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c OPTIM LAB, Ecole Nationale de l’Aviation Civile, Toulouse, France
†Corresponding author: pierrel@mit.edu

Abstract—General differential equations for multi-objective
reachability and optimal planning are used to guide autonomous
air and sea drones in hazard-time optimal missions. The vehicles
minimize exposure to hazards and travel time, leveraging the
dynamic environments with strong flows and steering clear
of dynamic hazardous regions. We demonstrate the approach
first with an autonomous air drone that crosses the Atlantic
Ocean optimizing travel time using trade winds while avoiding
hazardous rain storms in the inter-tropical convergence zone.
We then consider an air drone that exploits winds and avoids
hazardous rains to transport an ocean vehicle to a target
destination. The ocean vehicle then completes its own hazard-time
optimal mission, leveraging ocean currents and avoiding vessel-
traffic hazards. In all cases, we predict hazard-time reachable
sets, Pareto fronts, and optimal paths. The results highlight the
benefits of considering hazards in optimal path planning.

Index Terms—Path planning, reachability analysis, ocean fore-
casting, weather forecasting, uncertainty, natural hazards, risk
management.

I. INTRODUCTION

The integrated optimization of autonomous air and marine
platforms is becoming a grand challenge for the efficient
utilization, monitoring, and protection of our environment
and sustainable life on Earth. Applications include research,
environmental monitoring, conservation, climate change mit-
igation, weather prediction, ocean forecasting, transport and
distribution of goods, security, air-sea operations, communi-
cation, search and rescue, space and marine industry, and
the blue economy. To achieve successful integrated air-sea
autonomy in such applications, leveraging the complex dy-
namic environments, predicting hazards, and reducing risks
is critical, especially for autonomous vehicles with limited
actuation or high costs. Much progress has been achieved in
the past decade in either marine or air path planning [1–5],
Some efforts have included ocean risks [6–10] or air risks [11].
Integrated air-sea applications are very promising [12] but are
not yet commonplace [13–23].

Path planning for autonomous vehicles in complex envi-
ronments is an active area [24–26]. For planning in highly
dynamic environments and reviews on the MIT-MSEAS (Mul-
tidisciplinary Simulation, Estimation, and Assimilation Sys-
tems) reachability and path planning, we refer to [2, 3, 27–
29]. Fundamental differential equations and level-set schemes
have been used for energy-optimal path planning [30, 31],
coordinated, pursuit, and three-dimensional time-optimal path

planning [32–35], stochastic path planning and risk optimiza-
tion [10, 36–38], optimal harvesting and farming [39, 40], ship
routing [41, 42], and real-time planning, adaptive sampling,
and reachability forecasting with real autonomous vehicles at
sea [43–47].

In this work, we apply general differential equations for
exact multi-objective reachability and optimal planning [3, 29,
31, 48, 49] to guide autonomous air and sea drones towards
their final location in minimum hazards and time. The vehicles
leverage the dynamic environments with strong flows and steer
clear of hazards along their path. For the first time, we combine
weather, ocean, and hazard forecasting with dynamic multi-
objective optimal control to obtain hazard-time reachable sets,
Pareto fronts, and optimal paths. Given the predicted dynamic
winds, currents, and hazard fields, the MIT-MSEAS theory
and schemes provide optimal solutions for all arrival times
and cumulative hazard tolerances.

Our first application considers airborne drones and hazard-
time optimal long-distance missions with rain avoidance. It is
motivated by ISAE-SUPAERO’s ”Mermoz challenge” which
consists of building a hydrogen-power Unmanned Air Vehicle
(UAV) to cross the Atlantic between Dakar, Senegal, and
Natal, Brazil, thus achieving the same route as air mail
pioneer Jean Mermoz while drastically reducing greenhouse
gas emissions [50, 51]. For such missions, it is well known
that the intertropical convergence zone on the drone’s path
is challenging because it often features many thunderstorms.
There is thus a need to account for hazards due to storms for
more risk-averse planning. A main goal is to provide time-
optimal storm-avoiding paths, optimally leveraging Atlantic
winds for varied levels of cumulative storm hazards.

The second application is a hazard-time optimal collab-
orative mission between air and sea drones. The air drone
transports the ocean vehicle optimally to a target location
exploiting winds and avoiding storms, and the ocean vehicle
subsequently completes its mission leveraging currents and
avoiding vessel traffic hazards. It is motivated by missions
off the US East Coast, around the New England Seamounts
region [52]. The air drone leaves land carrying the sea drone
in stormy conditions, transporting it in fastest time to its start
location. The sea drone is dropped and travels to the north of
the New England Seamounts in fastest time exploiting ocean
currents, collecting data en route to rendezvous with a research
vessel in the area, and limiting vessel traffic risks. Hazard-
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time Pareto-fronts are predicted for both the air transport
and marine missions, providing all trade-off optimal solutions
between travel time and exposure to hazards.

In what follows, in section II, we describe the theory, al-
gorithms, and numerical schemes for hazard-time reachability
and path planning. In section III-A, we apply the theory and
schemes to rain-hazard and time optimal reachability analysis
for air drones, In section III-B, we present results for an air-
sea collaboration. It consists of a rain-hazard and time optimal
transport of a sea drone by an air drone followed by a traffic-
hazard and time optimal mission by the sea drone. Finally, we
conclude in section IV.

II. THEORY AND SCHEMES

A. Governing Equations

Our generic problem is that of computing the paths of
drones that minimize both travel time in a dynamic flow
environment V (x, t) and accumulated exposure to a dynamic
hazard field h(x, t). Indeed we want to predict the reachable
sets in the spatial and cumulative hazard dimensions, and all
Pareto-optimal paths for the corresponding two costs, travel
time and cumulative hazards. The application domains involve
collaborative air and sea drones, but the theory applies to many
other domains.

In our notation, the three-dimensional (3D) position vector
in the physical environment space is denoted by x and time
by t. For the vehicle, the cost due to hazards is a measure of
the accumulation of the instantaneous hazards h. We denote
the corresponding integral over time or accumulated hazard
level by η. This variable η is also referred to as cumulative
hazard function [53, 54].

For the dynamics in the physical space, the spatiotemporal
scales of our missions are much larger than the vehicle scales.
We thus assume that the vehicle is in mechanical equilibrium
at all times and evolves through the kinematic equation in the
spatial domain, i.e.,

dx

dt
= vmaxh(t) + V (x, t) (1)

where v(t) ∈ [0, vmax] is the nominal propulsion speed, vmax
its maximum or desired cruising speed, and h(t) the heading
of the vehicle. For the dynamics in the cumulative hazard
space, we assume that the measure of the accumulation of
instantaneous hazards h is a known function of space and time,
such that its integral over time is the cumulative hazard η, i.e.,

dη

dt
= h(x, t) . (2)

We note that different hazards can be kept separate and not
combined, in which case η is a vector of cumulative hazards.
Without loss of generality, η is here set to be a scalar. To
account for it, we add it as a new dimension [31, 49]. We
thus define the augmented state space of the spatial position
and cumulative hazard, (x, η). In this (x, η) space, solving
our problem consists in computing the augmented reachable
set for the vehicle, i.e., the set of all values (x, η) that are
reachable at some time t. We represent the reachable set by
a scalar function ϕ(x, η, t) whose subzero level set is the

reachable set at time t. This level set function (value function)
is governed by the following exact Hamilton-Jacobi-Bellman
PDE [31, 48],

∂ϕ

∂t
+ vmax

∥∥∥∥∂ϕ∂x
∥∥∥∥+ V (x, t) · ∂ϕ

∂x
+ h(x, t)

∂ϕ

∂η
= 0 , (3)

which is generally defined in a 5D space (time, physical space,
and cumulative hazard).

In our applications, the physical space is the 2D planar
space x = (x, y). The instantaneous hazard field h is either a
spatiotemporal function of the hazardous precipitation (rain)
field p(x, t), i.e., h = h(x, t, p), a function of hazardous
ocean current or wind fields V (x, t), i.e., h = h(x, t,V ),
or a function of other variables such as expected vessel traffic
density field ρv(x, t), i.e., h = h(x, t, ρv).

B. Computational Schemes

For each of the applications, we scale variables and inputs
(domain boundaries, V (x, t), h(x, t)) such that the governing
equations are non-dimensional and the problem is numerically
well conditioned [35], e.g., the coordinate variables x, y, η
are of an order of magnitude of 1. To compute the values
of ϕ(x, η, t), we initialize ϕ to ϕ0, the signed distance to a
ball centered at the origin (x0, 0) with radius ρinit

ϕ0(x, η) :=

∥∥∥∥(xη
)
−

(
x0

0

)∥∥∥∥− ρinit

In theory, the perfect initialization would be obtained for
ρinit = 0, but in practice, this would lead to no grid point being
part of the subzero level set, so the numerical scheme could
not compute the evolution of the latter. Instead, we set ρinit
to be twice the grid spacing and integrate the initial solution
analytically from the origin until the circle ρinit.

To compute the evolution of the subzero level set, we use
a second-order Essentially Non-Oscillatory (ENO) scheme in
space and a second-order scheme in time [31].

Once ϕ(x, η, t) is computed, we obtain the Pareto-optimal
ways to reach any destination point xf in physical space and
cumulative hazard level η. If xf is reachable, we have the
minimum duration τ⋆ to reach xf as

τ⋆ := min {τ | ∃η ∈ [ηmin, ηmax], ϕ(xf , η, τ) = 0} .

It is the first time the zero level set of ϕ reaches the segment
{(xf , η) | η ∈ [ηmin, ηmax]} in the augmented state space.

Then, for larger durations τ ≥ τ⋆, we can extract the
minimum possible amount of hazard to reach the destination
point in the exact given duration, i.e.,

η⋆(τ) = min {η | ϕ(xf , η, τ) = 0} .

The collection of points
{(τ, η⋆(τ)) | τ ≥ τ⋆}

is then the hazard-minimal curve to reach xf . We can deduce
Pareto-optimal couples (τ, η⋆(τ)) from this curve by removing
Pareto-dominated points. An example of such a curve is given
in Fig. 1.

When a designated couple (τ, η⋆(τ)) is chosen, one may
then ask how to compute a trajectory that links the starting
point in the augmented state space (x0, 0) to the destination
point with this performance. To solve for this, we perform
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τ

η

Feasible region

τ1

η⋆(τ1)

η⋆(τ2)

τ2

Fig. 1: Hazard-time solution domain: feasible region and Pareto
front. The shaded region corresponds to feasible solutions (τ, η).
The thicker lower curve contains the pairs (τ, η⋆(τ)) corresponding
to hazard-only minimizing trajectories, for each time τ . The red
portion of the curve encompasses the hazard-time optimal or so-called
Pareto-optimal solutions. The red dot (τ1, η⋆(τ1)) corresponds to a
Pareto-optimal hazard-time pair while the purple dot (τ2, η⋆(τ2)) is
Pareto-dominated, because there are trajectories arriving earlier with
the same amount of accumulated hazard.

backtracking of trajectories using the gradient of ϕ. Using
Eqs. (1-2), the backtracking ODEs in the augmented space are

dx

dt
= −vmax h

⋆(x, η, t)− V (x, t)

dη

dt
= −h(x, t)

(4)

where h⋆(x, η, t) :=
∥∥∥ ∂ϕ
∂x (x,η,t)

∥∥∥−1
∂ϕ
∂x (x,η,t)

. These ODEs
are initialized at time τ at position (xf , η

⋆(τ)). After per-
forming the integration, one obtains a trajectory (x(·), η(·))
from (x0, 0) at t = 0 to (τ, η⋆(τ)) at t = τ .

III. APPLICATIONS

A. Rain-Avoidance–Time Optimal Planning for Air Drones

The first mission consists of the crossing of the Atlantic
between Dakar, Senegal, and Natal, Brazil, by a UAV with
a cruising speed of 23m s−1, 100 m above sea level. In
this application, we predict optimal trajectories for such an
airborne drone providing all possible trade-offs between travel
time by exploiting instantaneous winds and hazards by limiting
thunderstorm exposure. Most precisely for the latter, we select
the rain field as a proxy for thunderstorms. Since thunder-
storms commonly imply heavy rain, this choice is conservative
in avoiding rain, possibly avoiding zones with only some rain
but no thunderstorms. Another reason why we work with
rain data rather than thunderstorm data is because the former
is available in practically all weather products. For instance,
rain is available in both ERA5 reanalysis data and ECMWF
forecasts, two open-access data sources. This is not the case
for parameters such as the number of lightning per surface unit
area or the cloud coverage, which may be found in reanalyses
but not necessarily in forecasts.

We thus take h(x, t, p(x, t)) := a p(x, t), where p(x, t) is
the ECMWF 3h-accumulated rain forecast and a is a dimen-
sional scaling parameter that relates the hazards to the drone
as a function of the rain. Of course, other parameterizations
of instantaneous hazards can be selected such as higher-
order polynomials or other functions that increase hazards
nonlinearly as the rain increases and are representatives of
the risks to the air drone. For our specific application, we
select a linear function of the 3h-accumulated rain and the
ECMWF rain forecast issued on 2024-04-25 00:00Z. For the
environmental flows V (x, t), we employ the corresponding
ECMWF wind forecast. Snapshots of these wind and rain
fields are given in Fig. 2, clearly indicating the prevailing
northeasterly trade winds and strong rain storms around the
equator.

Fig. 2: Instantaneous wind (100 m) and 3h-accumulated rain forecast
snapshots from ECMWF. The path planning start point is depicted
as a black circle, the endpoint as a black star, and between them the
shortest-distance great circle is drawn.

The air drone takes off on 2024-04-27, at 15:00Z. It flies
to the destination in the fastest possible time leveraging winds
while avoiding high accumulated exposure to rain. Example
key questions include: Will rain avoidance lead to significantly
different paths from the fastest ones, both in travel time and
shape of the path? What are all of the hazard-time optimal
paths so that the drone operators can select the paths most
appropriate to their level of risk and desired arrival time? What
is the cumulative hazard that corresponds to the fastest time
path? Is there an arrival time that avoids the forecast rain?
Our hazard-time optimal analysis provides clear answers to
all such questions.

Solving eq. (3) in its non-dimensional normalized form [35],
we obtain the hazard-time reachable set and reachability front.
We can then compute all rain-travel-time Pareto-optimal paths
solving the backtracking eqs. (4). They minimize the accumu-
lated rain and travel time and include the overall minimum
travel time path, i.e., the path that minimizes travel time by
optimally exploiting the wind field while ignoring rain. In
Fig. 3, we display the evolution of the reachability front, which
is the zero-level set of the value function ϕ in the cumulative
hazard η and physical space (x, y). In Fig. 3a, the reachable
set started propagating from its initial position. There is no
rain around the starting point so the shape of the reachable
set is governed by time-optimal trajectories in the winds.
The width of the reachable set on this frame in the hazard
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(a) t = 0.1 (b) t = 0.6

(c) t = 0.7 (d) t = 0.8

(e) t = 0.9 (f) t = 1

Fig. 3: Hazard-time optimal air drone crossing the Atlantic: Reachable set evolution in the augmented state space (x, y, η). The hazard
dimension is flipped (the η axis is indeed a −η axis) to more directly visualize the hazard-minimizing part of the reachable set; in these
graphs, the minimum hazards are thus at the top of the 3D reachable set. The start location is depicted as a green dot with a green line in
the direction of increasing hazards. Similarly, the final location is depicted as a red diamond with a red line in the same direction. All times
t, space (x, y), and cumulative hazard η are non-dimensional.

direction remains twice ρinit (Sec. II-B). At t = 0.6 (Fig. 3b),
the reachable set has reached the rain zone and hazards started
to accumulate: the front there changed appearance from flat
to rough, reflecting the rain patterns. As stronger hazardous
rain is encountered, the reachable set goes down (Fig. 3c).
In Figs. 3d–e, the part of the front that is the closest to the

red line corresponds to trajectories close to the time-optimal
ones. This part of the front accumulates much hazard and is
thus much lower than the original flat portion of the front.
Finally, in Fig. 3f, we observe how slower but less hazardous
trajectories are found within portions of the front intersecting
the destination red line with lower accumulated hazard.
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(a) (b) (c)

Fig. 4: Hazard-time optimal air drone crossing the Atlantic: (a, b, c) Snapshots at three different times of four hazard-time Pareto-optimal
trajectories overlaid on the corresponding rain and wind fields. The paths are colored according to their arrival time and cumulative rain
hazard level, as shown in Fig. 5.

In Fig. 4, we show three snapshots of hazard-time optimal
paths for four optimal travel times and cumulative hazards, the
first path (blue) being the strictly time-optimal path (ignoring
rain). We find that, while the pure time-optimal path rushes
through the rain, other trajectories computed for longer travel
time but lower exposure to hazard manage to avoid heavy
rains. We also observe that winds are quite steady, but the
rain field evolves quickly. The time-optimal trajectory in blue
crosses a zone of high precipitation (Fig. 4b). The orange
trajectory encounters less rain by taking a route north of the
great circle between Dakar and Natal. The green and red
trajectories deviate even more from the great circle path: while
the rain exposure is not significant enough, they both first
follow the strictly time-optimal path, but then leave it (Fig. 4a)
and meander along an evolving, quiet zone (Fig. 4b) with less
rain before reaching the final destination (Fig. 4c).

In Fig. 5, we show Pareto-optimal travel times and cumu-
lative hazards. The values are given in table I. We find that
a moderate increase in travel time can result in a significant
decrease in exposure to hazards. For example, simply changing
from the strictly time-optimal, blue trajectory to the orange one
gives a reduction in rain hazards of 54%, while increasing the
travel time by only 5.9%. The table shows the operational
benefit of our joint hazard-time trajectory optimization by
providing the operator with a variety of optimal paths with
different performance. The operator or the drone itself can
select its preferred optimal path depending on the criticality
of being on time compared to being exposed to hazards.

In Fig. 5, we also show non-Pareto-optimal portions on the
hazard-time graph (dashed line). This confirms that increasing
the travel time is not a sufficient condition for lowering
exposure to rain. For instance, if heavy rain is barring the
road, any trajectory passing through to ensure a given travel
time will inevitably have a high accumulated hazard when
reaching the destination.

Fig. 5: Hazard-time optimal air drone crossing the Atlantic: Min-
imum total cumulative rain hazard for various travel times for the
Dakar-Natal crossing. Solid curves are Pareto optimal values. The
four colored dots on the Pareto-front correspond to paths shown with
their color in Fig. 4.

Travel duration τ Total hazard η⋆(τ)

0.944 - 0.160 -
1.000 +5.9% 0.0743 -54%
1.100 +17% 0.0423 -74%
1.178 +25% 0.0310 -81%

TABLE I: Hazard-time optimal air drone crossing the Atlantic:
Travel times and cumulative rain hazards for the four backtracked
trajectories of the Dakar-Natal air mission. Both travel time and
hazard are non-dimensionalized variables which have no units.

B. Hazard-time Optimal Air-Sea collaboration

This second mission consists of two parts. First, a transport
air drone departs from Boston, MA on 2024-02-17, 10:00
UTC, and drops a sea drone in the region of the New England
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Seamounts in fastest time, taking advantage of favorable winds
and avoiding unfavorable ones. However, it faces forecast
stormy conditions with high wind bursts and hazardous rain
that require a trade-off between exposure to hazards and travel
time. Second, once the sea drone has been dropped, its mission
is to proceed to the north of the Atlantis II seamount in
fastest time in accord with dynamic ocean currents. However,
it needs to limit its exposure to hazards from expected vessel
traffic, hence a second ocean hazard-time optimal reachability
analysis is completed.

For this collaborative air-sea mission, example key questions
include: Can the transport air drone reach its final location
soon enough for the sea drone while avoiding regions with
too strong storms? What are all the rain-hazard, vessel-traffic-
hazard, and time optimal choices for the air and sea drone
operators? What are the optimal sea drone paths that collect
the desired ocean data in fastest time while minimizing vessel-
traffic hazards? Our collaborative hazard-time optimal analysis
can answer all such questions.

1) Rain-hazard and time optimal transport air drone: For
our application, for the transport by the air drone, we employ
data from the ERA5 atmospheric reanalysis from the Euro-
pean Center for Medium-range Weather Forecasts (ECMWF),
accessible through the Copernicus Climate Data Store (CDS).
For the environmental flows V (x, t), we extract the hourly
100 m wind field, and for the rain hazard, the 1h-accumulated
rain field p(x, t). Once again, we define the instantaneous
hazard from the rain field as h(x, t, p(x, t)) := a p(x, t) where
the dimensional scaling parameter a ensures that the resulting
h represents the instantaneous hazard due to rain. We depict
the wind and rain conditions at 2024-02-17 18:00 UTC in
Fig. 6. There is a storm with counter clock-wise winds passing
through the region, creating favorable conditions for trajecto-
ries that bend southward. The maximum of precipitation passes
through the shortest-distance great circle between the start and
destination locations, also encouraging trajectories to avoid
this shortest-distance path to the destination. The dynamic
behavior can also be seen in Fig. 7.

Fig. 6: Instantaneous wind (100 m) and rain snapshots from the
ERA5 reanalysis. The path planning start point is depicted as a black
circle, the endpoint as a black star, and between them the shortest-
distance great circle is drawn.

We again solve eq. (3) in its non-dimensional normalized
form [35] to obtain the hazard-time reachability front and the
Pareto front, and then the backtracking eqs. (4) to highlight
Pareto-optimal paths to the destination. Four of these Pareto-

optimal trajectories are depicted in Fig. 7. The corresponding
Pareto front is shown in Fig. 8.

As shown in Figs. 7-8, the presence of a storm featuring
high winds accelerating the vehicle but also much rain entails
a clear variation in the amount of total hazard depending on the
desired travel time. From the monotonic Pareto front (Fig. 8),
trajectories going the fastest are the most exposed to the rain.
Other trajectories accepting longer travel times can follow the
wake of the storm, thus avoiding most of the rain. What is
noticeable is that with an order of magnitude of 23m/s for
the speed of the air drone, optimal trajectories are bending
significantly south, taking the western side of the storm and
differing much from the great circle joining the start to the
destination. For example, the fastest blue trajectory is much
longer than this shortest distance. Nonetheless, it encounters
rain in the back of the storm (Fig. 7b-c). Other Pareto-optimal
trajectories that don’t take full advantage of the strong winds
can drastically reduce their total exposure to this rain hazard
by remaining in the dryer side of the storm while still arriving
only a bit later. For example, the orange and green trajectories
(Fig. 7) reduce the cumulative rain hazard by about 100 to 500
percent while only increasing travel time by 10 to 20 percent,
see Fig. 8.

2) Vessel-traffic-hazard and time optimal sea drone: Once
the air drone reaches its destination at approximately 2024-
02-18 01:00 UTC, it drops a sea drone in the vicinity of the
New England Seamounts. This sea drone then travels along
the ocean surface at a nominal speed of 3m/s to a location
north of the Atlantis II seamount in fastest time to collect data
and rendezvous with a research vessel in the area. During this
journey, it faces a trade-off between travel time and exposures
to expected hazards due to interfering vessel traffic.

For the ocean environmental flows V (x, t), we utilize
our ocean current hindcasts from the MIT-MSEAS primitive-
equation ocean model [46, 55, 56]. For the surface vessel
traffic hazard, we employ the historical traffic density data
from the Global Maritime Traffic Density Service (GMTDS)
in terms of hours of vessel traffic per square kilometer.
We thus define the instantaneous hazard from this expected
vessel traffic density field ρv(x, t) as the linear function
h(x, t, ρv(x, t)) := b ρv(x, t) where the dimensional scaling
parameter b ensures that the resulting h represents the instanta-
neous hazard due to vessel traffic. As noted for the rain hazards
(see Sect. III-A), other parameterizations of instantaneous ves-
sel hazards can be selected such as higher-order polynomials
or other functions that increase hazards nonlinearly as vessel
traffic density increases and are representatives of the risks to
the chosen ocean vehicle. In general, ρv can be data that varies
with the time of the day or a fully dynamic forecast ρv(x, t).
In our example, we utilized the historical time-averaged vessel
traffic GMTDS data so ρv is a spatial field steady in time.

We solve eq. (3) in a non-dimensional normalized form [35]
to obtain the hazard-time reachability front and all Pareto-
optimal solutions. We then solve the backtracking eqs. (4)
to highlight Pareto-optimal paths the destination. Three of
these Pareto-optimal trajectories are depicted in Fig. 9. The
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(a) (b) (c)

Fig. 7: Hazard-time optimal air-sea collaboration. Air drone reaching the New England Seamounts in hazard-time optimal fashion, transporting
the sea drone: (a, b, c) Snapshots of four hazard-time Pareto-optimal trajectories, overlaid on rain and wind fields. The paths are colored
according to their arrival time and cumulative rain-hazard level, as shown in Fig. 8.

Fig. 8: Hazard-time optimal air-sea collaboration: Minimum total
cumulative rain-hazard for various travel times for the air drone
transporting a sea drone to the New England Seamounts. Solid curves
are Pareto optimal values. The four colored dots on the Pareto-front
correspond to paths shown with their color in Fig. 7.

corresponding traffic-hazard and time Pareto front is shown in
Fig. 10.

As shown in Fig. 9, the sea drone is operating in an area
with several historical transit lanes, visible in yellow and white
in the figure background. A fast Pareto-optimal path (shown in
blue) takes advantage of the forecast currents but goes across
some high-density and wide-double vessel traffic lanes hence
has a high cumulative hazard, as shown in Fig. 10. Two other
Pareto-optimal paths with lower cumulative hazard (shown in
red and green) minimize hazard-time by first crossing the
southern transit lane at the area of lowest historical traffic
density at approximately [63◦W, 39.5◦N]. Both of the lower
hazard paths then move to the west. By doing so, the ocean
vehicle is only required to cross one additional transit lane
(instead of a wide double-lane to the east), and avoids the
large intersection that occurs near [63.5◦W, 40◦N].

Fig. 9: Hazard-time optimal air-sea collaboration: Pareto-optimal
trajectories for the sea drone, overlaid on the non-dimensional traffic
density field and MIT-MSEAS forecast ocean current vectors. The
three paths are colored according to their arrival time and cumulative
traffic-hazard level, as shown in Fig. 10.

IV. CONCLUSIONS

We applied the MIT-MSEAS general partial differential
equations for exact multi-objective reachability and optimal
planning to guide autonomous air and sea drones in hazard-
time optimal missions. The vehicles minimize travel time and
exposure to hazards, leveraging the dynamic environments
with strong flows and steering clear of hazards along their
paths. Our approach rigorously combines weather, ocean,
and hazard forecasting with dynamic multi-objective optimal
control to predict hazard-time reachable sets, Pareto fronts, and
optimal paths for all computed cumulative hazard and arrival
times.

Our first hazard-time optimal path planning application
consisted of an autonomous air drone that crossed the Atlantic
Ocean optimizing travel time using trade winds while avoiding
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Fig. 10: Hazard-time optimal air-sea collaboration: Minimum total
cumulative traffic-hazard for various travel times for the sea drone.
Solid curves are Pareto optimal values (Pareto front). The three
colored dots on the Pareto-front correspond to paths shown with their
color in Fig. 9.

hazardous rain storms. The second was the hazard-time opti-
mal transport of an ocean vehicle by an air drone followed
by a hazard-time optimal ocean mission. Exploiting winds
and avoiding hazardous rains, the transport air drone travels
to a target location where it drops the ocean vehicle. The
ocean vehicle then completes its mission in the fastest time,
leveraging ocean currents and avoiding vessel-traffic hazards.

Our methodology highlights the benefits of considering
hazards in optimal path planning. It provides the operators
and the autonomous vehicles with a variety of Pareto-optimal
trajectories with different performance levels reflecting the
risks and multiple objectives of real operations [37, 49].
Compared to heuristics, our differential equations govern the
multi-objective reachable set and globally Pareto-optimal paths
exactly. Given environmental flows and hazard fields forecasts
from operational data and dynamical modeling systems, their
numerical integration provides all Pareto-optimal solutions up
to the bounded errors of computational schemes.

Future promising hazard-time optimal missions include
experiments with real air and sea drones [43, 45, 47], ad-
vanced operations with multi-vehicles and coordinated teams
[32, 57, 58], and onboard implementations so that vehicles
can directly assimilate data and run their own planning fore-
casts and optimal controls [59–61]. Considering other types
of hazards, more advanced hazard modeling, and other air-
sea applications including air-sea-space applications would be
beneficial [19, 62, 63]. Optimal path planning under hazards
could also involve probabilistic hazards and risks modeling
[10, 36, 37], leading to stochastic hazard-time path planning.
Finally, multi-time and multi-field reachability will be useful in
many applications including efficient capabilities for frequent
re-planning [29, 31, 49].
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[7] Ü. Öztürk, M. Akdağ, and T. Ayabakan, “A review of path
planning algorithms in maritime autonomous surface ships:
Navigation safety perspective,” Ocean Engineering, vol. 251,
p. 111010, 2022.

[8] M.-G. Jeong, E.-B. Lee, M. Lee, and J.-Y. Jung, “Multi-criteria
route planning with risk contour map for smart navigation,”
Ocean Engineering, vol. 172, pp. 72–85, 2019.

[9] G. Mannarini, N. Pinardi, M. Scuro, and L. Carelli, “Ship
routing hazard maps,” 2019.

[10] A. Doering, M. Wiggert, H. Krasowski, M. Doshi, P. F. J.
Lermusiaux, and C. J. Tomlin, “Stranding risk for underactuated
vessels in complex ocean currents: Analysis and controllers,” in
2023 IEEE 62nd Conference on Decision and Control (CDC).
Singapore: IEEE, Dec. 2023.

[11] D. Hentzen, M. Kamgarpour, M. Soler, and D. González-
Arribas, “On maximizing safety in stochastic aircraft trajectory
planning with uncertain thunderstorm development,” Aerospace
Science and Technology, vol. 79, pp. 543–553, 2018.

8

Schnitzler, B., P.J. Haley, Jr., C. Mirabito, E.M. Mule, J.-M. Moschetta, D. Delahaye, A. Drouin and P. F. J. Lermusiaux, 2024. 
Hazard-Time Optimal Path Planning for Collaborative Air and Sea Drones. In: OCEANS '24 IEEE/MTS Halifax, 23–26 September 2024, in press.



[12] R. K. Nichols, H. Mumm, W. D. Lonstein, J. J. Ryan, C. M.
Carter, J.-P. Hood, J. S. Shay, R. W. Mai, M. J. Jackson et al.,
Unmanned vehicle systems & operations on air, sea, land. New
Prairie Press, 2020.

[13] T. A. Johansen and T. Perez, “Unmanned aerial surveillance sys-
tem for hazard collision avoidance in autonomous shipping,” in
2016 International Conference on Unmanned Aircraft Systems
(ICUAS). IEEE, 2016, pp. 1056–1065.

[14] B. Zhang, L. Tang, and M. Roemer, “Probabilistic weather
forecasting analysis for unmanned aerial vehicle path planning,”
Journal of Guidance, Control, and Dynamics, vol. 37, no. 1, pp.
309–312, 2014.

[15] Z. Niu, X. S. Shen, Q. Zhang, and Y. Tang, “Space-air-ground
integrated vehicular network for connected and automated ve-
hicles: Challenges and solutions,” Intelligent and Converged
Networks, vol. 1, no. 2, pp. 142–169, 2020.

[16] F. Chai, K. S. Johnson, H. Claustre, X. Xing, Y. Wang, E. Boss,
S. Riser, K. Fennel, O. Schofield, and A. Sutton, “Monitoring
ocean biogeochemistry with autonomous platforms,” Nature
Reviews Earth & Environment, vol. 1, no. 6, pp. 315–326, 2020.

[17] S. Baruah, P. Lee, P. Sarathy, and M. Wolf, “Achieving re-
siliency and behavior assurance in autonomous navigation: An
industry perspective,” Proceedings of the IEEE, vol. 108, no. 7,
pp. 1196–1207, 2020.

[18] T. Yang, Z. Jiang, R. Sun, N. Cheng, and H. Feng, “Maritime
search and rescue based on group mobile computing for un-
manned aerial vehicles and unmanned surface vehicles,” IEEE
transactions on industrial informatics, vol. 16, no. 12, pp. 7700–
7708, 2020.

[19] M. M. Marques, V. Lobo, A. P. Aguiar, J. E. Silva, J. B.
de Sousa, M. de Fátima Nunes, R. A. Ribeiro, A. Bernardino,
G. Cruz, and J. S. Marques, “An unmanned aircraft system
for maritime operations: The automatic detection subsystem,”
Marine Technology Society Journal, vol. 55, no. 1, pp. 38–49,
2021.

[20] A. Farinha, J. Di Tria, R. Zufferey, S. F. Armanini, and M. Ko-
vac, “Challenges in control and autonomy of unmanned aerial-
aquatic vehicles,” in 2021 29th Mediterranean Conference on
Control and Automation (MED). IEEE, 2021, pp. 937–942.

[21] C. Ke and H. Chen, “Cooperative path planning for air–sea
heterogeneous unmanned vehicles using search-and-tracking
mission,” Ocean Engineering, vol. 262, p. 112020, 2022.

[22] J. Wu, R. Li, J. Li, M. Zou, and Z. Huang, “Cooperative un-
manned surface vehicles and unmanned aerial vehicles platform
as a tool for coastal monitoring activities,” Ocean & Coastal
Management, vol. 232, p. 106421, 2023.

[23] M. C. Santos, B. Bartlett, V. E. Schneider, F. Ó. Brádaigh,
B. Blanck, P. C. Santos, P. Trslic, J. Riordan, and G. Dooly,
“Cooperative unmanned aerial and surface vehicles for extended
coverage in maritime environments,” IEEE Access, 2024.

[24] S. M. LaValle, Planning algorithms. Cambridge university
press, 2006.

[25] A. Tsourdos, B. White, and M. Shanmugavel, Cooperative path
planning of unmanned aerial vehicles. John Wiley & Sons,
2010.

[26] J.-C. Latombe, Robot motion planning. Springer Science &
Business Media, 2012, vol. 124.

[27] T. Lolla, P. F. J. Lermusiaux, M. P. Ueckermann, and P. J. Haley,
Jr., “Time-optimal path planning in dynamic flows using level
set equations: Theory and schemes,” Ocean Dynamics, vol. 64,
no. 10, pp. 1373–1397, 2014.

[28] T. Lolla, P. J. Haley, Jr., and P. F. J. Lermusiaux, “Time-optimal
path planning in dynamic flows using level set equations:
Realistic applications,” Ocean Dynamics, vol. 64, no. 10, pp.
1399–1417, 2014.

[29] M. Doshi, M. Bhabra, M. Wiggert, C. J. Tomlin, and P. F. J.

Lermusiaux, “Hamilton–Jacobi multi-time reachability,” in 2022
IEEE 61st Conference on Decision and Control (CDC), Cuncún,
Mexico, Dec. 2022, pp. 2443–2450.

[30] D. N. Subramani and P. F. J. Lermusiaux, “Energy-optimal
path planning by stochastic dynamically orthogonal level-set
optimization,” Ocean Modeling, vol. 100, pp. 57–77, 2016.

[31] M. M. Doshi, M. S. Bhabra, and P. F. J. Lermusiaux, “Energy-
time optimal path planning in dynamic flows: Theory and
schemes,” Computer Methods in Applied Mechanics and En-
gineering, vol. 405, p. 115865, Feb. 2023.

[32] T. Lolla, P. J. Haley, Jr., and P. F. J. Lermusiaux, “Path planning
in multiscale ocean flows: Coordination and dynamic obstacles,”
Ocean Modelling, vol. 94, pp. 46–66, 2015.

[33] W. Sun, P. Tsiotras, T. Lolla, D. N. Subramani, and P. F. J. Ler-
musiaux, “Multiple-pursuer-one-evader pursuit evasion game
in dynamic flow fields,” Journal of Guidance, Control and
Dynamics, vol. 40, no. 7, Apr. 2017.

[34] C. Mirabito, D. N. Subramani, T. Lolla, P. J. Haley, Jr., A. Jain,
P. F. J. Lermusiaux, C. Li, D. K. P. Yue, Y. Liu, F. S. Hover,
N. Pulsone, J. Edwards, K. E. Railey, and G. Shaw, “Auton-
omy for surface ship interception,” in Oceans ’17 MTS/IEEE
Conference, Aberdeen, Jun. 2017.

[35] C. S. Kulkarni and P. F. J. Lermusiaux, “Three-dimensional
time-optimal path planning in the ocean,” Ocean Modelling,
vol. 152, Aug. 2020.

[36] D. N. Subramani, Q. J. Wei, and P. F. J. Lermusiaux, “Stochastic
time-optimal path-planning in uncertain, strong, and dynamic
flows,” Computer Methods in Applied Mechanics and Engineer-
ing, vol. 333, pp. 218–237, 2018.

[37] D. N. Subramani and P. F. J. Lermusiaux, “Risk-optimal path
planning in stochastic dynamic environments,” Computer Meth-
ods in Applied Mechanics and Engineering, vol. 353, pp. 391–
415, Aug. 2019.

[38] M. Wiggert, M. Doshi, P. F. J. Lermusiaux, and C. J. Tom-
lin, “Navigating underactuated agents by hitchhiking forecast
flows,” in 2022 IEEE 61st Conference on Decision and Control
(CDC), Cancún, Mexico, Dec. 2022, pp. 2417–2424.

[39] M. S. Bhabra, M. Doshi, B. C. Koenig, P. J. Haley, Jr.,
C. Mirabito, P. F. J. Lermusiaux, C. A. Goudey, J. Curcio,
D. Manganelli, and H. Goudey, “Optimal harvesting with au-
tonomous tow vessels for offshore macroalgae farming,” in
OCEANS 2020 IEEE/MTS. IEEE, Oct. 2020, pp. 1–10.

[40] M. Killer, M. Wiggert, H. Krasowski, M. Doshi, P. F. J.
Lermusiaux, and C. J. Tomlin, “Maximizing seaweed growth
on autonomous farms: A dynamic programming approach for
underactuated systems operating in uncertain ocean currents,”
in 41st IEEE Conference on Robotics and Automation (ICRA
2024). Yokohama: IEEE, May 2024, sub-judice.

[41] D. L. Ferris, D. N. Subramani, C. S. Kulkarni, P. J. Haley,
and P. F. J. Lermusiaux, “Time-optimal multi-waypoint mission
planning in dynamic environments,” in OCEANS Conference
2018. Charleston, SC: IEEE, Oct. 2018.

[42] G. Mannarini, D. N. Subramani, P. F. J. Lermusiaux, and
N. Pinardi, “Graph-search and differential equations for time-
optimal vessel route planning in dynamic ocean waves,” IEEE
Transactions on Intelligent Transportation Systems, vol. 21,
no. 6, pp. 1–13, Jun. 2020.

[43] D. N. Subramani, P. F. J. Lermusiaux, P. J. Haley, Jr.,
C. Mirabito, S. Jana, C. S. Kulkarni, A. Girard, D. Wickman,
J. Edwards, and J. Smith, “Time-optimal path planning: Real-
time sea exercises,” in Oceans ’17 MTS/IEEE Conference,
Aberdeen, Jun. 2017.

[44] J. Edwards, J. Smith, A. Girard, D. Wickman, D. N. Subramani,
C. S. Kulkarni, P. J. Haley, Jr., C. Mirabito, S. Jana, and
P. F. J. Lermusiaux, “Data-driven learning and modeling of
AUV operational characteristics for optimal path planning,” in
Oceans ’17 MTS/IEEE Conference, Aberdeen, Jun. 2017.

9

Schnitzler, B., P.J. Haley, Jr., C. Mirabito, E.M. Mule, J.-M. Moschetta, D. Delahaye, A. Drouin and P. F. J. Lermusiaux, 2024. 
Hazard-Time Optimal Path Planning for Collaborative Air and Sea Drones. In: OCEANS '24 IEEE/MTS Halifax, 23–26 September 2024, in press.



[45] P. F. J. Lermusiaux, P. J. Haley, Jr., S. Jana, A. Gupta, C. S.
Kulkarni, C. Mirabito, W. H. Ali, D. N. Subramani, A. Dutt,
J. Lin, A. Shcherbina, C. Lee, and A. Gangopadhyay, “Op-
timal planning and sampling predictions for autonomous and
Lagrangian platforms and sensors in the northern Arabian Sea,”
Oceanography, vol. 30, no. 2, pp. 172–185, Jun. 2017, special
issue on Autonomous and Lagrangian Platforms and Sensors
(ALPS).

[46] P. F. J. Lermusiaux, P. J. Haley, Jr., C. Mirabito, E. M. Mule
et al., “Real-time ocean probabilistic forecasts, reachability
analysis, and adaptive sampling in the Gulf of Mexico,” in
OCEANS 2024 IEEE/MTS Halifax. Halifax: IEEE, Sep. 2024,
in press.

[47] E. M. Mule, P. J. Haley, Jr., C. Mirabito, P. F. J. Lermusi-
aux et al., “Real-time probabilistic reachability forecasting for
gliders in the Gulf of Mexico,” in OCEANS 2024 IEEE/MTS
Halifax. Halifax: IEEE, Sep. 2024, in press.

[48] M. S. Bhabra, “Harvest-time optimal path planning in dynamic
flows,” Master’s thesis, Massachusetts Institute of Technology,
Department of Mechanical Engineering and Computational Sci-
ence & Engineering, Cambridge, Massachusetts, Sep. 2021.

[49] M. S. Bhabra, M. Doshi, and P. F. J. Lermusiaux, “Harvest-time
optimal path planning in dynamic flows,” 2024, in preparation.

[50] N. Gavrilovic, J.-M. Moschetta, and Q. Barascud,
“Development of a Hydrogen-powered UAV System for
Crossing the Atlantic Ocean,” in AIAA SCITECH 2023
Forum. National Harbor, MD & Online: American Institute of
Aeronautics and Astronautics, Jan. 2023. [Online]. Available:
https://arc.aiaa.org/doi/10.2514/6.2023-1924

[51] N. Gavrilovic, D. Vincekovic, and J. Moschetta, “A long range
fuel cell/soaring uav system for crossing the atlantic ocean,” in
11th international micro air vehicle competition and conference,
madrid, Spain. IMAV, 2019, p. 121e31.

[52] MSEAS NESMA Ex., “New England Seamounts Experiment
Acoustics (NESMA) 2024: New England Seamount Chain –
July, 2024,” Jul. 2024. [Online]. Available: http://mseas.mit.
edu/Sea exercises/NESMA/

[53] J. F. Lawless, Statistical models and methods for lifetime data.
John Wiley & Sons, 2011.

[54] J. O’Quigley et al., Survival Analysis. Springer, 2021.
[55] P. J. Haley, Jr. and P. F. J. Lermusiaux, “Multiscale two-

way embedding schemes for free-surface primitive equations in
the “Multidisciplinary Simulation, Estimation and Assimilation
System”,” Ocean Dynamics, vol. 60, no. 6, pp. 1497–1537, Dec.
2010.

[56] P. J. Haley, Jr., A. Agarwal, and P. F. J. Lermusiaux, “Optimiz-
ing velocities and transports for complex coastal regions and
archipelagos,” Ocean Modelling, vol. 89, pp. 1–28, May 2015.

[57] J. Borges de Sousa, K. H. Johansson, J. Silva, and A. Speranzon,
“A verified hierarchical control architecture for co-ordinated
multi-vehicle operations,” International Journal of Adaptive
Control and Signal Processing, vol. 21, no. 2-3, pp. 159–188,
2007.

[58] K. Rajan, F. Aguado, P. Lermusiaux, J. B. de Sousa, A. Subra-
maniam, and J. Tintore, “METEOR: A Mobile (portable) ocEan
roboTic obsErvatORy,” Marine Technology Society Journal,
vol. 55, no. 3, pp. 74–75, May 2021.

[59] J. P. Heuss, P. J. Haley, Jr., C. Mirabito, E. Coelho, M. C.
Schönau, K. Heaney, and P. F. J. Lermusiaux, “Reduced order
modeling for stochastic prediction onboard autonomous plat-
forms at sea,” in OCEANS 2020 IEEE/MTS. IEEE, Oct. 2020,
pp. 1–10.

[60] T. Ryu, J. P. Heuss, P. J. Haley, Jr., C. Mirabito, E. Coelho,
P. Hursky, M. C. Schönau, K. Heaney, and P. F. J. Lermusiaux,
“Adaptive stochastic reduced order modeling for autonomous
ocean platforms,” in OCEANS 2021 IEEE/MTS. IEEE, Sep.
2021, pp. 1–9.

[61] T. Ryu, W. H. Ali, P. J. Haley, Jr., C. Mirabito, A. Charous,
and P. F. J. Lermusiaux, “Incremental low-rank dynamic mode
decomposition model for efficient dynamic forecast dissemina-
tion and onboard forecasting,” in OCEANS 2022 IEEE/MTS.
Hampton Roads, VA: IEEE, Oct. 2022, pp. 1–8.

[62] M. Tieppo, E. Pereira, L. González Garcia, M. Rolim, E. Cas-
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