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Abstract—Recent advances in probabilistic forecasting of re-
gional ocean dynamics, and stochastic optimal path planning
with massive ensembles motivate principled analysis of their
large datasets. Specifically, stochastic time-optimal path plan-
ning in strong, dynamic and uncertain ocean flows produces
a massive dataset of the stochastic distribution of exact time-
optimal trajectories. To synthesize such big data and draw
insights, we apply machine learning and data mining algorithms.
Particularly, clustering of the time-optimal trajectories is im-
portant to describe their PDFs, identify representative paths,
and compute and optimize risk of following these paths. In
the present paper, we explore the use of hierarchical clustering
algorithms along with a dissimilarity matrix computed from
the pairwise discrete Frechet distance between all the optimal
trajectories. We apply the algorithms to two datasets of massive
ensembles of vehicle trajectories in a stochastic flow past a
circular island and stochastic wind driven double gyre flow.
These paths are computed by solving our dynamically orthogonal
level set equations. Hierarchical clustering is applied to the two
datasets, and results are qualitatively and quantitatively analyzed.

I. INTRODUCTION

Autonomous ocean platforms are increasingly being used
for several applications including ocean science research,
resource discovery, ecosystem monitoring, and coastal se-
curity. For their efficient and economic operations, optimal
planning of autonomous missions while rigorously accounting
for uncertain, strong and dynamic ocean currents is necessary.
Typically, passive ocean measuring platforms (e.g., drifters
and buoys) move only due to advection by the currents. Even
for the active ocean vehicles (e.g., gliders and Autonomous
Underwater Vehicles) advection by currents is significant as
these vehicles operate at a nominal speed that is of the order
of the ocean currents. In fact, predicting and utilizing the
currents to plan optimal paths leads to significant reduction
in time and energy requirements for autonomous missions.
Recently, we developed fundamental stochastic partial differ-
ential equations that govern the stochastic reachability and
time-optimal paths in strong, dynamic and uncertain ocean
currents [1], building off our earlier work in PDE-based time
[2], and energy [3] optimal planning in realistic re-analysis
and in real-time with real AUVs [4]. We point the readers
to refs. [5, 6] for detailed reviews. Drifters and floats are
ideal for economical data collection with large spatio-temporal
coverage, e.g., the Argo float program [7]. Predicting the prob-

abilistic reachability of these passive platforms is important
for recovery and safe operation of assets (e.g., [8]). With the
development of probabilistic regional ocean forecasting using
dynamically orthogonal primitive equations [9], simulating an
extremely large number of realizations of the ocean currents
is currently feasible, and these can be utilized to simulate a
large number of drifter and float trajectories. To synthesize
such big data and produce meaningful analysis, we must do
pattern recognition and clustering on the data sets of time-
optimal vehicle trajectories and passive drifter trajectories.
Clustering may also be applied in such cases for visualization,
understanding the most probable ocean states, and to form
PDF of trajectories for use in Lagrangian data assimilation
[10]. Moreover, as ‘ocean of things’ expands and data sets
grow, clustering and other learning techniques will become
ubiquitous in ocean science and engineering.

The traditional application of trajectory clustering has been
to video surveillance data, traffic footage [11, 12], and behav-
ior monitoring [13] but it has recently become more popular in
atmospheric and ocean sciences. It has been used to understand
trends of tropical cyclones in the Northern Pacific [14], to
understand climatology of long-range atmospheric transport
[15], to identify patterns of eddies [16], for maritime traffic
monitoring [17, 18], and to identify patterns in transmission
loss in stochastic acoustic forecasts [19]. For an overall review,
we refer the readers to [20, 21]. The main distinction between
vehicle trajectories on land and in the ocean is the influence
of ocean currents and dynamics. In order to obtain patterns
of stochastic optimal trajectories, it is important to combine
rigorous PDE based predictions of trajectories with clustering
analysis.

The goal of the present paper is to develop a principled
approach to perform hierarchical clustering of ensembles of
time-optimal vehicle trajectories in uncertain ocean flows and
study their properties. Through hierarchical clustering, we can
gain insight into the underlying structure of the data at each
level which cannot be obtained through density clustering. We
employ a hierarchical clustering approach with a dissimilarity
matrix computed from the pair-wise discrete Frechet distance
[22, 23] between trajectories. Further, we show how represen-
tative paths for each cluster can be defined and illustrate their
applications.

The layout of the paper is follows: In Section II-A, we
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briefly describe how the ensemble of time-optimal paths were
computed by solving the stochastic time-optimal dynamically
orthogonal equations. In Section II-B, the general methodol-
ogy of agglomerative hierarchical clustering is described and
how we apply it to our datasets. The application of this to two
stochastic time-optimal trajectory datasets is described in III
with results and future extensions of this work presented in
IV.

II. APPROACH

A. Generation of Ensemble of Stochastic Time-Optimal Paths

We employ our stochastic dynamically orthogonal level set
equations with uncertain velocity to predict the distribution of
stochastic time-optimal paths. Here, we will briefly describe
the approach and refer the readers to ref. [1] for details on the
theory, numerical schemes and implementation.

For a vehicle navigating with a nominal relative speed F (t)
between two points xs and xf in a strong, dynamic, and
uncertain flow v(x, t;ω), where ω is a random event, the
stochastic reachability front tracking level-set field φ(x, t;ω) is
governed by the stochastic Hamilton-Jacobi partial differential
equation

∂φ(x, t;ω)

∂t
+ F (t)|∇φ(x, t;ω)|+ v(x, t;ω) · ∇φ(x, t;ω) = 0 ,

(1)

with the initial condition as φ(x, 0;ω) = |x − xs| and open
boundary conditions as needed. The zero contour of the level
set field tracks the reachability front of a vehicle start at xs

at time t = 0, and the first time this reachability front reaches
the target xf is the optimal arrival time T (xf ;ω). From the
time-series of zero contours of the level set field, the time-
optimal track XP (xs, t;ω) can be computed by solving the
vehicle backtracking path PDE,

dXP

dt
= −v(XP , t;ω)− F (t)

∇φ(XP , t;ω)

|∇φ(XP , t;ω)|
,

0 ≤ t ≤ T (xf ;ω) and XP (xs, T ;ω) = xf . (2)

Solving the stochastic PDE (1) is expensive by tradi-
tional Monte Carlo methods, and hence, we utilize their
variance-optimal reduced order dynamically orthogonal equa-
tions, which shadow the dominant uncertainties to predict the
stochastic distribution with massive ensemble sizes. We need
to integrate only a few mode PDEs (which are the same cost
as one evaluation of the forward model in a Monte Carlo
simulation) and a large number of coefficient ODEs (which
are inexpensive to integrate compared to the mode PDEs). The
stochastic dynamically orthogonal level set equations and the
numerical schemes to solve them, including verification and
validation, are provided in ref. [1].

For the applications in the present paper, we utilize the
distribution of stochastic time-optimal paths predicted and
described in ref. [1], but now for clustering analysis.

B. Clustering

Once an ensemble of trajectories is obtained, different
dissimilarity matrices can be generated considering various
distance metrics defined between any two trajectories. An
agglomerative hierarchical clustering algorithm is then used
to partition the ensemble of trajectories into a certain number
of clusters, based on the dissimilarity matrix. A number of
questions arise such as which distance metric to prefer in
constructing a dissimilarity matrix, which linkage method is
suitable for the problem we are interested in and the number
of clusters required to adequately represent our data.

Popular distance metrics include the Euclidean distance,
Hausdorff distance [24], Bhattacharyya distance [25], Frechet
distance [22, 23], Dynamic Time Warping distance [26], and
Longest Common Subsequence distance [27–29]. When as-
sessing the distances between two trajectories from an ensem-
ble of time-optimal trajectories, it is important to account for
both spatial and temporal information. Two vehicle trajectories
may be similar when looking at spatial information but may
not be similar when considering their temporal information
because of the different dynamics they encountered and the
temporal domain in which they were simulated. For our case,
we use the discrete Frechet distance as our metric as it takes
into account both location and time ordering unlike Euclidean
or Hausdorff distance. It is also possible to consider multiple
dissimilarity matrices generated from different distance met-
rics and adopt an ensembling approach [30] during clustering
which we do not discuss here.

There exists variety of heuristics to prefer the single,
complete, weighted or unweighted average linkage methods.
Some insight into which method to prefer comes from recent
progress in development of a cost function for dissimilarity
based hierarchical clustering algorithms [31]. Further, [31]
showed that a simple recursive sparsest-cut based approach
achieves an O(log3/2 n) approximation on worst-case inputs.
A refined analysis in [32] showed that it actually achieves
an O(

√
log n) approximation. Moreover, [32] showed that

the average linkage method gives a factor 2 approximation,
making it a practical algorithm. Another reason to prefer the
average linkage method is its comparable robust performance
in presence of outliers [33]. As the average linkage method
doesn’t suffer from chaining or crowding, usually compact and
distinct clusters are obtained.

Determining the number of clusters to use to represent the
underlying structure of the data is a challenging problem. One
ideally wishes to minimize the within-cluster variation and
maximize the between-cluster variation. The gap statistic [34],
silhouette distance [35], Aitken Information Criterion (AIC),
and Bayesian Information Criterion (BIC) [36] are some of
the commonly used methods for estimating the cluster size. A
lot of these methods require that we keep the ensemble data
in the workspace but in our case, the data is discarded and
all the knowledge of the data is considered to be contained in
the dissimilarity matrix. We thus use the silhouette distance to
assess the quality of a clustering assignment. For the ith data



point, the silhouette is given by

s(i) =
b(i)− a(i)

max(a(i), b(i))
(3)

where a(i) is the average dissimilarity between ith data point
and all the other points in the cluster that the ith data point
belongs to. If we denote d(i, C) as the average dissimilarity
between the ith data point and all the other points in cluster
C different from the cluster that the ith data point belongs to,
then b(i) = minC∈Ck

d(i, C). Clearly, the dissimilarity matrix
and the clustering assignment is all that is required to calculate
s(i). Once s(i) is known, the average silhouette distance can
be used as a criteria to judge the quality of an assignment. A
higher value indicates a better clustering assignment.

III. APPLICATION OF CLUSTERING

A. Datasets of Stochastic Time-Optimal Trajectories

We primarily use two datasets of massive ensembles of
stochastic time-optimal trajectories shown in Fig. 1, com-
puted using our stochastic time-optimal path planning S-PDEs
(sec. II-A and reported in ref. [1]). The first dataset (Fig. 1a) is
the ensemble of stochastic time-optimal trajectories in a flow
past a circular island (Test Case 3 of ref. [1]), and the second
dataset (Fig. 1b) is the ensemble of stochastic time-optimal
trajectories in a stochastic wind-driven double gyre flow (Test
Case 2 of ref. [1]). In the first, the stochastic flow field is
obtained by solving the stochastic quasi geostrophic flow past
a circular island of diameter 1 km in a channel of size 16
km x 6 km with uncertain initial conditions. Utilizing this
uncertain velocity forecast, the stochastic dynamically orthog-
onal equations are solved, and the dataset of the distribution
of stochastic time-optimal paths with 10,000 realizations is
obtained. The AUV travels from a point directly upstream
from the island to a point directly downstream (Target 5 of
Test Case 3 in ref. [1]). In the second, the stochastic quasi
geostrophic equations are solved in a basin of 1000 km x 1000
km and forced by a wind from west to east, with uncertain
initial conditions. As before, the dataset of stochastic time-
optimal trajectories, now with 5,000 realizations is obtained.
In this figure, the circular marker represents the start location
of the AUV and the star marker represents the target.

Next, we apply the hierarchical clustering algorithm
(Sec. II-B) on these two datasets one-by-one.

B. Hierarchical Clustering on Dataset 1

We first compute the dissimilarity matrix over the time-
optimal vehicle trajectories (shown in Fig. 1a) using the metric
of discrete Frechet distance. A dendogram tree (shown in
Fig. 2) is created using the dissimilarity matrix through the
agglomerative hierarchical clustering algorithm with average
linkage. In the Fig. 2, we have colored two distinct clusters
and shown the dendogram with a granularity of 50 clusters to
aid visualization. On an average, the trajectories belonging to
the same cluster are more similar to each other than those
belonging to another cluster. According to the number of

Fig. 1. (a) Dataset 1: Distribution of stochastic time-optimal paths for the
stochastic flow past a circular island in a channel. (b) Dataset 2: Distribution
of stochastic time-optimal paths for the stochastic wind driven double gyre
flow. Figure panels adapted from [1].

Fig. 2. Dataset 1: Dendrogram obtained through hierarchical clustering
algorithm applied on the dissimilarity matrix (2 clusters colored).

clusters we wish to identify, the tree can be cut at different
heights.

Once a clustering assignment has been made, we want to
identify the representative trajectories of each cluster. The
representative trajectory in each cluster is considered to be
the realization nearest to all the other trajectories within the
cluster, corresponding to the realization with the minimum
row sum in the dissimilarity matrix. This definition of a rep-



Fig. 3. Dataset 1: (a) Clusters of vehicle paths shown by color with representative paths of each cluster colored in black (‘-’ is for cluster 1, ‘–’ is for cluster
2). (b) Clusters of vehicle paths shown by color with representative paths of each cluster colored in black (‘-’ is for cluster 1, ‘–’ is for cluster 2, ‘:’ is for
cluster 3, ‘-.’ is for cluster 4).

resentative trajectory ensures that this is a realizable predicted
trajectory.

Fig. 3a and Fig. 3b shows the clustering obtained with
two and four clusters respectively. In the former, the clusters
correspond to the northern and southern trajectories. In the
latter, further sub-clusters are identified – two to the north of
the island and two to the south. We observe that the spatial
information plays a more important role in the clustering
assignments for each trajectory than temporal information.
Paths with different arrival times but similar spatial lengths
and shapes belong to the same cluster. Moreover, we observe
that the representative paths of each cluster are not necessarily
the mean paths of the clusters.

From visual inspection, it appears that two clusters ade-
quately represent the data. We confirm this by plotting the
trend of average silhouette distance with the number of clusters
in Fig. 4. We observe that it is maximized for a cluster size of
two. The probability of a trajectory belonging to a particular
cluster is proportional to the number of trajectories assigned
to that cluster. This may in turn aid in computing risk each
trajectory and identifying risk-optimal paths [9].

Fig. 4. Dataset 1: Trend of average silhouette distance with number of clusters

It may be beneficial to represent the data with more clusters
when the purpose is to extract the spatial PDF of the time-
optimal trajectories. By utilizing 40 clusters, a PMF map

can be generated as shown in Fig. 5. In this figure, each
cluster’s representative path is colored by its probability of
occurrence as the fraction of the number of realizations in
that cluster. Such a probability description of the paths is very
helpful for visualization as well as for quick computation of
spatial statistics with only the representative paths and their
probabilities. In this case, now the PDF of the paths that
were earlier captured with 10,000 realizations each with a
probability of 1/10,000 is now replaced with 40 representative
paths each with its own probabilities. In other words, we have
used clustering to do a relevant sub-sampling of the massive
ensemble of time-optimal trajectories.

Fig. 5. Dataset 1: Representative paths colored by the probability of the
clusters they represent.

C. Hierarchical Clustering on Dataset 2

As for dataset 1, we first compute the dissimilarity matrix
over the time-optimal vehicle trajectories of the dataset 2
(shown in Fig. 1b) using the metric of discrete Frechet
distance. A dendogram tree (shown in Fig. 6) is created using
the dissimilarity matrix through the agglomerative hierarchical
clustering algorithm with average linkage. As before, to aid
visualization for the purpose of illustration, we have colored
four distinct clusters and shown only up to 50 clusters in Fig. 6.
Note that, from the 50 clusters at which we stopped, further
branches and nodes exist going all the way up to the 5000
realizations in our dataset.

Fig. 7 shows three panels with two, three and four clusters,
and their representative paths. Fig. 7a has two clusters, with



Fig. 6. Dataset 2: Dendrogram obtained through hierarchical clustering
algorithm applied on the dissimilarity matrix.

paths belonging to each colored in cyan and red. When three
clusters are utilized, the cyan cluster is further divided into
two clusters as shown in Fig. 3b, and when four clusters are
utilized, the cyan cluster is further divided into three as shown
in Fig. 7c. This fact is also observable in the dendogram
(Fig. 2) where we can see that the red colored cluster is
not changing, whereas the branch corresponding to the other
cluster gets subdivided when more clusters are utilized.

Fig. 8 shows the representative paths colored by the proba-
bilities of their clusters. The probability of the representative
path is highest for the path marked 1, followed by path marked
2. We note that these two paths are in fact the representative
paths of the first two clusters shown in Fig. 7a.

IV. CONCLUSION AND FUTURE WORK

This work presents how hierarchical clustering can be used
on ensembles of optimal paths obtained from stochastic ocean
model predictions. Firstly, we discussed how the ensemble
of stochastic time-optimal paths were generated. This was
followed by a discussion of the considerations we made when
applying a hierarchical clustering algorithm to two datasets
of massive ensemble of time-optimal trajectories computed
by solving our stochastic dynamically orthogonal level set
equations in strong, dynamic, and uncertain flow fields. Results
from the clustering are analyzed from the perspective of
dynamics of the flow and the properties of the time-optimal
paths. The clustering analysis enables us to draw insights about
the dataset, and also aid in quick computations of spatial
statistics. In the future, this clustering analysis can be utilized
for several more applications. For example, once a set of
clusters is defined on a typical dataset, new incoming model
vehicle trajectories can be classified into one of these clusters
through nearest neighboring algorithms. Such an approach
will also help in detecting anomalous trajectories that may
correspond to rare events of the stochastic model simulation.

Fig. 7. Dataset 2: (a) Clusters of vehicle paths shown by color with
representative paths of each cluster colored in black (‘-’ is for cluster 1, ‘–’ is
for cluster 2). (b) Clusters of vehicle paths shown by color with representative
paths of each cluster colored in black (‘-’ is for cluster 1, ‘–’ is for cluster
2, ‘:’ is for cluster 3). (c) Clusters of vehicle paths shown by color with
representative paths of each cluster colored in black (‘-’ is for cluster 1, ‘–’
is for cluster 2, ‘:’ is for cluster 3, ‘-.’ is for cluster 4).



Fig. 8. Dataset 2: Representative paths colored by the probability of the
clusters they represent.

Other avenues of future work include applying clustering
for designing probabilistic policies for optimal operations
(e.g., risk-optimal planning), examining relationships between
clusters of time-optimal paths and that of the underlying flow
field. Overall, the application of machine learning approaches
with rigorous fundamental planning PDEs and uncertainty
quantification opens up new exciting avenues of research and
development in ocean science and engineering.
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