1) :/ ¢

t

—(s=t)

R(Eu(')(s), s) ds

t,x

+ Rp(€13(T), T),

where 7 is the discount factor. Note that in contrast to discrete
time dynamics, where discount factors range from O to 1, our
application of 7 conforms to the conventional interpretation in
continuous dynamic programming [40]: 7 can assume values
significantly greater than 1 and for higher 7 future rewards
are discounted less. We derive the corresponding HJ PDE by
following the steps in [40] and in place of (4) we obtain:

0T @0 _ o [V - f( )
ot 2
J*7T ,t
R, 0]+ &

E. Control Algorithm Variations

All variations of our method are feedback policies 7 derived
from a value function (Section III-B). The four variations differ
only in how the value function is computed. When the true
currents v are known we compute J* ( (7)) for optimal control.
When only forecasts 0 ¢ are available, we calculate the .J. gFC for
planning horizons up to the end of the forecasts T'r¢ and update
it as new forecasts become available (Section III-B). Thirdly, to
optimize for growth until T¢x > T'rc we calculate an extended
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Algorithm 1: Discounted HJ Closed-Loop Control.

Input: Forecast Flow(s) 9rc, t = 0, x(t) = @0, average
Flows v, discount 7, plan until Tty
1 Compute J.'7 ‘1., using v (Sec. III-C and III-D);
2 while ¢t < T d0

3 if new forecast Upc available then

4 L Compute J;‘ 7T ext (Sec. II-C and II-D);

5 wp =m0 (@, t); using JOT(Sec. 11I-B)
6 z(t + At) = z( +ft+At flue, z(s), s) ds;

7 t <+ t+ At

value function J7_ .. (Section III-C) using average currents
(0rc then D). Lastly, we can discount future rewards with J3'7.
(Section III-D) in any of the above value functions. In Algorlthm
1 we detail the discounted, long-term version as it contains all
components.

FE. Computational Considerations

To illustrate the computational advantage of our approach
let’s consider our realistic simulation experiments in Section I'V.
The computational complexity is O(dN?) so with a spatial
discretization of N = 120 solving for J* in d = 3 compared
to d = 2 dimensions would be %N =180 times as expensive.
We only need to solve the 2D HJ PDE for J; _(x,t) once per
day as new forecasts become available. Concretely, for a greedy
T'=3 day horizon and 1° spatial grid this takes ~ 2.3 > dog -T so
7s with a 2.7GHz Intel i7. From the value function, we obtain the
control every 10 minutes with a cheap 2D gradient computation
VzJ*(x,t) which takes 1ms and is O(d). That means ~= 7.14s
per operational day.

In contrast, using non-linear programming MPC, we would
need to solve an optimization problem 144 times per day. We
implemented a multiple-shooting MPC approach with Euler
dynamics and CasADi [43]. With the same settings as above,
T =3 days and 10 mins time-steps the IPOPT solver [44] took a
minimum of 4s for mostly linear ocean current flows, to 10s for
more non-linear flow fields, resulting in a total of at least 576s
per operational day.

In addition to these savings for a single farm, J:FC( t)
can be used for hundreds of farms in the same region [12],
whereas MPC would need to be run for each farms separately.
Considering control resilience, HJ guarantees convergence and
optimality [41] whereas non-linear MPC sometimes does not
find a feasible solution.

One limitation of planning with ocean current forecasts pro-
vided as matrices is that it requires significant RAM due to
the interpolation of currents at each time-step (e.g., the above
MPC and HJ examples took 1.2 GB and 1.1 GB peak RAM,
respectively). We use JAX to first compile a computational graph
for the value function computation before solving the PDE. This
adaption yields a significant speed-up over the Matlab-based
helperOC. Nevertheless, it took 60 GB of RAM for 30 d plan-
ning of J; . (x,t), which limited our simulation horizon in
Section IV. This can be optimized further e.g. by using GPU
acceleration and moving the interpolation outside of the PDE
solving.
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IV. EXPERIMENTS

As our system is underpowered (Section II), it is impossible to
prove robustness of our method against potentially adversarial
currents [11]. Hence, we evaluate our method empirically by
simulating the operation of an autonomous seaweed farm in real-
istic ocean currents and growth conditions. We will open-source
the code for our simulator and controllers for others to replicate
results and build on.! We run two main experiments. First, we
investigate how varying the propulsion ., impacts the best
achievable seaweed growth under known currents v and compare
it to the growth achieved by 30-day planning without discount-
ing relying on daily, 5-day forecasts v and average currents v
(Section IV-B1). Second, we fix the propulsion t0 ,q,=0.17}
and evaluate how the planning horizon and discounting in our
method affect growth and how close we can get to the best
achievable growth while relying on daily forecasts vpc and
average currents v (Section IV-B2). The experimental setup for
both is the same and will be explained next.

A. Experimental Setup

1) Seaweed Growth Model: The growth of macroalgae de-
pends on the species, water temperature, solar irradiance, and
dissolved nutrient concentrations, specifically nitrate (NO3) and
phosphate (PO4) [34]. We use the model of the Net Growth
Rate (NGR) of Wu et al. [45] and temperate species parameters
from [46], [47]. In this model, the time-dependent NGR is
determined by the growth rate 7;.0.,¢n, and the respiration rate
Tresp caused by metabolism as:

m(t) - NGR(t) =m(t) - (rgrowtn (t) — Tresp(t)). (10)

Fig. 1 shows the NGR for our region at the apex of the sun’s
motion in January 2022.

2) Realistic Ocean Forecast Simulation: In realistic opera-
tions the vessel receives daily forecasts for replanning. In our
simulations, we use Copernicus [15] hindcasts as true currents
v and mimic daily 5-day forecasts vpc by giving the planner
access to a 5-day sliding time window of HYCOM [14] hind-
casts. Aligned with previous work [9], we find that the forecast
error § with this setting is comparable to the evaluated forecast
error of HYCOM [13] in key metrics. To estimate the expected
growth beyond the forecast horizon of vr¢ (Section III-C) we
use éth deg seasonal averages v of the ocean currents from
Copernicus 2021.

3) Large Scale Mission Generation: We simulate operations
in the southeast Pacific due to high nutrient densities. For a
large representative set of missions M, we sampled 1325 tuples
(xo, to, m(tg)=100 kg), uniformly distributed in time between
January and October 2022 and across the region of longitude
[—130, —70]°W and latitude [—40, 0]°S. This allows for vary-
ing current distributions. As our method is not aware of land
obstacles, we had 290 missions where at least one of the farms
stranded or left the simulation region. While stranding can be
avoided by modifying the HJ PDE and initial value function
without increasing the computational complexity as described

m(t) =

I'The code will be available in a github repository
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TABLE I
COMPARED CONTROLLER SETTINGS

controller planning horizon Tey¢  discount 7
w/o discount (v) 30 days -
floating - -
greedy 1 h (0p¢) 1h -
greedy 5 days (0pc) 5 days -
w/o discount (9 ¢ then ) 30 days -
w/ discount I (0p¢ then v) 30 days 1.296.000
w/ discount II (0p¢ then v) 30 days 1.728.000

in detail by Doering et al. [11], we consider only the remaining
1035 missions for our results as this letter focuses on long-term
planning and not obstacle avoidance.

4) Evaluated Controllers and Baselines: We evaluate our
method in different configurations categorized by: a) the ocean
current data used by the controller for planning, either the true
currents v or daily forecasts vpc and average currents v, and
b) the controller’s planning horizon T over which it optimizes
growth, either the entire 30-day period or more short term greedy
(5-day and 1 h). We also examine the effect of using of a
discounted value function. An overview of the configurations
is provided in Table I.

The simplest baseline that we compare against is the seaweed
growth on passively floating farms. We also consider the greedy
HJ-based controllers as baselines representing all short-term
controllers. That is because they are optimal under v, hence
we would only expect MPC or another approach to be better in
the unlikely case that their approximation errors would system-
atically improve performance.

For long-term (7=30 days) controllers, we compute the
growth-to-go after Tr¢, i.e., J%,Tm (z,Trc), over the full area
on a coarse %O grid, as illustrated in Fig. 1. The value function
Jch’ext(m, t) used for the control policy is then computed daily
on new forecasts using a smaller 11—20 grid around the current
farm’s position (10° square).

5) Evaluation Metrics: Our objective is to maximize the
seaweed mass at the end of each mission m(7"). Additionally,
we compute the relative improvement in final seaweed mass
by normalizing within each mission with the baseline final
mass. We then present the average relative improvement across
all missions which allows us to gauge how much more/less
biomass a specific controller can grow above the baseline. This
is important as the start xy of a mission is a major indicator of
achievable growth as illustrated in Fig. 3. As baselines we use
either passively floating or the best achievable growth based on
the true currents v.

B. Experimental Results

1) How Does Varying Propulsion Affect Growth?: We vary
the maximum propulsion 4, of the farm and evaluate how
this impacts the best achievable seaweed growth under known
currents v. Fig. 2 and Table II compare the final seaweed mass
distributions for different propulsion levels, starting with pas-
sively floating. We observe that the average seaweed growth
scales almost linearly with 4., yielding between 15% and
12% more biomass per 0.1~ propulsion. We also compare how
much growth our method w/o discount (0 then v) achieves

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 10, NO. 10, OCTOBER 2025
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Fig. 2. The best achievable seaweed mass given v increases linearly with
Umaz- Operating with our long-term control method using forecasts 0 and
average currents v achieves ~ 95% of growth.

500

[ -~
S S
IS IS

Final seaweed mass [kg]

n
j=3
(=]

=
j=3
(=}

oW oW

Fig. 3.  We sample a diverse set of starts (g, o) for seaweed farms to em-
pirically evaluate our controllers. The colorized starts show the best achievable
seaweed mass after 30 days using wmmae = 0.1%.

TABLE II
AVERAGE SEAWEED GROWTH FOR DIFFERENT PROPULSIONS Uy, g2

Umaz  Pplanning input  rel. growth final seaweed mass 95% Cls
0.07 (floating) 100% 145.29kg+100.30kg  [139.38, 151.60]kg
01m v 115.38% 166.45kg+109.67kg  [159.96, 173.41]kg
s dpc then © 109.62% 159.29kg+107.46kg  [152.74, 165.84]kg
02m v 128.69% 182.04kg+115.11kg  [175.03, 189.06]kg
T dpc then © 121.29% 173.72kg+112.94kg  [166.84, 180.60]kg
03m v 141.27% 194.98kg+117.39kg  [187.83, 202.13]kg
s dpc then © 133.28% 187.01kg+116.60kg  [179.91, 194.11]kg
04m v 153.71% 206.96kg+118.34kg  [199.75, 214.17]kg
s dpc then © 145.79% 199.50kg+118.09kg  [192.31, 206.70]kg
05m v 165.79% 218.10kg+118.59kg  [210.87, 225.32]kg
s dpc then © 158.14% 210.78kg+117.72kg  [203.61, 217.95]kg

with varying propulsion. As expected this achieves slightly less
biomass (~95-96% of v) due to forecast errors for all propulsion
levels. For higher w,,q, the gap is slightly smaller, possibly
because the farm can better compensate for forecast errors.
Nonetheless, even small propulsion of umamzo.l% enables
9.6% more biomass than a passively floating farm. The start
of a mission significantly influences 30-day growth, as shown in
Fig. 3. High-growth missions are situated in the east and south
of our region, aligning with nutrient-rich areas (see Fig. 1). This
also explains the high variance in absolute seaweed mass.

2) The Impact of Planning Horizon and Discounting: As
the energy consumption scales cubically with 4., higher
propulsion may be economically infeasible for real-world ap-
plications. Therefore, for this experiment we fiX w,q,=0.1"".
We investigate how different planning horizons and discounting
affect performance when operating with forecasts ¥ ¢ and how
close we can get to the best achievable growth. We evaluate two
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TABLE III
SEAWEED GROWTH OF DIFFERENT CONTROLLERS FOR 1035 MISSIONS

controller w,,q. :O.l% relative growth  final seaweed mass

w/o discount (v) 100% 168.45kg+109.67kg
floating (-) 88.20% 145.29kg+99.54kg

greedy 1 h (0pc) 92.24% 152.48kg+102.89kg
greedy 5 days (0pc) 95.19% 157.78kg+106.04kg
w/o discount (0 then ¥) 95.61% 158.84kg+106.71kg
w/ discount I (¢ then v) 95.77% 159.16kg+106.62kg
w/ discount II (¢ then v) 95.77% 159.17kg+106.66kg
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Fig.4. 60-day Case Study: The greedy controller optimizes for 5-day growth,
thereby navigating to the closest growth region. It fails to anticipate the strong
currents that push it out of the region. The long-term controllers reach a more
distant growth-richer area while incurring short-term losses.

greedy controllers that repeatedly optimize over short Tiy (1h
and 5-days) and compare to 30-day time-horizon with different
discounting settings (Table I).

Table IIT shows the results. As expected, both the greedy
and long-term controllers outperform passively floating. Sur-
prisingly, the performance of the 5-day greedy controller, is
close to the 30-day controllers. Using the discounted formulation
slightly improves the long-term controller, yielding on average
95.77% of the best achievable growth.

3) Case Study of 60-Day Scenario: We were intrigued that
the 5-day controller did achieve almost the same seaweed
growth as by planning over 30-days (Section IV-B2). Hence,
we conducted a case study with planning and operating the
farm over 60 days instead of 30 days and with %;,4,=0.3"}
(Fig.4). As discussed in Section III-F, large scale experiments on
planning horizons longer than 30 days go beyond our currently
available computational resources. In the 60-day case study,
we find that the greedy controller then aims for the nearest
growth region, while the long-term controller properly balances
short-term lower growth against the long-term gains of reaching
a high-growth region. This leads to the greedy controller being
driven out of the simulated region while the long-term controller
achieves close to the best achievable growth (see sub-figure
Fig. 4). Note that the zig-zag shapes of the lines are due to
day-night cycles.

V. DISCUSSION

The experiments demonstrate that controllers using forecasts
Upc substantially outperform a passively floating farm. The 95%

10751

confidence intervals of floating and our method w/o discounting
(Table II) are not overlapping, floating [139.38, 151.60]kg and
[152.74, 165.84]kg for 0.1% v e then v. The myopic behavior
of a greedy policy not only leads it to navigate toward low-
growth regions in the vicinity but also fails to account for the
possibility of being pushed out of good-growth regions by strong
currents, as in our 60-day case study in Fig. 4. Therefore, we
were surprised that our 5-day optimizing controller was nearly
on par with our 30-day optimizing controllers (Section IV-B2).
We attribute this to several factors. First, the initial position
determines most of the possible growth within the 30 days
which can be observed in Fig. 3. Farms starting from suboptimal
positions cannot reach and grow seaweed in more distant, high-
nutrient regions. We believe that experiments over the full sea-
weed growth cycle of 60-90 days would yield more significant
differences between the controllers as long-term high growth and
avoiding low-growth regions become more important. Second,
the growth map in our region exhibits a smooth gradient, which
means that even greedy controllers might move toward globally
optimal growth regions without planning for it. Third, in our
experimental evaluation, we do not consider missions where any
controller leaves the predefined region (Section IV-A3). This
often occurs with greedy or floating controllers (Fig. 4); con-
sequently, the performance increase with long-term controllers
would be greater if we accounted for the filtered missions.

VI. CONCLUSION AND FUTURE WORK

In this work, we maximize seaweed growth on autonomous
farms that are underpowered and operate by harnessing uncertain
ocean currents. We introduced a 2D DP formulation to solve
for the growth-optimal value function when the true currents
are known. Next, we showed how the value function computed
on forecasted currents can be used as feedback policy, which
is equivalent to replanning on the forecast at every time step
and hence mitigates forecast errors. As operational forecasts are
only 5 days long, we extended our method to reason beyond
the forecast horizon by estimating expected future growth based
on seasonal average currents and using finite-time discounting
DP PDE to account for increasing uncertainty in ocean currents.
We conducted extensive empirical evaluations based on realistic
ocean conditions over 30 days. Our method achieved 95.8% of
the best achievable growth and 9.6% more growth than passively
floating despite its low propulsion of 4,,4,=0.17 and relying on
daily 5-day forecasts. This demonstrates that low-power propul-
sion is a promising method to operate autonomous seaweed
farms in real-world conditions.

A future direction is to learn the expected growth after the
forecast horizon using experience and approximate value itera-
tion [48] or a value network [49]. This could implicitly learn
the distribution shift between Upc and v. Another direction
is to make the discount factor state-dependent based on the
uncertainty of current predictions, which could be estimated
historically or from forecast ensembles [50]. Lastly, we can
conduct field tests with Phykos [6] to further validate our method
in real-world ocean conditions.
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