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Abstract The state of the ocean evolves and its dynamics involves transitions 
occurring at multiple scales. For efficient and rapid interdisciplinary forecasting, 
ocean observing and prediction systems must have the same behavior and adapt 
to the ever-changing dynamics. This chapter sets the basis of a distributed system 
for real-time interdisciplinary ocean field and uncertainty forecasting with adaptive 
modeling and adaptive sampling. The scientific goal is to couple physical and 
biological oceanography with ocean acoustic measurements. The technical goal 
is to build a dynamic modeling and instrumentation system based on advanced 
infrastructures, distributed/grid computing, and efficient information retrieval and 
visualization interfaces, from which all these are incorporated into the Poseidon sys-
tem. Importantly, the Poseidon system combines a suite of modern legacy physical 
models, acoustic models, and ocean current monitoring data assimilation schemes 
with innovative modeling and adaptive sampling methods. The legacy systems 
are encapsulated at the binary level using software component methodologies. 
Measurement models are utilized to link the observed data to the dynamical model 
variables and structures. With adaptive sampling, the data acquisition is dynamic 
and aims to minimize the predicted uncertainties, maximize the optimized sampling 
of key dynamics, and maintain overall coverage. With adaptive modeling, model 
improvements dynamically select the best model structures and parameters among 
different physical or biogeochemical parameterizations. The dynamic coupling of 
models and measurements discussed here, and embodied in the Poseidon system, 
represents a Dynamic Data-Driven Applications Systems (DDDAS). Technical 
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and scientific progress is highlighted based on examples in Massachusetts Bay, 
Monterey Bay, and the California Current System. 

Keywords Oceanography · Interdisciplinary · Adaptive · Sampling · 
Modeling · Dynamic · Data-driven · DDDAS · Data assimilation · Uncertainty · 
Error estimates · Distributed/grid computing 

14.1 Introduction 

Effective ocean forecasting is essential for efficient human operations in the ocean. 
Application areas include, among others, fisheries management, pollution control, 
and maritime and naval operations. Scientifically, ocean science is important for 
climate dynamics, biogeochemical interactions, and to understand the dynamics and 
ecosystems of the food web in the sea. Advances in oceanographic numerical mod-
els and data assimilation (DA) schemes of the last decade [12, 34, 35, 41, 53] have  
given rise to complete Ocean Prediction systems [49] that are used in operational 
settings. Recent developments in the availability of high-performance computing 
and networking infrastructure now make it possible to construct distributed com-
puting systems that address computationally intensive problems in interdisciplinary 
oceanographic research, coupling physical and biological oceanography with ocean 
acoustics [29, 45, 62]. 

Poseidon [44] is one such distributed computing-based system, within the general 
framework of Dynamic Data-Driven Applications Systems (DDDAS) [67]. It brings 
together advanced modeling, observation tools, and field and parameter estimation 
methods for oceanographic research. The Poseidon system is aimed to address 
three main objectives: (1) to enable efficient interdisciplinary ocean forecasting, 
by coupling physical and biological oceanography with ocean acoustics in an 
operational distributed computing framework; (2) to introduce adaptive modeling 
and adaptive sampling of the ocean in the forecasting system, thereby creating a 
dynamic data-driven forecast; and (3) to initiate the concept of seamless access, 
analysis, and visualization of experimental and simulated forecast data through 
a science-friendly Web interface that allows users high-level interaction without 
the need to manually interact with the complexity of the underlying distributed 
heterogeneous software and hardware resources. The Poseidon system will allow 
the ocean scientist/forecaster to concentrate on the task at hand as opposed to the 
micro-management of the underlying forecasting mechanisms. 

The Poseidon system employs the Harvard Ocean Prediction System (HOPS) 
[48], as its underlying advanced interdisciplinary forecast system. HOPS is a 
portable and generic system for interdisciplinary nowcasting and forecasting 
through simulations of the ocean. It provides a framework for obtaining, processing, 
and assimilating data in a dynamic forecast model capable of generating forecasts 
with 3D fields and error estimates. HOPS has been successfully applied to several 
diverse coastal and shelf regions [49], and analyses indicate that accurate real-



14 Toward Dynamic Data-Driven Systems for Rapid Adaptive. . . 379

time operational forecast capabilities were achieved. Error Subspace Statistical 
Estimation (ESSE) [39], the advanced data assimilation DA scheme of HOPS that 
provides an estimate of the dominant uncertainty modes in the forecast [35, 36], 
is central to the Poseidon system’s stated goal of adaptive modeling and sampling 
[25, 37, 38]. The architecture of Poseidon is being designed based on HOPS, 
while also keeping open possible future HOPS developments so that elements of 
HOPS could easily be replaced by other components – e.g., employing different 
physical oceanographic models for adaptive physical modeling. Moreover, the 
ESSE methodology, which is computing and data-intensive, is also an important 
driving force behind the architectural design decisions. 

In the remainder of this chapter, Sect. 14.2 provides an overview of the dynamic 
data-driven architecture of the Poseidon system, concentrating on the HOPS/ESSE-
based forecast workflows, and the concepts of dynamic adaptive sampling and 
adaptive modeling [38]. Section 14.3 illustrates interdisciplinary ocean model-
ing and forecasting applications, including generalized biological modeling and 
objective, non-automated adaptive sampling and adaptive modeling. Section 14.4 
discusses the design of the new computational components Poseidon and the initial 
accomplishments in distributed/grid computing and implementing user interfaces. 
Section 14.5 provides summary comments on the work presented in this chapter. 

14.2 Overview of Dynamic Data-Driven System Architecture 

The Poseidon system architecture aims to bring together field and remote obser-
vations, dynamic measurement and error models, data assimilation schemes, and 
sampling strategies to produce the best-available estimates of ocean state, parame-
ters, and uncertainty. Poseidon’s Information Technology approach (see Fig. 14.1) 
focuses mainly on key modules or components that lead to large gains in efficiency. 
In general, complex software is thus not rewritten, but only modified or updated 
so as to allow efficient and adaptive distribution. By allowing for interdisciplinary 
interactions (see Sect. 14.3), linking physics computations with biology and acous-
tics, as they are linked in nature, Poseidon aims to capture a more accurate picture 
of the ocean. At the same time, the system adapts to measurements not only 
through direct data assimilation but also through data assimilation feedbacks, by 
the modification of model structure and parameters (adaptive modeling is discussed 
in Sects. 14.3.2 and 14.3.3), and of observational strategies when the most useful 
data are collected based on ocean field and error forecasts (adaptive sampling, Sect. 
14.3.1) affording Poseidon as a dynamic data-driven system [11]. 

ESSE is a data assimilation scheme that allows for multivariate, inhomogeneous, 
and non-isotropic analyses, with consistent assimilation and adaptive sampling 
schemes. It is ensemble-based (with a nonlinear and stochastic model) and produces 
uncertainty forecasts (with a dynamic error subspace and adaptive error learning). 
Poseidon is not tied to any ocean model but its specifics are currently tailored to 
HOPS. A schematic description of ESSE is shown in Fig. 14.1.
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Fig. 14.1 The ESSE schematic workflow. (Adapted from [40]) 

The Poseidon system builds on ESSE (Sect. 14.4.1) and applies it for the data 
assimilation of an ocean modeling system including interdisciplinary interactions 
between physical oceanography, biological oceanography, and ocean acoustics. The 
application is a rapid prediction of interdisciplinary ocean fields and uncertainties. 
The Dynamic Data Driven Applications Systems (DDDAR)-based [11] Poseidon 
system employs autonomous adaptive models for physics and biology, allowing 
adaptation for parameter values, model structures, and state variables, and requires 
error metrics and criteria to trigger and direct adaptation. It also supports adaptive 
sampling by concentrating future measurements in regions of high forecast uncer-
tainty or energetic dynamical features (to be identified through feature extraction 
algorithms [21, 22] (Sect. 14.4.2.2), which serve as key components in the fully 
automated adaptive sampling loop as part of a dynamic data-driven observation 
system). 

The computational framework supporting the Poseidon system is primarily 
based on grid computing technologies [18] (Sect. 14.4.1) and is flexible, allowing 
for the scalability and incorporation of different models in the future. It also 
provides the transparent interoperability of the distributed resources. Metadata 
(Sect. 14.4.2.1) are used to describe both datasets (observational and forecast) 
and software components (code) to allow for advanced automated, distributed, and 
transparent data management as well as the validated composition of several system 
components into complex information processing workflows that can be executed 
in a scheduled or on-demand fashion [26]. Finally, Poseidon provides lightweight 
and user-friendly Web interfaces (Sect. 14.4.2.1) for remote access, control, and 
visualization (Sect. 14.4.2.2).
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14.3 Real-Time Interdisciplinary Modeling and Forecasting 
and Process to Date Toward an Ocean Science DDDAS 

This section illustrates interdisciplinary ocean modeling and forecasting applica-
tions, during which objective adaptive sampling [51] and non-automated physical 
adaptive modeling [33] result. The adaptive sampling was tested in Monterey Bay 
in real time [24] and enabled by an improved Poseidon-based distribution of the 
ensemble of parallel ESSE computations (Sect. 14.4.1). The adaptive modeling 
was manually evaluated in real time during the same experiment. In order to 
allow automated (dynamic data-driven) adaptive biogeochemical modeling, a new 
generalized biogeochemical modeling system is being implemented. This new 
system will be used in future real-time interdisciplinary simulations and progress to 
date is exemplified for the Monterey Bay test case (shown in Fig. 14.2). Finally, the 
preliminary development of acoustical-biological measurement models to estimate 
biological properties from acoustical sensing is outlined in this chapter. 

14.3.1 Objective Adaptive Sampling Using ESSE 

With adaptive sampling, the most useful data collected are based on the ocean field 
and error forecasts, either subjectively or objectively through the use of quantitative 
criteria or goals. A goal characterizes the ideal future sampling among the possible 
choices, in accord with the constraints, available forecasts, and past data (e.g., 
[3, 20, 31, 46, 50]). Typically, the areas to be sampled will be chosen based on: 
(a) forecast uncertainty (e.g., error variance, higher moments, probability density 
functions); (b) interesting interdisciplinary phenomena and dynamics (e.g., feature 
extraction, Multi-Scale Energy, and Vorticity Analysis); and, c) maintenance of 
synoptic forecast accuracy. 

In adaptive sampling [32, 51, 52], field and error forecasts can be combined 
with a priori experience to intuitively choose future sampling. An example of 
this comes from the Autonomous Ocean Sampling Network (AOSN-II) [10] field 
experiment in Monterey Bay, CA during the summer of 2003 [1]. The model 
forecast for 26 August 2003 predicted a meander of the coastal current that advected 
warm, freshwater (Fig. 14.2 top left) toward the Monterey Bay Peninsula. The 
temperature and salinity error fields (Fig. 14.2 top right and bottom left) from a 450-
member ensemble (computed using the first version of the distributed ESSE scheme, 
see Sect. 14.4.1) indicated a high degree of uncertainty in both the position and 
strength of the meander. In fact, specific ensemble members had either essentially 
no meander or shifted the meander to the north. Based on the collected information, 
and constrained by operational limitations, a sampling pattern (Fig. 14.2 bottom 
right) was devised for the research vessel Pt. Lobos. 

Several different methodologies for obtaining the areas of interest for targeted 
observations (e.g., breeding vectors, singular vectors, ESSE, feature extraction)
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Fig. 14.2 From left to right, top: Surface temperature forecast and temperature error forecast; 
from left to right, bottom: salinity error forecast and adaptive sampling pattern for Pt. Lobos during 
AOSN-II, August 26, 2003 

were examined in combination with the problem of most intelligently combining 
areas corresponding to different attribute sets (feature of type n, uncertainty of 
magnitude E). Optimal methods to schedule such observations given a set of 
available assets and corresponding constraints sought to enhance relevant data. 

In the specific case of acoustical adaptive sampling, physical features must be 
accounted for to compensate for their backscatter, or to sample more effectively the 
water column: for example, the pycnocline and thermocline (i.e., the water layer 
of steep density and temperature gradients) typically concentrate plankton layers 
and can lead to specular or coherent pressure wave reflection. Mixing (of nutrients 
as well as generation of small-scale sound velocity gradients), presence of sand 
in upwelling plumes or bubbles in a surface layer, solitons, and multi-reflections 
between a quiescent sea and a flat sediment bottom are features likely to generate 
undesired sonar echoes.
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14.3.2 Generalized Biological Modeling and Non-Automated 
Physical Adaptation 

Dynamic data-driven adaptive modeling and real-time forecast of marine ecosys-
tems [33] is an increasing research opportunity in marine sciences. In the context of 
global climate warming and increasing anthropogenic stress, marine ecosystems are 
becoming more and more vulnerable and uncertain. Eutrophication, harmful algal 
blooms, red tide, oil spills, and toxic element pollution can all deteriorate the health 
and functioning of marine ecosystems. 

Traditionally, marine ecosystems are modeled with simulation models of fixed 
structure and static data inputs. However, forecasting evolving marine ecosystems, 
in space and time, in response to environmental perturbations, necessitates rapid 
response of dynamic data-driven adaptive simulation models. Presently, a model is 
considered to be adaptive if its formulation, classically assumed constant, is made 
variable as a function of data flows. 

The authors have developed a preliminary version of a generalized, flexible 
biological model specifically designed for adaptive modeling and real-time ecosys-
tem forecast (Fig. 14.3). Marine ecosystems function through a series of highly 
integrated interactions between biota, habitats, and dynamic links among food web 
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Fig. 14.3 Generalized biological model. N Nutrients; P Phytoplankton; Z Zooplankton; D 
Biogenic detritus; DOM Dissolved organic matter; B Bacteria; A Auxiliary state variables; nn, 
np, nz, nd, ns and na are the total numbers of state variables of the functional groups
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components. Based on the trophic and biogeochemical dynamics for data collected 
i = 1.„„ n, the generalized model is composed of 7 functional groups: nutrients 
(Ni), phytoplankton (Pi), zooplankton (Zi), detritus (Di), dissolved organic matter 
(DOMi), bacteria (Bi) and auxiliary state variables (Ai). 

Traditionally, the number of compartments in a biological model is fixed 
with each compartment representing a specific biological community or species. 
However, in the generalized biological model developed by the authors, the number 
of components of each functional group is a variable (varying from 1 to n) and 
users define the biological correspondents while applying the model to a specific 
ecosystem. In the software, each trophic level and trophic link is computed by 
using loops from 1 to n. The changes in the number n at various trophic levels 
result in automatic changes in the model structure. By using a subset of the state 
variables of the generalized biological model, one can simulate various ecosystems. 
For example, if the component number n is assigned to 1 for nutrient, phytoplankton, 
and zooplankton and to 0 for all other functional groups, the generalized biological 
model will represent the Nutrient-Phyroplancton-Zooplancton (NPZ) model. When 
the component number of detritus is assigned to 1 in the previous configuration, the 
generalized model will be an NPZ-detritus (NPZD) model. If the component number 
is assigned to be 2 for all the trophic levels above, the generalized biological model 
will be a doubled NPZD model. The potential combinations and actual structures of 
the generalized biological model can be very large. 

In the application, the state variables, model structures, and parameter values can 
change, at execution time, in response to field measurements, ecosystem function, 
and scientific objectives. All of these components of the model can be driven 
dynamically by data inputs. The Poseidon-DDDAS model has been coupled with 
HOPS. The forecasting system application includes the Monterey Bay area to study 
biological response to upwelling events at ecosystem level. 

14.3.2.1 Monterey Bay Application 

The Monterey Bay ecosystem is characterized by episodic upwelling events, patchi-
ness, and filaments in biological fields resulting from upwelling jets, plumes, fronts, 
and interactions with the California Coastal Currents. The large-size mesoplankton 
food web generally dominates in upwelling centers and plumes whereas the 
microbial food web prevails in the adjacent oceanic waters. Succession in food 
web structure between upwelling and relaxation periods has also been observed. To 
adapt the generalized biological model to this specific ecosystem, 10 state variables 
were considered in the simulation, including the microbial food web (NH+, pico-
phytoplankton, microzooplankton, bacteria, dissolved organic carbon (DOC) and 
particulate organic carbon (POC)) and the mesoplankton food web (NO−

3, diatoms, 
mesozooplankton, and large sinking detritus). In addition to these 10 functional state 
variables, 4 auxiliary variables were simulated as well: prokaryote, eukaryote, and 
total chlorophyll and bioluminescence.
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Fig. 14.4 Simulated surface water temperature (◦C) before (left) and after (right) non-automated 
adaptation on August 11, 2003 during the AOSN-II experiment in Monterey Bay 

The dynamic-data-driven physical and biological prediction system was applied 
during the AOSN-II field experiment. Remote and in situ sensors and platforms 
including multiple satellite images, drifters, gliders, moorings, autonomous under-
water vehicle (AUV), and ship-based data [1] were deployed to collect data in real 
time. These data were dynamically assimilated into the numerical models and daily 
predictions of the ocean fields and uncertainties were issued. Prior to the experiment, 
model parameters were calibrated to historical conditions judged to be similar to the 
conditions expected in August 2003. Once the experiment started, it was necessary 
to adapt several parameters of the physical ocean model to the new 2003 data. This 
adaptation involved the parameterization of the transfer of measured atmospheric 
fluxes to the upper layers of this model. As shown in Fig. 14.4, the new values 
for wind mixing clearly modified surface properties and improved the temperature 
fields and corresponding currents. 

The generalized biological model and parameter values have been configured 
to adapt to the Monterey Bay system. Historical data have been mapped onto the 
simulation grids by using objective analysis, which was then used to initialize the 
biological simulation. The simulation was started on August 6, 2003, and stopped 
on August 11, 2003, making for a 5-day simulation. The preliminary results show 
that physical processes are the key factor in determining biological dynamics and 
distribution. While primary production is linked to upwelling events, the distribution 
of biological field is essentially determined by currents and eddies. An anticyclone 
was simulated offshore from Monterey Bay. Corresponding filaments and fronts in 
biological distributions can be observed in Fig. 14.5. 

In summary, DDDAS concepts were applied to physical parameterizations at 
execution time, and in real time [38]. The next steps improve the execution-time 
optimization of the physical parameterization and apply such DDDAS ideas for 
biogeochemical modeling in real time.
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Fig. 14.5 Simulated field of total (left), eukaryote (middle), and prokaryote (right) chlorophyll 
(µg/l) on August 11, 2003 in Monterey Bay during an upwelling event 

14.3.3 Acoustical-Biological Measurement Models 

Acoustical-biological measurement models involve the reversal of the underwater 
sound wave scattering process, thereby allowing estimation of the biological pop-
ulation size and species distribution (zooplankton population) from the backscatter 
spectrum [2, 47, 57]. The scattering reversal process (acoustical inversion) allows 
estimation of the expected value of the zooplankton size and species distribution as 
well as estimation of the error of the inversion process. 

Estimation of the error of such an inversion process is useful in the acoustic 
modeling and assimilation framework [29, 62]. In addition, such error estimation 
is needed for the development of adaptive sampling (Sect. 14.3.1 and [61, 62, 
64]), which aims to optimally reduce the uncertainty in the field estimates. The 
present acoustical-biological measurement methods allow for implementation in 
practice for acoustical-biological-physical estimation via judicious adjustment of 
the real-time acoustic sensing capability. Initial report and the technical details of 
the acoustic-biological models are reported in [47]. 

14.4 Components of the Poseidon System: Architecture 
Design and Progress 

This section shows initial accomplishments in distributed/grid computing, user 
interfaces, and overall design of an automated DDDAS. The present design 
parameters are based on the computational and user requirements of Poseidon with 
respect to the underlying computational framework, its interfaces, and the acoustical 
and biological adaptive modeling, and adaptive sampling components [65, 66, 62]. 
The subsequent subsections present some of the research issues, the resulting design 
developed by the authors, and implementations of the architecture of the evolving 
system.
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14.4.1 Distributed/Grid Computational Strategies 

Rapid interdisciplinary ocean forecasting relies heavily on measurements (in situ 
and remote) and models, with associated storage and computation requirements. 
Data and models are brought together through the process of data assimilation 
and, in the case of ESSE, the computational work is based on a massive ensemble 
of forecasts (at least several hundred). The large number of forecasts imposes 
significant demands on computational power and storage while at the same time 
being an ideal example for high throughput distributed computing. ESSE ensembles, 
however, differ from typical parameter scans (one of the most common approaches 
in high throughput applications) in more than one way: (a) there is a hard deadline 
associated with the execution of the ensemble, as a forecast needs to be timely; 
(b) the size of the ensemble is dynamically adjusted according to the convergence 
of the ESSE procedure; (c) individual ensemble members are not significant (and 
their results can be discarded if unsatisfactory, or ignored if unavailable) – what is 
important is the statistical coverage of the ensemble; (d) the full resulting dataset of 
the ensemble member forecast is required, not just a small set of numbers; and (e) 
individual forecasts within an ensemble, especially in the case of interdisciplinary 
interactions and nested meshes, can be parallel programs themselves. 

The significant computational and data requirements of ESSE have driven the 
adoption of an underlying grid and cloud computing-based framework [68] for  the  
Poseidon system allowing for future scalability beyond the confines of a single 
laboratory and at the same time capitalizing on the significant corpus of work in 
existence and development in the area of grid computing technologies (specifically 
the Globus [59] Toolkit). Such approaches are needed to accommodate the dynamic 
computation and data requirements of environments such as the present DDDAS-
based Poseidon system. 

The low-level computational strategy applied here was shaped by the often-
conflicting targets of (i) maximizing computational performance, (ii) maintaining 
programming investment, and (iii) accommodating the needs of software devel-
opers. To avoid the resulting major discontinuity in code development [58], the 
present work uses the constituent domain science routines themselves rather than 
transforming them into the subroutine form suitable for classical component [7, 8] 
or Java agent-based distributed computing [26, 28] (which would also require more 
effort to integrate with a Globus-based Grid computing environment). Component 
interaction thus generally takes place via file input/output (I/O) within automated 
workflows. To address performance issues, on the other hand, the authors’ strategy 
employed parallel approaches (using Message Passing Interface (MPI) and cou-
pling frameworks [30]) for the tightly coupled interdisciplinary applications (e.g., 
biology-physics) rather than allow for the far less efficient exchange of data files. 
Finally, adaptivity that cannot be efficiently expressed at the workflow level is to be 
implemented within the software in an elegant and efficient manner using function 
pointers and mixed-language programming.
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Fig. 14.6 An overview of the functional components of the Poseidon system and how it improves 
the efficiency and capability of the HOPS/ESSE system (schematized in the lower right corner) 

A high-level view of the grid computing-based system architecture of Poseidon 
is provided in Fig. 14.6. It illustrates the grid (upper arrow), the computational 
components currently being developed (boxes on the left and upper portions), and 
the existing HOPS/ESSE system (schematized on the lower right-hand corner), 
which allows non-automated objective adaptive sampling and adaptive modeling 
(see feedback arrows from the state/parameter estimates to the data and models 
respectively, see also [38]). 

The goal of the computational components (rectangular boxes in Fig. 14.6) 
is to improve the efficiency of the existing system, especially the automation of 
multiple tasks carried-out in modern interdisciplinary ocean observing and predic-
tion experiments. The design of these computational components is evolving in a 
manner compatible with the emerging Earth Science Grid initiative [13], allowing 
us to capitalize on new developments in that area. Grid computing will provide 
transparent interoperability of the distributed resources: the Globus Toolkit is 
employed for multi-user distributed authentication/authorization, data and compute 
access, etc. Remote users will connect to the Poseidon system through a Grid Portal, 
as well as directly from more powerful clients. Observations will be transferred 
to Grid/Open Data Access Protocol (DAP) [9] enabled Data Storage Resource 
Managers while their associated location (and that of any valid cached copies) is 
recorded in a Replica Location Service (RLS [6]). The same data grid assets store
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the results of forecasts. The metadata for any observational and simulation datasets 
will be stored in an Oceanographic Metadata Catalog Service (MCS [56]), allowing 
for searching for datasets based on their content rather than their filename. The 
combination of MCS and RLS allows the location of the most appropriate physical 
copy of the dataset to be used by the system for (a) the computations performed 
at the Grid-enabled computational resources (e.g., clusters, users’ workstations, 
and Teragrid resources) and (b) any visualization and data analysis tasks the user 
requires. A software metadata repository will store the description files (see Sect. 
14.4.2.1) used for remote configuration of the computational tasks. 

14.4.2 User Interfaces 

For the eventual adoption into production use of a complex interdisciplinary system 
such as Poseidon, it is very important for it to be user-friendly, minimizing the 
underlying computational and management complexity from ocean scientist users. 
While a significant part of the intricacy of the use of grid computing middleware can 
be behind Web-enabled Computational Portals and Problem Solving Environments, 
the complicated (build- and run-time) configuration of the actual interdisciplinary 
computational components in the Dynamic Data Driven Poseidon Application 
System remains a challenge. Ubiquitous access (from remote sites, e.g., on ships) 
via a lightweight graphical user interface (GUI) was determined to be a very 
important requirement. At the same time, visualization which is an integral part 
of the ocean forecasting process - both for purposes of adaptive sampling and 
for the eventual interpretation of the forecasts, needs to be dealt with within the 
same framework. The visualization system design needs to balance the needs for 
interactive exploration of datasets with the restrictions of widespread access: such 
as for low-bandwidth connections and heterogeneous low-end mobile clients. 

14.4.2.1 Generic Web User Interfaces 

The process of designing Poseidon had to address the fact that HOPS (like other 
ocean applications, e.g., for physical oceanography ROMS [23] or for ocean 
acoustics OASES [55]) are, like most scientific applications, legacy1 programs. 
The software native binaries expect a standard input (stdin) stream, maybe some 
command line options, and a set of input files and generate a set of output 
files as well as standard output (stdout) and error (stderr) streams. In such a 
setup, workflows are either executed interactively in a step-by-step fashion (a very

1 The term “legacy” should not be misconstrued to imply outdated code in this context: these are all 
codes with an active development community and recent enhancements. For various reasons, they 
are still being developed mainly in Fortran and in any case are command line and not GUI-driven. 
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common approach) or (after potential problems are handled) as hard-coded shell 
scripts that can be executed in the background. While such an approach, which 
dates from the days when GUIs were not available, is efficient for a skilled user, 
it still is cumbersome, is error-prone, and entails a steep learning curve. Runtime 
configuration files are complex in general, follow their own formatting rules, may 
obey complicated dependency, and conflict rules and are rarely self-documenting. 
Add to these challenges is the extra complication of configuring the rebuilding of 
the code (e.g., via a set of preprocessing definitions specified in a Makefile, each 
with its own dependencies on others and on runtime configuration options) and one 
arrives at a scenario that is not suited for remote use over the Web. 

The Poseidon system, as all DDDAS environments, requires efficient data 
interfaces and data handling. After examining various ways of dealing with this 
issue without costly changes for developers [58], and keeping in mind that the 
Poseidon system should allow for future handling of non-HOPS components 
without excessive recoding, the decision was made to avoid changing the codes 
or generating specialized GUIs; instead opting to describe their functionality and 
requirements – essentially “software metadata” – using the eXtensible Markup 
Language (XML) [14]. Thus, for practical purposes, a computer-readable manual 
for the codes was created, with information useful for checking option/parameter 
correctness (type, range, and dependencies) and producing properly formatted input 
files, scripts, Makefiles, and command lines. The authors developed a hierarchy 
of XML Schemata [54, 63] for their software metadata descriptions, attempting 
to cover as general a set of legacy applications as possible beyond the HOPS 
and acoustics binaries in Poseidon [4, 15, 16, 17]. A prototype Java-based tool, 
called LEGEND (LEGacy Encapsulation for Network Distribution) [19], was 
designed using a repository of software metadata and associated schemata, which 
automatically generates a validating GUI to produce scripts for building and running 
the binaries and allows for controlling their grid or local execution. Results of the 
XML Schemata approach are presented in [17]. 

14.4.2.2 Remote Visualization and Feature Extraction 

The graphical output from the individual components of the Poseidon system is 
based on a variety of software: for example, National Center for Atmospheric 
Research (NCAR) Graphics [42] and MATLAB are used in HOPS and MINDIS 
or PLOTMTV for OASES. While it is possible to use these tools remotely over the 
network (via X-Windows or VNC [60]), such a solution is not efficient (with secure 
access exacerbating the situation), can become unusable over slow connections, and 
imposes extra software and hardware restrictions on the client machines. A major 
requirement has been the handling of the Network Common Data Form (NetCDF) 
self-describing portable file format that HOPS and most ocean modeling codes 
use. Based on scientists’ usage patterns, three different visualization approaches 
are pursued as part of the present work:
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1. To cover the standard set of 2D horizontal and vertical slice-based visualizations 
ocean scientists always look at, the LEGEND-configurable shell scripts are 
employed here, that automatically generate Web pages with the required results 
embedded as images. Such scripts use the existing tools (NCAR Graphics), thus 
leveraging the robust corpus of model-specific visualization work. 

2. For more interactive and capable visualization work, Open Data Explorer 
(OpenDX) from IBM [43] and Java Explorer [27], are employed which (using 
applets for remote control) allow the rendered visualization output to be updated 
on the user’s Web browser. OpenDX offers us the capability to graphically 
compose complicated interactive visualization (possibly distributed) workflows – 
these are then exported via Java Explorer for Web usage. While the interactive 
response of this approach is worse compared to using OpenDX locally, such an 
approach fits remote lightweight clients. 

3. At the same time, the Poseidon system allows users to transfer datasets via the 
grid to their local workstations and use their traditional (or future) local tools in 
a manner very similar to their existing mode of operation. 

Beyond user-friendly remote visualization, the relevance and usefulness of the 
visual picture improve situation awareness. Without feature extraction, the human 
operator needs to visually identify important dynamical events, which is vital for 
human-directed adaptive sampling. Visualization is an aspect that is important in 
DDDAS environments where both the model and the user are enabled to control 
the measurement process. The authors have been developing a suite of tools to 
automatically identify oceanic flow features such as eddies/gyres and upwelling 
and graphically present these results to enhance the effectiveness of the human 
forecaster and operations planner. For the more involved problem of vortex (eddy) 
identification an efficient two-stage algorithm has been developed that first identifies 
vortex cores and then locates the boundaries of the closed streamline region around 
them [21, 22]. The same tools, appropriately modified, can serve as key components 
in the fully automated adaptive sampling loop as part of a dynamic data-driven 
observation system. 

14.5 Conclusions 

This chapter provides an overview of a DDDAS-based system for rapid adaptive 
interdisciplinary ocean forecasting as implemented in the Poseidon system. Infor-
mation technology allows the development of an Internet-based distributed system 
that enables the seamless integration of field and remote observations, dynamical, 
measurement and error models, data assimilation schemes, and adaptive sampling 
strategies for the effective estimation of oceanic fields and their uncertainties. 
The work presented in this chapter describes important components of the system 
available for extensions and further development. Also presented are illustrative 
examples of interdisciplinary modeling and forecasting for DDDAS integration
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into ocean science research. This chapter highlighted automated adaptive modeling 
and sampling, fully coupled physical-acoustical-biological oceanography, and grid 
computing applications that afford to monitor ocean activity. 
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