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ABSTRACT
Ocean scientists have dreamed of and recently started to realize an ocean observing revolution with

autonomous observing platforms and sensors. Critical questions to be answered by such autonomous
systems are where, when, and what to sample for optimal information, and how to optimally reach
the sampling locations. Definitions, concepts, and progress towards answering these questions using
quantitative predictions and fundamental principles are presented. Results in reachability and path
planning, adaptive sampling, machine learning, and teaming machines with scientists are overviewed.
The integrated use of differential equations and theory from varied disciplines is emphasized. The
results provide an inference engine and knowledge base for expert autonomous observing systems.
They are showcased using a set of recent at-sea campaigns and realistic simulations. Real-time exper-
iments with identical autonomous underwater vehicles (AUVs) in the Buzzards Bay and Vineyard
Sound region first show that our predicted time-optimal paths were faster than shortest distance paths.
Deterministic and probabilistic reachability and path forecasts issued and validated for gliders and
floats in the northern Arabian Sea are then presented. Novel Bayesian adaptive sampling for hypoth-
esis testing and optimal learning are finally shown to forecast the observations most informative to
estimate the accuracy of model formulations, the values of ecosystem parameters and dynamic fields,
and the presence of Lagrangian Coherent Structures.

Keywords: adaptive sampling, path planning, reachability, Gaussian mixture models, dynamically
orthogonal equations, GMM-DO filter, mutual information, hierarchical Bayesian model learning,
machine learning, science of autonomy, ALPS, expert systems

1. Introduction

Observing the ocean has been and continues to be critical to humans. The marine envi-
ronment, with its ever changing forms, fascinates minds. The understanding of its inner-
workings has motivated scientists for a long time. Since the early days, other than for fixed
platforms, the norm for ocean science observations has been expeditionary, with research
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vessels collecting multidisciplinary measurements (e.g., Dickey 2003; Schofield et al. 2010).
In the past decades, with the advent of computing devices and automation, such adventurous
and often risky expeditions have been augmented with, or replaced by, varied robotics-based
platforms and sensors (e.g., Rudnick and Perry 2003; Bellingham and Rajan 2007; Nichol-
son and Healey 2008). A first class of sensing platforms are autonomous underwater vehicles
(AUVs) with a speed relative to the ocean currents (Curtin et al. 1993; Griffiths et al. 2001).
Such platforms include propelled AUVs (Bellingham et al. 1992; Schmidt et al. 1996; Man-
ley 2004; Freitag et al. 2005) and underwater gliders (Eriksen et al. 2001; Sherman et al.
2001; Webb, Simonetti, and Jones 2001; Schofield et al. 2007; Meyer 2016). Also among
such vehicles with relative speeds are the solar-powered vehicles (Crimmins et al. 2006;
Carragher et al. 2013), wave gliders (Manley and Willcox 2010; Daniel et al. 2011), and
other varied surface crafts (Curcio et al. 2005; Xu et al. 2008; Brizzolara and Brizzolara
2016; Liu et al. 2016). Considering the more Lagrangian observations, the large number of
autonomous drifters (Davis 1991; Niiler 2001; Lumpkin and Pazos 2007; Centurioni et al.
2017a) and of floats (Swallow 1955; Swallow, McCartney, and Millard 1974; Roemmich
et al. 2001; Davis, Sherman, and Dufour 2001; Roemmich et al. 2004, 2009; Riser et al.
2016) that presently roam the world’s oceans provide large data sets. Related platforms are
the hybrid profilers (Pinkel et al. 2011; Lucas et al. 2016), the miniature autonomous under-
water explorers (Jaffe et al. 2017), and other semi-drifting surface crafts. Many of these new
robotic capabilities have led to multidisciplinary ocean science results and discoveries, from
larger scales to (sub)mesoscales (e.g., Abbott et al. 1990; Rudnick et al. 2004; Davis et al.
2008; Martin et al. 2009; Ramp et al. 2009; Gawarkiewicz et al. 2011; Mahadevan et al.
2012; Todd et al. 2012; Rudnick 2016 and references therein), and from submesoscales
to turbulence (e.g., St Laurent and Thurnherr 2007; Boyd et al. 2010; Lavender, Davis,
and Owens 2002; Rainville et al. 2013; Johnston and Rudnick 2015; Farrar et al. 2015;
Shcherbina et al. 2015). Recent technological advances include better designs and reliabil-
ity, reduced biofouling, more efficient power systems, and faster computers (e.g., Yuh 2000;
Bachmayer et al. 2004; Fiorelli et al. 2006; Bellingham and Rajan 2007; Bahr, Leonard,
and Fallon 2009). They also consist of more accurate theory and powerful methods and
algorithms (e.g., Latombe 1991; LaValle 2006; Curtin and Bellingham 2009; Leonard et al.
2007, 2010; Ferrari et al. 2016; Lermusiaux et al. 2016; Wolek and Woolsey 2017). With
all such technologies, a wealth of autonomous ocean observing possibilities are knocking
at the door.

Visionary ocean scientists have dreamed (Stommel 1989) and, as reviewed above, started
this autonomous ocean observing revolution with robotics. Such platforms reduce the tra-
ditional undersampling of ocean surveys and augment satellite data. A critical property of
most robotic platforms is that they are significantly affected by the dynamic ocean motions,
including currents and waves. This is true not only for drifting devices but also for gliders,
which are often slower than common currents, and for propelled AUVs that often have
nominal speeds comparable with that of strong currents (Schmidt et al. 1996; Elisseeff
et al. 1999; Yan et al. 2014). Their ocean measurements are thus a mixture of Eulerian
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(fixed or not affected by currents) and Lagrangian (current-following) observations. These
facts are crystallized in the name “Autonomous and Lagrangian Platforms and Sensors”
(ALPS) (e.g., Rudnick and Perry 2003; Dickey et al. 2008 and references therein). To
account for environmental effects on the vehicles, researchers teamed up to use predictive
models and control algorithms to help with platform piloting and sensing. In addition to
previously cited efforts, a major collaborative endeavor is the Autonomous Ocean Sampling
Network (AOSN) and subsequent related projects (e.g., Curtin et al. 1993; Glenn et al. 2000;
Rudnick et al. 2004; Leonard et al. 2007, 2010; Paley, Zhang, and Leonard 2008; Davis,
Leonard, and Fratantoni 2009; Ramp et al. 2009; Haley et al. 2009; Curtin and Bellingham
2009).

Some ocean observers may still wonder why dynamic models or fancy controls should be
used by autonomous observing systems. One could, however, conversely argue that even in
pure explorations, one always has a predictive model and some control law, even if implicit
or unknown to the explorer. For example, a ship survey is often planned based on the ship
capabilities and on prior models such as the expected scales of the processes to be measured,
conservation laws, statistical models, or some other predictions. Even if only implicit, there
is thus some sort of prior predictive model and control law.

In marine robotics, predictive ocean models provide information about the evolution of
the environment and vehicle models describe the dynamic motions of the robotic platforms.
In such models, regardless of their simplicity or complexity, not only the model equations are
inexact, or at least uncertain, but also the inputs to these equations (Lermusiaux et al. 2006;
Dhanak and Xiros 2016; Penland and Navarra 2017). All prior models and control laws
are thus approximate especially for multiscale dynamics and multiresolution observation
systems. Uncertainties should thus be accounted for in guiding ocean vehicles, both for the
dynamics to be observed and for the path planning of the vehicle.

Many forecasting ocean models are complex computational systems that employ
advanced numerical schemes (Haidvogel et al. 2017) to solve fundamental differential
equations governing the conservation of mass, momentum, energy, and salt in the ocean
(Jacobs and Fox-Kemper 2017; Treguier et al. 2017) under the influence of several forcing
and interactions such as tides (Egbert and Ray 2017), atmospheric fluxes (Miller et al. 2017;
Pullen et al. 2017), surface waves (Babanin et al. 2017), and sea ice (Bertino and Holland
2017). To increase accuracy of model predictions, ocean observations are combined with
models through data assimilation (Robinson, Lermusiaux, and Sloan III 1998; Robinson
and Lermusiaux 2002; Kalnay 2003; Särkkä 2013). Because the ocean remains undersam-
pled, determining where, when, and what to sample for optimal information, and how to
optimally reach the sampling locations, are critical questions to be answered. Answering
them using quantitative predictions and fundamental principles for optimal observations
calls for the reproducible, methodical integration of ocean dynamics, ocean modeling,
data assimilation, control theory, information theory, machine learning, and automation.
Such integration is not yet common, in part because of the many challenges of interdisci-
plinary research. The future for autonomous observing systems should, however, strongly
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benefit from such methodical integration and the related emerging marine science of auton-
omy (Steinberg 2006). The present manuscript reviews progress and directions toward this
future.

In what follows, we first define and outline concepts relevant to the marine science
of autonomy and overview fundamental reproducible results obtained in reachability and
path planning, adaptive sampling, machine learning, and teaming machines with scientists
(Section 2). We then present a set of recent at-sea campaigns and realistic simulations that
showcase capabilities and benefits of using such quantitative methods and fundamental
equations to provide the inference engine and knowledge base of expert observing systems
(Section 3). Conclusions are provided in Section 4.

2. Marine science of autonomy

The science of autonomy can be defined as the “systematic development of fundamental
knowledge about autonomous decision making and task completing in the form of testable
autonomous methods, models, and systems" (Lermusiaux et al. 2016). In this section, we
review concepts and results relevant to the marine science of autonomy for observing sys-
tems. The focus is on methods and models for reachability, path planning, and adaptive
sampling, and on the use of machine learning and the addition of scientific knowledge
and inference engines to form expert observing systems (Jackson 1998; Russell and Norvig
2009). We note that the review does not cover several critical components of robotic systems
such as nested autonomy (e.g. Benjamin et al. 2010; Schmidt et al. 2016), underwater navi-
gation, communication, and motion control (e.g. Mahmoudian and Woolsey 2008; Leonard
and Bahr 2016), or ocean sensing and underwater networks (e.g. Heidemann, Stojanovic,
and Zorzi 2011; Venkatesan et al. 2018).

a. Reachability and path panning

The ability to predict and control the behavior of ALPS in dynamic currents is essential
for efficient observing systems. Such quantitative planning enables accurate predictions
of reachable regions, optimal launch and recovery, and optimal paths for ocean vehicles
(Fig. 1). Some key questions are as follows: (i) What are the locations that can be vis-
ited by an autonomous platform released at some position and time? (ii) Are there ideal
locations and strategies for optimal pick-up and interception? (iii) How to compute exact
time-optimal, energy-optimal, and/or safe paths for navigating vehicles? (iv) Are the equa-
tions and methods to answer the above questions scalable and practical for real-time expert
observing systems? In what follows, we first define concepts and overview prior results.
We then present differential equations and theory that address these questions.

i. Concepts and prior results. The prediction of paths along which specific criteria (e.g.,
time, energy, data collected, and/or safety) are optimized is called path planning. Tradi-
tionally, path planning has been developed for robots in static environments (e.g., LaValle
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Figure 1. Schematic of reachability and path planning. Reachable sets, fronts, and optimal paths are
sketched for a vehicle operating at nominal speed F(x, t) within dynamic currents v(x, t). The
total vehicle velocity U is the vector sum of the nominal velocity and currents at that location and
time. The optimal arrival time T ∗

i at each optimal sampling position x∗
i is the first time at which the

reachability front crosses x∗
i . For nominal vehicle speeds independent of the local heading, the time-

optimal path (green) is such that the vehicle headings are normal to the reachability front at every
time. For energy-optimal paths (blue) we compute the nominal speed function F(•) that minimize
the energy consumption through an efficient stochastic optimization procedure. Predictions can be
done in 2D or 3D, and for deterministic or stochastic currents v(x, t; ω). For stochastic currents,
we employ ensembles or efficient dynamically orthogonal equations to evaluate distributions of
reachable sets, fronts, and optimal paths.

2006); however, in the ocean, dynamic currents significantly affect the motion of vehicles.
Traditional planning algorithms then often provide incorrect solutions or are too expensive
for real-time use.

In recent years, several approaches have been proposed to extend planning methods for
static environments to marine vehicles. Many are based on graphs and dynamic program-
ming such as Dijkstra’s method and the A* algorithm (Carroll et al. 1992; Garau et al.
2009; Rao and Williams 2009; Frolov, Garau, and Bellingham 2014). The key issue in the
A* algorithm is the choice of a heuristic that is often difficult to define. Thus, optimality
is not guaranteed in complex ocean flows, and results are useful mostly in simple steady
flows (Rao and Williams 2009; Lolla et al. 2012). Recently, a time-dependent Dijkstra’s
algorithm has been utilized for time-optimal routing of ships considering the effect of sur-
face waves (Mannarini et al. 2016) and extended for currents (Mannarini et al. 2017). Fast
marching methods (Sethian 1999) for flow-dependent cost functions were used by Petres
et al. (2007). The Eikonal equation that is solved provides time-optimality, but only when
the vehicle speed is always larger than ocean currents. Soulignac, Taillibert, and Rueher



770 The Sea: The Science of Ocean Prediction [75, 6

(2009) and Thompson et al. (2009, 2010) developed a related idea of wave front expansions
for planning underwater vehicle paths. Some authors have focused on obstacle avoidance
with potential field methods (Witt and Dunbabin 2008) and Voronoi diagrams (Bakolas and
Tsiotras 2010).

Other planners employ optimization methods such as nonlinear programming (Inanc,
Shadden, and Marsden 2005; Zhang et al. 2008), direct (Kruger et al. 2007) or iterative
nonlinear optimization (Jones and Hollinger 2017), and evolutionary algorithms (Alvarez,
Caiti, and Onken 2004; Aghababa 2012) to generate time- and energy optimal paths that
minimize a cost function. Here, the computational cost grows exponentially for classic
deterministic optimization and a solution is not guaranteed in evolutionary algorithms. Yet
other classes use case-based reasoning (Vasudevan and Ganesan 1994) or dynamics-based
methods such as detecting and following Lagrangian coherent structures to minimize energy
consumption (Hsieh et al. 2012; Michini et al. 2014). Uncertainties in the ocean are usually
incorporated by Monte Carlo methods where the deterministic plan is computed for each
ensemble member, hence, leading to the statistics of optimal paths (e.g. Wang et al. 2016).
Markov decision process with several variations have also been employed to account for
ocean uncertainty (Hollinger et al. 2016).

ii. Reachability and path panning with differential equations: Reachability and time-
optimality. As schematized on Figure 1, we studied the problem of path planning through
the fundamental concept of reachability (Bryson 1975) and employed exact partial differ-
ential equations (PDEs) that govern reachability fronts (Lolla et al. 2012, 2014a,b). The set
of locations that can be reached is the reachable set and its boundary is called the reacha-
bility front. The net motion of autonomous vehicles is the sum of the forward thrust (due to
propulsion or buoyancy changes, for example) and advection by dynamic currents. Based
on these first principles, Lolla et al. (2014a) developed rigorous theories and a PDE (a
modified Hamilton–Jacobi level-set equation) whose solution tracks the evolution of the
reachability front of a vehicle moving in strong and dynamic flows.

Consider the motion of a vehicle from the start point (x0) to the destination (x∗
i ) in

the domain Ω ⊆ R
n that experiences an uncertain dynamic velocity field V(x, t; ω) :

Ω × [0, ∞) → R
n, where ω represents the specific realization of the flow field, here

the uncertain ocean currents. The maximum speed of the vehicle relative to the currents
is denoted by F(x, t, ĥ; μ). This nominal speed is in general a function of the spatial
location (x), present time (t), and heading direction ĥ. The parameter μ represents a specific
realization of the vehicle speed that allows for its optimization according to an objective
function. Both the external velocity field V(x, t; ω) and the nominal speed F(x, t, ĥ; μ) are
assumed to be Lipschitz continuous and bounded in all their respective arguments.

The growth of the reachable set is governed by a modified Hamilton–Jacobi level-set
equation (Lolla et al. 2014a,b). The reachability front (boundary of the reachable set) is
embedded as the zero level set of a signed distance function (φ; also called the level-set
function) initialized with respect to the start position of the vehicle (see Fig. 1). Note that as
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we account for uncertainty in the external velocity field (denoted by the realization or event
ω) and for the many possible nominal vehicle speed function (denoted by the realization
μ), the level-set function will be stochastic, dependent on both ω and μ. The growth of φ

is governed by a stochastic PDE (S-PDE), given by equation (1), to be understood in the
viscosity solution sense (Crandall and Lions 1983),

∂φ(x, t; ω, μ)

∂t
+ max

ĥ

(
F(x, t, ĥ; μ) · ∇φ(x, t; ω, μ)

) + V(x, t; ω) · ∇φ(x, t; ω, μ) = 0 .

(1)
In (1), we refer to the second term as the “optimal propulsion term,” as it optimizes the
effect of the vehicle motion on the evolution of the level-set function. The optimal vehicle
headings (ĥ

∗
(x, t; ω, μ)) are computed by maximizing the propulsion term, F(x, t, ĥ; μ) ·

∇φ(x, t; ω, μ), over all the possible heading directions (ĥ). The third term is referred to as
the “advection term,” as it is the evolution due to the external velocity field.

When the speed of vehicles does not depend on their heading direction, the maximum
nominal speed becomes F(x, t; μ). The optimal vehicle heading (ĥ

∗
) is then always in the

normal direction to the local level set (Lolla et al. 2014a) and equation (1) simplifies to

∂φ(x, t; ω, μ)

∂t
+ F(x, t; μ)|∇φ(x, t; ω, μ)| + V(x, t; ω) · ∇φ(x, t; ω, μ) = 0 . (2)

iii. Reachability and path panning with differential equations: Time-optimal paths. The
first time at which the reachability front of the vehicle reaches the target point is the optimal
travel time (T ∗

i ). Further, the optimal path is a characteristic of equations (1) or (2) that
passes through the target (Lolla et al. 2014a). When fields are sufficiently regular, this
trajectory (denoted by Y(t; ω, μ)) is computed by solving the ordinary differential equation
(3) backwards in time, starting from the target, as the optimal heading direction (ĥ

∗
) is simply

the normal to the local reachability front,

dY(t; ω, μ)

dt
+ V(Y, t; ω) + F(Y, t, ĥ

∗
(t); μ) · ĥ

∗
(t) = 0 . (3)

The actual path used by the marine vehicle is selected from the set of realizations of optimal
trajectories governed by this equation (3). For the cases where the ocean flow is uncertain
(ω), the actual optimal path selected from among all these optimal realizations can be the
path realization that minimize risks for a given risk profile of the user (Subramani, Wei,
and Lermusiaux 2018) or some other uncertainty/time metrics (Lermusiaux et al. 2016).
For the cases where the uncertainty is artificial (μ), the actual optimal path is selected by
optimization of an objective function, e.g., total energy expenditure for a given arrival time,
as will be discussed below.

iv. Reachability and path panning with differential equations: Deterministic time-optimal
path planning. To plan shortest-time paths in deterministic flow fields, for vehicles whose
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speeds depend on their heading direction, equation (1) is reduced to the partial differential
equation (4) by eliminating all uncertainty in the external flow field,

∂φ(x, t)

∂t
+ max

ĥ

(
F(x, t, ĥ) · ∇φ(x, t)

) + V(x, t) · ∇φ(x, t) = 0 . (4)

When the maximum nominal vehicle speed is also independent of the local heading, the
growth of the deterministic reachability front, i.e., equations (2) or (4), simplifies to equa-
tion (5),

∂φ(x, t)

∂t
+ F(x, t)|∇φ(x, t)| + V(x, t) · ∇φ(x, t) = 0 , (5)

where the maximum possible nominal vehicle speed is utilized at all times (denoted by the
single realization F(x, t)). The optimal paths are governed by the deterministic reduction
of the general equation (3).

We extended these equations to plan time-optimal paths while maintaining specific forma-
tions for swarms of autonomous vehicles, as well as avoiding static and dynamic obstacles
(Lolla et al. 2015). We applied our equations for reachability analysis in the Sulu Sea (Lolla
et al. 2014b) and for coordinated path planning of glider swarms in complex archipela-
gos (Lolla et al. 2015; Fig. 2f). Further, accurate and consistent numerical schemes were
developed to solve a novel nondimensional form of the above mentioned equations in three
dimensions and incorporating the operational constraints of real marine vehicles, such as
gliders and floats, as well as surface vehicles such as sail-boats and kayaks (Kulkarni 2017;
Lolla and Lermusiaux 2018; Fig. 2a). Fundamental governing equations for reachability and
safe and optimal routing of ships were also developed and implemented (Fig. 2g). Recent
applications of our theory and software at work in real time with REMUS 600 AUVs in
coastal regions are showcased in Section 3a.

v. Reachability and path panning with differential equations: Stochastic time-optimal path
planning. To account for uncertainties in the ocean flow, we keep the uncertainty (denoted
by the realization ω) in the external velocity field V. Simplifying equation (2), the result
is then the S-PDE, equation (6), that governs the evolution of the stochastic reachability
fronts in uncertain flows (Wei 2015; Subramani, Wei, and Lermusiaux 2018),

∂φ(x, t; ω)

∂t
+ F(x, t)|∇φ(x, t; ω)| + V(x, t; ω) · ∇φ(x, t; ω) = 0 . (6)

We note that if we start from equation (1) instead of equation (2), we extend equation (6)
to the case of maximum nominal vehicle speeds dependent of the local heading (not given
here for brevity). To solve these S-PDEs equation (6), we employed ensembles of ocean
forecasts, for example during recent sea experiments with floats in the Northern Arabian Sea
(cf., Section 3b). We also utilized our efficient dynamically orthogonal stochastic level-set
equations for accurate and fast (2–4 orders of magnitude compared with ensemble methods)
stochastic planning (Subramani, Wei, and Lermusiaux 2018), both for analytical examples
(Fig. 2d) and realistic simulations.
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Figure 2. Varied applications of Massachusetts Institute of Technology Multidisciplinary Simulation
Estimation and Assimilation System (MIT MSEAS) optimal path planning. (a) Modified level-set
equations predict optimal trajectories for sailboats and floats, whose speeds vary with the direction
of travel. Shown are the velocity-heading dependency and time-optimal path for a sailboat traveling
downwind (Lolla and Lermusiaux 2018), and the 3-dimensional time-optimal trajectory for a marine
float (Kulkarni 2017). (b) Optimal trajectories of twelve gliders for a fastest-time picked up by either
two underway ships or a fixed station (e.g., mooring) (Lolla 2016). (c) Energy-optimal glider #2
consumes 26% less energy than constant-speed glider #1. The distribution of vehicle speed, energy
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Figure 2. (continued) usage, and arrival times are computed by efficient dynamically orthogonal (DO)
level-set equations (Subramani, Haley, and Lermusiaux 2017). (d) Stochastic time-optimal paths
in a stochastic double-gyre flow colored with their respective optimal arrival times (Subramani,
Wei, and Lermusiaux 2018). (e) As new data become available, ocean forecasts, and thus also
optimal paths, are updated by data assimilation, leading to adaptive or onboard routing. (f) Dynamic
coordination of two glider groups that maintain an equilateral triangle formation in the Philippines
region. Final trajectories (38 days after the deployment) are superimposed on the vertically-averaged
flow field of horizontal currents on the 38th day. Flow patterns (curved vectors) are overlaid by
colored flow magnitude. Magnified views of the region enclosed by the dotted squares are shown
at corresponding times (Lolla, Haley, and Lermusiaux 2015). (g) Safe and optimal route (green
line) of a tanker traveling from Boston to Houston during a severe storm, overlaid on a color plot
of significant wave height (in m) at the starting time.

vi. Reachability and path panning with differential equations: Energy-optimal path plan-
ning. Saving energy to increase the duration of sampling missions is useful for ocean
research. The energy consumption of ocean vehicles can be modeled in terms of vehicle
speed and acceleration. For energy-optimal planning, the question is what speed time-series
(engine thrust) and headings should be followed by the vehicle to minimize energy usage
for a given travel time (Fig. 1) between sampling locations. This is accounted for by using
an artificial uncertainty (denoted by the realization μ) in the vehicle speed function to be
optimized (F ). Simplifying equation (2), the result is the S-PDE (7) (e.g., Subramani and
Lermusiaux 2016; Subramani, Haley, and Lermusiaux 2017).

∂φ(x, t; μ)

∂t
+ F(x, t; μ)|∇φ(x, t; μ)| + V(x, t) · ∇φ(x, t; μ) = 0 (7)

Such energy-optimal speed time-series, headings, and paths are computed by a rigorous
stochastic optimization using the dynamically orthogonal field equations (Subramani and
Lermusiaux 2016) over the distribution of vehicle speed time series and corresponding
time-optimal arrival times and energy consumption. This energy optimal path planning was
employed for gliders in realistic coastal ocean re-analyses for the Middle Atlantic Bight
and Shelfbreak front region (Subramani, Haley, and Lermusiaux 2017; Fig. 2c), resulting
in up to 26% energy savings when compared with constant-speed time-optimal paths.

vii. Reachability and path panning with differential equations: Optimal pick-up and inter-
ception. To save time and costs in ocean sampling, the launch, pick-up, and/or interception
of autonomous platforms should be efficient. Pursuit-evasion differential games are those
in which a group of pursuers attempt to intercept a group of active evaders. In Sun et al.
(2017a, b), reachability analysis is applied to discover optimal strategies for pursuers in
canonical dynamic flow fields. These ideas are directly applicable for recovery and optimal
pick-up of vehicles in real-time sampling operations (Fig. 2b). They can also be directly
used for ship interceptions (Mirabito et al. 2017).
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viii. Reachability and path panning with differential equations: Realistic planning and com-
putational costs. The reachable sets, fronts, and optimal paths can be predicted, depending
on applications, in 2D or 3D space (Kulkarni 2017), for isotropic and anisotropic motions
(Lolla and Lermusiaux 2018), and for several types of ocean vehicles such as floats, gliders
(Lolla et al. 2014a,b; Subramani, Haley, and Lermusiaux 2017), propelled vehicles (Sub-
ramani et al. 2017), and surface kayaks or ships in wave conditions (Mirabito et al. 2017).

Today, the computational time for all of these applications is much shorter than the mission
time, even with a single CPU. For example, for reachability and time-optimal planning, the
computational time is of the order of seconds to minutes for days to weeks of sampling
missions. Importantly, the cost only grows linearly with the spatial and temporal resolution.
Even for large stochastic energy-optimal planning, the computational time scales linearly
with the size of the stochastic subspace (which is O(100)) and this time is less than (or of the
order of) the time required to integrate modern numerical ocean modeling systems. All of
such planning can thus be re computed multiple times in real-time and as new observations
arrive, hence allowing feedback and onboard routing (Fig. 2e). In Section 3b, we show
examples of our real-time reachability predictions and probability maps for the Northern
Arabian Sea Circulation-Autonomous Research (NASCar) program.

b. Adaptive sampling

Different types of sensors have been utilized with autonomous platforms to collect infor-
mation of all kinds about the ocean, about its physics, biogeochemistry, ecosystems, and
acoustics, from turbulence to large-scales (Section 1). Usually, ocean science observation
campaigns are designed based on scientific objectives and specific questions to be answered.
As schematized in Figure 3, observations are to be collected at a fixed time or over some
period of time, often referred to as the sampling period. The scientists then use these obser-
vations to best estimate something at some fixed time or over some period of time. It is
therefore essential to plan and predict the ideal or optimal observations to be made. Sampling
questions that are commonly asked include the following: (i) What are the most informative
sampling paths, or locations and times, at which measurements should be made? (ii) Which
variables or set of variables should be measured, considering the sensor constraints and
costs? (iii) Once some measurements are made, should they influence the subsequent sam-
pling and how should they? (iv) Can the known nonlinear and non-Gaussian properties of
the dynamics be utilized in the optimal sampling design? Next, we first discuss concepts and
overview prior results in optimal adaptive sampling. We then utilize differential equations
and information theory to address these questions.

i. Concepts and prior results. Observation data can be utilized on their own, or combined
with additional prior knowledge including conservation laws and model equations. The
latter usage can take various forms, as summarized on Figure 3 and illustrated in Section 3c.
Observations can be integrated into a model by a data assimilation technique to improve
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Figure 3. Schematic of the problem statement for adaptive sampling. The aim is to predict the obser-
vations Yτ to be collected over the sampling period τ that are most informative about specific
to-be-estimated/verification variables, V (TV ). These verification variables might consist of state
variables or fields, model parameters, model formulations (equations, parameterizations, etc.), or
secondary variables such as energy or coherent structures. In the schematic, only a single future
fixed verification time TV is sketched, but the estimation time(s) can be in the past or cover a period
of time, e.g., the whole sampling period. Also, T ∗

i is the optimal arrival time as in Figure 1.

state-variable estimates and field predictions. They can also be employed to infer model
parameters. They can be utilized to estimate secondary variables such as energy, enstrophy,
spiciness, or even Lagrangian properties and coherent structures of the flow. Finally, they
can be used to incubate, test, or improve a model formulation itself, i.e., the model equations
and parametrizations, by human research or machine learning. However, not all data are
equally informative. On one hand, we need a criterion to evaluate the information content of
a set of observations for a particular purpose. On the other, we cannot measure everything we
wish to measure due to the limited sensor and instrumentation capability and the constrained
platforms mobility. Therefore, given limited platforms and sensors at our disposal and the
various quantities of interest to be estimated, the goal is to plan the maneuvers of the
observing system optimally such that the observations it collects are the most informative
about the scientific objectives. We refer to this automated process in our present larger sense
including all applications schematized on Figure 3 as “adaptive sampling” (Lermusiaux
2007; Lermusiaux et al. 2016; Lolla 2016). We note that other definitions of adaptive
sampling are more restrictive and emphasize collecting only the data that best improve
model forecasts.

The task of adaptive sampling can be divided into three parts: identifying the most infor-
mative data (types, locations, and times), planning feasible paths, and integrating results
from the previous two. The path-planning part serves two purposes. First, it determines the
reachable regions of the platforms that limit the set of candidate measurements that can
be made. Then, after the most informative data are determined, the path-planning method-
ology provides maneuver commands (e.g., headings) to the platforms so that they move
along the optimal paths to collect the desired data. To select the most informative data, the
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key component is a criterion to evaluate the information content predicted to be contained
in a set of observations to be made, with respect to the quantities of interest. Because
each measurement will change our prediction of the dynamic ocean environment and the
expected information content in a later candidate observation, the planned paths and the
computed information content should be updated accordingly, as soon as observation data
are collected.

Reviews on previous research on ocean-adaptive sampling are provided in Robinson
and Glenn (1999) Leonard et al. (2007), Lermusiaux (2007), Roy et al. (2007), and Paley,
Zhang, and Leonard (2008) and the references cited therein. Prior results do not address all
of the above and the contributions fall into two main categories. One category is based on
some local linearization of the system dynamics. One common approach in this category
is the adjoint method for sensitivity analysis (Daescu and Navon 2004; Bergot et al. 1999;
Baker and Daley 2000), which uses the gradient of the verification variables with respect
to the candidate observations to evaluate how informative these observations are. Another
approach is to find the optimal perturbations contributing to the leading singular vectors
of the covariance matrix of the verification variables and relate these optimal perturbations
to optimal observations (Ehrendorfer and Tribbia 1997; Palmer et al. 1998; Buizza and
Montani 1999). Choi and How (2010) used the concept of mutual information to evaluate
the information content in candidate observations and compared two forms (filter form and
smoother form) of schemes for mutual information-based adaptive sampling, but again they
focused exclusively on linear or linearized dynamics.

The other category of results seeks to avoid the linearization of the dynamics. One
approach is the breeding method (Toth and Kalnay 1997; Lorenz and Emanuel 1998; Car-
rassi et al. 2007), which evolves ensembles under the nonlinear dynamics and identify the
directions along which the perturbation grows the fastest. Another approach is the ensem-
ble transform Kalman filter (Bishop, Etherton, and Majumdar 2001), which is based on an
ensemble Kalman filter (EnKF) and uses an ensemble to evolve the dynamics, to assimilate
observation data, and to quantify the effects of candidate observations on the forecast error
covariance, all without changing the ensemble. A similar approach is the error subspace
scheme (Lermusiaux 1999a; Wang et al. 2009), which keeps track of the time-evolution of
a dominant low-rank approximation to the error covariance matrix using nonlinear ensem-
bles and re-runs the ensemble after each candidate assimilation. Other approaches in this
category include mixed-integer programming approaches (Yilmaz et al. 2008), potential
functions (Munafò et al. 2011), genetic algorithms (Heaney et al. 2007; Frolov, Garau, and
Bellingham 2014; Heaney et al. 2016), etc. Note that all of the above adopt a Gaussian
approximation of the distributions of all the involved state variables, which neglects the
non-Gaussian features of the statistics.

ii. Adaptive sampling with differential equations and information theory. To address the
challenges in adaptive sampling for ocean applications, we recently integrated several
newly-developed theory and methodologies for uncertainty quantification, Bayesian data



778 The Sea: The Science of Ocean Prediction [75, 6

assimilation and information theory. The result is a novel and rigorous framework for pre-
dicting the most informative observations (Lolla 2016).

The dynamically orthogonal (DO) equations (Sapsis and Lermusiaux 2009; Uecker-
mann, Lermusiaux, and Sapsis 2013; Feppon and Lermusiaux 2018a, b) perform an opti-
mal dimension reduction and quantify uncertainty propagation under nonlinear dynamics.
The DO methodology uses a truncated dynamic K-L (Karhunen–Loeve)-like expansion to
approximate the time-dependent random vector fields:

u(x, t; ω) ≈ ū(x, t) +
S∑

i=1

φi (t; ω)ui (x, t). (8)

The DO modes ui’s (instantaneous and dynamic, instead of Empirical, Orthogonal Func-
tions) are orthonormal under a specified inner product and the DO coefficients φi’s have
zero mean and are commonly represented by Monte Carlo samples. This expansion captures
the dominant uncertainty of u(x, t; ω) living in a time-evolving S-dimensional subspace
spanned by the ui (x, t)’s. By a Galerkin projection approach, dynamical equations of the
mean ū, DO modes ui’s, and DO coefficients φi’s are obtained and are used to track the
time evolution of the stochastic u(x, t; ω) under the governing dynamics.

Furthermore, the Gaussian mixture model (GMM)-DO filter (Sondergaard and Lermu-
siaux 2013a, b) and smoother (Lolla and Lermusiaux 2017a, b) is used to capture non-
Gaussian statistics in the reduced DO subspace for data assimilation. The PDF (probability
density function) of a GMM random vector φ ∼ GMM(π1:M, μ1:M, Σ1:M) is a linear
combination of PDFs of multivariate Gaussian distributions:

pφ(x) =
M∑
i=1

πiN (x; μi, Σi ), πi ≥ 0,

M∑
i=1

πi = 1. (9)

The flexibility of estimating the optimal number of components M (e.g., by Bayes infor-
mation criterion) and fitting parameters of the various Gaussian components to samples
(e.g., by the expectation–maximization algorithm) allows capturing the multi modal and
asymmetric features of the underlying non-Gaussian distributions. The Bayesian paradigm
is adopted throughout the framework to incorporate information from disparate sources
sequentially in a principled way.

For information content evaluation, we follow the information-theoretic approach and
used mutual information (Cover and Thomas 1991), which takes into account non-
Gaussianity and readily generalizes to multivariate scenarios. The mutual information
between two continuous random vectors φ and ψ with joint PDF pφψ(x, y) is defined
as

I (φ; ψ) =
∫

R
d1 ×R

d2
pφψ(x, y) log

pφψ(x, y)

pφ(x)pψ(y)
dxdy, (10)
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where d1 and d2 are the dimensions of φ and ψ, respectively, and pφ(x) and pψ(y) are the
marginals. Mutual information is always nonnegative and it vanishes if and only if the two
random vectors involved are statistically independent. The mutual information characterizes
how much “common” information the two random vectors share, which is a good indicator
of how informative is one random vector about the other. In the GMM-DO framework
adopted here, to compute such mutual information, the joint PDF pφψ is approximated
using a GMM and a Monte Carlo method is used to numerically compute the integral (10)
in the DO subspace, as

I (φ; ψ) ≈ 1

NMC

NMC∑
i=1

log
p̂φψ

(
φ̂

(i)
, ψ̂

(i)
)

p̂φ

(
φ̂

(i)
)

p̂ψ

(
ψ̂

(i)
) , (11)

where the φ̂
(i)

’s and ψ̂
(i)

’s are NMC samples drawn from the GMM approximation p̂φψ.
Because an affine transformation (i.e. f (x) = Ax + b) of a GMM random vector is still
a GMM random vector, we can analytically compute the GMM approximation for most
common quantities of interest from the GMM approximation fitted to the DO coefficients.
This is because the DO expansion (8) is an affine transformation and many quantities of
interest are related to the state vector u by an affine transformation.

For reachability region computation and optimal navigation, the rigorous reachability and
path planning methodologies based on level-set equations is employed (Section 2a). Finally,
an exact dynamic programming scheme is employed to formulate a sequential procedure
to integrate the various components, so that whenever the observations are incorporated
to update the knowledge of the dynamic environment, the future sampling strategies are
adjusted and planned accordingly (Lolla 2016).

c. Teaming machines and scientists: Expert ALPS systems

The reachability, path planning, and adaptive sampling methods and equations outlined in
Sections 2a and b constitute fundamental knowledge that provides quantitative predictions
and allows inferences to be made about the ocean. In theory and as illustrated in Section 3,
they should be utilized by ALPS for autonomous decision making and task completion
for optimal ocean observation. If costs were not an issue, sea experiments could even be
repeated as needed to formally crystallize advances in the science of autonomy.

In machine learning and artificial intelligence, an expert system is a system that has com-
putational capabilities and that emulates the decision-making ability of humans with expert
knowledge (Jackson 1998; Russell and Norvig 2009). The expert knowledge of an ocean
observing researcher consists of the fundamental conservation laws and quantitative models
of ocean science, in the forms of governing equations, dominant balances, statistical infor-
mation, parameter values, and many other mathematical or back-of-the-envelope relations.
It also consists of varied engineering expertise in ocean platforms and sensors. This vast
prior knowledge is a major difference with the present sociotechnical applications of big
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data and machine learning (e.g., Pentland 2014). In these applications, very little is known
a priori, at least not in the form of numerical or mathematical relations. An ALPS system,
on the other hand, is not an uninformed learner: definitely not if it is guided now-and-
then by ocean scientists, but not even if it is fully autonomous because it commonly stores
and uses prior information. We note that, in the former case, the observing machines and
humans form a networked system (Curtin and Bellingham 2009) and such human-machine
collaborative teaming is likely to become a norm in the future. The ideal autonomous ocean
observing system is thus a true “expert system”. Learning for such observing experts should
be optimized: when entering a library, we often explore random books in a lawnmower
pattern, but usually, we also have some focus in mind. We don’t read all of the books but,
mostly, books we are interested in.

Many ocean ship surveys have consisted of vertical sections and lawnmower sampling
patterns, mainly because ocean researchers wanted such estimates (e.g., measure the trans-
port through a strait) or because not all of what researchers knew was utilized in an optimal
expert way. Even for pure exploration, some exploitation with path planning or adaptive
sampling becomes useful (e.g., Smith et al. 2011; Graham and Cortés 2012; Heaney et al.
2016). As mentioned earlier, as soon as observations are collected and analyzed, knowledge
is acquired and plans should be improved (e.g., Das et al. 2015).

It is clear that quantitative methods and fundamental equations discussed in prior sections
provide a basis for the inference engine and knowledge base of expert observing systems.
However, ALPS located far away from ships and/or far beneath the sea surface cannot sus-
tainably exchange instructions and commands with scientists and cannot store all knowledge
nor run complex models for a long time. Consequently, for the use of vehicles in missions
involving the exploration of remote ocean areas, vehicles are on their own. Storing not all
but only the optimal prior-to-mission knowledge is then crucial. Indeed, AUVs operating in
remote environments must not only have the capability to sense their environment, but also
be able to react to changing conditions (e.g., unexpected currents, turbulence, wakes, or
obstacles). Ideally, they should be capable of re-planning paths (optimal time, energy, etc.)
and of adaptive sampling onboard. They can then reach the locations needed to conduct
optimal data gathering as quickly as possible, or conserving as much energy as possible (or
both).

The past two decades have been witness to significant progress in autonomous remote
sensing, machine learning, mission planning, and adaptive control, as reviewed by Jiménez
et al. (2012) and Bellingham and Rajan (2007). Several software architectures for ocean
sensing and automated mission planning have been developed. They can utilize survey error
metrics accounting for under-sampling and environmental changes (Willcox et al. 2001),
integration of the deliberation and reaction process (McGann et al. 2009), and networked
approaches for large groups of (possibly collaborating) vehicles with disparate sensing
and communications capabilities (Benjamin et al. 2010). Sonnenburg and Woolsey (2013)
also learned experimentally-identified models for rigid hull inflatable boats. Yoo and Kim
(2016) used reinforcement learning algorithms with ocean effects for AUV path planning.
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In both unknown and known environments, the operational characteristics of vehicles can
be learned onboard using data-driven machine learning. Regression analysis, time-series
analysis, neural networks, supervised learning, and clustering are then applied to the mission
data. After time-optimal path planning exercises (see Section 3a), such techniques were used
to investigate the at-sea operational characteristics of AUVs, focusing on vehicle-speed-to-
power relationships (Edwards et al. 2017).

3. Applications

We now present several recent at-sea campaigns and operational simulations that show-
case capabilities and benefits of utilizing rigorous reachability, path planning, adaptive
sampling, and machine learning schemes for autonomous observing systems. Our theory
and software for real-time path planning is first employed for racing two identical REMUS
600 AUVs in the Buzzards Bay and Vineyard Sound region (Section 3a). We then exem-
plify deterministic and probabilistic three-dimensional reachability and path forecasts issued
daily for gliders and floats operating for two months in the northern Arabian Sea (Section 3b).
Novel Bayesian adaptive sampling for hypothesis testing and optimal learning is then illus-
trated (Section 3c). Specifically, computing machines forecast the observations that are
most informative to estimate the accuracy of model formulations, the values of ecosystem
parameters and dynamical fields, and the presence of Lagrangian Coherent Structures in
the flow (Section 3c).

In all applications, the MIT Multidisciplinary Simulation Estimation and Assimilation
System (MSEAS) is employed for flow and ocean simulations. Its modeling capabilities
include implicit two-way nesting for realistic tidal-to-mesoscale dynamics with hydrostatic
primitive equations (PEs) and a nonlinear free-surface (Haley and Lermusiaux 2010; Leslie
et al. 2010; Haley, Agarwal, and Lermusiaux 2015) as well as a finite-volume code for
nonhydrostatic dynamics and incubation of new methods (Ueckermann and Lermusiaux
2012).

a. At sea time-optimal path planning

To demonstrate our exact time-optimal planning theory and test its applicability for real-
time operations using our software, we undertook multiple sea exercises with one AUV
on 21 October 2016 and with two AUVs on 6 December 2016. In all cases, the AUVs
following time-optimal path predictions behaved as forecast and won the races. Here, we
present results for one of our 2-AUV races.

That 2-AUV race experiment was conducted in the Vineyard Sound region (Fig. 4a). Two
near-identical REMUS 600 AUVs with the exact same operational settings (e.g., engine
RPM, payload, etc.) were released from the same location and piloted to the same target,
maintaining a 3-m depth and an engine RPM corresponding to a nominal speed of 3 knots
(a common AUV speed). One AUV followed our forecast time-optimal (but longer) path
and the other AUV the shortest distance path. Sensors on the AUVs recorded oceanographic
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Figure 4. We demonstrated our path-planning equations and software during real-time sea exercises
in the Buzzards Bay and Vineyard Sound region. (a) Bathymetry of the computational domain.
The white box is the region magnified in Figure 5. (b) For all sea experiments, we computed the
time-optimal reachability fronts and paths onboard the R/V Discovery in less than one minute on
laptops.

and operational data along the paths. The headings for both the vehicles were forecast using
our planning equations and software ran on laptops on-board the R/V Discovery (Fig. 4b).
Each reachability and path computation took less than a minute. The time-optimal path
used the MSEAS current forecasts in its planning PDEs. The shortest-distance path was
computed exactly using the same level-set equations but with currents set to zero. As a
result, both paths respected all operational constraints (e.g., avoiding too shallow regions,
safety constraints, etc.) because these constraints are directly included within the level-set
integration (equations 3 and 5; Lolla et al. 2014a,b, 2015). For example, the too-shallow
shoals in the Middle Ground region were avoided.
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To predict the local circulation, we employed the MSEAS PE ocean modeling system,
using a domain with 100-m horizontal resolution and 12 vertical levels (Fig 4a). Tides from
the OSU TOPEX/Poseidon Global Tidal Inverse Solution TPXO (Egbert and Erofeeva
2002, 2013) were reprocessed for the higher resolution bathymetry, nonlinear bottom drag,
and observational data using our inversion procedures (nonlinear extension of Logutov and
Lermusiaux (2008)). Our currents forecast was for 3 days starting from 00 Z, 04 December
2016 using the latest 5-km and 1-hour-resolution forecasts from the Weather Research and
Forecasting (WRF) simulations at National Centers for Environmental Prediction (NCEP)
(NCEP 2017) available at 12 Z, 05 Dec 2016.

The race occurred off the northwest coast of Martha’s Vineyard along the Middle Ground
starting at 18:15 Z and continued until 20:20 Z. Early in the day, winds were southward but
began to change direction to become southwestward at 10–11 knots by 18 Z. Thereafter, the
winds maintained strength (11–13 knots) until 21 Z. The circulation in the Vineyard Sound
region is strongly influenced by M2 tides with complex and rapid modulations of tidal
phases and currents by the coastlines, semi-enclosed water bodies, and complex bathymetry
including sand bars and rises such as Middle Ground just northwest of Martha’s Vineyard.
The wind-forcing and density-driven flows modify this surface intensified tidal flow. From
17 to 19 Z, the tides built a strong flow to the northeast strengthening to 60–110 cm/s.
Shoals in Vineyard Sound introduced smaller scale features and rips, both north of West
Chop and in the Middle Ground to the east of Lamberts Cove. Over the next hour, the tides
began to weaken, becoming slack and reversing direction by 22 Z.

Figure 5a shows six snapshots with the progressing paths of the two vehicles, from the
start of the experiment until when the time-optimal AUV reached the target. From the first
three snapshots, between 18:15 and 18:55 Z, the time-optimal AUV crossed the strong
opposing jet (with flows 100 cm/s) and reached a region with weaker opposing flows (∼70
cm/s) to continue its path. On the other hand, the shortest distance AUV got caught in
opposing flows of up to 110 cm/s and had to abort its mission temporarily at 18:37 Z. This
AUV was restarted by 18:52 Z and continued its mission plan. From 18:55 to 19:35 Z, the
time-optimal AUV traveled in regions with weaker opposing flow than that of the shortest
distance AUV. The flows in the Middle Ground region started to weaken overall by 19:35
Z and the time-optimal AUV completed its mission at 19:52 Z. The shortest distance AUV
was allowed to continue to account for the 15 minutes lost in restarting. Then, at 20:09 Z,
when it was apparent that the shortest-distance AUV was going to arrive much later than the
forecast time-optimal AUV, the mission was aborted to save time for further experiments.
At 20:09 Z, the straight-line AUV was still about 1 km away from the target. We then
estimated the total travel-time from start to finish for the two vehicles by correcting for
the remaining distance and restart (Subramani et al. 2017). Even if we discount the time
lost by the restart of the shortest-distance AUV, the forecast time-optimal AUV took 96.12
mins, about 15% faster than the shortest-distance one, which took 110.72 mins. Moreover,
both the time optimal and shortest distance AUVs were operated at 525 rpm and achieved
average nominal speeds of 153.34 cm/s and 148.08 cm/s, respectively (very close to the
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Figure 5. (a) Sequence of six equally spaced snapshots, all at 3 m depth, from the start location of
the two AUVs until the time-optimal AUV reached the target. The magnitude of forecast currents
(cm/s) overlaid by velocity vectors is shown in the background. The time-optimal AUV path until
the time of each snapshot is shown by a solid black line with its current position by black square
marker. The shortest distance AUV path is similarly shown by a solid magenta line and a magenta
diamond marker. When the time-optimal AUV reached the target, the shortest distance AUV was
still about 2 km away. (b) Left panel: magnitude and vectors of current forecasts at 3 m depth, along
the two AUV tracks, at the times at which the AUVs were at those locations. Middle panel: currents
as measured by the acoustic Doppler current profiler (ADCP) on board the respective AUVs. Right
panel: difference between our model predictions and the measured data. The Multidisciplinary
Simulation Estimation and Assimilation System primitive equation (MSEAS PE) could predict the
magnitude and directions accurately.

RPM setting corresponding to 3 knots). Hence, the time-optimal AUV clocked an average
effective speed of 146.06 cm/s compared with the shortest-distance AUV averaged speed
of only 116.93 cm/s due to experiencing stronger opposing flows.

In Figure 5b, we compare the instantaneous local currents along the path of the REMUS
600 as predicted by our PE modeling system and as measured by the on board acoustic
Doppler current profiler (ADCP). Specifically, we show the PE forecasts of the current
magnitude and subsampled vectors along the AUV path (left panel), the data measured by
the REMUS 600 AUV (middle panel), and the difference between the two (right panel).
We see that our modeling system could predict the direction and magnitude of the currents
(beating persistence by more than 100% and a tidal model by more than 50%, not shown).
We note that in such shallow regions and with very limited data, it was difficult to model and
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predict currents accurately. Hence, this result is encouraging for the future of integrating
coastal ocean predictions with rigorous optimal path planning.

b. Probabilistic Eulerian-Lagrangian reachability in the Northern Arabian Sea

The Arabian Sea is characterized by strong western boundary currents, a large reser-
voir of internal energy in the mixed-layer with complex (sub)mesoscale fields, and strong
seasonally-reversing monsoon winds that can reserve boundary currents and circulation
features (e.g., Schott and McCreary 2001). The Office of Naval Research-funded NASCar
program is investigating this dynamics using a variety of ALPS systems (Centurioni et al.
2017a, b). During February–April 2017 (Lermusiaux et al. 2017b), we forecasted the follow-
ing: (i) the regional high-resolution ocean fields and their probability, using error subspace
statistical estimation (ESSE) (Lermusiaux and Robinson 1999; Lermusiaux 1999b, 2006,
2007); (ii) the reachable sets, reachability fronts, and time-optimal paths of underwater
gliders and floats; (iii) the uncertainty of such reachability fields and optimal paths. Specif-
ically, we forecasted the reachability fronts of two SeaGliders (SG133 and SG137) and the
dynamic probability of reachable points of an Air-Launched Autonomous Micro Observer
(ALAMO) float (9103). The SeaGliders were navigating in bow-tie pattern to track the
ALAMO float (Centurioni et al. 2017a, b). The float was profiling to about 300 m in every
2 hours and the SeaGliders were diving to 1,000 m in 4–5 hours.

i. Ensemble ocean forecasts. The MIT MSEAS-PE modeling system was used in real-time
to issue 3-day ensemble ocean forecasts daily. The NASCar modeling domain (Figure 6a)
in the northern Arabian Sea had a 1/60◦ horizontal resolution and 70 vertical levels with
optimized level depths (e.g. higher resolution near the surface or large vertical derivatives).
This resolution was needed to develop and maintain complex layered features (not shown).
The bathymetry was obtained from the 15 arc-seconds SRMT15 data (Smith and Sandwell
1997). The initial conditions were downscaled from 1/12◦ Hybrid Coordinate Ocean Model
(HYCOM) analyses (Cummings and Smedstad 2013) via optimization for our higher res-
olution coastlines and bathymetry (Haley, Agarwal, and Lermusiaux 2015). Tidal forcing
were computed from the high-resolution TPXO8-Atlas from OSU (Egbert and Erofeeva
2002, 2013), by reprocessing for our higher resolution bathymetry/coastline and quadratic
bottom drag. The atmospheric fields consisted of the wind stresses and surface freshwater
flux from 1/4◦ NCEP GFS 1-hourly forecasts (Env. Mod. Center, 2003) and the net heat
flux from 1/2◦ NAVGEM 3-hourly forecasts (Hogan et al. 2014).

To predict uncertainties, 50-member ensemble forecasts were issued daily using ESSE,
from mid-March to April. To initialize multiscale ensembles (Lermusiaux, Anderson, and
Lozano 2000; Lermusiaux 2002, 2007), historical CTD (conductivity, temperature, depth)
synoptic data for the months of January, February, and March were used to create vertical
EOFs (empirical orthogonal function) for temperature (T) and salinity (S). The EOFs were
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Figure 6. (a) MIT MSEAS multiresolution computational domains in the northern Indian Ocean.
The domain bounded by the green outer box (53.66–69.18E; 9.38–17.83N) is the main domain
used for real-time forecasts to support Northern Arabian Sea Circulation-Autonomous Research
(NASCar) operations. (b) Three-day forecast of the vorticity field at 2 m, issued by the MSEAS-
PE for 7 March 2017 00Z (middle time for the 5–9 March 2017 forecast period for SG137). A
smaller moving domain (green inner box) surrounds the initial position of SG137 on 5 March 2017
00Z. The black contours are four days of reachability front forecasts, at 12 hour intervals (12h to
96h forecasts). The reachability front is the boundary of the largest set (the reachable set) that the
glider can reach within that duration. It was forecast by integrating its exact governing level-set
time–optimal PDE.
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combined with an eigendecomposition of a horizontal correlation matrix based on a Mexi-
can hat function of 25-km decay-scale and 75-km zero-crossing, to construct 3-dimensional
T and S perturbations. These T and S perturbations were used to generate velocity pertur-
bations in accordance with PE balance. Fifty such ensemble members were created and
the MSEAS-PE model was integrated in time for each of them, using also stochastic error
models for tides and atmospheric fields.

ii. Glider reachability forecasts. For the operational guidance of sea-gliders SG133 and
SG137, their 4-day reachability forecasts were issued daily. These gliders are piloted in a
yo-yo pattern performing 1,000 m dives in 4 to 5 hours. Accordingly, the level-set equation
(5) was solved with our 0–1,000 m depth integrated ocean forecasts (Lolla et al. 2014a). In
Figure 6b, we illustrate a 2-m mesoscale vorticity forecast and a glider reachability forecast.
In Figure 7, four forecasts for SG133 and SG137 issued in the second half of March 2017
are shown. In each panel of Figure 7, the reported location of the glider at the beginning
of the forecast window is shown as a gray point and the reachability fronts at every 12 h
by black contour lines overlaid on a forecast of the 48-h depth–averaged currents. The area
within the reachability front can be visited by the gliders whereas the area outside cannot
(Section 2a). Overall, the growth and shape of the reachability fronts are set by the local
circulations.

For the period 18 to 22 March (Fig. 7a and b), for SG133, the forecast currents are as
follows: westward to its west, northwest, and north; southwestward to its northeast and
east, and finally northwestward to its southeast, south and southwest. Further to the east of
SG133, forecast currents are southward. As such, the reachability front grows to the west,
northwest, and southeast. There is less growth to the south owing to the stronger opposing
flows of about 15 cm/s. For SG137, currents are northwestward in a 270◦ arc from its east to
north, and southwestward in its northeast. Similarly to SG133, further to the east of SG137,
the currents are southward. Hence, the reachability fronts grow more to the northwest due to
supporting flows and less to the south due to opposing flows. For later times, the reachability
front grows farther to the east as the opposing flows are weaker there. During 21 to 25 March
(Fig. 7c and d), SG133 is in a strong southeastward forecast flow and SG137 is to the west of
it. As such, the reachability fronts of SG133 grow more to the southeast than those of SG137.
During 23 to 27 March (Fig. 7e and f), both gliders SG133 and SG137 are in the strong
southeastward flow proper. Hence, their reachability fronts forecast grow in that direction.
During 26 to 30 March (Fig. 7g and h), current remain southeastward but curve towards
the east (south of the moving domain). On 26 March, SG137 is located to the southeast
of SG133. SG133 is more in the southeastward flow than SG137, and hence the formers
reachability fronts grow faster than the latters. Finally, the local shape of the reachability
fronts is governed by the mesoscale flows and shear. For example, the kidney bean shape
in the forecast reachability fronts (prominent for the 96h forecasts) in Figure 7c and e–h is
due to the focal flow shear.
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Figure 7. Reachability front forecasts for SeaGliders SG133 and SG137 for 18–22 March (a, b);
21–25 March (c, d); 23–27 March (e, f); and, 26–30 March (g, h) 2017. The locations of the glider
at the beginning of the forecast window are shown as gray points and the reachability fronts at
every 12 h (12h-96h) by black contour lines. The background is a color plot of the 0–1000-m depth
averaged flow magnitude (cm/s) overlaid with velocity vectors.
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iii. ALAMO float forecasts. Forecasts for the 4-day future positions of ALAMO floats were
also issued daily. To account for uncertainties in the initial float positions and initial flows
around it, we first advected a dynamic set of possible reachable positions, starting from
a small circle around the latest known positions of the floats. The reachable sets, then,
estimate the region outside of which the likelihood of finding the float is small. These sets
were forecast from the latest known positions of each float and issued in 12-hour intervals.

Fig. 8 shows six examples of such forecasts issued on 18, 19, 21, 23, 25, and 26 March.
They are overlaid on the 0–300 m–averaged 48-h (midpoint of the forecast window) velocity
forecast magnitude and vectors. Each forecast is accompanied by a plot of the real track
of the float during the forecast horizon. On 18 March (Fig. 8a), the float is in a region of
low velocity with east-west shears from adjacent stronger currents. The forecast reachable
set initially advects westward but then elongates (due to the shear), both eastward and
westward. This was consistent with the actual float, which initially moved westward but
then reversed and advected eastward. In the forecast issued on 19 March (Fig. 8b), the
southeastward strong flow northeast of the float increases. As such, the float is forecast
to advect southward, with the eastern edge of the reachable set moving southeast. On 21
March (Fig. 8c), the float is at the edge between weak and strong southeast flows. Hence,
the eastern edge of the reachable set grows farther south than the western edge. In the above
three sets, the shear in the forecast flows stretches the reachable set thereby elongating
the initial circle to ellipse shapes. The real float track (Figs. 8a, b, and c) is consistent
with forecasts and improves with the strength of the flow near the float. In the 23, 25,
and 26 March forecasts (Figs. 8d, e, and f), the float is in the strong flow proper. It is
thus forecast to move faster, which again agrees with the real float tracks (Figs. 8d, e,
and f).

The skill was mostly governed and limited by the accuracy of the larger time-dependent
mesoscale flow. To account for its complete dynamic uncertainty, we employed ESSE
ensembles to predict the dynamic set of reachable positions for each ensemble member. A
rigorous probability field of reachable float positions is then obtained by normalizing by
area the union of each ensemble’s set of reachable positions. This probabilistic reachable
set field forecast for the ALAMO float issued on 26 March 2017 00Z for the period 26–31
March is depicted in Figure 9. The nine panels show the forecasts every 12 h from 26
March 00Z. The color represents the quantitative probability that a location on the map is
in the reachable set for the float. Overlaid on the probability map are 0–300-m averaged
current vectors from the central MSEAS forecast and the real track of the float from the 26
March 00Z to the time of the forecast of each panel. These results show that the real float
location remained within the probabilistic reachable set forecast (i.e., within the colored
region of probable locations).

Similar results were obtained for forecasts on other days (Lermusiaux et al. 2017b).
Overall, our Lagrangian probabilistic reachability planning system showed 4-day predictive
skill repetitively during the real-time experiment. Such capability allows new evaluation
of stochastic ocean forecasts. It is also useful for other applications such as Lagrangian
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Figure 8. Six sets (a–f) of dynamic reachable set forecasts and the real observed track of the ALAMO
Float S/N:9103. In the panels for forecasts show the initial uncertain float position (gray circle)
and 12-h forecasts (12–96 h) of the corresponding reachable sets (solid black contour lines). They
are overlaid on the 48-h forecasts of the 0–300-m averaged current magnitude (cm/s) and velocity
vectors. The real tracks are colored by the number of days since the time at which the forecast
was issued. Here, the reachable set is the region outside of which the likelihood of finding the float
is small. The forecasts had good skill, mostly governed and limited by the accuracy of the larger
mesoscale flow.
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Figure 9. Probabilistic forecast of the dynamic reachable sets for the ALAMO float for every 12 h,
issued on 26 March 2017. The colored field is the probability of that location being part of the
reachable set. The real observed track of the float from the 26 March 00Z to the time of the forecast
of each panel is shown by a solid magenta line. All are overload on the 0–300-m averaged current
vectors from the central MSEAS PE forecast.

dynamics studies, float data assimilation, float recovery and safety, and float sampling
system optimization.

c. Bayesian adaptive sampling for hypothesis testing and optimal learning

To make full use of the measuring power of all types of platforms in an automatic manner,
an adaptive sampling methodology for deploying them wisely is needed. As discussed in
Section 2, it should be designed according to the variables to be estimated, to what is
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known and not known about the ocean dynamics to be sampled, and to the platforms and
sensors capabilities. A critical component of adaptive sampling is how to measure the
information contained in different candidate observations to be made. For such information
metric, a rigorous choice is to employ mutual information, i.e., the “amount of information”
obtained about the estimation variables through the observations. Hence, the goal of adaptive
sampling is then to maximize this mutual information over all locations that could be reached
by the platforms available. Next, we illustrate these concepts in idealized and realistic ocean
scenarios using our general Bayesian adaptive sampling framework (Section 2). Specifically,
we predict optimal measurement locations for hypothesis testing and model learning, for
estimating parameters and fields, and for revealing Lagrangian coherent structures.

i. Optimal observations for hypothesis testing: Learning model equations. Figure 10 illus-
trates how mutual information can determine the data ideal for model learning. The under-
lying dynamics in this application is an idealized bottom gravity current (Özgökmen and
Chassignet 2002), where salty water over the top of the plateau on the left flows down the
slope, driven by gravity. As shear takes place in the interface between the down-flowing
salty water and the ambient quiescent water, an hydraulic head and Kelvin–Helmholtz insta-
bilities are commonly triggered and multiscale flow features are developed. The first and the
third panels of Figure 10 show a typical salinity field (unit: psu) of such flow at T = 10 min
and T = 60 min, respectively.

For this machine learning example, our goal is to best infer the slope angle and the
magnitude of the initial salinity anomaly over the plateau. Therefore, we (scientists) propose
different models that differ in these aspects (e.g., nine models in this example with different
combinations of salinity anomaly magnitude and slope angle) and the computing machine is
to learn the “right” model from a few sparse salinity measurements in a hierarchical Bayesian
manner. Specifically, this is achieved by propagating the uncertainty using the DO equations
and assimilating the observations using the GMM-DO filter for each candidate model (see
Section 2bii for an outline of these methods) so as to obtain the model likelihoods, and then
using in these likelihoods and our prior beliefs over the candidate models into the Bayes
formula to compute the posterior beliefs. Note that this is performed sequentially as new
data become available over time.

The white dots shown in Figure 10 indicate the 10 observation locations initially picked
heuristically by humans, where the salinity is measured. To indicate how this choice could be
improved, in the second and the fourth panel, the field of mutual information I (S(x, t), M)

between salinity S(x, t) and the model identity M is shown at time t = 10 min and
t = 60 min. Here, the model identity M is a discrete random variable that takes its value
from the set of candidate models {M1, M2, . . .}, so Pr(M = Mi ) is the probability that
the i-th model is the true model. Note that I (S(x, t), M) is defined by equation (10) except
that the integral with respect to the PDF for M should be replaced by a summation with
respect to the probability mass function. Moreover, I (S(x, t), M) is numerically computed
through equation (11).
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Figure 10. Illustration of how our GMM-DO filter and mutual information predict the most informa-
tive data for model learning. A a non-hydrostatic bottom gravity current simulation is used, where
salty water flows down the slope from the top left. Different models with different slope angles and
different salinity anomaly magnitudes and profiles are proposed. The first and third panels show the
salinity field of the simulated ground-truth at t = 10 min and t = 60 min, respectively, overlaid
with streamlines of the velocity field. The second and fourth panels show the mutual information
field between salinity and model identity at the same two time instances. The fifth panel is the same
as the fourth except that the observation noise variance is smaller. The sixth panel shows the mutual
information between the horizontal velocity and the model identity also at t = 60 min.
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The second and fourth panels of Figure 10 show how an expert system could adjust the
observation locations to obtain more informative data for model learning than the heuristic
locations indicated by the 10 white dots. Indeed, at both times t = 10 min and t = 60 min,
the high mutual information regions lie in the head of the gravity current and also to a lesser
extent near the bottom within the gravity current. At time t = 10 min, the inlet is also
more informative but less so at t = 60 min. All these data locations predicted to be most
informative would best reveal the slope angle and the magnitude and profile of the initial
salinity anomaly. The fifth panel illustrates the effects of observation noise magnitude on the
mutual information field. It is like the fourth panel except for the assumed observation noise
standard deviation, which is σnoise = 0.2 psu for the fourth panel and σnoise = 0.1 psu for the
fifth. We can see that with smaller observation noise, the magnitude of mutual information
increases. When the observation noise is larger, the signal-to-noise ratio decreases and the
information is blurred by the noise. Consistent with this intuition, the mutual information
is smaller in this case.

The sixth panel of Figure 10 shows the mutual information field between horizontal
velocity and model identity at t = 60 min, with the assumed observation noise standard
deviation being σnoise = 0.05 m/s. The pattern of high-mutual-information region for
horizontal velocity is found to be very different from that for salinity. Because a reverse
flow above the head of the gravity current is formed due to the conservation of mass,
measuring the horizontal velocity above the head should also tell us how fast the current
is and thus allow us to infer how salty the water is. The high mutual information region
above the head as shown in the sixth panel confirms this physical intuition. Moreover, by
comparing the fourth, fifth, and sixth panels, we can also identify which state variable to
measure depending on our sensing precision for each of them.

ii. Optimal observations for estimating ecosystem parameters and fields. In the second
application, we also utilized the GMM-DO methodology (Sondergaard and Lermusiaux
2013a, b), but now performed data assimilation for the simultaneous estimation of state vari-
ables, parameters, and model equations themselves. For the latter, the computing machine
learns by discriminating among different but compatible biological models that have the
same state variables, but different or not-present ecosystem functions (Gupta 2016). The
representative test case in Figure 11 involves a non-dimensional biological model coupled
with a dynamical ocean flow in a two-dimensional domain with a seamount/sill, which can
create an upwelling of nutrients, leading to phytoplankton bloom. In the top three panels
of Figure 11, we show sample non-dimensionalized nutrient, phytoplankton and zooplank-
ton fields, respectively, of a three-component Nutrient-Phytoplankton-Zooplankton model
(Franks 2002) simulation. The flow is from left to right, and the phytoplankton bloom in
the lee of the seamount, at locations where both light and nutrients are sufficient, is clearly
visible. Behind the seamount, the nutrients are reduced while phytoplankton and zooplank-
ton have increased, but with different field structures due to the interplay of the nonlinear
biogeochemical and advection terms.
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Figure 11. The top three panels shows typical nutrient, phytoplankton and zooplankton fields respec-
tively, for a NPZ model. The fourth panel shows the predicted mutual information field between
phytoplankton and the Ivlev grazing parameter, and the fifth/sixth panels show mutual information
between phytoplankton/zooplankton, with the three biological NPZ states and the Ivlev grazing
parameter combined. These mutual information fields predict the most informative data locations
that best estimate just the Ivlev parameter or all the biological states and the Ivlev parameter
simultaneously.
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To investigate the most informative measurements for such coupled dynamics and simul-
taneous estimation, we now predict several mutual information fields using equations (10)
and (11). An observation noise variance of σ2

noise = 0.001 is used for the measured non
dimensionalized biology state variables; this amounts to about 30% and 50% of the standard
deviation of the variability of phytoplankton and zooplankton, respectively.

First, we consider the scientific goal of measuring phytoplankton at the location that best
informs the value of the Ivlev grazing parameter (controlling the rate of phytoplankton graz-
ing by zooplankton). The prior for this parameter is assumed to be uniformly distributed
between a fixed range of values. To achieve this goal rigorously, we compute the corre-
sponding mutual information (fourth panel from top in Fig. 11) quantifying the information
contained in phytoplankton measurements about the estimation of this Ivlev grazing. As is
described in Section 2bii, the mutual information is computed by first fitting a GMM to the
samples of random variables involved to obtain the joint probability distribution, and then
by numerically integrating the probabilities in equation (10) using a Monte Carlo method.
The results (fourth panel) indicate that observations in the bloom region (but not exactly
coinciding with the bloom itself) and within a thin strip in the middle of euphotic zone near
inflow and outflow are the most sensitive to the Ivlev parameter. Secondary weaker thin
strips of high information value are also visible and they correspond to higher spatial gra-
dients of phytoplankton (second panel). It has been verified that assimilating observations
located in the higher mutual information region indeed led to the greater decrease in the
root-mean-square-error (RMSE) and other skill metrics for the estimated parameter (not
shown).

The most informative regions and the amount of information content is dependent on the
state(s) being observed, and the scientific or learning goals (Section 2b). To illustrate this
property, we compute mutual information fields to predict the phytoplankton or zooplankton
(fifth and sixth panel, respectively, in Fig. 11) locations that are overall the most informative
for the simultaneous learning of the complete set of biological state variables (N, P, and
Z), and of the Ivlev parameter. Results show that in the phytoplankton case (fifth panel),
in addition to the bloom region, the area just around the critical depth is also informative
for the simultaneous estimation of the states and parameter. Measuring zooplankton (sixth
panel) is however overall less informative than phytoplankton for that scientific goal, but
the extent of the high mutual information region is much larger, including the whole of
upper euphotic zone, but just excluding the area corresponding to maximum zooplankton
concentration. We note that predicting such Bayesian fields of mutual information among
measured data and a set of variables, regardless of their type and dimension (e.g., more than
two), is not feasible with correlations and other commonly used Gaussian quantities.

iii. Optimal observations for estimating coherent structures. In the third application, we
utilize the Bayesian GMM-DO data-assimilation and inference engine for the joint estima-
tion of Eulerian variables (e.g., velocity or scalar field at a fixed location) and Lagrangian
variables (e.g., drifter/float positions, trajectories, Lagrangian Coherent Structures (LCSs),
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etc.). LCSs are defined as the most influential and persistent material surfaces in a flow
(Haller 2015; Peacock and Haller 2013). They have been utilized to study varied fluid
flow transport and advection of materials in the natural and man-made flows. Most pop-
ular methods used to identify LCSs rely on the computation of finite-time Lyapunov
exponent (FTLE) or finite-size Lyapunov exponent (FSLE). Next, we illustrate how the
GMM-DO and mutual information inference schemes can predict the locations of salinity
or velocity observations that would be most informative about velocity or LCS in real-
istic multiscale ocean fields. The application region is the Northern Arabian Sea of the
NASCar field experiment (as in Section 3a), over the time period of 27 to 30 March,
2017.

To predict the ocean probabilities needed for computing mutual information using equa-
tions (10) and (11), a 50-member ensemble forecast issued with the ESSE methodology is
employed. The ensemble forecast was initialized using a multiscale scheme and historical
CTD synoptic data (Lermusiaux, Anderson, and Lozano 2000; Lermusiaux 2002, 2007;
Lermusiaux et al. 2017a). In Figure 12, a particular realization of the ensemble is illustrated
using the initial (27 March 2017) and forecast (30 March 2017) surface salinity and velocity
fields. The white box marks the region for which the zoomed-in fields are shown on the
right. A salinity intrusion is visible in this small domain on 30 March 2017. Higher mag-
nitudes of velocity can also be observed along the edge of this salinity intrusion, in accord
with geostrophy. The forward-time FTLE field realization shown is over the same interval of
three days (27–30 March 2017). The ridges of the forward-time FTLE field correspond with
repelling LCSs, which are transport barriers between hyperbolic trajectories. To illustrate
the value of such Lagrangian analysis, most of the features of this FTLE field here cannot be
easily associated with specific velocity structures. This is because the surface velocity field
varied rapidly during 27 to 30 March 2017, due to surface winds, upper-ocean dynamics,
and geostrophic turbulence.

In Figure 13, we show forecast mutual information fields between candidate observations
of salinity or velocity anywhere in the small domain (marked by the white box in Fig. 12),
and the verification variable, which is a field defined over the whole small domain. The
observation noise standard deviation for salinity and velocity is set as 30% of the stan-
dard deviation in the variability of these fields. These variabilities turn out to have very
close numerical values (0.166 PSU for salinity and 0.168 m/s for velocity). For salinity and
velocity, the observation noise variance is thus set to σ2

noise = 0.0025. The mutual infor-
mation field between salinity and the scalar field of zonal velocity over the small domain
indicates that the most informative salinity data locations are around (12.6◦N , 58.2◦E).
This is on the strongest surface salinity front, i.e., the western edge of the high salinity
intrusion (shown in second row of Fig. 12). The mutual information field between salinity
and the coherent structures over the small domain predicts the most informative salinity data
locations to be are around (12.5◦N , 58.7◦E), and overall along all of the gradients of sur-
face salinity. We note that the two fields show that most information observation locations
for one verification variable may not be so for another. When the observation variable is
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Figure 12. MIT-MSEAS PE forecast realizations of salinity, velocity and forward-time FTLE fields
for the main and zoomed NASCar domains. Realizations of the following variables over the period
27–30 March 2017 are shown (top to bottom) with a zoomed-in view to the right (domain marked
by the white box on the left): (i) salinity on 27 March 2017, (ii) salinity on 30 March 2017, (iii)
velocity on 27 March 2017, (iv) velocity on 30 March 2017, and (v) forward-time FTLE for 27–30
March 2017.
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Figure 13. Adaptive sampling predictions for velocity or coherent structure fields for the zoomed
NASCar domain. The four mutual information fields are between each of the following pairs of
observation and verification variables (from first to second row, and from left to right): (i) salinity
and zonal velocity field, (ii) salinity and forward-time FTLE field, (iii) velocity (both components)
and velocity field, and (iv) velocity (both components) and forward-time FTLE field. These mutual
information fields forecast the most informative observation locations for estimating the verification
variable over the small domain (shown in Fig. 12).

velocity and the verification variable is the velocity field (u, v), the mutual information field
is more uniform and of larger magnitude than when observing only salinity, as expected.
This is also because we measure both u and v, i.e., two variables instead of one. Informative
observation locations are around (12.3◦N ,58.8◦E), (11.8◦N ,59.2◦E), and (13◦N ,59.8◦E).
Similarly, there are more candidate observation locations that are highly informative about
coherent structures when measuring velocity than when measuring salinity. The max-
ima of the mutual information in this case are around (12.3◦N , 58.8◦E) and (11.7◦N ,
59.6◦E).
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4. Conclusions

Guided by ocean science and applications, critical questions to be answered by intel-
ligent autonomous observing systems are where, when, and what to sample for optimal
information, and how to optimally reach the sampling locations. Definitions, concepts, and
reproducible progress towards answering these questions using quantitative predictions
and fundamental principles were reviewed. Mathematical and practical results in reacha-
bility and path planning, adaptive sampling, machine learning, and teaming machines with
scientists were overviewed. To provide expert autonomous observing systems, the inte-
grated use of new fundamental differential equations and theories from ocean modeling,
data assimilation, control, information science, and machine learning was shown to be
essential.

Several recent at-sea campaigns and realistic simulations were utilized to showcase
present and future systems. We first demonstrated our exact time-optimal planning theory
and tested its applicability for real-time operations in multiple sea exercises in Buzzards Bay
and Vineyard Sound. In races between two identical AUVs, it was found that our predicted
time-optimal paths (computed by integrating ocean modeling with optimal predictive con-
trol) were always faster than the shortest distance paths. The time-optimal path also avoided
currents that were strong enough to cause an abort in the AUV following the shortest dis-
tance path. The forecasted velocities compared well with the velocities observed by the
AUVs, which is encouraging for the future of integrating coastal ocean predictions with
rigorous optimal path planning. We then showcased deterministic and probabilistic three-
dimensional reachability and path forecasts issued daily for gliders and floats operating for
two months in the northern Arabian Sea. These predictions were enabled by high-resolution
probabilistic ESSE ensemble ocean forecasts. Based on comparisons to the actual subse-
quent vehicle tracks, the probabilistic reachability planning system showed predictive skill
for long periods of time. It was useful to the vehicle operators. Finally, novel Bayesian
adaptive sampling for hypothesis testing and optimal learning was illustrated. Computing
machines were shown to forecast the observations that were most informative to estimate the
accuracy of model formulations, the values of ecosystem parameters and dynamics fields,
and the presence of Lagrangian coherent structures in the flow.

It is worth noting that if ocean fields were oversampled and everything was measured in
time and space, there would be little need for smart sampling. In all other cases, because
not all data are equally informative about specific scientific objectives, intelligent observing
systems are critical. For example, when ship surveys consisted of vertical sampling along
rectilinear sections, this was because researchers wanted such estimates (based on their
scientific objectives or ship constraints) or because not all of what researchers knew was
utilized to design and adapt the surveys in an optimal, expert way. Indeed, in conducting
sampling campaigns, all prior knowledge (fundamental conservation laws, model equations,
uncertainty estimates, past observations, control laws, etc.) should be employed. Using this
knowledge as prior inputs, the most informative sampling plans should then be predicted
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by optimizing objective criteria rooted in fundamental information theory, Bayesian data
assimilation, uncertainty quantification, and machine learning. Even in pure exploration of
the unknown, as soon as one observation is collected and analyzed, knowledge is acquired
and plans should at least be reviewed in the above rigorous ways.

In the past, rigorous equations and efficient methods for reachability, path planning,
and adaptive sampling did not exist. Due to limited computational and robotics capabili-
ties, some scientists and operators made approximate choices in guiding robotic observing
systems. Examples of such approximations include the following: ignoring the highly vari-
able ocean dynamics or the ocean flow transports, linearizing model equations, assuming
steady or Gaussian statistics, using ineffective or inaccurate planning algorithms, or reduc-
ing control theory equations to heuristics and simplified schemes. Interdisciplinary teams
and multidisciplinary education were not common. Often these approximations and issues
limited the efficacy of the path planning and adaptive sampling. However, we showed in
the present examples that the most informative observation can commonly be 50% to 150%
more informative than an average observation. When observations are sparse and expensive,
such improvements motivate the need for intelligent sampling.

The new quantitative methods and fundamental equations reviewed and showcased in the
present work provide a modern basis for the inference engine and knowledge base of expert
predicting and observing systems. The dynamically orthogonal (DO) differential equations
of the ocean modeling system provide an optimally-reduced and nonlinear prediction of the
prior probability distribution of the ocean state, parameters, and other secondary variables.
The Gaussian mixture model (GMM)-DO filter and smoother then capture the non-Gaussian
statistics when it occurs and assimilate the data by Bayesian updates of the prior probability
distribution. The GMM-DO schemes allow the efficient computation of the mutual infor-
mation among any vectors of candidate observation variables and the scientific quantities
of interest. The resulting dynamic mutual information fields are then used to objectively
and autonomously predict the optimal future sampling plans. This optimization is com-
pleted in accord with the capabilities of the ocean sampling vehicles by using a modified
Hamilton–Jacobi level-set equation that governs their reachable set and reachability front.
Variations of this equation and the corresponding backward tracking equation can fore-
cast the time-optimal, energy-optimal, or risk-optimal ocean paths, in 2-d or 3-d in space
and for varied vehicles and robotic motions. When combined with the mutual informa-
tion criteria for optimal sampling, the integrated system predicts where, when, and what to
sample.

Our outlook is that reproducible scientific models, efficient control equations, increas-
ing computational power, novel communication capabilities, thriving machine learning,
and decision-making ability of humans will continue to be integrated to form intelligent
autonomous ocean predicting and observing systems. Such interdisciplinary research adven-
tures should be gripping. The results will benefit marine exploration and exploitation for
both science and engineering, including societal applications in energy, food, security, and
ultimately the sustainability of our oceans and environment.
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