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Highlights

• S-PDEs governing reachability and time-optimality in uncertain, dynamic, strong flows.
• Derived efficient stochastic DO level-set equations for accurate and fast computation.
• Equations applied to a stochastic front, double-gyre QG flow, and flow past an island.
• Rigorous framework to quantify sensitivity of time-optimal paths to forecast errors.

Abstract

Accounting for uncertainty in optimal path planning is essential for many applications. We present and apply stochastic
level-set partial differential equations that govern the stochastic time-optimal reachability fronts and time-optimal paths for
vehicles navigating in uncertain, strong, and dynamic flow fields. To solve these equations efficiently, we obtain and employ
their dynamically orthogonal reduced-order projections, maintaining accuracy while achieving several orders of magnitude in
computational speed-up when compared to classic Monte Carlo methods. We utilize the new equations to complete stochastic
reachability and time-optimal path planning in three test cases: (i) a canonical stochastic steady-front with uncertain flow strength,
(ii) a stochastic barotropic quasi-geostrophic double-gyre circulation, and (iii) a stochastic flow past a circular island. For all the
three test cases, we analyze the results with a focus on studying the effect of flow uncertainty on the reachability fronts and
time-optimal paths, and their probabilistic properties. With the first test case, we demonstrate the approach and verify the accuracy
of our solutions by comparing them with the Monte Carlo solutions. With the second, we show that different flow field realizations
can result in paths with high spatial dissimilarity but with similar arrival times. With the third, we provide an example where
time-optimal path variability can be very high and sensitive to uncertainty in eddy shedding direction downstream of the island.
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1. Introduction

Planning optimal paths of autonomous platforms in dynamic environments such as the ocean and atmosphere is
important for maximally utilizing the platforms’ capabilities. In the ocean, commonly used autonomous vehicles –
underwater gliders, propelled underwater vehicles and surface crafts – often undertake complex missions such as
oceanographic data collection, search and rescue operations, oil and gas discovery, and acoustic surveillance and
security tasks [1–3]. Path planning is the task of predicting paths for these vehicles to navigate between any two
points while optimizing some or all operational parameters such as time, energy, data collected, and safety. A related
concept is dynamic reachability forecasts, the task of predicting the dynamic set of all the locations that can be reached
by these vehicles.

One major challenge in dynamic reachability forecasting and optimal path planning for realistic ocean conditions
is that current forecasts are uncertain. There could be uncertainties in the initial conditions, boundary conditions,
parameters and even terms in the equations themselves [4]. In the present paper, our objective is to develop
fundamental and efficient stochastic equations and methodology for computing the reachability fronts and time-
optimal paths of vehicles navigating in uncertain, strong, and dynamic flow fields. As we will see, such an approach
also helps us in quantifying the sensitivity of optimal paths to errors in flow predictions.

A traditional focus of path planning has been on autonomous agents in complex but static environments. These
traditional methods can be broadly grouped into graph-based search methods, nonlinear optimization methods includ-
ing those with evolutionary algorithms, and dynamics-based approaches including Lagrangian Coherent Structures.
For a review, see, e.g., [5–8], and references therein. Recently, fundamental level-set Partial Differential Equations
(PDEs) that govern reachability have been developed for time-optimal [7,9,10] and energy-optimal [11] path planning
of autonomous swarms in strong and dynamic deterministic flows. This level-set PDE-based methodology overcomes
the limitations of traditional path planning methods designed for robotic motion in static environments. It can indeed
directly utilize a prediction of the dynamic environment to plan time- or energy-optimal paths that intelligently utilize
favorable flows and avoid adverse currents. It also directly avoids physical obstacles (e.g., islands) and forbidden
regions due to operational constraints (e.g., minimum water depth) thereby ensuring vehicle safety. It has been
employed to solve pursuit-evasion games in dynamic flows [12,13]. Its use with realistic deterministic ocean re-
analyses was demonstrated in several ocean regions [14,15] and in real-time sea exercises with real AUVs [16].
However, the corresponding PDEs and methodology need to be extended to dynamic stochastic environments.

Progress has been made on path planning for autonomous robots in uncertain environments. Wellman et al. [17]
extended graph-based search methods to account for uncertain edge costs with applications to stochastic bus networks.
Kewlani et al. [18] extend graph-based algorithms to explicitly consider uncertainty in the mobility and terrain
parameterizations using stochastic surface response methods. Potential field methods have been used in a Monte
Carlo approach to solve path planning problems in uncertain flows by Barraquand and Latombe [19]. Rathbun et al.
[20] report the use of evolutionary algorithms to plan paths of Unmanned Aerial Vehicles (UAV) in an airspace with
uncertain obstacles. Wang et al. [21] perform path planning of autonomous vehicles in dynamic and uncertain ocean
currents using an ensemble approach. The authors solve the deterministic Boundary Value Problem (BVP) for each
member of the ensemble to compute the statistics of optimal trajectories. Considering all of these approaches, on
the one hand, the extension of graph-based methods is not suitable for dynamic environments as their cost increases
exponentially and there is a lack of optimality guarantee. On the other hand, the Monte Carlo and ensemble approaches
can have slow convergence and prohibitive costs that increase with the complexity of uncertainty. For optimal path
planning in dynamic stochastic environments, fundamental and efficient stochastic PDEs (S-PDEs) are needed.

In what follows, we first outline the problem statement, present our exact planning level-set S-PDEs and new
efficient stochastic DO level-set PDEs (Section 2). Next, we showcase applications that validate and demonstrate the
capabilities of our equations (Section 3). Finally, we provide some concluding remarks (Section 4).

2. Stochastic time-optimal planning PDEs

2.1. Problem statement

Consider an open set D ∈ RnD (nD = 2 or 3 for 2-D or 3-D in space), time t ∈ [0,∞) and a probability
space (Ω ,B,P), where Ω is the sample space, B is the σ -algebra associated with Ω , and P is a probability measure.
Starting at t = 0, let a vehicle (P) navigate in D from xs to x f with a nominal speed F(•) > 0 under the influence of a
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Fig. 1. Schematic of stochastic time-optimal path planning setup: Our goal is to compute the distribution of reachability fronts for vehicles starting
from xs in an uncertain flow field v(x, t;ω), and the distribution of time-optimal paths XP (xs , t;ω) to x f . The effective velocity, U experienced by
the vehicle is the vector sum of the vehicle’s forward motion F(t)ĥ(t) and the background flow V .

stochastic dynamic flow-field v(x, t;ω) : D × [0,∞), where ω ∈ Ω is a random event. Let XP (xs, t;ω) be a general
continuous trajectory from xs to x f (Fig. 1). The main notation is provided in Table 1.

Our goal is to predict the stochastic reachability fronts and time-optimal paths.

2.2. Stochastic level-set partial differential equations

We approach the above stochastic time-optimal path planning problem starting with the exact level-set PDEs
for deterministic path planning [7]. Here, the source of stochasticity is the uncertain dynamic flow v(x, t;ω) (in
comparison, the vehicle speed was artificially made stochastic for energy optimization in [11]). The stochastic
reachability front for P is thus governed by the stochastic Hamilton–Jacobi (HJ) level-set equation

∂φ(x, t;ω)
∂t

+ F(t)|∇φ(x, t;ω)| + v(x, t;ω) · ∇φ(x, t;ω) = 0 , (1)

with the initial condition φ(x, 0;ω) = |x−xs| and, where needed, open boundary conditions such as ∂2φ(x,t;ω)
∂n2

⏐⏐⏐
δD

= 0,
where n is the outward normal to the boundary δD, ω is a random event, and φ is the reachability-front-tracking scalar
level-set field (e.g., signed distance function). For every ω, the optimal arrival-time T ∗(x f ;ω) at x f is obtained by
integrating Eq. (1) until the first time t such that φ(x f , t;ω) ≤ 0. The corresponding optimal trajectory X∗

P (xs, t;ω)
is then given by the particle backtracking equation (where φ is differentiable)

dX∗

P (xs, t;ω)
dt

= −v(X∗

P (xs, t;ω), t;ω) − F(t)
∇φ(X∗

P (xs, t;ω), t;ω)
|∇φ(X∗

P (xs, t;ω), t;ω)|
,

0 ≤ t ≤ T ∗(x f ;ω) and X∗

P (xs, T ∗
;ω) = x f . (2)

Solving the S-PDEs (1) and (2) would fulfill our goal. Eq. (1) can be integrated by direct Monte Carlo methods;
however, the computational cost of such a method is prohibitive for practical applications. Classic reduced-order
stochastic methods could be utilized [22–25]. However, due to the variable propulsion and advection terms, and
the highly dynamic flows, they can sometimes diverge or be inefficient. We thus employ a dynamic stochastic
order reduction, specifically the Dynamically Orthogonal (DO) field equations [26,27] that were shown to be
an instantaneously optimal reduction using differential geometry arguments [28]. Next, we obtain these efficient
stochastic DO level-set equations.

2.3. Stochastic Dynamically Orthogonal level-set equations for uncertain flow fields

A brief overview of the DO theory is provided in Appendix A. As mentioned previously, in [11] we obtained the
stochastic DO level-set equations when the vehicle-speed F(t) in Eq. (1) was made stochastic (i.e., F(t) → F(t;ω)).
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Table 1
Relevant notation.

i, j ∈N Stochastic subspace index
F ∈R+ Vehicle speed
D ∈RnD Physical domain
nD ∈N Dimension of D
nx and ny ∈N Number of discrete grid points in the x-direction and y-direction
ng ∈N Total number of discrete grid points in D
ns,φ ∈N Dimension of the stochastic subspace of φ, the level-set scalar field
ns,v ∈N Dimension of the stochastic subspace of v, the velocity vector field
Yi ∈R Random variable describing the PDF of the orthonormal level-set (φ) modes φ̃i
µi ∈R Random variable describing the PDF of the orthonormal velocity (v) modes, ṽi
nr ∈N Number of Monte Carlo realizations of the level-sets (and velocity vector fields)
r ∈N Realization index
v ∈RnDng Velocity vector field
v̄ ∈RnDng Mean velocity vector field
ṽi ∈RnDng DO mode i of v: Dynamically orthogonal basis for the stochastic subspace of v
φ ∈Rng Level-Set field
φ̄ ∈Rng Mean Level-Set field
φ̃i ∈Rng DO mode i of φ: Dynamically orthogonal basis for the stochastic subspace of φ
CYi Y j ns,φ × ns,φ Covariance matrix between Yi and Y j for i, j = 1 · · · ns,φ

Cµ j Yk ns,v × ns,φ Covariance matrix between µ j and Yk for j = 1 · · · ns,v and k = 1 · · · ns,φ

Ω Sample space of uncertain velocity
B σ -algebra associated with Ω
P Probability measure that returns the probability of events in B
E[•] ∈Rng Expectation operator returning the mean of •

⟨•, •⟩ ∈ R Spatial inner-product operator between any two fields
ω ∈ Ω A random event
xs, xf ∈ D Start and final target locations
X∗

P (xs , t;ω) ∈ D × [0,∞) Stochastic time optimal path from xs to x f corresponding to the random event ω
T ∗(x f ;ω) ∈ R+ Optimal arrival time at target x f corresponding to the random event ω

Here, the difference is that we have a deterministic F(t) and the stochasticity comes from the uncertain flow-field
v(x, t;ω). This stochastic flow-field can be computed before solving the stochastic level-set equations and considered
as an external forcing to the S-PDE (1).

Let us introduce DO decompositions to the uncertain flow-field v and the stochastic level-set φ as

v(x, t;ω) = v̄(x, t) +

ns,v∑
j=1

µ j (t;ω)ṽ j (x, t) , (3)

φ(x, t;ω) = φ̄(x, t) +

ns,φ∑
i=1

Yi (t;ω)φ̃i (x, t) , (4)

where µ j (t;ω), ∀ j = 1 . . . ns,v , and Yi (t;ω), ∀ i = 1 . . . ns,φ , are zero-mean stochastic processes that represent the
generally complex probability density functions of the velocity and level-set fields respectively.

Henceforth, we drop the spatial and temporal variables in parenthesis for brevity of notation. We use repeated
indices to indicate a summation over ns,v velocity DO modes or ns,φ level-set DO modes, as the case may be. We also
define γ ≡ |∇φ|.

Substituting Eqs. (3) and (4) in Eq. (1), we obtain

∂φ̄

∂t
+ Yi

∂φ̃i

∂t
+ φ̃i

dYi

dt
= −Fγ − (v̄ + µ j ṽ j ) · ∇(φ̄ + Yi φ̃i ) . (5)

We then derive the mean equation by applying the expectation operator to Eq. (5), the coefficient equations by
projecting Eq. (5) onto the modes φ̃i , and the mode equations by multiplying Eq. (5) with Yi and then applying the
expectation operator. We provide the detailed derivation in Wei [29]. The results are as follows:

∂φ̄

∂t
= −

[
FE[γ ] + v̄ · ∇φ̄ + Cµ j Yi ṽ j · ∇φ̃i

]
, (6a)
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dYi

dt
= −

⟨
F(γ − E[γ ]) + Yk v̄ · ∇φ̃k + µ j ṽ j · ∇φ̄ + ṽ j · ∇φ̃k(µ j Yk − Cµ j Yk ), φ̃i

⟩
, (6b)

∂φ̃i

∂t
= Qi −

⟨
Qi , φ̃n

⟩
φ̃n , (6c)

where Qi = −C−1
Y j Yi

[
FE[Y jγ ] + CY jµk ṽk · ∇φ̄ + E[Y jµkYi ]ṽk · ∇φ̃i

]
− v̄ · ∇φ̃i ,

where C denotes the covariance matrix between the two stochastic variables indicated in the respective subscripts
(Table 1).

Here, we do not consider a separate DO decomposition for the non-polynomial nonlinearity γ but choose to
handle only that term realization-by-realization and compute the required statistical quantities E[γ ] and E[zγ ]. Other
approaches for handling the non-polynomial nonlinearity, viz., KL-Gamma and Taylor-Gamma [11] could also be
utilized (not shown here).

The solution of DO Eqs. (6) provides reachability fronts for all realizations ω. The minimum arrival time for
each realization is the first time t for which φ(x f , t;ω) ≤ 0. Subsequently, the stochastic particle backtracking Eq.
(2) can be solved to obtain the time-optimal trajectories X∗

P (xs, t;ω). The solution also provides the time-series of
time-optimal headings ĥ∗(t;ω), again for all ω. In Section 3, we validate the solution obtained by the DO level-set
Eq. (6) by comparing it with that obtained from direct Monte Carlo (MC) methods. We also showcase applications
for predicting the stochastic reachability fronts, sets, and time-optimal trajectories for vehicles navigating in uncertain
flow-fields.

2.4. Computational costs

The computational cost of solving the level-set PDE (1) for ω fixed is commonly dominated by the cost of the
advection term. Thus, the cost of a MC method scales with the number of realizations and grid points as O(nr ng). The
cost of solving the stochastic DO level-set equations is also often dominated by the advection terms (by the velocity
mean and modes). This cost scales as O((ns,v + 1)(ns,ϕ + 1)ng) and is independent of nr . nr only affects the cost of
solving the coefficient Eq. (6b), which is simply an ODE independent of ng . For typical values of ng , nr , ns,φ , and ns,v
of realistic applications, the computational speed-up can be several orders of magnitude.

3. Applications

We apply the efficient stochastic DO level-set PDEs to compute stochastic reachability fronts and time-optimal
paths in three test cases. They correspond to different stochastic flow configurations: (i) a simple canonical steady
front where only the strength of the flow is uncertain, (ii) a stochastic dynamic barotropic quasi-geostrophic double-
gyre circulation, and (iii) a stochastic flow past a circular island. We employ the first test case to verify the solution
of the DO equations by comparing it with its corresponding Monte Carlo (MC) solution. In all test cases, we describe
and study the variability in reachability fronts and time-optimal paths. The numerical parameters are listed in Table 2.

3.1. Test Case 1: Stochastic steady-front with uncertain flow strength

The first test case is a canonical flow — a steady zonal jet with uncertain flow strength. In addition to being a good
candidate for developing and testing numerical schemes, this flow scenario is commonly encountered in the ocean.
For example, the crossing of a shelfbreak front [15] or of channels [16] can be idealized by this canonical flow. Hence,

Table 2
Numerical parameters for all three test cases (notation defined in Table 1).

Test Case nx ny dx dy dt nr ns,v ns,φ

1 300 150 1 1 5e-2 2000 1 50
2 100 100 0.01 0.01 1e-5 5000 5 50
3 240 90 0.067 0.067 1e-2 10000 8 50
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Fig. 2. Mean, Mode, and PDF of coefficient for the DO decomposition of the velocity field used in Test Case 1: The zonal jet is from West to East
between y = 40 and y = 60, and has an uncertain strength of uniform density distribution with lower limit 0.5 and upper limit 1.5. The velocity is
0 elsewhere in the domain. The start point is marked with a circular marker and three end points with a star marker.

studying the properties of time optimal paths in such flows is a valuable first step for planning in realistic ocean flows
later on.

The domain, flow configuration (mean, modes, and coefficients), and start and end points are provided in Fig. 2.
The front is a steady jet flow from west to east, that is confined and constant in the region 40 < y < 60. The
strength of the flow is a random variable uniformly distributed from 0.5 to 1.5 within the jet proper. The flow is zero
elsewhere in the domain. To represent the stochastic steady front with a uniformly distributed uncertain strength, we
need only one DO mode for velocity, i.e., ns,v = 1. We utilize nr = 2,000 realizations to represent the uniform PDF
of flow strength (see Fig. 2a). We consider missions with a vehicle moving at a non-dimensional nominal speed of
F(t) = 1 ,∀ t = [0,∞). The start point is (150,20) and the three targets are (90,80), (150,80), and (210,80). We
compute the reachability fronts and sets by solving the stochastic DO level-set Eqs. (6), and time-optimal paths by
solving the backtracking Eq. (2).

First, we verify the solution of Eqs. (6) by comparing it to the solution of Eq. (1) computed by the MC method.
Then, we study the properties of the reachability fronts, sets and time-optimal paths.

3.1.1. Verification of the DO solution
To verify the DO solution, we first compute the corresponding MC solution and then compare the two. The MC

solution is obtained by solving the level-set PDE for each of the nr realizations of the velocity field separately. We
look at the differences in arrival time at the target (210,80) and in the reachability front of all realizations. Fig. 3
shows the histogram of relative error in arrival time at the target (210,80). The arrival times computed by the DO

Fig. 3. Cumulative histogram of relative error in arrival-time (between DO and MC solutions) for Test Case 1: 82.80% realizations have a relative
error in arrival-time (between the DO and MC solutions) of less than 0.0008 (0.1%), and the maximum relative error across all realizations is
0.0024 (0.24%). This error is negligible for the 4 orders of magnitude computational speed-up achieved by the DO level-set method.
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Fig. 4. Frechet distance (normalized) between reachability fronts computed by the MC and DO methods for Test Case 1. The difference between the
reachability front computed by DO and MC increases with time, but always remains less than the spatial resolution. The difference can be further
reduced by increasing the number of DO modes if the application requires higher precision. Frechet distances are normalized by grid spacing.

method are nearly identical to the corresponding times computed by the MC method. 26.55% of the realizations have
zero error and 82.8% of realizations have less than 0.1% error in arrival times. The maximum error is 0.24%, which
is 0.15 non-dimensional time or three discrete time-steps. Overall the error in arrival-time is negligible, especially
considering that the DO method is 4 orders of magnitude faster than the MC method.

To quantify the difference in the reachability front, we utilize the discrete Frechet distance [11,30,31] which
measures the maximum distance between two discrete curves in 2-D. Fig. 4 shows the discrete Frechet distance
normalized by the grid spacing for all realizations, plotted at four non-dimensional times. All Frechet distances are
less than the grid spacing, which indicates that the reachability front computed by the DO and MC methods are
identical and the errors are less than or of the order of the spatial discretization. We also compared qualitatively by
plotting the reachability fronts computed by both methods for some characteristic realizations and observed that DO
and MC compute identical reachability fronts (not shown here, see [29]). We thus verified that the reachability front
and arrival times computed using the DO level-set equations are accurate for our applications.

3.1.2. Analysis of stochastic reachability fronts and time-optimal paths
Fig. 5 shows the distribution of the stochastic reachability fronts computed by solving the stochastic DO level-set

Eqs. (6). Each reachability front is colored with the flow strength of that realization. The six panels show snapshots of
the spatial distribution of the reachability fronts at six non-dimensional times.

There is no uncertainty in the flow field outside the jet proper. Hence, the reachability fronts for all realizations are
identical until the time when they first experience the uncertain flow. As shown in Fig. 5b, the part of the reachability
fronts in the jet proper spreads out while the part that has not yet reached the jet remains identical for all realizations.
As time progresses, the spread in the reachability fronts increases as each flow realization has a different flow strength
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Fig. 5. Stochastic reachability fronts for Test Case 1: The reachability front for each of the flow realizations is colored with the strength of that
flow realization.

(Fig. 5c–f). Most notably, there is a locus of points where pairs of reachability fronts corresponding to different flow
realizations cross-over in Fig. 5c and d. For target points downstream of this locus of cross-over points, the higher the
flow strength, the faster the vehicle arrives at the target. On the other hand, for target points upstream of this locus, the
lower the flow strength of the stochastic jet, the faster the arrival-time at the target. In the former situation, the flow
aids the motion of the vehicle to the target and thus stronger flows are favorable; however, in the latter situation, the
flow hinders the motion of the vehicle to the target and thus weaker flows are favorable. By t = 75 (Fig. 5d), vehicles
in all flow realizations have arrived at the target (150,80). By t = 100 (Fig. 5e), vehicles in all flow realizations have
crossed the target (210,80) also and the reachability front of the weakest flow strength is just arriving at the target
(90,80). By t = 125 (Fig. 5f), vehicles of almost all flow realizations have crossed (90,80).

Fig. 6 shows the stochastic time-optimal paths for all three targets. As before, each path is colored with the strength
of the flow realization corresponding to that path. The spread of the paths increases progressively as the target moves
upstream from the start point. The spatial distribution of the time-optimal paths to target (210,80) is narrow. In other
words, the sensitivity of the time-optimal paths to errors in the flow field prediction is low. On the other hand, the
spatial distribution of the time-optimal paths to (90,80) is wide. The sensitivity of the paths to errors in the flow field
prediction is higher than the other two targets. For this test case, the more upstream the end point is, the larger the
effect of the flow strength uncertainty is on the time-optimal paths.

3.2. Test Case 2: Stochastic double-gyre barotropic quasi-geostrophic circulation

We now consider stochastic time-optimal path planning for vehicles navigating in stochastic flow predictions from
the stochastic DO level-set PDE simulations. For this test case, we simulate the idealized near-surface wind-driven
barotropic quasi-geostrophic double-gyre ocean circulation at mid-latitudes, purposely similarly to Subramani and
Lermusiaux [11], but now with uncertain barotropic initial conditions. The deterministic winds (e.g., mid-latitude
easterlies and trade winds in the northern hemisphere) drive a zonal jet eastward (e.g., the Gulf Stream or Kuroshio)
with a cyclonic gyre to its north and an anti-cyclonic gyre to its south. Such a circulation is governed by the following
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Fig. 6. Stochastic time-optimal paths for Test Case 1: All time-optimal paths are colored with the flow strength of the corresponding flow realization.
The variability of the time-optimal paths is greatest for the target point upstream of the start point.

non-dimensional stochastic barotropic quasi-geostrophic model (e.g., [32,33]), written as conservation of momentum
in the Langevin form,

∂v(x, t;ω)
∂t

+ ∇ · (v(x, t;ω)v(x, t;ω)) + f k̂ × v(x, t;ω) = −∇ p(x, t;ω) +
1

Re
∇

2v(x, t;ω) + aτ , (7a)

∇ · v(x, t;ω) = 0, (7b)

v(x, 0;ω) = v0(x;ω), (7c)

where Re is the Reynold’s number, f is the Coriolis coefficient, and a is the strength of the wind stress. For the
Coriolis coefficient, we employ a β-plane approximation f = f0 + βy with f0 = 0. We utilize a horizontal length
scale L = 106 m, vertical length scale D = 103 m, velocity scale U = 1.98 cm/s, time scale T = 1.6 yrs, density
ρ = 1025 kg/m3, stress scale τ0 = 0.16 MPa, eddy viscosity AH = 19.77 m2/s, and β0 = 1.977×10−11 ms. This leads
to non-dimensional numbers Re =

U L
AH

= 1000, a =
τ0 L
ρDU2 = 1, 000, and β = β0L2/U = 1, 000. A deterministic

non-dimensional steady zonal wind stress, τ =
[
−

1
2π cos 2πy , 0

]T
, forces the flow in the basin. The DO equations

corresponding to the stochastic barotropic quasi-geostrophic dynamics Eq. (7) are provided in Appendix A.2.
We simulate the flow in a basin of size 1000 km × 1000 km by solving Eq. (A.8) and using the relevant

numerical parameters in Table 2. The barotropic zonal and meridional velocities are initialized (Eq. (7c)) from a
spatial correlation kernel with a length scale of 500 km and uniform variance. Five velocity DO modes and 5000 DO
realizations are utilized (Table 2), and the simulation is spun-up for 1 non-dimensional time, i.e., 1.6 yrs. For path
planning, we utilize the next 13.5 days of stochastic flow. We consider a vehicle with a nominal speed of 40 cm/s ([34],
e.g.). Fig. 7 illustrates the DO mean, DO modes, and marginal PDF of the DO coefficients for the flow field at the
beginning (t = 0 days) and end (t = 13.5 days) of the planning horizon.

Over the 13.5 day period, the mean flow is a strong zonal jet from east to west with a cyclonic gyre to the north
of the jet and an anti-cyclonic gyre to the south (Fig. 7 Mean). From the variance of the coefficients (Fig. 7 Variance
of Coeffs.), we see that Mode 1 has the most stochastic energy and explains the broad features of the uncertainty
in the flow. Mode 1 has two zonal jets and three gyres (Fig. 7 Mode 1). The two jets are located north and south
of the zonal jet of the mean. The stochastic coefficient corresponding to this mode has a bimodal distribution. For
positive coefficients, the southern jet (0.2 < y < 0.5) contributes a flow from west to east and the northern jet
(0.5 < y < 0.8) from east to west. For negative coefficients, the direction of this contribution is reversed. The
northern and southern jets can be locally considered to be similar to the stochastic front crossing example (Test Case
1). Higher positive (negative) coefficients correspond to greater variation from the mean in the (opposite) direction
of the modes. Modes 2–5 and their coefficients contribute to non-symmetric flow realizations (Fig. 7 Modes 2–5),
such as the non-symmetric wind-driven gyres seen in the North Atlantic (e.g., [35,36]). Two realizations with most
negative Coeff.1 (Realiz. #1) and with most positive Coeff. 1 (Realiz #5000) are shown in Fig. 8. Both these and 4998
other realizations are all simulated by one DO flow field simulation (Appendix A).

3.2.1. Analysis of stochastic reachability fronts and time-optimal paths
Now we plan stochastic time-optimal paths from a start point (0.2,0.2) to the target (0.4,0.8). Fig. 9 illustrates the

evolution of stochastic reachability fronts (i.e., zero level-set contours) over the planning horizon, showing snapshots
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Fig. 7. Stochastic flow field for Test Case 2: The mean field and variance of the DO coefficients, then the 5 DO mode fields and the marginal PDF of
the corresponding DO coefficients of the stochastic double-gyre flow field are shown at the beginning and end of the planning horizon. Streamlines
are overlaid on a color plot of the flow magnitude (color axis in cm/s) for the DO mean and modes. The x- and y- axes have units of 1000 km.
Realizations can be constructed by adding the mean to the sum of the product of each mode with a sample from the PDF of the corresponding
coefficient.
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Fig. 8. Two realizations of the stochastic flow field for Test Case 2: Streamlines of the flow are overlaid on a color plot of the flow magnitude.
Realiz. #1 corresponds to the most negative Coeff. 1 and realiz #5000 to the most positive Coeff. 1. All such realizations are integrated in time by
one DO flow field simulation.

at nine discrete times. Each flow realization has a reachability front and all such fronts are computed by one DO
simulation. Overall, the reachability front gets advected by the mean flow, but individual realizations experience the
effect of the modes and coefficients of the flow. As such, the reachability fronts spread, leading to a density distribution
(Fig. 9). The mean double-gyre advects the level-sets, and hence the reachability fronts are advected clockwise in the
anti-cyclonic southern gyre and clockwise in the cyclonic northern gyre. To study the spread, we look at Fig. 9.
Here, the reachability fronts are overlaid on streamlines of velocity DO mode 1, ṽ1(x, t), and colored with velocity
DO coefficient 1, µ1(t;ω). The initial spreading of the reachability fronts (Fig. 9b–d) in the southern part of the
domain (y < 0.5) is due to the flow contribution by the southern jet of velocity DO mode 1. The reachability
fronts corresponding to positive coefficients are advected to the east more than those corresponding to negative
coefficients. The spreading of the reachability fronts in the northern part of the domain (y > 0.5) (Fig. 9f–i) is
due to the flow contribution by the northern jet of velocity DO mode 1. Here, the effect on the reachability fronts
is opposite to the effect due to the southern jet, i.e., more positive coefficients are advected to the west more than
the realizations corresponding to more negative coefficients. The spread of the reachability fronts in the strong mean
zonal jet (approximately 0.45 < y < 0.55) is not affected much, as the contribution to the flow by all velocity modes
in this region is weak (Fig. 9c–f). The finer details in the shape of the reachability fronts are due to contributions of
the velocity modes with lower stochastic energy (modes 2–5).

Next, we study the spatial distribution of the time-optimal paths (Fig. 10). In Fig. 10a, each path is colored with
the corresponding flow realization’s velocity DO coefficient 1, µ1(t;ω). In Fig. 10b, each path is colored with the
arrival-time for that path. All paths cross the strong mean zonal jet by riding the anti-cyclonic southern gyre first
and then the cyclonic northern gyre. The spread in the paths is a result of the variability in the reachability fronts as
described above. The most negative coefficient µ1(t;ω) defines the western edge of the spatial distribution of paths
and the most positive µ1(t;ω) defines the eastern edge as seen in Fig. 10a. When paths are colored by the arrival time
(Fig. 10b), one sees that the arrival time for paths that are very different spatially (and corresponding to different flow
realizations) can be nonetheless similar. This is due to the complex PDF of the stochastic velocity field. In this test
case, the arrival time range varies from 12.1 to 13.6 days. For reference, under no flow conditions, a vehicle with a
speed of 40 cm/s would take 18.3 days to travel between the start and target points considered in this test case 2.
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Fig. 9. Stochastic reachability fronts for Test Case 2: The reachability front for each of the flow realizations is colored with its corresponding
velocity DO coefficient 1, µ1(t;ω). Time t is in days, and x- and y- axes are in thousands of km.

Fig. 10. Stochastic time-optimal paths for Test Case 2: The time-optimal paths are colored with (a) the velocity DO coefficient 1, µ1(t;ω), and (b)
the arrival time (in days) at the target shown. x- and y- axes are in thousands of km.

The examples so far also show that the time-optimal path can be very sensitive to the uncertainty in the flow field.
A strength of the stochastic DO level-set equations is that they allow the rigorous prediction of this sensitivity in
a computationally efficient manner. The examples also raise the need of computing risk-optimal paths in uncertain
flows, a topic addressed in [37].
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Fig. 11. Flow field for Test Case 3: Row A shows the DO mean flow, with streamlines overlaid on colored vorticity. Row B shows the same for
mode 1 and mode 2 fields. Row C shows the marginal PDF of coefficients 1 and 2. Row D shows the decay in variance of the first eight modes.
Each column is a snapshot, at the time specified at the top. The starting point of the propelled vehicle is indicated by a circular marker and the 6
targets by star markers.

3.3. Test Case 3: Stochastic flow past a circular island

In the third test case, we consider time-optimal path planning in a stochastic flow behind a circular island in a
channel. Fig. 11 shows the domain and flow configuration (vorticity overlaid with streamlines). The flow is governed
by the stochastic barotropic quasi-geostrophic Eq. (7c), but with f = 0 and τ = [0 , 0]T . We model a channel
16 km × 6 km with a circular island of diameter 1 km. Here, we utilize a turbulent eddy viscosity AH = 10 m2/s,
length scale L = 1 km, velocity scale U = 1 m/s, and time scale T = 1000 s, leading to a non-dimensional
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Fig. 12. Two realizations of the stochastic flow field for Test Case 3: Streamlines are overlaid on a color plot of vorticity. Realiz. #1 corresponds
to the most negative Coeff. 1 while realiz. #10,000 to the most positive Coeff. 1. All such realizations are integrated in time by one DO flow field
simulation.

Reynold’s number of 100. We consider a deterministic barotropic inlet into the channel of v = [1 , 0]T m/s on the
western boundary. The northern and southern boundaries have free-slip wall conditions and the eastern boundary has
open conditions. The barotropic initial conditions are generated from a covariance kernel with a spatial correlation
length scale of 5 km in the zonal direction and 2 km in the meridional direction. 8 velocity DO modes and 10,000 DO
realizations are employed here (Table 2). The simulation is spun-up until stochastic eddies are generated downstream
from the island. Then, the flow for 1.5 h (non-dimensional time of 5.4) is considered for path planning.

Fig. 11 shows the velocity mean (row A), the first two velocity DO modes (row B), marginal PDF of the
corresponding DO coefficients (row C), and the variance of first eight DO modes (row D). Each column of Fig. 11
shows the above quantities at t = 0, 2700, and 5400 s. From the decay in variance (row D), we see that most of the
flow uncertainty is captured by the DO modes 1 and 2, and hence other modes and coefficients are not shown (but we
used 8 modes). The mean flow accelerates to the south and north of the island as it is confined by the channel and has
almost zero magnitude in the lee just behind the island. The stochastic initial conditions result in uncertainty in the
eddy strength, shedding frequency, and whether the eddies are first shed to the north or south of the island. The modes
1 and 2 have eddies downstream from the island which together with the coefficients explain the uncertainty in the
flow downstream.

Fig. 12 shows two realizations corresponding to the most negative (Realiz. #1) and positive (Realiz. #10,000)
coeff. 1. We see that in Realiz. #1, eddies shed to the north of the island while for realiz. #10,000, they shed to the
south of the island.

3.3.1. Analysis of stochastic reachability fronts and time-optimal paths
Now we plan stochastic time-optimal paths for navigating a propelled vehicle with a nominal speed of 1 m/s from

a start point (2,3) upstream of the island to six possible target points (see Figs. 11–12: the start point is indicated
by circular markers and targets by star markers). Fig. 13 shows the evolution of the stochastic reachability front
overlaid on streamlines of velocity modes 1 (column A) and 2 (column B). In each plot, we color the reachability
fronts with their respective coefficients. The level-sets do not grow west of the start point as the vehicle speed and the
mean flow there are equal and opposite, making the reachability front stationary at the start point. Until t = 1800 s,
the reachability fronts for all flow realizations are almost identical as the flow uncertainty in the reachable sets is
insignificant (Fig. 13A.i, B.i). The shape of the reachability fronts is set by the mean flow between t = 1800 and
2400 s. The reachability front grows normal to itself at the nominal vehicle speed in the close-to-zero mean flow
region behind the cylinder (Fig. 13A.ii, B.ii). After t = 1800 s, the spreading of the reachability fronts due to the
effect of velocity DO modes start. The mean flow advects all the reachability fronts to the east. From t = 3000 s, the
reachability fronts start splitting into two groups roughly corresponding to positive and negative values of coefficient
1. At t = 3600 s, the group of reachability fronts with positive coefficient 1 have a kink near y = 3.5 and those with
negative coefficient 1 have a kink near y = 2.5 corresponding to the eddy direction (Fig. 13A.iv). At t = 4500 s, the
reachability fronts have two groups corresponding to positive and negative coefficient 2 (Fig. 13A.v). At t = 5400 s,
the behavior is similar to t = 3600 s, with two distinct groups of reachability fronts corresponding to positive and
negative values of coefficient 1.
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Fig. 13. Stochastic reachability fronts for Test Case 3: In column A (B) the reachability fronts are overlaid on the velocity streamlines of Mode 1
(2) and colored by coefficient 1 (2). Rows i–vi are snapshots at the indicated times. Starting point of the propelled vehicle is indicated by a circular
marker and the six possible targets by star markers.

Next, we study the spatial distribution of the time-optimal paths (Fig. 14). In Fig. 14, column A has all paths colored
with velocity coefficient 1, and column B has all paths colored with velocity coefficient 2. Row i has all paths to target
2, row ii to target 5, and row iii to all other targets. Paths to targets 1, 3, 4, and 6 (row iii) have little variance, since
these paths are mostly outside the regions of flow uncertainty. Paths to target 5 (row ii) have the maximum variance
followed by paths to target 2 (row i), as these are affected by the flow uncertainty. There are two sets of paths: one
set that goes north of the island and another that goes south. The combination of velocity modes and coefficients
creates flow realizations that lead to northern paths or southern paths. This bifurcation mirrors the uncertainty in eddy
shedding downstream from the island. An error in estimating the direction of eddy shedding will result in large errors
in the time-optimal path predictions to targets 2 and 5 (e.g., north vs. south) for this test case. However, predictions
to targets 1, 3, 4, and 6 are largely unaffected by such an error. This illustration quantitatively confirms the fact that
sensitivity of path predictions depends not only on the flow itself but also on the target locations, and all such paths
and sensitivities can be computed by solving our equations. Notably, an advantage of our methodology is that only
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Fig. 14. Stochastic time-optimal paths for Test Case 3: Column A (B) has paths colored by velocity coefficient 1 (2). Row i shows all paths to
target 2, row ii to target 5, and row iii to the other 4 targets. The x− and y− axes are in kms.

one reachability front simulation is required for one start location and start time. The paths to multiple targets are
obtained by solving the backtracking stochastic ODE Eq. (2), which is very inexpensive to solve.

Fig. 15 shows the distribution of arrival times at the six targets. As expected from the distributions of time-optimal
paths, the distributions of arrival times at targets 1, 3, 4, and 6 are tighter compared to other two targets. Target 5
indeed has the most variance in arrival time, and the distribution is bimodal similar to the bimodal distribution of
velocity DO coefficients 1 and 2.

4. Conclusion

We obtained and applied fundamental equations for time-optimal path planning in uncertain, dynamic and strong
flows. We first presented the stochastic level-set PDEs that govern the exact evolution of reachability fronts for
vehicles navigating in uncertain, strong, and dynamic flow fields. We then developed efficient stochastic dynamically
orthogonal level-set PDEs that solve the above equations in a reduced dynamic subspace, providing several orders
of magnitude computational speed-up when compared to direct Monte Carlo methods. To compute stochastic time-
optimal paths, we utilized the governing stochastic particle backtracking ODE. We then applied the equations to
compute stochastic reachability fronts and time-optimal paths in three different scenarios: a steady-front of uncertain
strength, a stochastic double-gyre circulation, and a stochastic flow past a circular island. We utilized the first test
case to verify that our DO level-set equations can compute the distribution of stochastic reachability fronts and time-
optimal paths as accurately as traditional Monte Carlo methods. In the second case, we quantitatively explained the
effect of the first DO velocity mode (with the most stochastic energy) on setting the shape and distribution of the
reachability fronts and time-optimal paths. We also showed that the paths corresponding to different flow realizations
can have large spatial differences but similar arrival times, due to the complex PDF of the stochastic velocity fields.
In the third case, we described how the variance of time-optimal paths and arrival times depended mostly on the
first two DO velocity modes. We showed that the variability could be large due to the uncertainty in estimating the
direction of eddy shedding for targets directly downstream of an island. Importantly, all these paths are computed by
one simulation of the stochastic DO level-set equations.
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Fig. 15. Arrival time distribution at each of the six targets for Test Case 3: The distribution at targets 1 and 4, 2 and 5, and 3 and 6, are similar,
respectively. The distributions at targets 1 and 3, and targets 4 and 6 are almost mirror images due to their symmetric spatial location north and
south of the circular island, respectively.

Overall, our analysis offers insights into the behavior of vehicles navigating in canonical uncertain flows often
encountered in coastal ocean regions. In addition to computing stochastic reachability fronts and time-optimal paths,
the new equations provide a rigorous framework for quantifying the sensitivity of time-optimal paths to variability
and errors in flow field predictions. In the future, our methodology can be applied with realistic uncertainty flow
predictions (e.g., [16,38,39]). The stochastic DO level-set equations can be augmented with decision theory to
compute risk-optimal paths for vehicles navigating in uncertain flow fields. Even though we emphasized the navigation
of autonomous vehicles in ocean flows, the methodology and equations are general: they can be utilized for aerial
vehicles, land robots, or ships (e.g., [40]).
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Appendix A

In this appendix, we first outline generic Dynamically Orthogonal field equations and then provide the barotropic
quasi-geostrophic DO equations. We refer to Table 1 for the notation.
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A.1. Generic DO equations

Prior to describing the Dynamically Orthogonal field equations [26,27,41], we first provide some definitions. For
any two fields ψ̃1(x, t) and ψ̃2(x, t), the spatial inner product is defined as⟨

ψ̃1(•, t), ψ̃2(•, t)
⟩
=

∫
D
ψ̃1(x, t)T ψ̃2(x, t) dx , (A.1)

the orthogonal component operator as

Γ⊥

ψ̃
G(x) = G(x) −

ns,ψ∑
k=1

⟨
G(•), ψ̃k(•, t)

⟩
ψ̃k(x, t) , (A.2)

and the expectation operator as

E[ψ(x, t;ω)] =

∫
Ω

ψ(x, t;ω)dP(ω) . (A.3)

Consider the time evolution of a general stochastic continuous field ψ(x, t;ω) (e.g., ψ(x, t;ω) = φ(x, t;ω) for the
level-set scalar field and ψ(x, t;ω) = v(x, t;ω) for the velocity vector field), described by a S-PDE

∂ψ(x, t;ω)
∂t

= L[ψ(x, t;ω), x, t;ω] , (A.4)

where L is a general nonlinear operator. Introducing a generalized dynamic Karhunen–Loeve (KL) decomposition (a
DO decomposition)

ψ(x, t;ω) = ψ̄(x, t) +

ns,ψ∑
i=0

Yi (t;ω)ψ̃i (x, t) , (A.5)

into (Eq. (A.4)), applying the expectation (Eq. (A.3)) and spatial inner-product (Eq. (A.1)) operators, and an
orthogonality condition on the evolution of the stochastic subspace,⟨

∂ψ̃i

∂t
, ψ̃ j

⟩
= 0 ∀ i, j , (A.6)

we obtain the DO equations for the statistical mean ψ̄ , stochastic coefficients Yi , and deterministic modes ψ̃i as

∂ψ̄(x, t)
∂t

= E[L] , (A.7a)

∂Yi (t;ω)
∂t

=

⟨
L − E[L], ψ̃i

⟩
, (A.7b)

∂ψ̃i (x, t)
∂t

=

ns,ψ∑
j=1

C−1
i j Γ⊥

ψ̃
E[Y jL] , (A.7c)

where we have dropped (x, t) from the inner-product terms for brevity of notation. Here, the ns,ψ modes ψ̃i and
stochastic coefficients Yi are dynamic and governed by differential equations, distinguishing them from classic
empirical orthogonal functions and proper orthogonal decomposition approaches. These dynamic modes describe an
evolving subspace, and the coefficients evolve the uncertainty within that dynamic subspace. For nonlinear dynamical
systems, the intrinsic nonlinearities in Eq. (A.4) and the corresponding dynamics retained in Eqs. (A.7a)–(A.7c) often
enable truncating the number of ns,ψ modes and coefficients to a much smaller number than the dimensions (spatial
and stochastic) of the original discretization of Eq. (A.4). It is this dynamics and the adaptable size ns,ψ that allow the
DO equations to accurately capture most of the stochasticity of the original variables [27,42,43].

A.2. Dynamically orthogonal quasi-geostrophic equations

In this appendix, we provide the Dynamically Orthogonal barotropic Quasi-Geostrophic equations that we utilized
to generate stochastic flow fields. Detailed description of similar equations for Boussinesq dynamics, their derivation
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and numerical schemes are provided in [41] and the implementation is provided in [44]. The equations for
the DO mean (Eqs. (A.8a), (A.8b)), coefficients (Eq. (A.8c)), and modes (Eqs. (A.8d), (A.8e)) of the S-PDE (7)
are

∇ · v̄ = 0 , (A.8a)

∂ v̄
∂t

=
1

Re
∇

2v̄ − ∇ · (v̄v̄) − Cµmµn ∇ · (ṽm ṽn) − f k̂ × v̄ − ∇ p̄ + aτ , (A.8b)

dµi

dt
= µm

⟨
1

Re
∇

2ṽm − ∇ · (ṽm v̄) − ∇ · (v̄ṽm) − ∇ p̃m − f k̂ × ṽm, ṽi

⟩
− (µmµn − Cµmµn )

⟨
∇ · (ṽm ṽn), ṽi

⟩
, (A.8c)

∇ · ṽi = 0 , (A.8d)

∂ ṽi

∂t
= Qv

i −
⟨
Qv

i , ṽk
⟩
ṽk , (A.8e)

where Qv
i =

1
Re

∇
2ṽi − ∇ · (ṽi v̄) − ∇ · (v̄ṽi ) − ∇ p̃i − C−1

µiµ j
Mµ jµmµn ∇ · (ũm ũn) ,

where we have dropped the parenthesis (x, t;ω) for brevity of notation. We solved Eqs. (A.8) to obtain the stochastic
flow fields utilized in Test Cases 2 and 3 of the present paper (Section 3).
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