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Abstract—Onboard forecasting is challenging but essential for
unmanned autonomous ocean platforms. Due to the numerous
operational constraints of these platforms, efficient adaptive
Reduced-Order Models (ROMs) are needed. In this work, we
employ the incremental Low-Rank Dynamic Mode Decomposi-
tion (iLRDMD), which is an adaptive, data-driven, DMD-based
ROM that enables efficient forecast compression, transmission,
and onboard forecasting. We demonstrate the algorithm on 3D
multivariate Hybrid Coordinate Ocean Model (HYCOM) ocean
fields in the Middle Atlantic Ridge (MAR) region. We further
demonstrate that these iLRDMD ocean forecasts can be used
for interdisciplinary applications such as underwater acoustics
predictions. Here, acoustics fields computed from the ocean iL-
RDMD forecasts are compared to those computed from HY COM
fields. We also illustrate the application of a joint ocean-acoustics
iLRDMD model for predetermined acoustics configurations. In
the MAR region, we find that iLRDMD models are sufficiently
accurate and efficient for onboard ocean and acoustic forecasting
of temperature, salinity, velocity, and transmission loss fields.

Index Terms—reduced-order model, Dynamic Mode Decompo-
sition, forecast dissemination, communication, AUVs, autonomy,
underwater acoustics

I. INTRODUCTION

For many unmanned autonomous platforms at sea, suf-
ficiently accurate forecasts of the ocean states are crucial
for parts of its missions such as ocean monitoring, path
planning, or underwater acoustics computations [1]-[3]. Due
to the operational constraints such as onboard power, memory,
communication bandwidth, and space limitations, autonomous
platforms cannot run high-fidelity numerical ocean simula-
tions onboard. Therefore, a sufficiently accurate and efficient
reduced-order model (ROM) is needed for reliable onboard
forecasting of the ocean. In previous works such as [4], [5],
the Dynamical Mode Decomposition (DMD) model [6]-[10]
was demonstrated to be an accurate ocean ROM for a relatively
short time period. However, as the DMD model is limited to
linearly approximating the underlying dynamics, its forecast
accuracy was shown to decay over time [4], [5], especially
without updates from remote forecasting centers. To address
several of these challenges specific to ocean applications, we
employ the iLRDMD algorithm [3], [11]. The iLRDMD is
an adaptive ROM that updates the onboard DMD model with
new high-fidelity forecasts from numerical ocean simulations
computed and transmitted from remote centers. Specifically, it
uses the Proper Orthogonal Decomposition (POD) and DMD
for efficient compression and transmission of the high-fidelity
forecasts and the subsequent update of the onboard DMD

model from the compressed forecasts. Finally, the onboard
iLRDMD model can be used to provide onboard forecasts for
the autonomous platforms.

In this work, we build upon our previous evaluation of the
iLRDMD algorithm with an univariate 2D flow behind a cylin-
der test case [11] and demonstrate the iLRDMD algorithm on
multivariate 3D ocean physics and acoustics applications. For
the ocean physics, we utilize the Hybrid Coordinate Ocean
Model (HYCOM) hindcast from January and February of
2020 in the North Atlantic domain ran by the Naval Research
Laboratory [12]-[14]. This was a similar run to the Global
Ocean Forecasting System 3.1 reanalysis that spanned 1994-
2021 [15]. The HYCOM forecasts were 1/12.5 deg two-way
coupled to the Los Alamos Community Ice Code and used the
Navy Coupled Ocean Data Assimilation [16], [17] for data as-
similation. The National Centers for Environmental Prediction
Climate Forecast System Reanalysis - Version 2 [18], [19] was
used for the atmospheric forcing. We train the iLRDMD model
on a region around an ocean cross-section of interest near the
Middle Atlantic Ridge (MAR). We explore the feasibility of
using the iLRDMD ocean forecasts for underwater acoustics
computations. The iLRDMD model’s salinity and temperature
forecasts are first used to compute the sound speed field. This
is then used as an input for the acoustic Multidisciplinary
Simulation, Estimation, and Assimilation Systems (MSEAS)
- Parabolic Equation framework (MSEAS-ParEq) [20], [21]
to compute the acoustic pressure and transmission loss (TL)
fields. Finally, we explore the use and accuracy of a joint
ocean-acoustics iLRDMD model. This has the potential of
more efficiently reducing and forecasting joint ocean-acoustics
fields for predetermined acoustics configurations.

II. INCREMENTAL LOW-RANK DMD (1ILRDMD)

The iLRDMD algorithm enables the efficient compression
and transmission of high-fidelity numerical ocean simulations
from remote centers and the subsequent update of the on-
board DMD model for onboard forecasting [3], [11]. The
iLRDMD algorithm accomplishes this by: i) projecting the
full-dimensional, high-fidelity ocean forecasts computed at
remote centers onto POD bases and transmitting them to the
autonomous platforms; ii) updating the onboard DMD model
using the compressed ocean forecasts in the reduced space;
iii) providing ocean forecasts in the full-dimensional physical
space; and iv) over longer times, as the underlying dynamics
change significantly, updating the POD bases on the remote
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centers and communicating it to the platforms. The novelty of
the iLRDMD algorithm comes from how it efficiently uses the
POD-compressed ocean forecasts to update the onboard DMD
model without having to reconstruct the full-dimensional state.
The full-dimensional states only need to be reconstructed when
onboard forecasting is needed.

In the following sections, we summarize the components of
the iLRDMD algorithm including the DMD, low-rank DMD,
incremental DMD [22], and incremental POD algorithms [23],
[24]. More detailed explanations of each of the components
can be found in [3].

A. Dynamic Mode Decomposition (DMD)

In this section, we first briefly review the DMD algorithm
developed in [6]-[10] as it serves as the underpinning for
the iLRDMD algorithm. The following description of DMD
closely follows that of [6] and is given in the same notation
as in [3]. The DMD algorithm typically considers snapshot
matrices

X = [Xl X2 Xnt—l} (D

and

X—l - [XQ X3 Xnt] 5 (2)

where X, X’ € R™*(=1_ For ocean applications, the
individual state vectors of the snapshot matrices could, for
example, be 2D univariate fields of sea surface tempera-
ture (SST) or 3D multivariate fields including u-velocity, v-
velocity, salinity, temperature, and ocean free-surface stacked
into a single (normalized) vector [25], [26].

The DMD algorithm then aims to find an operator A that
is the solution to the following minimization problem

mjinHX’ — AX]|p. 3)
The optimal A can be shown to be
A =XXx @)

where X' is the Moore-Penrose pseudoinverse of X that
can be computed using the n, truncated singular value
decomposition (SVD). With the following truncated SVD
X ~ U, %, VL the matrices U, € R"™*" %, €
R " and V,, € R(=DX" where n, < ng,ny, the
pseudoinverse of X is X' ~ V,, 31U .

In practice [6], for computational efficiency, we often com-
pute A, that is the n, x n, projection of A onto the POD
modes U,, and that can be written as

A=U’ AU, . (5)

B. Forecast Dissemination and Low-Rank DMD

The iLRDMD algorithm obtains efficient and accurate com-
pression of the full-dimensional ocean forecasts by projecting
them onto a set of POD bases. These compressed states
Z.Z' € R"*("=1) are defined as

Z=U!X, 7' =U]X. (6)

The DMD operator defined from the minimization problem

. / _
HA{}IHZ A Z||p (7)

can be shown as in [3] to be equivalent to A defined in
eq. 5. Defining the low-rank DMD in such a way means
that the DMD operator can be efficiently built from the
compressed states Z, Z’. Then, once the onboard forecasts are
needed, the pre-loaded or communicated POD bases are used
to reconstruct the full-dimensional states.

C. Weighted Incremental DMD (iDMD)

The iLRDMD algorithm starts from the low-rank DMD and
aims to update the onboard DMD model with new compressed
states. The novelty of the iLRDMD algorithm lies in that the
iDMD [22] update is done in the compressed state space and
not in the full-dimensional state space. Consider the DMD
operator A, ,, 1 that is defined for the compressed states

Zp,—1] (3
Z;Ltq = [P 2 P z3 - Znt] , ©)]

where p € [0, 1] is the forgetting rate [22], [27], [28]. Given a
set of new state vectors (2y, , Zn,+1), the iIDMD algorithm [22]
gives a set of efficient update equations to obtain the DMD
operator A, ,, that is defined for

_ -2 —1
Zoy s = [ e

nt72z ne—1

ni—1
Znt = [pnt Z
’

7 — [pnt71Z2

ne

(10)
(an

PZn,—1 znt] )

PZpn, Zn, +1} .

Pz
Ptz
D. Incremental POD (iPOD)

As the underlying dynamics change significantly, the com-
pression accuracy of new forecasts onto the set of pre-trained
POD bases decays. This could be alleviated by having a more
robust set of POD bases to begin with. However, the iLRDMD
algorithm utilizes the high-fidelity forecasts on remote centers
to update the POD bases. Fundamentally, the iPOD algorithm
[23], [24] aims to start from the SVD of

X, ~U,, %, V!

T

12)

with Xj € R"=** and obtain the components of the SVD of
Xk—i—l:
VT

Tr41’

X1 ~ Uy, S (13)

Tk41 Tk+41

with simple update equations to the individual components
U,,,%,,,and V,.

III. UNDERWATER ACOUSTICS COMPUTATIONS

Underwater acoustics computation and prediction is fun-
damentally complex due to the myriad of processes such as
internal tides, waves, fronts, eddies, surface dynamics, and air-
to-sea interactions that affect sound propagation on a wide
range of temporal and physical scales [29]-[36]. Previous
results in our group [20], [21], [33], [36]-[44] have employed
ensemble and dynamically-orthogonal equations to predict
ocean physical-acoustical field probabilities and complete mul-
tivariate joint Bayesian estimation and inversion of physical-
acoustical fields.
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To predict underwater acoustics performance from hours
to days or weeks into the future, one can utilize regional
and global ocean forecasts computed from numerical data-
assimilating ocean modeling systems. In this work, to allow
acoustic forecasting onboard ocean vehicles, we explore the
use of the iLRDMD ocean forecasts for deterministic un-
derwater acoustics forecasting. As previously outlined, the
3D multivariate ocean iLRDMD forecasts of the temperature
and salinity fields are first used to compute the sound speed
fields. These are subsequently used as inputs for the acoustic
MSEAS-ParEq model [20], [21]. Another method to predict
underwater acoustics performance into the future is to augment
the ocean state vectors with acoustics variables for a joint
ocean-acoustics iLRDMD. This would be particularly useful
when the platform has a predefined use case with a set source
type and location, receiver location, ocean section, etc.

IV. APPLICATIONS

In this work, we demonstrate the iLRDMD algorithm on
the HYCOM hindcast fields in the North Atlantic domain
[12], [13]. The HYCOM hindcast fields on January and
February 2020 are given every 3 hours. Here, since the goal
is to reduce the HYCOM hindcast fields, they are considered
as the ground truth against which we compare our reduced-
order iLRDMD forecasts. Similarly, for underwater acoustics
computations results, the acoustics field computed from the
ocean iLRDMD forecasts are compared to those computed
from HYCOM fields.

A. 3D multivariate Ocean iLRDMD forecasts

For building the 3D multivariate iLRDMD model, we
consider the u-velocity, v-velocity, temperature, and salinity
fields in a smaller region of interest marked by the black
box in figure 1. This encompasses the 240 km ocean section
with the source and frequency location marked by the red
line in figure 1. Defining this physical subdomain of influence
around the ocean section enables the iLRDMD model to
capture the scales of dynamics that are relevant for the ocean
acoustics section. Note that the goal of the 3D multivariate
iLRDMD model is to provide onboard forecasting of salinity
and temperature to be used for the subsequent underwater
acoustics computations.

We employ the first 380 three-hourly HYCOM fields for
training with a forgetting rate of 0.7. The POD-compressed
forecast states are assumed to be received every 24 hours in the
form of forecast coefficients. The more expensive transmission
of the updated POD bases is assumed to occur every 96 hours.
Finally, we only use 379 POD modes for compression and
transmission, resulting in a compressed file size of 3.03 kB. In
comparison, the original smaller subdomain has corresponding
grid point sizes of 101 x 89 x 101 (lat, lon, depth), resulting in
a full-dimensional file size of 7.26 MB. This is approximately
equivalent to a 2395:1 compression ratio.

We now demonstrate the accuracy of the 3D multivariate
iLRDMD ocean forecasts of temperature and salinity in figures
2 and 3 respectively, using the Pattern Correlation Coefficients

Ocean bathymetry with section line
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60°W 48°W

Fig. 1. HYCOM’s ocean bathymetry in the North Atlantic region with a
240 km ocean section near the Middle Atlantic Ridge (MAR) domain (red
line) and the relevant ocean region of influence (black box). he source and
receiver locations are marked by ‘S’ and ‘R’, respectively.

(PCC). The PCC is a time mean subtracted pattern coeffi-
cient [45] where 1 means perfect correlation, 0 means no
correlation, and —1 means anti-correlation, between a target
signal and its predicted estimate. It can be seen from both
of the figures that the PCC initially slowly decays over time
until about 0.6 to 0.7 until it sharply recovers when the POD
bases is updated. The decay in PCC is indeed due to the
POD bases no longer being as accurate in the compression
and transmission of new forecasts. Although the iLRDMD
model is being updated with compressed forecasts, as the
compression bases becomes more inaccurate, the iLRDMD
forecasts’ accuracy continues to decay. Once the updated POD
bases are communicated and the new forecasts are compressed
accurately once again, the iLRDMD forecasts recover a higher
level of accuracy. This corresponds to the sharp recovery of
the PCC values.
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Fig. 2. PCC evolution over time of the 3D multivariate iLRDMD forecasts
of temperature

The PCC values correspond to the error fields in the physical
domain well. Figures 4, 5, and 6 show the error field of the
SST in the region of interest on 2020 Feb. 18 03:00, Feb. 18
18:00, and Feb. 22 00:00 respectively. It can be seen that the
errors initially increase over time from Feb. 18 03:00 to 18:00.
This corresponds to the decrease in the PCC shown in figure 2.
The SST field on Feb. 22 00:00 in figure 6 corresponds to the
time at which the updated POD bases is communicated and
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Fig. 3. PCC evolution over time of the 3D multivariate iLRDMD forecasts
of salinity

the PCC recovers significantly in figure 2. It is clear that the
PCC values are reflected in the overall error in the physical
fields. Although only the error fields for SST were shown
here, a similar trend can be observed for other ocean forecast
variables and at different depths as well.

03:00

Fig. 5. Error field of SST in the region of interest on 2020 Feb. 18 18:00

0.6

0.4
0.2
0
0.2
0.4

26°W

-
- F

34w 2'w 28w

Fig. 6. Error field of SST in the region of interest on 2020 Feb. 22 00:00

B. iLRDMD ocean forecasts for underwater acoustics

Sound speed fields can be computed using the above
reduced-order 3D multivariate iLRDMD forecasts of tempera-
ture and salinity. Figures 7, 8, and 9 show the temperature
and the derived sound speed error fields (“heat maps”) in
the 240 km transect, at their respective times. As before, it
can be seen that the errors initially increase over time from
Feb. 18 03:00 to 18:00 in figures 7 and 8. However, once the
updated POD bases allow the iLRDMD model to be updated
with more accurately compressed forecasts, the error decreases
in figure 9. It can also be seen that the errors are higher near
the surface for the temperature error fields. This is in part
because the 3D multivariate ocean iLRDMD model does not
include variables that significantly affect the surface such as
atmospheric forcing. A similar pattern of the error field is
observed for sound speed since it is a derived quantity of
temperature and salinity.
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Fig. 7. Temperature and sound speed error fields (“heat maps”) in the 240 km
transect on 2020 Feb. 18 03:00

The sound speed fields obtained in the previous step can
now finally be used as inputs for our MSEAS-ParEq model
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Fig. 8. Temperature and sound speed error fields (“heat maps”) in the 240 km
transect on 2020 Feb. 18 18:00
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Fig. 9. Temperature and sound speed error fields (“heat maps”) in the 240 km
transect on 2020 Feb. 22 00:00

to compute acoustic pressure and TL fields. For the acoustics
results, we assumed that we have an omni-directional source
at 10 m depth on the left, which is marked by a pink dot in
figure 10. We also assumed a receiver position at 50 m depth.

Figure 10 shows the TL fields computed based on HY-
COM and iLRDMD ocean fields on 2020 Feb. 18 03:00.
Qualitatively, we find that the TL fields computed from the
reduced-order iLRDMD forecasts at both times look similar to
those computed directly from the high-dimensional HYCOM
fields. The sound channel locations also seem to be predicted
at relatively correct locations. Fields at other times provide
similar results (not shown).

We now take a further look into the errors between the
TL fields computed from iLRDMD and HYCOM fields, as
shown in Figures 11, 12, and 13. The TL errors on 2020
Feb. 18 03:00 in figure 11 seem to be concentrated near the
surface or further down in range. However, on 2020 Feb. 18
18:00, more errors emerge both deeper in the ocean section
and closer to the source. Finally, once the updated POD bases
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Fig. 10. Transmission loss (TL) fields computed from HYCOM and from
reduced-order iLRDMD ocean fields in the 240 km transect on 2020 Feb. 18
03:00

are communicated and the iLRDMD ocean forecast recovers a
high PCC, the TL errors also decrease significantly throughout
the ocean section. Of course, in some underwater acoustic
applications, there are error metrics more appropriate than the
PCC or the root-mean-square-error of the continuous wave
transmission loss. Here, we use PCC and error fields as an
initial evaluation.

C. Joint ocean physics-acoustics iLRDMD forecasts

Finally, we demonstrate how a joint ocean-acoustics ilL-
RDMD model could be utilized for onboard underwater acous-
tics forecasts. This could be particularly useful when the
platform has a predefined use case that is of primary concern
(e.g., a known set source type and location, receiver location,
ocean section, etc.). The joint ocean-acoustics iLRDMD model
is trained by augmenting the state vectors with TL fields
computed based on HYCOM hindcasts within the same ocean
acoustics section as in the previous examples. This joint
forecast results in an increase in full-dimensional file sizes to
around 33.86 MB. Upon projection onto the POD bases, the
resulting compressed file size is 3.03 kB. This is approximately
equivalent to a 11175:1 compression ratio.

The TL error fields from the joint ocean-acoustics iLRDMD
forecasts on 2020 Feb. 18 03:00, 18:00, and Feb. 22 00:00 are
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Fig. 11. Error field in TL computed from iLRDMD ocean forecasts in the
240 km transect on 2020 Feb. 18 03:00
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Fig. 12. Error field in TL computed from iLRDMD ocean forecasts in the
240 km transect on 2020 Feb. 18 18:00
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Fig. 13. Error field in TL computed from iLRDMD ocean forecasts in the
240 km transect on 2020 Feb. 22 00:00

shown in figures 14, 15, and 16. Most notably, while the TL

errors based on ocean iLRDMD forecasts were concentrated
near the surface, the TL errors based on the joint ocean-
acoustics iLRDMD forecasts are relatively evenly distributed
around the ocean section. Similarly to previous examples,
the joint ocean-acoustics iLRDMD forecasts also show errors
initially increasing until the POD bases are updated. Once the
POD bases are updated, the errors decrease significantly, as
shown in figure 16.
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Fig. 14. Error field in TL computed from joint ocean-acoustics iLRDMD
forecasts in the 240 km transect on 2020 Feb. 18 03:00
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Fig. 15. Error field in TL computed from joint ocean-acoustics iLRDMD
forecasts in the 240 km transect on 2020 Feb. 18 18:00

V. CONCLUSION AND FUTURE WORK

In this work, we employed the iLRDMD algorithm, which
allows the efficient compression and transmission of high-
fidelity ocean forecasts, efficient updating of the DMD model
using the compressed forecast coefficients, and, finally, on-
board ocean forecasting. The application area was in the
Middle Atlantic Ridge (MAR) region, using the global Hybrid
Coordinate Ocean Model (HYCOM) reanalysis. The iLRDMD
algorithm was utilized for simulated onboard forecasts of 3D
multivariate ocean fields in this MAR domain. The iLRDMD
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Fig. 16. Error field in TL computed from joint ocean-acoustics iLRDMD
forecasts in the 240 km transect on 2020 Feb. 22 00:00

model was trained on a subdomain around an acoustic region
of interest to ensure that the model captures the domain of
influence with the relevant scales and dynamics. Furthermore,
we demonstrated that the iLRDMD forecasts can be used for
interdisciplinary applications such as underwater acoustics.
It was shown that the error in transmission loss using the
iLRDMD forecasts is acceptable and the sound channels were
predicted at the correct locations. Finally, we demonstrated
that the joint ocean-acoustics iLRDMD model can be used to
provide onboard forecasts of ocean and acoustic fields with
pre-specified acoustic characteristics.

Future work involves incorporating additional variables that
influence the ocean dynamics in our adaptive reduced-order
modeling. This includes atmospheric forcing that affect the
ocean forecasting accuracy especially near the surface as well
as open boundary conditions that vary in time and space. Other
areas of ongoing work involves further sensitivity studies and
new dynamic schemes for adapting various parameters within
the iLRDMD algorithm. Establishing metrics for the errors that
are most relevant for the application domain is also important
for optimal reduced-order modeling. For example, being able
to predict the presence of specific acoustic or ocean features
can be more important than the exact position and time of these
features. Other promising directions are interdisciplinary data
assimilation [46], [47] directly within the iLRDMD framework
as well as onboard Bayesian and machine learning [48]—[51].
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